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REGULARITY OF BUTTERWORTH REFINABLE FUNCTIONS* 

AIHUA FAN*  AND QIYU SUN* 

Abstract.    Let    ^N    be the refinable function with Butterworth filter cos2N |(cos27V | + 

sm2N |)~   and let Sp(^riv) be the Fourier exponent of tytf of order p (0 < p < oo). It is proved that 

In2 ln2 

and for 0 < p < oo 

^1+^<.^s)-N^<^±rD.   (iv>i) 
pln2        -   y"       ' In2 " In2 

where ro E (0,1) is independent of p and N. 

1. Introduction and Result. In this paper we study the solutions of some 
refinement equations of the form 

(i.i) ^ = YSCJ^2X - fi    (:cGE) 

where the coefRcients Cj are supposed to satisfy the arithmetic condition Ylj£Zc3 ~ ^ 
and the exponential decay condition \CJ\ < Ce~(3^ {0,(3 > 0 constants). Solutions of 
a refinement equation are called refinable functions. The 27r-periodic function 

rn(0 = lj2cie~iji 

is called the filter of the refinement equation (1.1). A continuous function (f> is called 
a cardinal interpolant if (f)(0) = 1 and (f)(k) = 0 for all nonzero integer A:. It is known 
that there is an important class of refinable functions which are cardinal interpolants 
and whose filters satisfy 

(1.2) m(0+m(f + 7r) = l. 

Such a filter ra(f) can be put into the factorized form 

(1.3) m(£)=^+_j    R{0 

where AT is a strictly positive integer and iZ(^) is a 27r-periodic function whose Fourier 
coefficients decay exponentially. The minimal degree solution of (1.2) having the 
factorized form (1.3) is given by 

5=0     ^ ^ 
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The corresponding refinable functions, denoted by ^^v, are the self-convolution of 
Daubechies' scaling functions, and they are cardinal interpolants (see [3, 4, 5]). We 
will study the solution of the equation (1.2) whose filter has a simpler factorized form 
(1.3) given by 

2JV f  I^JIN £   ,   „-2N€ 
-1 

(1.4) mN(0 = cos'" | [cos'" | + sin^ | 

These filters are well known in signal processing as the transfer functions of the "But- 
terworth filter" (see [8] for a detailed review). The corresponding refinable functions, 
denoted by ^TV, are said to be Butterworth refinable functions, which are also cardinal 
interpolants. Denote by / the Fourier transform of an integrable function or a tem- 
pered distribution /. In the form of Fourier transform, the equation (1.1) becomes 
0(£) = m(£/2)0(f/2). Hence we get the useful formula 

(1.5) ¥„(fl = (^)2N ft (cos2"2—^ + Sm
2"2—if)-1. 

The aim of this paper is to study the regularity of ^N- The regularity of refinable 
functions is of central importance in the theory of wavelets. A usual approach is to 
study the Fourier exponents, which are also called Sobolev exponents in the literature. 
For a tempered distribution / with measurable Fourier transform, define its Fourier 
exponents sp(f) by 

sp(f) = sup{s:   [\fmp0- + \t\)p'dZ<oo}        (0<p<oo) 

Sco(/)=sUp{s:   /(O(l+1£l)' = 0(l)    KHoo}. 

In [1] , Cohen and Daubechies studied the regularity of refinable functions ^JV and 
gave some numerical results on the Fourier exponents Sp^jy) for p = 1/2,1, 2,4 and 
N = 1,2, • • • ,19. They noticed that for large value of iV the Fourier exponent Sp^n) 
reveals a linear asymptotic behavior and the limit ratio Sp^^/N indicates that the 
worst decay of ^N occurs at the points 2-7+17r/3. In this paper, we confirm the above 
observation by proving 

THEOREM 1. Let ^N be defined as above.  Then 

n^      ,      :      7Vln3 ^ ln(l + 3-") 

for all N > 1, and 

ln(l+r0
Np)   .     ^   x     Nln3      ln(l + 3-") 

for all N > 1 and 0 < p < oo, where 7*0 G (0,1) is a constant independent of p and 
N. 

As a consequence of Theorem 1, we have 

COROLLARY 1. Let ^N be defined as above. Then 

lim    -^-rz  = —r      (0 < p < OO) 
JV->OO     N In 2    v       y-     , 
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and 

lim  (sp(yN) -sq(VN)) =0    {0<P,q<oo). 

2. Proof. To get the lower bound estimate of Sp(^N), we introduce an auxiliary 
7r-periodic even function defined by 

(2.1) MO=max{|cos£/2|,|sin£/2|}. 

It is clear that /i(0 = cosf/2 if |^| < 7r/2 and /i(£) = |sinf/2| if 7r/2 < |^| < TT. 

Furthermore, we have 

LEMMA 1. Let ft(£) be the function defined by (2.1). Then 

^(0^(20 > | € e ([-ff, -f ] u [f, ff ]) + TTZ, 

hm(20h(40 > (^f,    f € ([-|, -|] U [g, |]) + ffZ. 

(2.2) 

Proof. For simplicity, we write ^(O = h((,)h(2(,) and ^(0 = h(£,)h(2^)h(4(,). 
Since /i is an even function with period TT, it suffices to prove (2.2) for £ € [0,7r/2]. 
The first inequality of (2.2) follows from the facts that /i(£) decreases on [0,7r/2] and 
that h(n/3) = \/Z/2. 

Let t = cos2 £/2. By a simple calculation, we obtain that 

(2.3) HiiZY = cos2 £ sin2 ^ = 4i2(l - *) 

and that te[(2+ \J2 - A/3)/4,3/4] for any £ € [7r/3,57r/12] . Observe that 

di(i
2(l-i)) = 3i(2/3-t). 

i" « /2 

3'2arccosV3 This, together with (2.3), implies that #2(0 increases on the interval 

and decreases on the interval [2 arccos \/2/3,57r/12]. Thus, 

#2(0 > min{#2(7r/3),#2(57r/12)} = E^jZ) = 3/4,    V f G [7r/3,57r/12]. 

It is the second inequality of (2.2). 
If f G [57r/12,7r/2], we have 2£ G [57r/6,7r] and 4£ G [57r/3,27r] = [-7r/3,0] + 2n. 

Therefore 

#3(02 = cos2 I sin2 f cos2 2£ = 4t2(l - t){St2 - St + I)2 

where t = cos2 ^/2 G [1/2, (2 4- \/2-\/3)/4]. Let 

Pi(t) = ^2(1 - t)(St2 -8t + I)2,        ^ W = 56£3 - 88^2 + 35^ - 2. 
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Notice that 

4^1 (*) = K-M2 +8t- l)g2(t),        ^-Mt) = 168*2 - 176^ + 35. 
at at 

It follows that j-tg2{t) < 0 on [1/2, (2 + \/2 - \/3)/4]. On the other hand, 02(1/2) = 
1/2 > 0 and 

02((2 + \/2 - V/3)/4) < p2(5/8) = -53/64 < 0. 

Therefore there exists tp 6 [1/2, (2 -I- y/2 - \/3)/4] such that ^(O > 0 on [1/2, *o] and 

g2(t) < 0 on [^0, (2 + y/2-\/3)/4]. Observe that -St2 + 8^ - 1 = - cos2£ > 0. Thus 
Hs(^) increases on [57r/12,2arccosv^o] and decreases on [2arccosy/to,7r/2]. Hence 

#3(0 > min{i73(5^/12),i/3(7r/2)} - H3(57r/12) > (x/3/2)3. 

Thus we have proved the third inequality of (2.2). D 

For TV > 1, let 

(2.4) fliV(0=(cosw|+sinw|)"1. 

Clearly Rjy is a 7r-periodic function and 

mN(0 = cos2N ^RN(0 

(see (1.4)). Note that RN{Q < HO~2N• Therefore, by Lemma 1 and the strict 
monotonicity of /i(£), /i(£)/i(2£), /i(£)/i(2£)/i(4£) on their respective intervals, we have 

LEMMA 2.    Le£ .R/v ^e defined as above and let q = (4/S)N.    Then for any 
0 < 5 < Tfe, there exists 0 < r = r(5) < 1 swc/i ^/ia^ 

J?iv(e)<(7, £€[-§,f]+7rZ 
i?iv(0^iv(20 < g2, ^G ([-ff, -f) U (f, ff ]) + TTZ 

TT    57r \ 1 1 / STT    TT] 
"2 '      12/ U V 12 ' 2J RN^)RN(20RN(^) <q\    £ G ([-f, -ff) U (ff, f ]) + rrZ 

and 

Rff(0<rNQ, ^G[-f +5)f-<5]+7rZ 

iMO#Jv(2£) < r^?2, f € ([-ff, -f - J] U [f + J, ff ]) + TTZ 

TT   _57r^ 1 1 /STT    TT] 
2 J      12/ U V12 ' 2J i?iv(Oi?iv(20^N(40 < r2Nq3,    f € ([-f, -ff) U (ff, f ]) + TTZ. 

/n particular, r can be chosen as 

H KK^)r (i)>4+')r • af Hsn- 
Define 

h{0 = {j:   l<3<k,2^ € Um€2[-7r/4,jr/4] + mTr} 
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and let ik{Q be the cardinality of the set /&(£)• 

LEMMA 3. Let RM be defined as above and let q = (4/S)N. Then there exists a 
positive constant CN such that for any  k > 1 

k 

(2.5) liRN&O^CNr^q* 
3 = 1 

where ro = r(7r/24) is defined in Lemma 2. 

Proof. The idea of proof was used in [7]. It is clear that the assertion in Lemma 
3 holds for k = 1,2,3 if CN is chosen large enough. We assume that (2.5) holds for 
all k < I with I > 3. For k = I, we distinguish five cases. 

(i)     If 2£ e [-7r/4,7r/4] + TTZ, then ik{0 = u_i(2£) + 1. Write 

k k-1 

H RN(2^) = RN(20 JJ ^(2^(20). 
j=i j=i 

Thus (2.5) holds by using Lemma 2 and the induction hypothesis. 
(ii) If 2£ or -2£ G (7r/4,7r/3] + TTZ, then ik(€) = ik-1(2^). Again the induction 

hypothesis together with Lemma 2 implies (2.5). 
(iii)    If 2£ or -2f G (TT/S, STT/S) + TTZ, then u(0 = ^-2(40- It suffices to write 

k k-2 

j=l j=l 

and then to apply Lemma 2 and the induction hypothesis. 
(iv) If 2^ or -2f € [37r/8, 57r/12] + TTZ, then ^(^) < ^-2(4^) + 1. By using the 

induction hypothesis and Lemma 2, we have 

11^(2^) < rN
q

2 [cNrN ^W)qk-2^ 
3=1 

< CNrNik^qk- 

(v)     If 2^ or -2$ e (57r/12,7r/2] + TTZ, then ^(0 < ifc_3(80 + 2. Hence 

fc fc-3 

JJ RN{2?S) = RN(20RN{4Z)RN{80 JJ ^(2^(80) 
j=l 3 = 1 

<r2Nq3[cNrNi*-^qk-3} 
< CNrNik^qk. 

D 

Let k > 2. For (d, • • • ,ek) £ {0, l}fe, let 

Q(ei,-" ,«*) = {i: e,- = ej+i} 

and ^(ei,-- • ,efc) be the cardinality of the set Q(ei, • • ■ ,6^). For 0 < q < k — 1, let 

G9,fc = {(ei,---,£*)€ {0,1}*:  g(ei,-.- >efc)=«}. 
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Then, for any (ei,--- ,e&) 6 Gq,k there exist unique integers 1 < Z'I < £2 < ... < 
iq < k — 1 such that eis = ei3+i for all 1 < s < q. On the other hand, given any 
ei G {0,1} and integers 1 < ii < 22 < . • • < iq < A; — 1, we may find one and only one 
(ei,... , ek) G G^fc such that 6is = €is+i for any 1 < s < q. Therefore, the cardinality 
of Gq,k is 2(k~1) for any 0 < q < k - 1. 

LEMMA 4. Le£ A: > 2, £ £ [0, TT) anrf /e£ u(0 a^^ ^(^1 ? • • • ^k) be defined as above. 

Write t/n = Y^Ui ^2~i + V with 0 < V < 2~k and €i £ {0,1} for 1 < i < k. Then 
ik(Q > q(ei,-' iek) - 1. 

Proof. For any i £ Q(ei, • • • , €&) and i > 2, we have €$ = e^+i and 

3 
2Z  1£ = -e;7r + 7y/7r + m7r 

with 0 < 7/ < ^ and m £ Z. Therefore 2i-1£ £ [0,7r/4] + TTZ if e^ = 0 and 2i-1£ £ 
[-7r/4,0] + 7rZ if e; = 1. This implies that i -1 £ /*(£). Thusu(£) > ^(ei,--- ,efe)-l. 
D 

Proof of Theorem 1. The upper bound estimate of SV{^N) will be proved by a 
modification of the method used in [2]. (The method is also used in [7]). By (1.5) 
and RN(27r/S) = 22N(1 + S^)"1, we have $^(2^/3) ^ 0 and 

$Ar(2A;-f-17r/3) = (1 + 3iV)-fc$Ar(27r/3)    V k > 1. 

This implies that Soo(#;v) < ln(l + 3N)/\n2. 
By the continuity of ^N and Rjy, for any e > 0 there exists 0 < 5 < 1 such that 

for all £ £ [—(5, S] we have 

|^(27r/3 + 01 - |iM-27r/3 - 01 > (1 - e)22N(l + S^)"1 

and 

|$N(27r/3 + 01 > (1 - 6)1*^(2^/3)1 > 0. 

This together with (1.5) implies that for all £ £ [—5, S] and k > 1, 

yN(2k+17r/3 + 0 = II ™N(2k-j+1 TT/S 4- 2-^)^(2^/3 + 2"^) 

>C(l + 3N)-k(l-e)k 

where C is a positive constant independent of k. Therefore for 0 < p < oo and A: > 1, 
we have 

/ \*N(Z)\pdt > d /    |$iv(2/2+1 TT/S + OlpdC > C2(J(1 + 3N)-^(1 - c)^ 

where Ci and C2 are positive constants independent of k. This gives the desired upper 
bound estimate of Sp^jsf) for 0 < p < 00. 

For A; > 1 and 2k~17T < \€\ < 2k7r, it follows from (1.5) and Lemma 3 that 

k k 

|*iv(£)l < Ci H 1^(2-^)1 < C2\t\-2N n \RN(2i(2-kO)\ < C33-
Nk 



REGULARITY OF BUTTERWORTH REFINABLE FUNCTIONS 439 

where Ci, C2 and C3 are positive constants independent of k. This leads to the desired 
lower bound estimate of Soo^iv)- 

Let 7*0 = r(7r/24).   Then for any k > 1 and 0 < p < 00, there exist positive 
constants d (1 < i < 4) independent of A: such that 

/ \9N(0\pdi = 2 f   *  |*i>r(Olpde 
r<|£|<2fc7r J2fc-17r 

2fc7r 

J2fc-i7r 

< C23-fciVp 
v. 02 ?. X 

,«=-,■ e,'7r+n- 

(ei.-^je^i}*-7^-'2*"^'" 

7Vpqr(ei,-.-,€fc) de 

fc-1 

g=0 g(ei,"-iefc)=g 

where we have used (5) and Lemma 3 in the first inequality, Lemma 4 in the second 
one, the fact that the cardinality of Gq,k is 2{k~1) in the last one. Hence we obtain 
the desired lower bound estimate of SP(^N) for 0 < p < 00. □ 

3. Remarks. From the above proof, we see that ro in the theorem can be chosen 
to be 0.9787028. When iV is large, Sp(*^) is well approximated by ]Vln3/ln2. Let us 
compare the numerical results obtained in [1] for p = 1/2,1,4 and the approximation 
given by N |^-| (see Table 1). We point out that the differences between the last two 
columns are small and that when ./V > 20 we can use N\og2 3 to get rather precise 
approximation for SP(^N)- 

N P=4 p = l p = 4 iiVln3/ln2 
2 0.677350 1.256211 1.604344 1.584963 
3 1.561362 2.044109 2.365870 2.377444 
4 2.370365 2.843768 3.148599 3.169925 
5 3.183890 3.648646 3.940563 3.962406 
6 3.999055 4.456118 4.735925 4.754888 
7 4.815040 5.264533 5.532265 5.547369 
8 5.630616 6.072947 6.328326 6.339850 
9 6.446191 6.881125 7.123827 7.132331 
10 7.260947 7.688598 7.918627 7.924813 
11 8.075292 8.495600 8.712863 8.717294 
12 8.888817 9.301894 9.506534 9.509775 
13 9.701520 10.107480 10.299921 10.302256 
14 10.513813 10.912358 11.093166 11.094738 
15 11.325284 11.716526 11.885986 11.887218 
16 12.135933 12.519984 12.678805 12.679700 
17 12.946170 13.322968 13.471625 13.472181 
18 13.755996 14.125241 14.264159 14.264662 
19 14.564999 14.927039 15.056836 15.057144 

Table 1: Fourier exponent S2P(^N) = |sp(^riv) and its approximation !jVTog23 
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Let 3) AT be the refinable function with corresponding filter [1+e
2 * )    (cos2N ^/2-f 

sm2iVe/2)~1/2. Then $^(0 = |<Mf)|2 and sp(^N) = 2sp/2(®N). In fact, the 
original numerical results in [1] is about the Fourier exponents Sp^jy) with p = 
1,2,4,8 and N = 1,2,-•• ,19. 

For the Daubechies scaling functions $iv, there are many papers devoted to the 
estimates of Sp(<I>jv) (see [1, 6, 7, 9] and references therein). In [7], Lau and Sun 
proved that 

.r-jj < 8P(*N) -2N+ ^   )  < 0 

for 0 <p' < oo and 

,    ($>    \       9 AT      lnP^(3/4) 
In 2 

where C is a positive constant independent of iV and 

AT-l 

™-trn*- 
By the idea we used in the proof of the theorem, the term — ^ in the above lower 
estimate can be improved to be -Cr^  for some 0 < ro < 1. 
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