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REGULARITY OF BUTTERWORTH REFINABLE FUNCTIONS*
AIHUA FAN'! AND QIYU SUN?

Abstract. Let ¥y be the refinable function with Butterworth filter cos?” §(cos?™ § +
sin2V ;6,_-)_1 and let sp(¥ ) be the Fourier exponent of ¥ of order p (0 < p < o). It is proved that

. —N
yin3 _ In(+3~N)

0< Uy)— N>1
S seo(EN) = N S T2 (V=1
and for 0 < p < ©
In(1 +7'® In -N
_m_)<sp(\p )_Nln_3 In(1 +377) (N >1)
pln2 12~ In2

where rg € (0,1) is independent of p and N.

1. Introduction and Result. In this paper we study the solutions of some
refinement equations of the form

(L.1) $le) =Y cjp2z—j) (z€R)
JEZ
where the coefficients ¢; are supposed to satisfy the arithmetic condition ) jezCi =2

and the exponential decay condition |c;| < CeAlJ I (C, 8 > 0 constants). Solutions of
a refinement equation are called refinable functions. The 2w-periodic function

1 g
m(g) =35> cje

JEZ

is called the filter of the refinement equation (1.1). A continuous function ¢ is called
a cardinal interpolant if ¢$(0) = 1 and ¢(k) = O for all nonzero integer k. It is known
that there is an important class of refinable functions which are cardinal interpolants
and whose filters satisfy

(1.2) m(&) +m(f+m) =1

Such a filter m(¢) can be put into the factorized form

14e" %

(13) e = (25 e

where N is a strictly positive integer and R(€) is a 2n-periodic function whose Fourier
coefficients decay exponentially. The minimal degree solution of (1.2) having the
factorized form (1.3) is given by

N 1
an € N-1+s) . 3¢
mpy(€) = cos E < )sm 5

s=0

*Received April 8, 1999; accepted for publication June 19, 2000.
tDépartement de Mathématiques et Informatique, Université de Picardie Jules Verne, 33 Rue
Saint Leu, 80039 Amiens Cedex 1, France.

IDepartment of Mathematics, National University of Singapore, 10 Kent Ridge Road, Singapore
119260 (matsunqy@leonis.nus.edu.sg).

433



434 A. FAN AND Q. SUN

The corresponding refinable functions, denoted by ®x, are the self-convolution of
Daubechies’ scaling functions, and they are cardinal interpolants (see [3, 4, 5]). We
will study the solution of the equation (1.2) whose filter has a simpler factorized form
(1.3) given by

(1.4) mn(€) = cos?V g <coszN g + sin?V g)—

These filters are well known in signal processing as the transfer functions of the “But-
terworth filter” (see [8] for a detailed review). The corresponding refinable functions,
denoted by ¥, are said to be Butterworth refinable functions, which are also cardinal
interpolants. Denote by f the Fourier transform of an integrable function or a tem-
pered distribution f. In the form of Fourier transform, the equation (1.1) becomes
$(€) = m(£/2)$(£/2). Hence we get the useful formula

-1

(3 ()= (512/52/ 2T (eov o tes sin? 27n-1¢)
n=1

The aim of this paper is to study the regularity of ¥ . The regularity of refinable
functions is of central importance in the theory of wavelets. A usual approach is to
study the Fourier exponents, which are also called Sobolev exponents in the literature.
For a tempered distribution f with measurable Fourier transform, define its Fourier
exponents s,(f) by

sp(f) = sup {5 /W OP(L+IE)PdE <00} (0<p< oo

sool(f) =sup {51 FOQ+IE)* =0Q) Ig] > oo}

In [1] , Cohen and Daubechies studied the regularity of refinable functions ¥y and
gave some numerical results on the Fourier exponents s,(¥y) for p =1/2,1,2,4 and
N =1,2,---,19. They noticed that for large value of N the Fourier exponent s,(¥ )
reveals a linear asymptotic behavior and the limit ratio s,(¥ x)/N indicates that the
worst decay of T ~ occurs at the points 217 /3. In this paper, we confirm the above
observation by proving

THEOREM 1. Let ¥ be defined as above. Then

Nln3 _In(l +3~N)

0<seo(¥n) =55~ < — 3
for all N > 1, and
In(1 +707) NIn3 _In(1+3%)
=T J <« - <
P R R A i ™ el v

for all N > 1 and 0 < p < oo, where ro € (0,1) is a constant independent of p and
N.

As a consequence of Theorem 1, we have

COROLLARY 1. Let U be defined as above. Then

PN Y <
MmN =g 0<psoo)
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and

]\}Enoo (3p(¥n) — 5¢(TN)) =0 (0<p,g<00)

2. Proof. To get the lower bound estimate of s,(¥x), we introduce an auxiliary
m-periodic even function defined by

(2.1) h(¢) = max{| cos&/2|,|sin&/2|}.

It is clear that h(§) = cos&R if €] < 7/2 and h(§) = [sin&pR| if /2 < |¢] < 7.
Furthermore, we have

LEMMA 1. Let h(€) be the function defined by (2.1). Then

h(§) > ?’ e [—%, %] + 7,
(2:2) h(€)h(2€) > Z, ¢ e ([-32,-1]U [z, 5)) + 72,
h(§)h(2§)h(4E) > (?)3, ce ([—g, —?—g] [%’ g]) +7Z.

Proof. For simplicity, we write H2(€) = h(€)h(2¢) and H3(§) = h(&)h(2€)h(4€).
Since h is an even function with period =, it suffices to prove (2.2) for ¢ € [0,7/2].
The first inequality of (2.2) follows from the facts that h(§) decreases on [0, 7/2] and
that h(r/3) = /3/2.

Let t = cos? £/2. By a simple calculation, we obtain that
(2.3) H5(€)? = cos? gsin2 £ =4t*(1 - t)

and that t € [(2+ V2 — v/3)/4,3/4] for any ¢ € [r/3,57/12] . Observe that

d
E(tm — 1)) = 3t(2/3 —t).

This, together with (2.3), implies that Hs(£) increases on the interval [;—r, 2 arccos \/§:|
and decreases on the interval [2arccos /2/3,57/12]. Thus,

H,(€) > min{Hy(m/3), Ha(57/12)} = Hy(w/3) = 3/4, V&€ [r/3,57/12].
It is the second inequality of (2.2).

If ¢ € [57/12,7/2], we have 2¢ € [57/6, 7] and 4€ € [57/3,2n] = [-n/3,0] + 27.
Therefore

H3(¢)? = cos? 5 sin? € cos? 26 = 47 (1 — t)(8t> — 8t + 1)

where t = cos? £/2 € [1/2, (2 + V2 — V/3)/4]. Let

g1(t) =t3(1 —t)(8t> =8t +1)%,  go(t) = 56> — 88t> + 35t — 2.
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Notice that

d
Z91(t) = t(=8£> + 8t~ 1)ga(2), %gQ(t) = 168¢% — 176t + 35.

It follows that Lgs(¢) < 0 on [1/2,(2+ V2 — v/3)/4]. On the other hand, g»(1/2) =
1/2 >0 and

g2((2+ /2= V3)/4) < g2(5/8) = —53/64 < 0.

Therefore there exists to € [1/2, (2+ /2 — v/3)/4] such that gs(¢) > 0 on [1/2,%0] and

g2(t) < 0 on [to, (2+ V2 — v/3)/4]. Observe that —8t> + 8t — 1 = — cos 26 > 0. Thus
H;(&) increases on [5m/12,2 arccos /%] and decreases on [2 arccos /%, 7/2]. Hence

H3(€) > min{Hs(57/12), H3(7/2)} = Hs(57/12) > (v/3/2)°.
Thus we have proved the third inequality of (2.2). O

For N > 1, let

(2.4) Rn(8) = (COSQN g +sin?V g)‘l

Clearly Ry is a m-periodic function and

A (€) = cos? B (€)
(see (1.4)). Note that Ry (£) < h(€)™2N. Therefore, by Lemma 1 and the strict
monotonicity of h(£), h(€)h(2€), h(£)h(2£)h(4€) on their respective intervals, we have

LEMMA 2. Let Ry be defined as above and let ¢ = (4/3)N. Then for any
0 <6<, there exists 0 <1 =r(d) <1 such that

Rn(§) < g, £e[-3, 1 +nZ
Rn(6)Rn(26) < ¢, (e (-5 Ui B +7Z
Rn()RN(2RN(4E) < ¢%, e (-5,-35)U (5, 5]) +7Z
and
Rn(€) <rMq, E€[-T+6,T — 4| +nZ
Ry (§)Rn(26) <TN¢?, e(-35,~5-0U[f+6,35]) +7Z

RN(§Rn(20)RN(4E) <r?Ng?, €€ (-5, -35) U (35, 5]) + L.

In particular, r can be chosen as
max (3 (1(5-9)) () (5 +9) () () )

Define

Iy(&) = {j: 1<j <k, 2€ € Unez[-7/4,7/4] +mm}
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and let i (€) be the cardinality of the set It (§).

LEMMA 3. Let Ry be defined as above and let ¢ = (4/3)N. Then there ezists a
positive constant Cn such that for any k > 1

o

(2.5) H (276) < Cn er"(g)qk

where ro = r(mw/24) is defined in Lemma 2.

Proof. The idea of proof was used in [7]. It is clear that the assertion in Lemma
3 holds for k = 1,2,3 if Cy is chosen large enough. We assume that (2.5) holds for
all k <1 with [ > 3. For k = [, we distinguish five cases.

(i) If2¢e[-n/4,n/4]+ 7L, then ix(€) = ix—1(28) + 1. Write

k k-1
I Bn(2¢) = Ry (2¢) [T Rn(27(29)).
j=1 j=1

Thus (2.5) holds by using Lemma 2 and the induction hypothesis.

(i) If 26 or —2¢ € (w/4,7/3] + 7Z, then iy () = ir—1(2€). Again the induction
hypothesis together with Lemma 2 implies (2.5).

(i) If 2¢ or —2¢ € (7/3,37/8) + 7Z, then i1 (€) = ir—2(4). It suffices to write

k k=2
[ Bv(2¢) = Rn(26) Riv(4€) [ [ Bn(27(49))
j=1 j=1

and then to apply Lemma 2 and the induction hypothesis.
(iv) If 2 or —2¢ € [37/8,5m/12] + wZ, then iy (€) < ix—2(4€) + 1. By using the
induction hypothesis and Lemma 2, we have

k
H ) <rNg? [CNTN ik-2(4§)qk—2]
< CN‘T'Nik(E)qk.

(v) If2for —2¢ € (57/12,7/2] + 7Z, then ix(€) < 1x—3(8E) + 2. Hence

k k-3
H RN(27€) = Ry (28) Ry (4€) Ry (8) H Ry (27(8¢))

< PN [CNT,Nik_g(SE)qk—B]

< CNTNik(ﬁ)qk_

Let k > 2. For (e1,--- ,€x) € {0,1}*, let
Qer, - er) ={i: & =€t}
and q(e1,- - ,€x) be the cardinality of the set Q(e1, - ,€x). For0< ¢ <k —1, let
Gor ={(e1,-+,ex) € {0,1}*: qler,-- &) =g}
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Then, for any (e1,---,€e;) € Gg there exist unique integers 1 < 4; < iz < ... <
iq < k — 1 such that €;, = €;,+1 for all 1 < s < g. On the other hand, given any
e1 € {0,1} and integers 1 < i; < i3 < ... <14y < k—1, we may find one and only one
(€1,... ,€k) € Gg such that €;, = €; 41 for any 1 < s < g. Therefore, the cardinality
of Gy, is 2(’“;1) forany 0 < g <k-—1.

LEMMA 4. Letk > 2,£ € [0,7) and let ix(€) and q(e1,- .. ,€) be defined as above.

Write €7 = Sr_ €27  + 1 with 0 < n < 27% and ¢; € {0,1} for 1 <i < k. Then
ik(§) > qler, - ,ex) — 1.

Proof. For any i € Q(e1,--- ,€) and 7 > 2, we have ¢; = €;41 and
i—1 3 !
2 §=Zem+nﬂ+m7r

with 0 < 7' < § and m € Z. Therefore 2°71¢ € [0,7/4] + 7Z if €; = 0 and 2:71¢ €
[-7/4,0]+7Zif ¢; = 1. This implies that i —1 € I;(§). Thus ix(§) > q(e1,- - ,ex) —1.
0

Proof of Theorem 1. The upper bound estimate of s,(¥ ) will be proved by a
modification of the method used in [2]. (The method is also used in [7]). By (1.5)
and Ry (27/3) = 22N (1 4+ 3N)~!, we have Uy (27/3) # 0 and

Un(2M17/3) = (14 3V)* Wy (2n/3) VE> 1

This implies that se(¥x) < In(1 +3V)/In2.

~

By the continuity of ¥y and Ry, for any € > 0 there exists 0 < § < 1 such that
for all £ € [—6, 6] we have

|Rn(27/3 +&)| = |[Rn(=27/3 = €)] > (1 — )22V (1 +3V) 7!
and
[N (2n/3+€)| > (1 - €)|Tn(27/3)] > 0.
This together with (1.5) implies that for all £ € [—4,4] and k > 1,

k
Ty (2 /3 4+ &) = [[mn (27 /3 +277€) U (2n/3 + 275¢)
j=1

>C(1+3Y)*1-¢F

where C is a positive constant independent of k. Therefore for 0 < p < co and k > 1,
we have

2t 41 s
/ | N (E)|PdE > Cy / |y (25 /3 + €)[PdE > Ca8(1 + 3N)7FP(1 — ¢)kP
2k=17/3+1 -6

where C, and C5 are positive constants independent of k. This gives the desired upper
bound estimate of s,(¥ ) for 0 < p < co.
For k > 1 and 2*~1x < |¢| < 2%, it follows from (1.5) and Lemma 3 that

k k
[T (&) < O [] Imn(@776)] < Calel >N T] 1RN (27 (27%))] < C337N*
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where C;, Cs and C3 are positive constants independent of k. This leads to the desired
lower bound estimate of seo(¥n).

Let 7o = 7(w/24). Then for any £ > 1 and 0 < p < oo, there exist positive
constants C; (1 < i < 4) independent of k such that

2k

/ B n(O)Pde = 2 / 1B (O de
2k-1x< || <2k n ok=17

2k ek
< Oy3—kNp / PPN (270 e
2k—1g
ko gk—j.
< 3=k Z k2 emtn TéVW(“’w’ek)df
(1, ren)E{0, 1}k ¥ Df=1 2F T e
k-1

< 033_kNpZ7"(])qu Z 1

=0 gleren)=a
< Cy37FVP(1 4 r{P)*

where we have used (5) and Lemma 3 in the first inequality, Lemma 4 in the second
one, the fact that the cardinality of G is 2('“;1) in the last one. Hence we obtain
the desired lower bound estimate of s,(¥n) for 0 < p < co0. O

3. Remarks. From the above proof, we see that r¢ in the theorem can be chosen
to be 0.9787028. When N is large, s,(¥ ) is well approximated by NIn3/1In2. Let us
compare the numerical results obtained in [1] for p = 1/2,1,4 and the approximation
given by N{22 (see Table 1). We point out that the differences between the last two
columns are small and that when NV > 20 we can use IV log, 3 to get rather precise
approximation for s,(¥y).

N|p=1% p=1 p=4 tNIn3/In2
2 10.677350 | 1.256211 1.604344 | 1.584963
3 | 1.561362 2.044109 2.365870 | 2.377444
4 | 2.370365 | 2.843768 | 3.148599 | 3.169925
5 | 3.183890 | 3.648646 | 3.940563 | 3.962406
6 | 3.999055 | 4.456118 | 4.735925 | 4.754888
7 | 4.815040 | 5.264533 | 5.532265 | 5.547369
8 | 5.630616 | 6.072947 | 6.328326 | 6.339850

9 | 6.446191 | 6.881125 | 7.123827 | 7.132331
10 | 7.260947 | 7.688598 | 7.918627 | 7.924813
11 | 8.075292 | 8.495600 | 8.712863 | 8.717294
12 | 8.888817 | 9.301894 | 9.506534 | 9.509775
13 | 9.701520 | 10.107480 | 10.299921 | 10.302256
14 | 10.513813 | 10.912358 | 11.093166 | 11.094738
15 | 11.325284 | 11.716526 | 11.885986 | 11.887218
16 | 12.135933 | 12.519984 | 12.678805 | 12.679700
17 | 12.946170 | 13.322968 | 13.471625 | 13.472181
18 | 13.755996 | 14.125241 | 14.264159 | 14.264662
19 | 14.564999 | 14.927039 | 15.056836 | 15.057144

Table 1: Fourier exponent ss,(¥n) = 15p(¥x) and its approximation $Nlog,3
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Let ¥y be the refinable function with corresponding filter (%)N( cos?N ¢/2+

sin®V £/2) 7%, Then x(€) = [In(O) and 5,(¥n) = 2s,5(Tw). In fact, the
original numerical results in [1] is about the Fourier exponents s,(¥y) with p =
1,2,4,8and N =1,2,---,19.

For the Daubechies scaling functions @y, there are many papers devoted to the
estimates of s,(®n) (see [1, 6, 7, 9] and references therein). In [7], Lau and Sun
proved that

C In Py (3/4)
= — AN«
N < sp(®n) — 2N + ™) <0
for 0 < p < o0 and
In Py (3/4
Se0(®N) = 2N — %/)

where C' is a positive constant independent of N and

Pult) =-"’z‘:‘ <N+:—1)ts.

s=0

By the idea we used in the proof of the theorem, the term —% in the above lower

estimate can be improved to be —Cr{’ for some 0 < rg < 1.
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