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BIALGEBRA AND GEOMETRY OF PLANE QUARTICS* 

MARAT GIZATULLINt 

Abstract. Weak semisimplicity of the bialgebra of ternary quartic forms is proved. 

In fact there being no direct method of proceeding from the invariant to the geo- 
metric meaning ... 

// it be not obtained we should console ourselves with the reflexion that the unin- 
terpreted forms are of little geometrical interest in the present state of knowledge; 

Besides if we regard the algebra as being merely helpful to geometry in the ana- 
lytical formulations of results, it does not follow that everything in the algebra need be 
taken seriously from the geometrical point of view. 

(From No. 229 of "The algebra of Invariants" by J. H. Grace and A. Young, 
Cambridge, 1903) 

1. First definitions and introduction. 
(1.0) Conventions. In the article, the ground field K is always of characteristic 

zero and algebraically closed. 
Let W be a finite-dimensional K-vector space, W* be the dual space of W. 

Sometimes, elements of W (denoted as a, 6, c.) will be called linear forms, elements 
of W* (denoted as p,q,r...) will be called vectors. Therefore, elements of P(W) are 
hyperplanes (or lines, if W is three-dimensional), elements of P^*) are points. Also, 
we will use geometric term pencil for two-dimensional subspaces of W (or W*). If 
{a, b) is a basis of a pencil F, then we will denote the pencil P by (Aa + //&) or by 
(Ka + Kb). Let 

W x W* -> K, (a,p) H+< a,p >G K, 

W* xW'+K, (p,a)  H-><p,a>eir 

be two natural pairings denoted with the same symbol <, > . 
We will say that two bases {ei,...,en} C W, {/i,...,/n} C W* are projectively 

dual , if < ei.fj >= 0 for i ^ j, < ei, fi >^ 0. Here, projective point of view 
means that we do not try to normalize elements of the bases and consider them up to 
proportionality. 

(1.1) Definition. Bialgebra. Bimultiplication law on W (defining a bialgebra 
structure on W) consists of two bilinear maps (both of which will be denoted by square 
brackets) 

WxW-^W\        (a, 6) i-» [a, 6] e W*, 

W* x W* -+ W, (p,q) ^ [p,g] <E W. 

The number dim(T^) is dimension (or rank ) of the bialgebra (W, [ , ]). 
The number (dim(H/) — 1) is projective dimension of the bialgebra. 
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Bialgebra (W, [,]) is commutative if 

[a, b] = [b, a],   [p, q] = [q,p]    for any     a, 6 € W,    p, g G T^*. 

(1.2) Notation. Reciprocal of x. For x G W U W*, we denote x = [x,x]/2, the 
element x is the reciprocal of x. 

Sometimes, we (together with G. Salmon [25], No. 292) will use notation a(x) 
(instead of x) for elements # of a bialgebra defined (according to (3.2) and (8.1)) on 
the space S4{Kd). 

We have two (quadratic) polynomial maps ~ : W -> W*,~ : W* —tW, and 
their composites ^ : W -> W, ~ : W* -> P^*, also corresponding projectivizations 
(which are rational maps), for example, the map 

PO : V(W) > F(W). 

(1.3) Definition. Subalgebra and ideal If (W,[ , ]) is a bialgebra, then its 
subalgebra is a pair ([/, V) of vector subspaces U C W,   V C W* such that 
(i)    the induced pairing    U xV -* K    is nondegenerate 
(therefore dimU = dim V, this number is said to be the subalgebra dimension, more- 
over, one can identify V with [/*), 
(ii) [U,U]CV,   \y,v]cu. 

Ideal in (W, [ , ]) is a subalgebra (17, V) such that [17, W] C V,   [F, W*] C £/. 

(1.4) Definition. Projective idempotent. An element x G W U PT^* is an idem- 
potent (more precisely, a projective idempotent) if 

< x, [x, x] >^ 0, and  [[x, x], [x, x]] = kx 

for some nonzero k G K, that is  x  = kx. 

(1.5) Remark. Geometrically, if x is an idempotent, then the corresponding 
point a G F(W) UP(PPr*) belongs to the domain of definition of the rational map PO, 
and this point is a fixed point of the map. 

Algebraically, a G W is an idempotent if and only if (ifa,lf[a,a]) is a one- 
dimensional (projectively zero-dimensional) subalgebra of (W,[ , ]), therefore, there 
exists a correspondence between projective idempotents and one-dimensional subal- 
gebras. 

With the point of view of the generalization given by Definition (1.6) below, 
ordinary idempotent is an idempotent of level zero. 

(1.6) Definition. Idempotents of level m. An element x G W U W* of bialgebra 
(W, [,]) is an idempotent of level m, if there exists a subalgebra (U, V) C (W, W*) of 
dimension < m 4-1 containing x. 

Weak idempotent is an idempotent of level 1, projectively onedimensional sub- 
algebras will be called idempotent pencils. Thus, idempotent pencil defines a line in 
P(T/7), the line is invariant with respect to the map P(~) (also, a line in P(iy*) with 
a similar property, both the lines are reciprocal images by PQ). 

(1.7) Definition. Semisimplicity of level m. An n-dimensional commutative 
bialgebra (W, [,]) is called m-semisimple (or semisimple of level m), if there are n 
subalgebras (C/i, Vi),..., (Un, Vn) of (W, [,]) and two subsets 

{ei,...,en}cPF,   {/i,...,/n}cW* 
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satisfying the following conditions: 
(i)   dimE/t<ra+l,   dimVi < m + 1 ( i G {1,2, ...,n}), 
(ii) ei G Ui, fi G Vi (therefore ei, /« are idempotents of level m), 
(iii) elements'ei, ...,en constitute a base for VF*, and this base is dual of the base {ei}, 
(Iv) elements /i,..., /n constitute a base of W7, and it is dual of the base {fi}. 

Also, 1-semisimple bialgebra will be called weakly semisimple. 
O-semisimple bialgebra is called semisimple, more precisely, a commutative bial- 

gebra (W, [,]) is said to be semisimple, if there exists a base {ei, ...,en} (n = dimPF) 
for W such that ei are idempotents, elements ei, ...,en constitute a base for W* and 
these bases are mutually dual. For example, the bialgebra of binary quartics defined 
in (4.2) is semisimple. We will publish a proof of this result in other place. 

It is known (see Theorem (7.11)) that the bialgebra of ternary quadratic forms 
(with respect to the natural bimultiplication described in no.6 below) is semisimple. 
Actually, it was established by Francesco Gerbaldi in 1882 (see [11], [12], [13], [14], also 
comments in [9], [16], [19], [34]), he has constructed the so called six mutually apolar 
conies. The conies were used for a description of Valentiner's subgroup [28] Gseo 
of Aut(P2) : as an abstract group, G360 is isomorphic to the alternating group AQ of 
even permutations of six symbols, Gerbaldi demonstrated that one can take the conies 
as the symbols, that is Valentiner's group interchanges the conies, see [34] for some 
modern comments. Moreover, the conies were used for a construction of a point-line 
configuration studied by Gerbaldi (loc. cit). The set of intersection points of distinct 
Gerbaldi's conies consists of 60 points. From pure geometric consideration, without 
use of Gerbaldi's conies, the configuration was constructed by W. Burnside [3], whose 
attention was concentrated on 45 points of the dual plane (see also E. Steinitz' and 
A. Wiman's surveys [27], [33] and modern paper [34] by S. Grass). We will call it as 
the Gerbaldi-Burnside configuration. 

For the bialgebra of ternary forms of the next even degree, that is for the bialgebra 
of ternary quartics described in (8.1), the question about O-semisimplicity is open, but 
we will prove a weak assertion. 

(1.9) Theorem. The bialgebra of ternary quartics is weakly semisimple. 
In the proof of the theorem, we shall construct fifteen quartic idempotent pencils 

(Ui,Vi) (i = 1,2,..., 15), where Ui is the cogredient part, defining a pencil of curves 
in P(W), Vi is the contragredient part, defining a pencil of curves in P(W*). Each 
of the parts is projectively equivalent to the so-called Wiman quartic pencil. Such 
a pencil was considered by A. Wiman [31], [32], and also by E. Ciani, W. L. Edge 
[6], 1. Dolgachev and V. Kanev [5], R. E. Rodriguez and V. Gonzalez-Aguilera [23]. 
Each of the fifteen pencils Ui contains two Klein's quartics, one Fermat's quartic, a 
Capolari quartic, a Clebsch quartic and a Bernoulli lemniscate. Each pair ([/*, VJ) is 
projectively isomorphic to Wiman quartic subalgebra from our Definition (10.11) with 
2m = 4 and from (11.9-12). 

(1.10) Theorem. The union of all base loci of the fifteen Wiman quartic pencils 
coincides with the set of 60 points of the Gerbaldi-Burnside configuration. 

In the quartic bialgebra, another weakened property of semisimplicity holds. 

(1.11) Theorem. In the bialgebra of ternary quartics, one can find fifteen six- 
dimensional and SEMISIMPLE subalgebras with the properties indicated in definition 
(1.7)   (where m = 6 is taken of course). 

An example of the quartic subalgebra of Theorem (1.11) was considered by G. 
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Salmon in his "Treatise on higher plane curves" [25], no. 298, therefore we will call 
such a subalgebra as Salmon's subalgebra. 

Our proofs and constructions are inscribed in a framework of some general con- 
siderations from the bialgebras theory and the theory of co(contra)variants of ternary 
forms. Also we give some illustrative examples connected with the invariant theory of 
binary forms or with ternary forms of arbitrary degree, but in this text, the cases of 
binary forms or ternary forms of the degree distinct from 2 and 4 are used for an il- 
lustration of the notion of bimultiplication only, that is we do not consider a structure 
or semisimplicity of corresponding bialgebras, although, in (13.7), we give an example 
of a four-dimensional semisimple subalgebra of the bialgebra of ternary sextics, this 
bialgebra contains a set of remarkable sextics (for example, a couple of idempotent 
Wiman's sextics C, C with the property Aut(C) = Aut(P2, C) = G^QQ, Wiman's sex- 
tic W with Aut(W) = Bir(F2, W) — G120? and a couple of rational ten-nodal sextics). 
A short description of bialgebras arising from semisimple Lie algebras was added by 
the revision of the text in (5.10). 
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ematik. I am indebted to the administration of MPIM for having made possible this 
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"Moduli, Motives, Mirrors and other Marvels". I would like to express to him my 
gratitude. 

I would like to thank Dale Husemoller for corrections of my English text. 
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2. Symmetric and skew-symmetric bialgebras. 
(2.1) Definition. Symmetric and skew-symmetric bialgebras, their potentials. 

The bimultiplication law [,] is symmetric (resp. skew) if both the trilinear functions 
0(a,6,c) =< [a,6],c>, ^(p,g,r) =< [p,g],r > 

(  0 : W x W x W -> K,    il> : W* x W* x W* -> K) 

are symmetric (resp. alternative ). Sometimes we will write < a.b.c > instead of 
0(a,6, c). We will be concerned with symmetric or skew-symmetric bimultiplications 
only. In both these cases, the pair ((/>, ip) of these trilinear functions is called bipoten- 
tial for the bimultiplication, components of the bipotential are potentials.Of course, 
the pair of these functions is the same as a pair of tensors (£,£*)> where t G (PF*)®3, 
t* G (W)®3. Both of the tensors are symmetric (resp. skew-symmetric) for symmetric 
(resp. skew) bialgebra. For the case of symmetric bialgebra, the homogeneous func- 
tions 2(a) = </>(a,a,a), i*(p) = il)(p,p,p) are called potentials also, because the latter 
pair of functions determines bipotential for symmetric bialgebra. 

It is evident that symmetric bialgebra is commutative: [a, b] = [6, a], [p, q] = 
[q,p], skew bialgebra is anti-commutative: [a, b] = -[&, a], \p,q] = —[q,p]. We will 
consider only those bialgebra properties which do not depend on the change of a 
bimultiplication for proportional bimultiplication, and sometimes we will change the 
bipotential (</>,?/>) for (&</>, /?/>), where fc, Z are nonzero constants. 
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(2.2) Remark. The notions of idempotent, semisimplicity or m-semisimplicity 
(definitions(1.4), (1.7), (1.8)) do not have a sense for skew bialgebras, but skew bial- 
gebras will be used for constructions of symmetric bialgebras in (3.2-3), (4,2-4). 

Note that for symmetric or skew-symmetric bialgebra, the bipotential determines 
the bimultiplication: element p — [a, b] G W* is defined by the condition < p, x >= 
(f)(a, b, x) for all x £ W, similarly, element a — [p, q) £ W is defined by the condition 
< a,y >= ip(p,q,y) for all y £ W*. 

Our use of word "potential" can be explained by gradient-like character of for- 
mulas for bimultiplications or reciprocals, see (4,4) , 6, (8,1). 

(2.3) Definition. Special bialgebra. A symmetric or skew-symmetric bialgebra 
(W, [,]) is said to be special, if there is a pair of projectively dual bases such that the 
linear isomorphism W -> W*, defined with the help of the bases induces a coincidence 
(up to proportionality) of the bipotential components, that is functions 

<t>(^2 Xieu Y2 ^e*' ]C Ziei^ ^(YlXi^' ^2 yi^' X^ Zi^ 
are proportional. 

(2.4) Definition.    Projectively equivariant bimultiplication. 
(1) Remark. Assume that a group G acts linearly on W. We say that a bialge- 

bra structure on W is projectively G-equivariant (or P(Gf)-equivariant), if for some 
multiplicative character x of G, for any g £ G and for any a, b £ W, we have 
[g(a),g(b)] = x(p)(5f*)~1([aJ^])j where g* : W* -> W* is the contragredient (trans- 
pose) map. 

(2) If a bimultiplication on W is projectively GL(W)-equivariant, then we say 
that it is projectively equivariant or PGL(VF)-equivariant. 

In the case of a symmetric projectively equivariant bimultiplication, the potential 
components (f) and if) are simultaneous invariants of the argument triple: 

<t>(g(a),g(b),g(c)) =xi(g)(t>(a,b,c),   fip(g{p)1g{q),g{r)) =X2(9)<l>(p,q,r) 

for some characters Xi,X2- 

(2.5) Notation. For special symmetric bimultiplication and x £ W U W*, we 
will denote I(x) —< x, [x,x] > /3. In this case, we will call this cubic homogeneous 
function as potential also. 

Note that for projectively equivariant bimultiplication, the function I(x) is an 
invariant. The reciprocal  x  of a; is a contravariant of x. 

(2.6) Remark. For any pair of elements a £ W, b £ W of a symmetric bialgebra 
(W, [,]), and for any constants x £ K, y £ K, the following identity 

xa + yb = x2a + xy[a, b] +y2b 

holds. 

3. Extension of bimultiplication to symmetric powers. 
(3.1) Notation.   We will denote by <,> the extension of the duality pairing 

<, > to the symmetric powers Sn(W), more precisely, 

<.,. >:Sn(W) xSn(W*) -*K 
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is such that < an,pn >=< a,p>n, and therefore 

< an,PiP2...Pn >=< a,Pi >< a,P2 > ... < a,Pn > • 

(3.2) Theorem. Let (W, [ , ]) be a bialgebra with either skew-symmetric or 
symmetric PGL(VF)-equivariant bimultiplication. Then for any natural m, there exists 
a unique PGL(l^)-equivariant bimultiplication on Sm(W) such that 

[am
>6

m] = [a>6r,   |p
m,«m] = b,?]"1, 

where a, & e W,  p, q E PF*. 
If the initial bimultiplication is symmetric (resp. special), then new bimultiplica- 

tions are also symmetric (resp. special). 
If the initial bimultiplication is skew, then the bimultiplication on Sm(W) is skew 

by odd m and symmetric by even m. 

Proof. We write only a sketch of a proof. A complete proof of a general theorem 
including an analog of theorem (3.3) for the case of m-algebras will be published in 
another place. 

An informal explanation (with the point of view of invariantists of XlX-th cen- 
tury) is based on the symbolic method: if 0(o, 6, c) is a potential for the bimul- 
tiplication in (W, [,]), and elements f,g,h € Sm(W) are written symbolically as 
f = am, g — bm, h = cm, then the potential (^m for the bimultiplication on Sm(W) is 
defined symbolically by </>m(/5#5^) = (0(a, 6, c))m. 

A bit more serious explanation is the following. We can define a bimultiplication 
with the help of the formulas in (3.2), but linear relations between powers of linear 
forms might spoil such a definition. Therefore we need the following lemma. 

Lemma.   Let W, V be vector spaces, 

Wx W ^V,     (a, 6) »->[a,6] 

be a bilinear map. If the relation JZ aT — 0 holds in Srn{W), then for any b e W, 
also the relation    X][ai,6]m = 0  holds in  5m(y). 

Proof. The lemma is obvious after writing all the relations with the help of 
coordinates. 

This proves the lemma and the theorem. 
One can generalize Theorem (3.2) by the following way. 

(3.3) Theorem. Let & be a natural number. Suppose that it is given a PGL(VF)- 
equivariant (with respect to the representation in fc-th symmetric power of W) bimul- 
tiplication 

[.,.] : Sk{W) x Sk(W) -* s*(wr),   [., ■] : Sk(W*) x Sk(W*) -> Sk{W). 

Suppose that this bimultiplication is either skew-symmetric or symmetric. Then for 
any natural m, there exists a unique  PGL(PF)-equivariant bimultiplication 

[.,.] : Smk{W) x Smk(W) -+ Sm*(W*),    [., •] : ^(VT) x 5mfc(W*) -+ S^iW), 

such that 
[akm,bkm) = [a,b}km,     \pkm,qkm] = \p,q}km, 

where a, b G W,    p, q G W*. 
If the initial bimultiplication is symmetric (resp. special), then new bimultiplica- 

tions are also symmetric (resp. special). 
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If the initial bimultiplication is skew, then the bimultiplication on Srnk(W) is 
skew by odd m and symmetric by even m. 

The proof is almost the same as for Theorem (3.2), therefore we omit it. Moreover, 
the theorem (3.3) will be used for consideration of an inessential example of binary 
forms. 

(3.4) Remark. Existence of an extension of a given bimultiplication to other 
tensors is a problem. For example, if dim W = 3 and we try to extend (by a PGL(VF)- 
equivariant way ) to W® W the symmetric bimultiplication on S2(W) (such a bimulti- 
plication exists in virtue of Theorem (3.2) and the basic example below), then we will 
get nothing, because a non-zero cubic invariant of bilinear forms is absent (according 
toM. Pash [22]). 

4. The case of binary forms. The space Vm = Sm(V) (dim V = 2) of binary 
forms of degree m 

and its dual V* 

(  Vm = {a\a = Y,ai(
m)x}ix?-i}) 

i=o     v * / 

(v^ = {p|p=5];pi(7)^<"i}) 
i=0       v % J 

can be projectively (and by PGL(2)-equivariant way) identified with the help of sub- 
stitution 

(4.1) #o = -iti, #i = wo, 

but we will distinguish both the spaces. There are natural (and mutually contragredi- 
ent) actions of GL(V) on both the spaces. First, let us consider the three-dimensional 
space V2 of binary quadratic forms. There is a natural special PGL(V)-equivariant 
skew bimultiplication 

it is the Jacobian (where the above mentioned change of variables (4.1) is done): 

The potential is the following simultaneous invariant of three quadratic forms 

biUo — boUi     62^0 — biui 

ao ai ^2 

bo bi b2 
CO Cl C2 

0(a,6,c) 

Note that this bialgebra is projectively isomorphic to the three-dimensional bialgebra 
of theorem (5.1) below, because the potentials are the same. According to theorem 
(3.3), we get a structure of a skew bialgebra on Vom, where m is odd, and a structure 
of a symmetric bialgebra on Vim • 

One can present a description of the bimultiplication for T^m in terms of the so 
called symbolic method: 

if a = a2
x
m,   b = blm,   c = (a,b)ma™b™,    then  [a,b] = c(-Ul)«o). 



394 M. GIZATULLIN 

(4.2) Example.     Binary quartzes. For the space V4 of binary forms of degree 
4, the potential of the special bimultiplication is the following Hankel determinant 

7(a) 
GO O'l a<2 

a>i ^2 as 
0,2    as    0,4 

the reciprocal quartic a is transformed (with the help of the substitution (4.1)) the 
Hesse covariant (that is a is the Hesse reciprocant according to the terminology of J. 
Sylvester). Thus, a is equal to 

6(0402 — al)uQ 

+4 • 8(0203 - 0401)110^1 

+6(0004 + 201O3 — 302)^0^1 

+4 • 3(0i02 - OQOS^O'OI 

+6(0002 - al)uf. 

The symmetric bialgebra of binary quartics is semisimple. The set of nonzero nilpotent 
elements coincides with the set of not semi-stable elements {Null-formen) in the sense 
of Hilbert-Mumford. A description of these facts will be published in other place. 

(4.3) Example. Binary sextics. For two binary sextics o, b G Ve, their product 
p — [0,6]   has the following coefficients. 

Po = asbe — 30465 + 305&3 - O6&3, 

Pi = 7}(-a2b6 + 20365 - 205&3 4- o6&2), 

P2 = 7(^1^6 - 503&4 + 50463 - aeh), 
5 

Ps = T^i-aoh - 601&5 + I502&4 - I504&2 + 60561 + o66o), 

PA = -(aoh - ^bs + 60362 - ^560), 
5 

Pb = y(-aob4 + 20163 - 203&1 + 0460), 

P6 — aobs - 30162 + 3o2&i - 0360- 

(4.4) Example. Binary octavics. For a description of a symmetric special bi- 
multiplication on Vg, it is enough to indicate o, because formulas for [o, b] are derivable 
by the process of bilinearization. If o is a binary octavic, then there exists an octavic 
covariant i = (0,0)4 (according to notations of von Gall in [10]; von Gall refers to 
P. Gordan's lectures [15] of 1875 ). Then 2 = i(-ui,uo), the coefficients ojb of 0 are 
written down below. 

5/(o) 
So = 0408 — 405O7 + 3o6 = 

<9oo 

1, o ox      19/(O) 
Oi = -( — O3O8 + 304O7 — 205O6) = 

2v     o o         *  ,         00/      s  dai 

02 = — (3o2a8 - 40307 - ll0406 + 1205) = — — 3 
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S3 = —(-aids - 2a2a7 + 12a3a6 - 9a4a5) = —— , 
14 56  aas 

24 = —(ao^s + I2aia7 - 22a2ae - 860305 + 45^) = — — , 
7U 7U   0(14 

as = — (-aoa? - 2aia6 + 120205 - 90304) = —-^ , 

oe = — (3aoo6 - 40105 - II0204 + 1203) = ———, 

07 = -(-0005 4- 80104 - 20203) = -— , 

o 2      91(a) 
as = 0004 — 401O3 + 800 = — , 

3o8 

where the potential 1(a) for the bialgebra V$ of binary octavics coincides with the 
invariant J3 of Gordan's list of 1875 (there is a reference of von Gall [10] to the list). 
The explicit formula for the potential is 

1(a) = 000403 H-1004 + 12010407 — 22020405 — 86030405 

—4(000507 + aiOsOg) — 8(010506 + 020307) 

+24(0205 + aeOg) + 3(ooOg + o802). 

5. The basic example of a threedimensional skew bialgebra. 

(5.1) Theorem. There exists a (projectively) unique skew-symmetric special 
three-dimensional bialgebra (W, [, ]) with nonzero and PGL(VF)-equivariant bimulti- 
plication. 

Proof. For three-dimensional vector space, there exists a unique (up to propor- 
tionality) trilinear alternating function. 

(5.2) Remark. In some sense, this bimultiplication is the same as in the above 
case of binary quadratic forms, but we will distinguish the cases. 

Let us fix a threedimensional bialgebra (W, [,]) mentioned in Theorem (5.1) with 
a trilinear potential < a.b.c > . 

Identities (5,3-8) for this threedimensional bialgebra and its symmetric powers 
are written below, one can verify them with the help of the coordinate description 
(5.9). Moreover, when we will write down identities for linear forms o,fo... G W, then 
we will omit the parallel identities for vectors p, q,.. E W*, if the written identities 
contain linear forms only. 

(5.3) a < b.c.d > -b < c.d.a > -he < d.a.b > -d < a.b.c >= 0, 

(5.4) [[o, 6], [c, d\} + [[a, c], [d, b}] + [[a, d], [b, c}} = 2a < b.c.d >, 

where o, 6, c, d E W. Similar identities hold for elements of W*. In S2(W), for some 
squares of elements of W, the following identity holds. 

(5.5) [[a, 6], [c, d\}2 + [[a, c], [b, d]]2 + [[a, d\, [b, c}}2 

= < b.c.d >2 a2+ < a.c.d >2 b2+ < a.b.d >2 c2+ < a.b.c >2 d2. 
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InS4(W), we have 

(5.6) [[a, 6], [c, d]]4 + [[a, c], [b, d]]4 + [[a, d\, [b, c]]4 

= < b.cd >4 o4+ < a.cd >4 64+ < a.b.d >4 c4+ < a.6.c >4 d4 

+ 12 < fe.c.cJ >< a.cd >< a.b.d >< a.&.c > abed. 

Further, in Sn+k(W), we have 

n + k^ 
(5.7) 

k 
[anbk,bnck] = [a,b]n[b1c]k. 

Also we will use the following simple formula which is a corollary of (5.4). 

(5.8) [[a, b], [a, c]]  = < a.b.c > -a. 

(5.9) The coordinate description of the basic example. Let 

{xo,X1,X2} C W,        {Uo,Ui,U2} C VT* 

be two reciprocal bases, < Ui,Xj >=< Xj,Ui >= 6^. The quantities 2:0,2:1,0:2 are the 
so called cogredient variables, IAQ, 1*1,1*2 are contragredient ones. If 

a = aoxo + aixi +02X2 eW,p - PQUQ + piUi + P2U2 G PF*, 

then < a,p >= aoPo + P1U1 +^2^2- We may choose two trilinear potential functions 

3 3 

(t):W xWxW -+ /\(W) = K,   ij) : W* x W* x W* -> /\(iy*) ^ A- 

as determinants: if 

a = ao^o + aiXi + 02^2, b = boXo + 61X1 + 62^2, c = CQ^Q 4- ci^i + 02X2, 

p = pouo +P1U1 +P2U2, q = QOUQ + qiUi +^2^2,^ = ro^o + nui ■\-r2U2, 

then 

0(a, 6, c) =< a.6.c >= 
ao    Q>i    a<2 

bo    h    62 
Co      Ci       C2 

il>(p,q,r) =<p.q.r > = 
Po Pi P2 
9o 9i 92 
ro   Ti    ^2 

For two linear forms a, ft, we have 

[a, b] = (0162 - ^2^1)^0 4- (02^0 - ^062)^1 + (ao&i - ai&o)^2. 

(5.10) Example. Example of a bialgebra constructed with the help of a semisim- 
ple Lie algebra. It is necessary to explain the place of the basic example in a general 
picture. Let W be a finite-dimensional semisimple Lie algebra over the ground field 
K, {,} be the bracket in W, M be an exact finite-dimensional VT-module, CLM be 
the operator corresponding to a G W by the representation. The Killing form of 
the representation is (a, 6)M = Trace( (OM) 

0 (6M))- The Killing form for the regular 
representation will be denoted by (a, b). Let / : W —>- VF* be the isomorphism, cor- 
responding to the Killing form (.,.), that is < f(a),x >= (a, re). This is the so-called 
Killing isomorphism, see 1.2.21,1.5.14 from the book [ 35 ] by J. Dixmier. Then the 
homomorphisms 

WxW^W*,    (a,6)^/({a,6}), 

W*xW*->Wi     (p,q)^{f-1(p)J-1(q)} 
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define a structure of a special skew bialgebra (W, [,]). 
If G is an algebraic group such that its Lie algebra is W, and Ad : G —> Aut(W) 

is the adjoint representation, then the bimultiplication [,] is P(Ad)-equivariant. 

The alternating property of the potentials 

<i>(x,y,z) =< [x,y),z >,   il>(p,q,r) =< \p,q],r > 

is a consequence of anticommutativity of Lie's operation { , } and of the Jacobi identity, 
but the Jacobi identity is not a consequence of this property, therefore, generally 
speaking , the notion of bialgebra is wider and more flexible than the notion of Lie 
algebra. For example, in the contrast with the structure of Lie algebra, one can extend 
the bialgebra structure to the spaces of symmetric tensors of the initial space. 

According to Theorem (3.2), we can extend the bimultiplication to every sym- 
metric power Srn(W) of the Lie algebra W, and also to every symmetric homogeneous 
linear subspace Um(W) (defined in 2.4.3 of [35]) of the universal enveloping algebra 
U(W) of the Lie algebra W, because the component is isomorphic to the symmetric 
power according to [35], 2.4.10. 

If W =81(2), then we get our basic example. 

(5.11) Convention. Further, W will denote the threedimensional space, (W, [,]) 
will denote the above described threedimensional bialgebra ( the exceptions are Re- 
mark (6.6) and general Definition (7.5)) Also, we will use coordinates from (5.9) in 
further parts of the text. 

6. Bialgebra of conies. For quadratic forms A,B,C G S2(W), the potential 
< A.B.C > = < A, [i?,C] > is the polarized discriminant in the sense that 

disc(A) = — < A.A.A >= - < A, A > . 

For two ternary quadratic forms A G 52
(W),JB £ 52(1^) written as 

A = aooxl + auxl + a22^2 + 2012^1^2 + 2020^2^0 + 2aoi^o^i, 

B — froo^o + frn^i + ^22^2 + 2bi2XiX2 + 2620^2^0 + 2&oi£o#i3 

the coefficients of the simultaneous contravariant form 

[A,B] = Q(uo,u1,U2) = ^quUkUi 
k,i 

are 

or, in more details, 

_ ^ (92disc(,4)      _ ^ (92disc(ff) 
qkl - ^ daudoij bij - ^   dbudby aij 

QOO — ttll&22 + a22^11 — 2012612, 

Qll  — ^00^22 + ^22^00 — 2ao2^02: 

^22 = aoo^n + ciiiboo — 2aoi6oij 

Ql2 = ^10^20 + 020^10 — ai2&00 ~ a00bl2, 

q20 = CL2iboi + aoi&2i - ^20^11 - 011620, 

Q01 — ^02^12 + ^12^02 — ^01 ^22 — a22&01- 
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Especially, coefficients aki of the dual quadratic form 

A(uo,u1,U2) = ^auiUkUi = [A, A]/2 = 
k,i 

a<oo &01 #02 ^o 
aio an ai2 wi 

^20 ^21 ^22 U2 
UQ Ui U2 0 

are the following. 

(6.1) aoo = an ^22 

2ii = ^00^22 

*12? 

a, 02 5 

^22 = aoottn — a01, 

ai2 = 010^20 — ^12^005 

^20 = G^lttOl — ^20^11, 

Soi = ^02^12 — Cl0ia22- 

The geometric meaning of the bimultiplication for conies is explained in Salmon's 
"Conic Sections" [24], No. 335, or in Baker's "Plane Geometry" [1], p. 175. 

The meaning of [F, Q] for two conies of the contragredient variables. "A variable 
line which meets the conies in harmonically conjugate pairs of points, envelops another 
conic. This is called the harmonic envelope of the two conies." 

The meaning of [P,Q] for two conies from contragredient variables. "A variable 
point, from which the pairs of tangents to two given conies are harmonically conjugate 
to one another, describes another conic. This conic is called the harmonic locus of 
two conies. " 

Of course, A is the envelope of A (that is the set of tangents to A). 

(6.2) Example. If a conic A is written as a sum of three squares, 

A = a2 + b2 + c\ 

then the reciprocal conic of A is 

A=[bc]2 + [ac]2 + [bc]2, 

and 

disc(i4) =< a.b.c >2 . 

(6.3) Example. If a conic A is written as a sum of four squares, 

then its discriminant also has a natural representation as a sum of four squares, 

disc(^) =< a.b.c >2 + < a.b.d >2 + < a.c.d >2 + < b.c.d >2, 

the reciprocal conic of A has a natural representation as a sum of six squares, 

A = [a, b]2 + [a, c]2 + [a, d]2 + [b, c]2 + [6, d}2 + [c, d]2, 

but there are possibilities (four in general) for writing A as a sum of four squares (for 
the case of linear independence of every three from the four linear forms).   One of 
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them is 

< a.b.c >2 A =1Disc{A)([a.b}2 + [a,c]2 + [b,c]2) 

- (< a.b.d > [a, b]+ < a.c.d > [a, c]+ < b.c.d > [6, c])2. 

Three other representations can be derived by cyclic permutations of the linear forms 
a,b,c,d. 

(6.4) Theorem. Any power of a proper quadratic form is an idempotent, more 
precisely, in the bialgebra S2n(W), the following identities hold. 

& = c(n)(A)n,   & = c(n)3(disc(A))nAn, < An,An >= (2n + l)disc(A)n, 

where c(n) is a nonzero constant depending on n (the constant is expressible in terms 
of binomial coefRcients, but we will not need an exact description). 

For example 

c(l) - 1, c(2) - 4/3, c(3) - 8/5, c(4) - 64/35. 

In further parts of the text we will need obvious cases n = 1, n — 2 only, therefore 
proof is omitted. 

(6.5) Theorem. For four ternary quadratic forms A,B,C,D of the cogredient 
variables, we have the following identity 

P, B], [C, D}} + [[A, C], [B, D}} + [[A, D], [B, C}} 

= < B, C, D > A+ < A, C, D > B+ < A, B, D > C+ < A, B, C > D. 

Proof. Because of the linearity with respect to every form, we may suppose that 
the forms are pure squares, and in the latter case, one can use (5.5). 

(6.6) Remark.  The Clebsch difference, the Clebsch covariant, the catalecticant. 
The identity of Theorem (6.5) for conies lead us to a consideration of the difference 

Cl(a, 6, c, d) =[[a, 6], [c, d}) + [[a, c], [6, d}} + [[a, d], [6, c]] 

- (a < b, c, d > +b < a, c, d > +c < a, b, d > +d < a, 6, c >) 

for four elements a,b,c,d of arbitrary symmetric algebra W. One can call it the 
Clebsch difference. The Clebsch difference is the polarization of a function 5 : W -> 
W, that is 

S{o) = —Cl(a,a,a,a) = -(a- J(a)a). 

In the algebra of ternary quadratic forms, this difference is identically zero, but if a 
is a ternary quartic, then its Clebsch covariant coincides with the ordinary Clebsch 
covariant 5 (considered in [5]). 

One can introduce a notion of catalecticant J(a) of an element a of a symmetric 
bialgebra: 

J{Q) = Tjg <S(a).a.a> . 

Also, the catalecticant is expressible with the help of the cubic invariant I (from 
Notation (2.5)) and the reciprocity operation (1.2) in the bialgebra: 

J{a) = i(/(o) -/2(a)). 
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For example, identity (5.6) together with Example (8.6) have as a corollary 
Clebsch-Liiroth's well-known formula for the catalecticant of a sum of four fourth 
powers of ternary linear forms. 

List of identities for ternary quadratic forms. The identities below are 
either easy for verifying or follow from the identity of Theorem (6.5). 

For quadratic forms A, B, C, we have 

(6.7) A+~B = A+[A,B]+B, 

(6.8) <A,[A,B] >=2<A,B>, 

(6.9) [A, [A, B]] = disc(,4)i?+ <A,B>AJ 

(6.10) [A, [A, B]] = disc(A)B+ <A,B>A, 

(6.11) disc([A,B]) =< A,B >< B,A > -disc(,4)disc(£), 

(6.12) disc([i4,B]) = disc(>l)disc(B)(< A,B><B,A> -disc(>l)disc(B)). 

(6.13) [A, \A^B]] =<A1B> A+ < B,A > [A, B] - disc(A)5, 

(6.14) < [A, B], [A, B] >=< A,B><B,A> +3disc(A)disc(5), 

(6.15) < [A,B],[C,B] > + < [A.C^iB.ClB > 

=< A, B >< B,d > + < C,B >< A,B,C> +3 < A,C > disc(jB), 

(6.16) [A,B] + [A^B]=<A,B>A+<B,A>B. 

(6.17) [A,8] = -disc(A)disc(B)[A,B] 

+ disc(A) < A, B > B + disc(B) < B, A > A. 

7. Apolarity. 

(7.1) Definition. Self-polar triangle. Let a, 6, c be three linearly independent 
ternary linear forms (a base of the cogredient part W of the basic threedimensional 
bialgebra (W, [.]), p — [6, c], q = [a, c], r = [a, 6]. For a proper conic A, these three 
linear forms a, 6, c constitute a self-polar triangle, if one of the following equivalent 
conditions is fulfilled. 
(i)     <pg,A>=0,   <pr,A>=:0,   <gT,A>=0, 
(ii)    <a&,A>=0,   <6c,A>=0,   <ac,A>=0. 

(7.2) Remark. Geometrically speaking (according to Salmon's "Conic Sections" 
[24]): Three points are said to form a self-polar triangle, if polar of each point (with 
respect to the conic) is the line joining the other two. 

Further, if two conies have four distinct points of intersection, then they have 
a unique common self-polar triangle (see Baker's "Plane Geometry" [1]). Algebraic 
treatment of this fact is connected with the following construction of a cubic covariant. 

(7.3) Notation. Let J(A,B,C) denote the Jacobian determinant of three 
ternary quadratic forms A,B,C. 

(7.4) Remark. This Jacobian is a cubic form. If A, B are two conies with four 
distinct points of intersection, then J(A, B, [A, B]) is a product of three linear forms, 
these linear forms constitute a common self-polar triangle for A,B, and this triangle 
is unique for A, B. 
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(7.5) Definition. Apolarity. Two elements a, b € W of an arbitrary symmetric 
bialgebra (W, [, ]) are mutually apolar, if < a, b >= 0, < b, a >= 0. Further, a, b are 
said to be nondegenerate mutually apolar elements, if they are mutually apolar and 

a ± 0, 6^0, a ^ 0, b ^ 0, 2 ^ 0, 6 ^ 0. 

(7.6) Notation. If a, b are mutually apolar, then sometimes we write a Lb. 

The notion of mutually apolar conies is well-known, see Semple and Kneebone 
[26], Welchmann [30]. 

(7.7) Theorem. 
(1) For nonsingular conies A and JB,  A _L B if and only \{ A L B. 
(2) If 4 1 B, then 

<[A,B],i4>=0, <[A,JB],A>=0, < [A, [j4,B]],i4 >= 0, <[X5],A>=0. 

(3) Any pair of mutually apolar nonsingular conies have four different points of 
intersections, such a pair is non-degenerate. 

Proof. (1) is a consequence of idempotency of proper conies. 
(2) follows from identities (6.8), (6.10), (6.16). 
(3) is proved in the mentioned books [26], [30]. 

(7.8) Theorem.   If XQ1X\,X2 are three linear forms such that ^0,^1,^2 is a 
common self-polar triangle for two mutually apolar nondegenerate quadratic forms, 
then one of the forms is proportional to 

2 ,      2 ,    22 XQ + UJXI + u x2, 

other is proportional to 
ZQ + UJ2x\ + (JOX%, 

where uo is a primitive cubic root of unity. 
Proof. See Gordan, [16], IV, §2, page 475, also see [26] and [30]. 

(7.9) Definition. Canonical coordinates. The three linear forms XQ,XI,X2 from 
the last theorem will be called canonical coordinates for the nondegenerate pair of 
mutually apolar quadratic forms. 

(7.10) Theorem. Any three mutually apolar nondegenerate conies can be re- 
duced to the following three 

(2 2 2    2\ 
XQ + UJXl + U   X2), 

b(xl +(JO
2
X\ +UX

2
2), 

1{XQ 4- x\ + x\) + 2k(xiX2 + X2X0 + XQXI), 

where a, 6, k, I are constants, a ^ 0, b ^ 0, I ^ k, I ^ —2k. 
Proof. Also, it was proved by P.Gordan in   [16],  IV, §5, §6, page 476. 

(7.11) Theorem of Gerbaldi. There exists a set of six mutually apolar linearly 
independent nondegenerate ternary quadratic forms. 

Thus, the bialgebra S2(W) (where dim W = 3) is semisimple (note that all proper 
quadratic forms are idempotents according to (6.4) with n = 1). 

Proof. The principal part of the proof consists of a list of six conies. We will 
write down two lists, because both of them will be used in further parts of the text. 
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The first list is composed by Francesco Gerbaldi [11-14], the second list is composed 
by Paul Gordan [16]. Verifying of mutual apolarity is an easy calculation for both the 
lists. 

First of all, we fix a list of constants, which will be used here and further. Let 

.27ri.       -l + iy/Z 
^ = exp(3)=        2        , 

-\/3 + iy/5            1 + iVlE 
4                           4 

The conjugate numbers are 

-l-iy/3         2 
u=         2         =*,,   r = 

-y/3-iV5            1-iVlE 
=          4         '   C=        4       * 

Note that 
1 + r>/3,      2c2 - c + 2 = 0. 

One of possible (but insufficient) explanations of arising the field Q(\/-15) in the 
theory of conies and quartics is that there are four representations of 4! with the 
help of the factorial polynomial x(x + l)(x + 2)(x + 3) and two of the representations 
generate the field, more precisely, the equation 

£(£ + l)(£ + 2)(£ + 3)=24 

has the following four roots 

-3 + iVTS -3 - iy/TE 
Xx = 1,    X2 = -4,    £3 = ,    £4 = . 

GORDAN'S LIST 

Consider six Gordan's ternary quadratic forms from [16]. 

Ki = XQ + Loxl + (J2x%, 

K2 = xl 4- UJ
2
XI 4- LJXI, 

K3 = r2(xl + x'l + xl) 4- r\/3(xiX2 4- X^XQ 4- XQ^I), 

X4 = r2(xl + x2 4- X2) + r>/3(a;ia:2 - ^XQ - XQXI), 

K5 = r2(xo 4- £1 4- x|) 4- r\/3(-^iX2 4- X2X0 - XQXI), 

KQ — r2(xl 4- xj 4- #2) + rV3(-a;iX2 - X2X0 + XQXI). 

These six form are linearly independent, moreover, expressions of the basic quadratic 
monomials in terms of the six forms presented below. 

xl = ^-(2^^ + 2r2K2 +K3 + K4 + Ks + KQ), 

xl = ~{2r2^2Kl + 2r2LoK2 + Kz+Ki + Kh + K0), 

xl = ^L-^LoKi + 2r'1J2K2 + Kz+Ki + Kr> + K6), 

x^^^iKs + Ki-Ks-Ke), 

ry/3 
X0X2 - —^-{Kz - K4 + K5 - KQ), 
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xoxi = ^{Kz -K4-K5 + Ke). 

The coefficients of the reciprocal forms are conjugate (and of course, the contragredient 
variables are inserted instead of cogredient ones). 

Li = Ki = ul -h UJ
2
U1 + UJV%, 

L2 = K2 = ^o + wu\ + w2u\, 

L3 = Kz = f2(ul + Ui + 1X2) + fVS(uiU2 + iX2^0 + ^o^i), 

L4 = 7^4 = f2(Wo + ^i + ^2) + fVS(uiU2 - U2U0 - UQUI), 

L5 = K5 = f2(ul + TZi + lt|) + f A/3(—1/1^2 + ^2^0 - UQUI), 

LQ = KQ = f2(ul -i-ul +ul) + fVS(-UiU2 - U2UQ +U{)UI). 

Of course, the forms Li constitute a base for contragredient quadratic forms, expres- 
sions of quadratic monomials in terms of the elements of the basis are written below. 

4r2 

ul = —(2f2L1 + 2f2L2 + L3 + L4 + L5 + L6), 

uj = —-(2f2LuL1 + 2f2u;2L2 + L3 + L4 + L5 + L 
4r2 

— ^r-wi^i + 'lr"u~L2 + ^3 + ^4 + ^5 + -U; 

4r2 

1^2 = — (2f2a;2Li + 2f2u;L2 + L3 + L4 + L5 + L6), 

r\/3/r        r        r        r . 
W1W2 = -g-U'S + L4 - L5 - Le), 

rV^/r r r r    \ 
^0^2 =  —T-(^3 - ^4 + ^5 - ^6j, 

0 

r\/3/r       r       r       r x 
uo^i = ""^"(^s - L4 - L5 + Le). 

All the discriminants of Ki and Li are equal to 1. It is not hard to check the relations 
of mutual apolarity. 

GERBALDFS LIST 

Consider the following six ternary quadratic forms /1,..., /e from [12] 

/1 = xl + 2CXIX2, 

/2 =UJ(X2
1 +2CX0X2), 

/s ^x2 + 2ca;oa:i, 

/4 = - -(1 + 2c)u[xl + X2
l+ x\- c(XiX2 + X2X0 + XQXI)], 

o 

/s = --(1 + 2c)[xo +u;2x2 +a;a;2 - cixiXo -\-UJ
2
X<2XO +UJXQXI)], 

o 

/e = - - (1 + 2c)u;[rCo + ^^1 + ^2^2 ~ c(xiX2 + a;x2Xo + a;2:Ei£o)]. 

These six forms are linearly independent.  Expressions of the basic quadratic mono- 
mials in terms of Gerbaldi's six forms and expressions for reciprocal of the forms are 
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disposed below. 

zo = 5(3/1 - 2(1 - c)(a,2/4 + h+uj2U)), 

A = y (3/2 - 2(1 - c)(/4 + uj2h + a;2/6)), 

A = J(3/3 - 2(1 - c)(w2/4 + uj2f5 + f6), 

xix2 = -±-c(3f1 + (l-c)(u>2f4+f5+uJ
2f6)), 

X2X0 = -^(3/2 + (1 - c)(/4 + W2/5 + W2/6)), 

a:oa;i = ^(8/3 + (1 - c)(w2 f4 + UJ
2

 f5 + /«,)). 

/1 = -c(cuo + 2Ul«2), 

/2 = -CU)2(cul + 2UoU2), 

h = -c(cul + 2uoUi), 

/4 = -(C + 2)w2[c(Uo + UJ + U2) - («iU2 + U2U0 + UQUI)], 

/s = q(c + 2)[c(uo + wwf +a;2u|) - (ttiUg + WU2W0 + w2uoUi)], 

/e = -(c+ 2)a;2[c(uo + uj2ul + uml) - (U1U2 +UJ
2
U2UO + LJUQUI)]. 

o 

Now, it is not hard to check the relations of mutual apolarity. 

(7.12) Theorem. Any set of six mutually apolar ternary quadratic forms with 
the discriminant 1 is projectively equivalent to Gordan's six or its conjugate six by an 
automorphism of the field Q(r) . 

Proof. It is proved at page 478 of Gordan's paper [16 ]. 

(7.13) Theorem. If A,B,C are three distinct mutually apolar conies chosen 
from six mutually apolar conies, then 

<[j4,B],[i4,C]>=0,   <A'A'B>=0. 

Proof.   The last identity, which is an obvious corollary of 

< A • A - B >=< [A, A], B >= 2 < A, B > , 

is indicated by Gordan, see [16], page 493, where the equality (KmKmKn)2 = 0 (m ^ 
n) is written, this equality is equivalent to < Km • i^m • Kn >= 0 (for m ^ n). 

One could check the first identity, if we would have a list of all possible 
participating products. We present such a list for Gerbaldi's conies. Maybe according 
to J.E. Littlewood's " A Mathematician's Miscellany", p. 50, "One slip is practically 
certain in this style of writing, generally   devil-inspired". 

2c[/i,/2] = CJ(/3 + h)+u2{U + /s), 

2c[/i,/3]=u;(/2 + /4)4-u;2/5+/6), 

2c[/i, h] = w(h + /s) + ^2(/2 + fe), 

2c[f1J5] = uj(f4 + fe) +uj2(f2 + /s), 
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2c[/l,/6] = U;(f2 + f5)+0J2(h + f4), 

2c[/2,/3] = oj(fl+h)+^(h + fe) 

2c[/2,/4] = u(f5 + f6)+UJ2(f1+f3) 

2c[/2,/6] ^Ojih + fy+LJ^h+h) 

2c[/2,/6] = Oj(f1+h)+OJ2(fS+f5) 

2c[/3,/4] = LO(fl+f6)+UJ2(f2+f5) 

2c[/3,/5] = u(f2 + f6)+U2(f1+f4) 

2c[/3,/6] = Ui(fi + h)+^(fl+f2) 

2c[/4,/5] = u{h + h)+u}2{h+h) 

2c[/4,/6] = u(h + f3)+UJ2(h+h) 

2c[/5,/6] = u(f1 + f3)+u2(f2+fi). 

-2[/1,/2] = --C3(u2(h + f6)+u(h + f5)), 

-2[/l,/3] = --c
3(io2(f2+f4)+u:(f5+f6)) 

-2[/l)/4] = = C3(W
2(/3+/5)+W(/2+/6)) 

-2[/i)/5] = = c3(a;2(/4+/6)+a;(/2+/3)) 

-2[7i,7e] = = cV(/2+/5)+u;(/3 + /4)) 

-2[72,73] = = C3(W
2(/1+/5)+W(/4+/6)) 

-2[72,74] = = c3(u;2(/5+/6)+W(/1+/3)) 

-2[72,75] = = c3(a;2(/3+/4)+a;(/1+/6)) 

-2[72,76] = = c3(a;2(/1+/4)+W(/3 + /5)) 

-2[73,74] = = c3(W
2(/1+/6)+W(/2 + /5)) 

-2[73,75] = = c3(a;2(/2+/6)+a;(/1+/4)) 

-2[73,76] = = c
3(a,2(/4+/5)+W(/1+/2)) 

-2[74, 75] = --cH^(fi+f2)+oJ(f3 + fe)) 

-2[74,76] = --c
3^2(f2+f3)+uj(fl+f5)) 

-2[78,76] = = cV(/1+/3)+a;(/2 + /4)). 

Note that for Gerbaldi's conies fk and fk, we have 

disc(/fc) = -c2, disc(7) = -c4,   <fkjk> = -3c2, 

405 

and, because of their mutual apolarity,    < //, fk >= 0   (if k / /). 
So, using the above identities, it is not hard to check that < [/&,//], [fkifm] >— 0 

for distinct indices kj^m. 

(7.14) Theorem. Let A,B,C,D be four distinct conies from Gerbaldi's six, c 
be the constant from their equations. There are a cubic root of unity e and a square 
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root of unity S (the cases e = 1 , d = 1 are not excluded) such that 

< [A,B],[C,D] > = ^V,    < [A,B],[C,D] >= ^ec4, 

< A.C.D > = ^eSc,    < B.C.D >= ^edc, " 

< A.B.C > = -ec5,    < A.B.D >= -ec 

Proof.   It will be an immediate verifying after some preliminary work over Ger- 
baldi's conies. First, we indicate list of equalities for these quadratic forms. 

< f1.f2.f3 >=< h-h-fe >=< fi-fa-h >=< h-h-h >=< h-h-h > 

=< h-h-h >=< h-h-h >=< h-h-h >=< h-h-h >=< h-h-h > 

< h-h-h >=< h-h-h >=< h-h-h >=< h-h-h >=< h-h-h > 

=< h-h-h >=< h-h-h >=< h-h-h >=< h-h-h >=< h-h-h > 
3 2 

< h-h-fi >=< h-h-h >=< h-h-h >=< h-h-h >=< h-h-h > 

=< h-h-h >=< h-h-fe >=< h-h-fe >=< h-h-h >=< h-h-fe > 

3    4 
= -UJC 

2 

< h-h-h >=< fi-h-fe >=< h-h-h >=< h-h-h >=< h-h-h > 

=< h-h-fs >=< h-h-h >=< h-h-h >=< h-h-h >=< h-h-h > 

'-'2   4 

= ^ C 

For a description of numbers < [fi, fj],[fki fi] >? orie can write down the following 
auxiliary list of ordered triples of unordered pairs. 

({1,2}, {3,6}, {4,5}), ({3,6}, {4,5}, {1,2}) 

({1,3}, {2,4}, {5,6}), ({2,4},{5,6},{1,3}) 

({1,4}, {3,5}, {2,6}), ({3,5}, {2,6}, {1,4}) 

({1,5}, {4,6}, {2,3}), ({4,6}, {2,3}, {1,5}) 

({1,6}, {2,5}, {3,4}), ({2,5}, {3,4}, {1,6}) 

({4,5},{1,2},{3,6}), 

({5,6},{1,3},{2,4}), 

({2,6},{1,4},{3,5}), 

({2,3},{1,5},{4,6}), 

({3,4},{1,6},{2,5}). 

If {i, j}i{k,l} are ordered (in this sequence) neighbors in a triple of the list or in a 
triple derived from the list triple by a cyclic permutation of pairs, then 

else 

< [fi, fj], [L fi] >= |^4,   < [/*, /,], [%, fj] >= ^2c4, 

<[fi,fi]AhJi]>= 2c4- 
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For example, 

< [/i, M, [h, h] >= \Sc\   < [h, f2}, [f3, f6} >= ^c4, 

< [flJsUhJe] >= |^C4,    < [/l,/3],[/2,/4] >= |^4, 

< [flJlWzJ*] >= ^C4,       < [/l,/2],[/4,/6] >= lc\ 2 

< [/i, fi], [h, Is] >= lc\    < [fuh], [/2, /B] -c ,4 

< [fuhUkh] >= ^c4,     < [fuhUhJs] >= ^c4. 

More complete information about these numbers (multiplied by 2c""4) is presented by 
the 15 x 15 matrix from the proof of Theorem (7.14) below. 

Now, verifying of the first two identities (and their concordance with four other 
ones) of the theorem is easy. 

(7.14) Theorem. Let Ai, A2,A^, A4,A^,AQ be six mutually apolar ternary 
quadratic forms. 
(i) Fifteen decomposable quartics AiAj, (i ^ j, i,j G {1,2,3,4,5,6}), are linearly 
independent, therefore they constitute a base for the linear space S4(W) of ternary 
quartics. 
(ii) Fifteen quartics [/L;,^]2,    (i ^ j), are linearly independent, therefore they con- 
stitute a base for the linear space S4(W*) of (contragredient) ternary quartics. 
(iii) Fifteen quartics [Ai,Aj]2   (i y£ j) are linearly independent, therefore they consti- 
tute a base for the linear space SA(W) of ternary quartics. 

Proof. We will consider Gerbaldi's conies /1, ...,/6. 

Proof of (i). According to the formulas expressing quadratic monomials in the 
terms of /i, every quartic monomial is expressible in terms of /2, fkfi- Therefore, it is 
enough to express the squares ff in terms of products of distinct forms. The necessary 
formulas are the following. 

-2C-A2 = 

w(/2/4 + Ufa + hh + hh + 75/2)+ 

w2(/2/3 + hh + hh + hh + hh), 

-2c/2
2 = 

w(/i/4 + hh + hh + hh + hh)+ 

w2(/i/3 + hh + hh + hh + hh), 

-2c/| = 

w(/i/6 + hh + hh + hh + hh)+ 

u2(hh + hh + hh + hh + hh), 

-2-cfl = 

"(hh + hh + hh + hh + hh)+ 
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W2(/l/3 + /s/e + hh + hh + /s/l), 

-2c/5
2 = 

w(/i/2 + hh + /e/* + hh + /3/i)+ 

w2(/i/4 + Uh + /2/3 + /s/e + /e/i), 

-2c/6
2 = 

w(/i/3 + fsh + hh + hh + hh)+ 

w2(/i/2 + hfA + hh + /s/s + hh)- 

Proof of   (ii).   It is enough to prove that 15 x 15 matrix A of mutual scalar 
products < fifj, [fk, fi] >, where the pairs {i,j}, {k, 1} run the set 

(1,2}, {1,3}, {1,4}, {1,5}, {1,6}, {2,3}, {2,4}, {2,5}, 

{2,6},{3,4}, {3,5}, {3,6}, {4,5}, {4,6}, {5,6}, 

is invertible. This matrix, multiplied by 2c-4 is the following. 

/ 4 0 0 0 0 0 0 0 0 3 3 3a; 3d) 3 3 \ 
3d) 0 4 0 0 0 0 3a; 3 3 0 0 0 3 3 

0 0 4 0 0 3 0 3 3a; 0 3a; 3 0 0 3 
0 0 0 4 0 3w 3 0 3 3 0 3 0 3a; 0 
0 0 0 0 4 3 3 3a; 0 3a) 3 0 3 0 0 
0 0 3 3w 3 4 0 0 0 0 0 0 3 3d) 3 
0 3w 0 3 3 0 4 0 0 0 3 3 0 0 3u> 
0 3 3 0 3u> 0 0 4 0 3a; 0 3 0 3 0 
0 3 3w 3 0 0 0 0 4 3 3a; 0 3 0 0 
3 0 0 3 3a; 0 0 3d; 3 4 0 0 0 0 3 
3 0 3u) 0 3 0 3 0 3a; 0 4 0 0 3 0 

3u> 0 3 3 0 0 3 3 0 0 0 4 3a; 0 0 
3w 3 0 0 3 3 0 0 3 0 0 3d; 4 0 0 
3 3 0 3w 0 3a; 0 3 0 0 3 0 0 4 0 

V 3 3to 3 0 0 3 3a; 0 0 3 0 0 0 0 4 / 

A calculation of its determinant gives the following result. 

det(A) = -2471326208 = -29 • 136. 

Thus, (ii) is proved. 
Proof of (hi). It is an evident consequence of (ii). 

(7.15) Theorem. Let A,Ar be two conies belonging to a set of six mutually 
apolar conies, k,l,m,n be four bitangents for the pair A,A'. Then every of the eight 
points of contact belongs to some other (distinct from A and A') conic of the set. 

Proof. We will consider Gordan's conies Ki from proof of Theorem (7.11). Be- 
cause of double transitivity of the induced action of Valentiner's group on the set of 
conies, we may suppose that A — Ki, A' = K2. It is not hard to see, that up to a 
permutation of the bitangents (and up to proportionality), 

k = £0 - x\ - X2,   I = —XQ + xi - X2, 

m = —XQ — XI + X2,   n = XQ + xi + £2- 
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The eight points of contact are the following. 

u = (-l,u;2,ct;),   v = (1, -a;2,cj),   w — (l,a;2, —a;),   2; = (l,cc;2,a;), 

-u' = (—1,0;, a;2),   v7 = (1,—a;,a;2),   w' = (l,a;,a;2),   2:/ = (1,0;,CJ
2
). 

Note that 

{u} = A D fe, {v} = A fl /, {w} = A fl m, {z} = A fl n, 

K} =' A1 n fc, {i;'} = A1 n /, V} - A' n m, {^} = A1
 n n, 

The points are indicated in paper [23] of R. Rodriguez and V.Gonzalez-Aguilera, 
although they described the points with another connection (see page 53 and Figure 
5 of page 54 in [23], where one can see bitangents to some quartics of a pencil, the 
pencil contains a decomposable quartic K1K2). 

Now, one can see that 

u € Kx H #4,   v € Ki PI #5, 

w G #1 n K6, z G Ki n #3, 

u' G^n^, v' G^nKs, 

TI;' G^nKe,   ^G^n^s- 

These relations finish the proof. 

8. The bialgebra of ternary quartics. 
(8.1) The bimultiplication formulas. Ternary quartic form is 

F(xo,Xi,X2) = ^CLijklXiXjXkXi = 

aoooo^o + amixi + 02222^2 + ^iu2x\x2
2 -f 600022^0^2 + 6aooii^o:ri + 

12aooi2^o^ia:2 + 12aoii2^o^i^2 + 1200112^0^1^2+ 

4aoooi^oxi + 4aooo2^ox2 + ^amoxoxl + 401112X1X2 + 402220^0X2 + 402221X1X2. 

If G is another quartic form with coefficients bijki, and 

[F,G] = 0(^0,^1,^2) = ^qijkiUiUjUkUi, 

then 

#0000 = ^1111^2222 + 0,2222^1111 + 60ii22^1122 — ^1112^2221 — 402221^1112, 

^1111 — ^0000^2222 + a2222^0000 + ^00022^0022 — 4aoo02&2220 " 4a2220^0002, 

^2222 = aoooo^iiii + onii^oooo + Soooii^oon — 4ooooi&iiio — 4oiiio&0001, 

^1122 — ^0000^1122 + flll22&0000 + ^0022^0011 + ^0011^0022 + 

400012^0012 — 2O0001&0122 — 200122^0001 — 200002^0112 — 200112^0002, 

^0022 = ^111160022 + ^0022^1111 + 00011^1122 + ^1122^0011 + 

400112^0112 — 20iii26o012 — 200012^1112 — 20iiio&0122 — 2O0122&1110, 

90011 = ^2222^0011 + fl0011&2222 + &1122&0022 + G0022&1122 + 
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4^0122^0122 — 2a2220&0112 — 2aoil2&2220 — 2a2221&0012 — 2^0012^2221, 

^0001 = 300112^2221 + 3a2221&0112 " 3aoi22fcll22 " 3aii22&0122 

— a2222&1110 — ^111062222 + ttlll2&2220 + tt2220&11125 

^0002 = 3aoi22&1112 + 3aiii2&0122 — 3aoil2&1122 — 3aii22&0112 

— ttllll&2220 — ^2220^1111 + &2221&1110 "^ a1110&2221, 

^1110 — 3aooi2^2220 + 302220^0012 — 3aoi22&0022 — 3ao022&0122 

— ^2222^0001 — «0001&2222 + ^0002^2221 + ^2221 ^0002, 

#1112 = 3aoi22&0002 + 3aoo02^0122 — 3aooi2^0022 - 3ao022^0012 

-^0000^2221 - a2221&0000 + 02220^0001 + 00001^2220, 

#2220 = 3aooi2^iiio + 3aiiio6ooi2 - 3aoii26ooii — 3aooii&oii2 

—0111160002 — 00002^1111 + 00001^1112 + O1112&00015 

#2221 = 300112^0001 + 3aoo01^0112 - 3(20012^0011 — 3aooii&oii2 

—00000^1112 — O1112&0000 + O1110&0002 + O0002&11105 

#0012 = 2aii226o012 + 200012^1122 — 00112^0122 — 00122^0112 

—O0022&1112 — 0111260022 — 0001162221 — O222160011 

+O111062220 + 0222061110? 

#0112 = 20o0226oil2 + 20oil26o022 — Oooi26oi22 — Ooi226o012 

—0112260002 — 0000261122 — 0001162220 — 0222060011 

+0000162221 +02221600015 

#0122 — 2oooil6oi22 + 2ooi226o011 — O011260OI2 — O001260II2 

—O002261110 — O111060022 — O002261112 — O111260022 

+O111260002 + 0000261112- 

These formulas are produced by bilinearization of formulas from No. 292 of 

"Treatise" [25] by Salmon. The trilinear potential of the bimultiplication on quartics is 

a polarization of the so called invariant of third degree (with respect to the coefficients). 

More precisely, if F, G, H are three quartics, then the potential is 

< F.G.H >   (=< [F,G\,H >=< [G,H],F>=< [H,F},G>), 
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the corresponding invariant is 

I(F) = ±<F.F.F>=±<a(F),F>. 

Expression of the cubic invariant in terms of the coefficients of F is given in No. 293 
of [25], the invariant is as follows. 

1(F) = aooOO«lllltt2222 

+4(aoo01«1112«2220 + «0002tt2221«lllo) 

+3(aooOO«ll22 + ^lllla0022 + O'22220'oon) 

-4(00000^111202221 + O1111O0002O2220 + 022220000101110) 

—12(00001^012201122 + O0002O0112O1122 ■+• O1110O0122O0022) 

-12(aiii2O0012O0022 + 022200011200011 + O222lO0012O001l) 

+ 12(000120011100222 + O0112O1222O100O + O0122O2OOOO2111) 

+ 12(0001100x22 + ^002200112 + O1122O0012) 

— 12O0012O0112O0122 + 60ooilOii2202200- 

It is clear that 

_v.     d2I(F)    ,      _Nr    d2I(G) 
Qklmn —   / ,  rj o Opqrs —   / J p., 01 Clpqrs- 

pqrs VGiJkluapqrs p(jrs (J0ijkl<JUpqrs 

Note that 
I(F + G + H) =< F.G.H > +I(F) + 1(G) + I(H)+ 

< a{F),G > + < F,a(G) > + < a{F),H > + 

< F,a{H) > + < a{G),H > + < G,a{H) > . 

I(F + G) = I(F)+ < a(F),G > + < F, a(G) > +I(G). 

(8.2) Example. If F = abed is a product of four ternary linear forms, then 

<j(abcd) = l([a,&]2M]2 4- M2M2 + M2M2), 

UF) = —— < a.b.c >< a.c.d >< a.c.d >< b.c.d > . 
144 

The last expression is the so called symbolic form of the cubic invariant /. 
Moreover, a(abcd) is a product of two quadratic forms. One can see it with the 

help of coordinates. 

a(xoXiX2(xo + £1 -f £2)) = ^(w2^2 + U2U0 + u0ul ~ U0U1U2 — UIU2U0 — U^UQUI) 

— 2(UiU2 + OJU2UQ -t- 'JJ''U[)UI)(UIU2 + (JJ
2
U2UO + CJUQUI), 

where CJ is a primitive cubic root of unity. 
The calculation has the following geometrical meaning. Four lines o, 6, c, d define 

a pencil of contragredient conies touching these four lines. This pencil has three 
degenerate conies. Two conies (of the pencil) equianharmonically disposed in the 
pencil with respect to the three degenerate conies are components of the cr-image of 
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the four lines.   These two conies are mutually apolar (according to formulas from 
(7.8)). 

We recall the following definition. 

Definition. Four points p, g, r, s of the projective line form an equianharmonic 
quadruple, if their anharmonic ratio (p, q, r, s) is a root of the equation x2 — x + 1 = 0. 

If three points p, q, r e F1 are given, then there are two points s £ P1 exactly 
such that the quadruple (p, g, r, s) (and all its permutations) is equianharmonic. 

(8.3) Example. If A = A(xo,xi,X2) is a ternary quadratic form, then 

20 
/(A2) = y(disc(A))2. 

(8.4) Example.  If M(xo,xi1X2) is a ternary cubic form then 

I((uoXo + uxxi + U2X2)M) = 4Ca(M), 

where Ca(M) = Ca(M)(iio, ^i, 1*2) is the Cayley contravariant form of M. 

(8.5) Example, (cf. Example (6.2)) If F = a4 + 64 + c4, then 

<7(F) = [6,c]4 + [a,c]4 + [a,6]4,/(F) =< o.ft.c >4, ^(a(F)) = /(F)F. 

Therefore, if a, 6, c are linearly independent, then F is an idempotent. 

(8.6) Example, (cf. Example (6.3)) If F = a4 + &4 + c4 + d4, then 

cr^) = [a, 6]4 + [a, c]4 + [a, d]A + [b, c]4 + [b, d]A + [c, d\\ 

1(F) =< a.b.c >4 + < a.b.d >4 + < a.c.d >4 + < b.c.d >4, 

o-((7(F)) = /(F)F + 12 < a.b.c X a.b.d >< a.c.d X b.c.d > abed. 

The last identity is a consequence of (5.6). 

(8.7) Example. For the Bernoulli lemniscate, the contravariant a is a double 
conic . 

First, about a projectively reasonable definition of the lemniscate. This is a 
plane quartic rational curve with three distinct nodal points, where all the six nodal 
tangents are inflexional (that is they intersect the curve only in nodes). One can 
give an equivalent description of the curve with the help of parameterization. For the 
normalization TT : F1 —>• C of C, the set of three pairs of points having singular yr-images 
is invariant with respect to the tetrahedral fractional linear group of symmetries, the 
action admits an extension to the action on the projective plane. Up to a projective 
equivalence, such a curve is unique. Name of the curve is lemniscate (see Kohn and 
Loria [20], No. 94). Both the descriptions are projective characterizations of the 
Bernoulli lemniscate 

(xj + xl)2 - 2a2xl(x\ -xl)=Q 

with parameterization 

zo = 4a4 + £4,a;i = 4a4£ + 2a2t3,X2 = 4a4t-2a2t3. 

It is not hard to see that 

cr(3(xi + xj)2 - 6xl(xl - xl)) = 3(2^ - uj + ul)2. 
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For consideration of all 24 projective symmetries, more convenient equation of a 
projectively equivalent curve is 

^o.y) x-tXn I- ^o^o ' ^o*^! ::= 

Rational parameterization of the latter curve is 

XQ = 2it2(t2 - 1), x1 = 2t2(t2 + 1),X2 = t4 - 1, 

the fractional linear tetrahedral group is described in Ford ([8], No. 55), or in F. Klein 
[20], p.137, formulas (4a), (4b), (4c). 

The corresponding collineation group consists of transformations 

U^n   —  ZlZtt/Q;, X i   —  -i—X ft, Xn  —  "^—Xot • 

The contravariant a is a double conic, 

G(§(X\X\ + X^Q + ^o^i)) — 3(^0 + Ui + ^2)2- 

9. The bialgebra calculus of decomposable quartics. Here, "decompos- 
able" means a product of two quadratic ternary forms. 

First, the identities describing pairings of some decomposable quartics. 
If -A(x), B(x), C(x)JD(x) are quadratic forms of (x) = (xo,xi,X2), P(u),Q{u) are 

quadratic forms of contragredient variables, then 

(9.1) <P2,A2 >=<P,A>2 -\ <P,A>, 

(9.2) < PQ, A2 >=< P,A><Q,A>-1< [P,Q],A>, 

(9.3) <PQ,AB>=~<[P,Q],[A,B]> 

-(< P, A >< Q,B > + < P,B >< Q,A>), 

(9.4) <CD,AB>=~<[C,D],[A,B]> 

+ - < C, A >■< D, B > +- < C, B >< D, A >, 

(9.5) < C2, AB >=< C,A><C,B>-\< A.B.C > disc(C), 

(9.6) < BC, A2 >=< B, A >< C,A > -\ < A.B.C >, 

(9.7) < A2,[B,C}2 >=< A.B.C >2+^< A.B.C > 

-^<A,C><B,C>-^<A,B><C,B>, 

(9.8) < A2, [B, C]2 >=< A.B.C >2 +^disc(.4)disc(B)disc(C) < A.B.C > + 
3 

 v.-, K-, _,.__,„ ,>- 
4disc(A)disc(B) < C, A >< C,B > - Jdisc(.4)disc(C) < B,A >< B,C>, 

(9.9) 

< [A,B}2,[C,D}2 >=< [A,B],[C,D] >2 -Uisc(A)disc(B) < [A,B],[C,D] > . 
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Second, we write some identities with the bimultiplication of the decomposable 
forms. 

If A(x), B(x),C(x), D(x) are ternary quadratic forms, then 

(9.10) [A2,B2} = [A,B}2-pB, 

(9.11) [AB,AC\ = ^[A,B]{A,C] + [B,C}A, 

(9.12) [CD,B2] = [C,B][D,B] - ^[C,D]B, 

(9.13) [AB,CD] = ±[A,C][B,D] + ±[A,D][B,C} - ±[A,B}[C,D}, 

(9.14) a(AB) = ±[A,B}2 + AB, 

(9.15) a{A2 + B2) = ^A2 + B2) - \AB + [A, Bf. 

10. Salmon subalgebra, Wiman subalgebra. In this section, we suppose 
that W is the three-dimensional skew bialgebra. Let a, 6, c G W be three linearly 
independent linear forms (basis of W). We will consider the extension bialgebra 
(52m(H/), [,])   and some its subalgebras. 

(10.1) Notation.    Let t/2m(a, 6, c) be the set of forms (from S2m(W)) 

aoa2m + ai62m + a2c
2m + bo(bc)m + 6i(ca)m + 62(a6)m, 

where a^, 6^ are elements of K.  Let    V^^a, 6, c) C S2m(VF*)    be the set of forms 

PoM2m +Pi{c,a\2m +P2[a,b]2m + qo([c,a}[a,b}r + q1([a,b}[b,c}r + q2([b,c}[c,a)r, 

where p^, ^ are constants from K. 

(10.2) Theorem. (U2m{a,b,c),V2m(a,b,c)) is a subalgebra of (52m(VF), [,]). 
Proof. It follows from formulas (5.7),   (5.8). 

(10.2) Definition. Salmon subalgebra . The subalgebra 

52m(a,&,c) = (C/2m(a,^c),V2m(a,6,c)) 

is said to be Salmon subalgebra of {S2m(W), [,]).  For the case 2m = 4, we will call it 
as Salmon quartic subalgebra. 

For a coordinate description of the subalgebra (with normalized coefficients of 
forms), we introduce the following numbers. 

(10.3) Notation. 

„,   x (2m)!       ,       1 /2m\      , , ^/   s/^x B(m) = 2^!)M   i=-2{m)=im + l)C{m)l2), 

where C(rn) is the so-called m-th Catalan number. 

(10.4) The coordinate description of Salmon subalgebra. 
If a — XQ, b = xi, c = X2, then U2m is the set of forms 

(10.5) aoxlm + a^2™ + a2x
2

2
m + 2B{m){bQxfxf + b^x^ + b2x™x?), 
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V2m is the set of forms 

(10.6) pou2
0
m +p1u

2
1
m +P2u2

2
m + 2B(m)(go« + ftu^tig* + g2«). 

At No. 298 of "Treatise" [25], considering the case m = 2 (that is the case of 
plane quartics), G. Salmon observed that if F is (10.5), then the contravariant a(F) 
is of the same form (more precisely, of (10.6)), that is a(F) belongs to V^m- Also, 
he wrote down a dependence of coefficients pi,qi of cr(F) from coefficients ai,bi of F 
explicitly. For arbitrary m, such a dependence is indicated below. 

(10.7) po = aia2 + {-l)mB{m)bl, 

pt = a2a0 + {-l)mB{m)b\, 

P2=aoa1 + (-l)mB(m)bl 

qo = bib2 + {-l)maobo, 

q1=b2b0 + (-l)ma1b1, 

q2 = boh + (-l)ma2b2. 

These formulas generalize formulas (6.1) for conies and Salmon's mentioned formulas 
for quartics. 

(10.8) Notation.    Consider the following pair of pencils 

y2'm(a, b, c) = (X([b, cfm + [c, a}2m + [a, b}2m) 

U^ia, b, c) = (A(a2m + b2m + c2m) + ^(bc)"1 + (ca)m + (ab)m)) C U2m(a, b, c), 

,-\2m   ,   r„  ^l2m _,   r_,   u'\2m\ 

+M((M[c,a]r + ({c,a}{a,b}r + ([a,6][6,c])m)) C S2m(W*). 

(10.9) Remark. For the case m = 2, a = XQ, b = XI, C = X2, such a pencil 
f/4 was considered by A. Wiman. See formula (5) from [32] or page 536 of [31]. Also, 
the part C/4 = U^(xo,xi1X2) coincides with the so called FKT pencil in [23], as well 
as with the family of quartics considered in the postscript of Edge's paper [6]. 

(10.10) Theorem. (^m(a, &,c), I^Ja, &,c)) is a subalgebra of (S2m(W), [,]). 

Proof. Also, it is a consequence of (5.7), (5.8). 

(10.11) Definition.    Wiman subalgebra. The pair 

W2m(a,b,c) = (U2m(a,b,c), V2'm(a,&,c)) 

is said to be Wiman subalgebra of (S2m(W), [,]) or Wiman's idempotent pencil. 

(10.12) Notation. W2m - Wamfro,*!,^) = {U^V^). 

(10.12) Theorem. Any Fermat's curve of even degree (that is form F = 
an + bn 4- cn, where n = 2m is even, a, 6, c are three linearly independent linear forms) 
is an idempotent in Sn(W). 

Proof. Indeed, according to (5.7), (5.8), we see that 

F = [F,F\/2 = [a,b]n + [a,c]n + [b,c]n, 

F =< a.b.c >n (an + bn + cn) =< a.b.c >n F. 
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(10.13) Theorem. If k / m, then form 

F = a2m-kbk + b2m-kck + c2m-kak 

from S2m{W) is an idempotent. 

Proof. Because of (5.7),    F is proportional to 

[a,b)2rn-l{b,c]k + [6,c]2m-^[c,a]^ + [c,a]2m-*[a,&]*, 

therefore, using (5.7) and (5.8), we see that  F is proportional to F. 

(10.14) Corollary.   The Klein quartic x^xi 4- xf x? + X^XQ is an idempotent of 
the bialgebra  S4{W). 

(10.15) Theorem. 
(1) The form 

(10.16) A(a# + xf + xf) + 2B(2l)^(x1x2)
21 + (x2x0)

21 + (xox^21), 

of Wiman pencil   W^i is an idempotent if only if one of the following conditions is 
fulfilled. 
(i)    (A: ^ = (1:0), 
(ii)      (A:/i) = (£(2Z):0), 
(iii)        2A2 + 2A/i + (B(2l) + I)//2 = 0,      (A, //) # (0,0). 

(2) The form 

(10.17) \(x4
0
l+2+x?+2+x4

2
l+2) 

+2B(2l + l)//^!^)2^1 + (x2a:o)2/+1 + (zosi)2^1) 

of Wiman pencil  W4/+2 is an idempotent if only if one of the following conditions is 
fulfilled. 
(i)    (A:/,) = (1:0), 
(ii)        2A2 - A/i - 5(2/ + l)/i2 = 0,      (A, //) 7^ (0,0). 

Proof It is an easy consequence of formulas (10.7). 

(10.18) Example.  In the quartic pencil C/4, idempotents are: a double conic, 
Fermat's quartic, and the quartics 

/4,      4   ,      4\       ftf   2   2   .      2   2,      2   2\ 
TTlyXQ "T X^ T

-
 ^2/       ^1*^1*^2   '   ^2*^0   '   ^0^1/' 

where 
-l + 2>/7     _       -l-iy/7 

m = ,   m = . 
2        ' 2 

Two last quartics are projectively equivalent to Klein's quartic, but here we do not 
write down the formulas for a projective transformation, projective coincidence of these 
two quartics with Klein's one was indicated by Wiman [31], page 536, the equivalence 
was used by Dolgachev and Kanev [5], Rodriguez and Gonzalez-Aguilera [23]. 

(10.19) Theorem. A quartic is an idempotent if and only if it is either a double 
conic or a Fermat quartic or a Klein quartic. 
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Proof. This theorem is a reformulation of Edgardo Ciani's theorem [4 ], in his 
formulation, Fermat's quartic was missed, because, instead of the iteration of cr, he 
considered the Clebsch covariant (see (6.6)) vanishing at Fermat's quartics. 

(10.20) Remark. Clebsch quartics of the Wiman quartic pencil. Let us consider 
the catalecticant J(A,/i) of curves from U'^.  It is not hard to calculate that 

J(A,M)=M
3
(A-M)

2
(A + 2M). 

It is well-known, that if the catalecticant of a quartic vanishes, then the corresponding 
form (the so called Clebsch quartic) is a sum of five (or less ) fourth powers of ternary 
linear forms (see definition (6.12.1) from [5]). In our case, factor of multiplicity m of 
the catalecticant J(A,/i) corresponds to a Liiroth quartic representable as a sum of 
(6 — m) powers of linear forms. 

Indeed, the form corresponding to the first factor fj? defines Fermat's quartic and 
the quartic is a sum of three powers of linear forms. Further, the form corresponding 
to the second factor (A - /i)2 is proportional to the following sum of four powers of 
linear forms 

(XQ + Xi + X2)A + (-XQ + Xi + X2)
4 + (XQ — Xi + X2)4 + (Xo + Xi — O^)4. 

It is a special Capolari quartic (see definition (6.11) from [5]). 
The third factor (A + 2//) corresponds to form 

^JLIXQ "T" X-I  "T" X<y)        JL-ZlXi Xo    1   **-'2*^'0 ~'   '^O'^l )i 

the last form belongs to the following family of Clebsch-Liiroth quartics 

(fcxo + xi + £2)4 + {kxo - xi - X2)4 H- {kxQ + xi - a^)4 + (kxo - £1 + X2)4 + Ix^. 

The quartic with k = z\/2, / = —4 coincides with the form. 

(10.21) Remark. Other catalecticants. The catalecticant for the form (10.16) 
is the following product belonging to Q[A,//] : 

/x3(A3 + a\2/j, + bXfj2 + c/x3), 

the catalecticant for the form (10.17) is the following product belonging to Q[A,/i]: 

/i4(A2 +aA/i4-fyi2), 

where a, 6, c are some rational constants. 

(10.22) Remark. Pliicker's form of a quartic is A2 -f abed, where A is quadratic 
form, a, 6, c, d are linear forms, these linear forms define four bitangents of the quar- 
tic. One can reduce quartics of Wiman pencil C/4 to Pliicker's form. If we take the 
substitution 

xo = yi + 2/2, xi=y2 + 2/0, £2=2/0 + yi 

indicated by Edge [6], then we get quartics 

((A + 3/i)/2)(y2 + yf + y2
2 + {yo + 2/1 + 2/2)2)2 + 8(3^ - X^oymiyo + yi + 2/2). 

By the way, we see four evident bitangents to all the quartics from Wiman's pencil C/4, 
the bitangents were indicated in a picture (more precisely, Figure 5) of [23]. The equa- 
tions of these special four bitangents are those in [6], which do not contain additional 
"irrationalities". 
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Especially, Klein's quartic has a natural Plucker's form. Klein and Brioschi proved 
it, but their ways were longer, because they started from the initial form (10.14) of 
Klein's quartic. See [2], [18]. 

(10.23) Remark.    Syzygetic and equianharmonic quadruples of bitangents. 
According to Frobenius and Weber (see Weber, [29] §116), four bitangents of a 

plane quartic are syzygetic, if eight points of tangency are located on a common conic. 
A generic quartic has 315 sets of four syzygetic bitangents. We say that syzygetic 
quadruple of bitangents is equianharmonic, if for every of the bitangents, each of two 
points of contact together with the three intersection points of the bitangent with 
three other bitangents constitute an equianharmonic point quadruple (see definition 
in (8.2)). 

The four bitangents 2/0,2/1,2/2,2/0 + 2/1+2/2 from (10.22) are syzygetic and equian- 
harmonic. Fermat's or Klein's quartics have several (at least more than one) syzygetic 
and equianharmonic bitangent quadruples: it is a consequence of having a rich group 
of protective automorphisms. A generic curve from Wiman quartic pencil has a unique 
such a quadruple. 

It is a characterization of nonsingular quartic idempotents and quartic idempotent 
pencils. 

Note that Wiman's quartic pencil U^ contains a singular nodal quartic, that is 
the lemniscate (8.9). Any rational nodal quartic has four bitangents exactly, and, of 
course, for the lemniscate these four bitangents are syzygetic and equianharmonic. 

(10.24) Remark. A list of all 28 bitangents for a generic curve of Wiman's 
pencil U^ is described by W.L. Edge in [6], No. 14 (Postscript). The equations of these 
bitangents include an irrational quantity 7 such that in (10.16) (where 1 = 2 and 
B(4) = 6) 

(A:M) = (3(1+7
2
)
2
:-(1 + 7

4
))- 

Edge [6] gave the list and also symmetric determinantal representations of Wiman's 
curves (Edge's symmetric matrices have zero diagonal). Also, he describes a way of 
enumeration of syzygetic sets of bitangents of the curve, this combinatorial way is 
based on Cayley's combinatorial symbolism, this symbolism is described by Weber 
[29] also. 

(10.25) Theorem. Salmon quartic algebra is semisimple. 
Proof. We will use the coordinate description of Salmon quartic algebra, that is 

elements of U4 we will present as 

ao^Q + aixl + 02^2 + 6(boxlxl + hxlxl + 62^oxi)- 

Then one can write down six mutually apolar idempotent quartics. Here they are. 

Qi = #0 + ^i + ^x^ 

Q2 = XQ + UJ
2
XI 4- LOXI, 

Qs = m(xQ + x* 4- xl) - 6(^X2 + xlxl + XQ^), 

Q4 = m(xQ + Xi + xl) + 6(-xlxl 4- X^XQ 4- £oxi)> 

C^/5 — TYlyXQ 4" X^ 4" ^2) + ^v^'1'^2       *^2^0 + ^0*^1/' 

QQ = m(xQ + xl + xl) 4- 6(^1X2 + xlxl — xlx\), 
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where m is the number from (10.18). The reciprocal quartics are 

Qi = Ri = UQ+ U
2
U\ + (JUU\, 

Q2 = R2 = UQ + ouuf + ou^u^ 

Qs = ^3 = (1 + WI)(MO + W
I + ^2) + ^(l - m)(ulul + u\ul + ^0^1)5 

Q4 = J^4 = (1 + m)(wo + u\ + 1*2) + 6(1 — m)(u\u\ — u^u^ — u\u\)^ 

Qs = ^5 = (1 + m)(^o + ^i + ^2) + 6(1 - m){—u\u\ + u\u^ - u^u\), 

QQ = RQ = (1 + m)(iZo + uf + U2) + 6(1 - m)(-ulul - u\ul + u\u\). 

The first two forms Qi,Q2 are Fermat quartics, other four forms Qs^Q^^Qo^Qe 
are Klein quartics. 

(10.26) Remark. We can add six Klein's quartics 

Q7 = xfai + x\x2 + 0:2^0, 

Qs = xlxi + LJXIX2 + ^xlxo, 

QQ = XQXI + UJ2x\x2 -f CJX^o, 

QlO = ^0X2 + ^2^1 + ^1^0, 

Q11 = ^0^2 + (x)x\xi + ci;2a;?xo, 

Ql2 = #0X2 + UJ2x\xi + CJzf XQ 

and get 12 mutually apolar idempotents Qi,...,<2i2j but 12   < 15, therefore it does 
not prove semisimplicity of the bialgebra of quartics. 

11.    Conic constructions of Salmon and Wiman quartic subalgebras. 
Our next goal is a description of Salmon quartic subalgebra with the help of a pair of 
ternary quadratic forms. 

(11.1) Notation. Let A,B be two linearly independent nondegenerate ternary 
quadratic forms. We denote by L{A^B) (resp. M(A,B)) the vector subspace of the 
quartic space generated by 

(11.2) AB,   A2,   B2,   A[A, B],   B[A>B],   [A,B}2 

(11.3) (resp.  A2,   B2,   A-B,   A-[A,JB],   5-[A,B],   [A,B)2). 

Another notation: S{A,B) = (L(A,B),M(A,B)). 

(11.4) Theorem. 
(1) dim L(A1 B) = 6 if and only if A does not tangent B. 
(2) dim M(A, B) — 6 if and only if A does not tangent B. 
(3) If a, 6, c are linearly independent ternary linear forms, 

^ = a2 + 62 + c2,   B = ka2 + lb2+mc2, 

where fc 7^ /, k ^ m,   Z ^ m, then 

(L(i4,B),M(A,B)) = (f/4(a;6,c),Vi(a,6,c)) 

(according to Notations (10.1)). 
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Proof. If we suppose that 

Ji. — Xr\   i   Xi    r Xoj   13 ""■ KXn ~T~ tX-j  "T" TTtX'ji 

then the determinant of the matrix expressing forms (11.2) in terms of monomials 

jyQ,     x^,     ^25     «iyl«^25     a/2U/0'     ^0^1' 

is equal to 
{(k-l)(k-m)(l-m))4. 

This proves (1). Proof of (2) is similar. 

(11.5) Corollary. If A ± B, then the six quartics (11.2) (as well as six quartics 
(11.3))   are linearly independent in the vector space of ternary quartics. 

(11.6) Remark. The theory of invariants (according to G. Salmon's "Conic 
Sections" [24], No. 372) gives the following condition of mutual tangency of two 
conies A — 0, B — 0. It is vanishing of the discriminant of the (discriminant) binary 
form of variables (£, s) 

disc(L4 + sB) = disc(A)^3+ < A,B > t3s+ < A,B > ts2 + disc(.B)s3, 

that is the condition is the following equality 

18disc(A)disc(B) < A,B >< A,B > + < A,B >2< B, A >2 

= 27disc(A)2disc(j5)2 + 4disc(^) < B,A >3 +4disc(5) < A,B >3 . 

Of course, the dimensions of spaces L(A, B), M(^4, B) depend on the Segre symbol 
of the conic pencil A^l + jiB = 0. About the Segre symbol, one can see Hodge and 
Pedoe, [17], vol. II, pages 304-305, moreover possible types of pencils are described 
with pictures at pages 158-161 of book [26] by Semple and Kneebone. For example, 
if A and B have two points of intersection and they tangent at both the points (that 
is the corresponding Segre symbol is [(1,1),1] according to [16]), then A,B generate a 
three-dimensional subalgebra: dimL(A,B) — dimM(A,B) — 3. 

(11.7) Theorem. For two non-degenerated conies A,B, and for a non-degenerate 
matrix 

fa    b' 
[c    d 

we have 

L{aA + bB, cA + dB) = L(A,B),   M(aA + bB, cA + dB) = M(A, B). 

Proof. It is enough to prove that L{A, B + kA) — L{A, B), that is 

[A,B + kA] £L{A,B). 

Because of the bilinear property of the bimultiplication and of (6.7), 

[A, B + k~A] = [A,B + k[A, B] + k2A] = [A, B] + k[A, [A, B}) + k2A. 

Moreover, according to (6.9), (6.4), 

[A, [A, B]] = disc(A)5+ <A,B>B,    A = disc(,4) A 
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(11.8) Theorem. For every Salmon subalgebra S(A,B), one can find a pair of 
conies C, D such that 

C -L £>,    L(A, B) = L(C, D),    M(A, B) = M(C, /?). 

In the conic pencil (A^4 + A*-^), such a pair is unique (up to interchange and propor- 
tionality), but in the subalgebra the family of such pairs is a variety of dimension 2 
at least. 

Proof. It is clear, if we consider a common self-polar triangle for A and B. 

(11.9) Notation. Let A,B be two mutually apolar nondegenerate ternary qua- 
dratic forms. Let 

Lo(i4, B) = K'AB + K'[A, B}2 c L(A, B) 

denote the vector space spanned by AB, [A, B)2, 

Mo(A, B) = K - A - B + K - [A, B}2 C M(A, B) 

denote the vector space spanned by A • B, [A, I?]2. 
Both the spaces are two-dimensional, because A, B are nondegenerate and non- 

proportional. 
Another notation. W{A,B) = (Lo(A,5),Mo(A,£)). 

(11.10) Theorem. (1) (LO(J4,B),MO(A,B)) is a subalgebra. 
(2) If as in (7.8), 

/i 2, 2   i      2   2       D 2.22, 2 A = XQ + a;a:1 -h CJ ir2,   .D = XQ + u x\ 4- CJO:^, 

then (Lo(,4,£),Mo(A,£)) - W4 

Proof. It is enough to use the particular case indicated in (7.8), but, because of 
further necessity of some details, we will give a proof without considering the particular 
case. We will prove that if A _L B,  disc(A) • disc(jB) = 5, and 

F^x-AB + yS^^B}2, 

then cr(F) G Mo (A, 5), and we will find an explicit expression for cr(F). According to 
(2-6), 

a(F) = x2a(AB) +y25-2(a[A,B}2) +xyS-1[AB,[A,B}2], 

Further, according to (9.14), (9.12) and (6.4), 

(7(F) = x2([A, Bfll2 + [A, B}) + y26-2([lB})2 

+xy6-1([A,[A,B}} ■ [B,[A,B]] - {2/3)[A,B] ■ [AJt]). 

But because of mutual apolarity of A, B and in virtue of (6.9), (6,17), we have 

S-1 ([A, [A, B}} ■ [B, [A, B}} = AB,   d"1 \ZJj] = -[A, B) 

Therefore 

(11.11) a{F) = (x2 + xy) A ■B+{X ^^ [A, B}2. 

Now, we see that the form a(F) belongs to Mo(A,B) and have useful description 
(11.11) of the form. 
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(11.12) Definition. If A,B are two conies with four distinct points of inter- 
section, then we will say that (L(A,B),M(AJB)) is Salmon subalgebra generated by 
A, B. If moreover A _L B, then we say that (Lo(A, B)1Mo(A, B)) is Wiman subalgebra 
of the Salmon subalgebra (L(A, B), M(A, B)). 

(11.13) Remark. Any Wiman quartic subalgebra defines a collection of simple 
geometric objects: 

(i) two mutually apolar conies, 
(ii) four points of intersection of the conies, 
(iii) four common tangents of the two mutually apolar conies (union of these four lines 
is a curve of the corresponding Wiman pencil, 
(iv) the Bernoulli lemniscate. 

For the case of canonical coordinates (7.9), equations of the conies are given in 
(7.8), the equation of the lemniscate is (8.9), four lines are indicated in (10.22), [6], [23]. 
Here, we would like to show that each of the objects determines Wiman subalgebra. 

(i) Two mutually apolar conies determine a Wiman subalgebra according to 
(11.10). 

(ii) Four points define a pencil of conies, the pencil contains exactly two mutually 
apolar conies, the conies define a Wiman subalgebra. 

(iii) Because of the projective duality, it enough to refer on (ii), but we would 
like to describe shortly Klein's and Brioschi's approach (hidden in [18] and [2]). It is 
enough to construct two Klein's quartics of the pencil, they would be basic curves of 
Wiman pencil. In [18], §4, formula (12) Klein writes equation of his curve in the form 

(zf +Z%+Z% + zl)2 - 2Azi£2^4 = 0, 

where 
A = 7 + 3v/z7, or A = 7 - Sv^, 

zi are four linear forms whose sum is zero, their mixed products are equal one to 
another (up to a sign, of course), more precisely, 

< Zi.Zj.Zk >= ±3 • (56)2 • A • (CJ
2
 — UJ). 

(Brioschi [2] hides A/A under the left square of the curve equation). 
Let a, 6, c, d be four linear forms, no three of which are linearly dependent. We 

define a quadratic form M(a, 6, c, d) depending from these ternary linear forms a, 6, c, d: 

M = M(a, 6, c, d) = a2 < bed >2 +b2 < acd >2 +c2 < abd >2 +d2 < abc >2 . 

Note that M is a sum of squares of four linear forms, whose sum is equal to zero 
(see (5.3)). The geometric meaning of M is as follows. The conic M = 0 intersects 
every line a = 0,6 = 0,c = 0,<i = 0 equianharmonically (see definition in (8.2)) with 
respect to three points of intersection of the line with three other lines (of course, all 
the eight equianharmonic points belong to a common conic). Note that this conic is 
irreducible. The pencil (AM2 + fiabcd) is a Wiman pencil (containing of course two 
Klein's quartics, according to Klein and Brioschi). More precisely, the quartic a(abcd) 
is decomposable (see Example (8.2)): 

a(abcd) = kPQ, 
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where P(uo,111,112), Q(^0,^1,^2) are two mutually apolar quadratic forms, k E K, 
k^O. Then 

KIP, Q]2 + KPQ = (AM2 + fiabcd), 

moreover 
K[P, Q]2 + KPQ = (A(p2 + q2 + r2 + 52)2 + //p(/rs), 

where p, g, r, s are four bitangents for conies P — 0, Q = 0 (more explicit calcula- 
tions for dual situation are presented in (7.15) and (13.7) in terms of the canonical 
coordinates (7.9)). 

(iv) Producing a Wiman subalgebra from the Bernoulli lemniscate. Let F = 0 be 
an equation of the lemniscate L. First of all, any rational quartic with three nodal 
points has exactly four bitangents. Let P be a quadratic form such that cr(F) = P2 

(see Example (8.7)). Then (XF + fiP2) is a Wiman pencil. More precisely, if a, b, c, d 
are four bitangents of the lemniscate, then eight points 

(a H L) U (b nL)u{cnL)u(dnL) 

belong to a common conic C, this conic is M(a, b, c, d) — 0, and one can see coincidence 
of two pencils: 

{XF + iiP2) = (AM + fiabcd). 

(11.14) Remark. If A, B are two mutually apolar nondegenerate ternary qua- 
dratic forms, disc(A) = d(A),disc(B) = d(B), (A,/i) 7^ (0,0), then quartic 

XAB + fi(d{A)d(B))-1 [A, B]2 e L0(A, B) 

is 
(i) a double conic for A = 0, 
(ii) a Bernoulli lemniscate for A = —//, 
(iii) a Fermat quartic for X = 2/2, 
(iv) a Klein quartic for 

,     -35 ztgv^r 
A =  r^ M 

32 p 

(that  is    16A2 + 35A^ + 2S/J2 = 0). 

(11.15) Theorem. If A, B, C are three mutually apolar ternary quadratic forms 
belonging to a sextuple of mutually apolar forms, then Wiman subalgebras W(A,B) 
and W(A, C) are mutually apolar in the sense that 

< L0(A,B),Mo(A,C) >= {0},< Lo(A,C),Mo(A,B) >= {0}. 

Proof. The relations of orthogonality are consequences of Theorem (7.13). Indeed 
we have to prove that 

<AB,AC>=0,   < AB,[A,C]2 >= 0,   < [A,B]2,   [A,C}2>=0. 

First of them follows from (9.4) and (7.13), the second identity is a consequence of 
(7.13), (9.2), (6.17), the third one follows from (7.13), (9.1), (6.17). 

(11.16) Theorem. Let A,B,C,D be four distinct conies from Gerbaldi's six, 

d = disc(A) (= disc(E) = disc(C) = disc(L>) = d = -c2), 

where c is the constant from the equations of Gerbaldi's conies (7.11). 
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(1) For the following two quartics 

E'iy) =AB + yd-2[A, B}2 G Lo(A,B) 

E"(y) = CD + yd-2[C, D}2 e L0(C, D) 

the relation 

<Et{y),<r{E"{y))>=0 

is fulfilled if and only if y is a root of cubic equation 

(11.17) c2{lQyz - my2 - l?>2y - 20) + 9(2y - I)2 = 0. 

Proof. If A,B,C,D are four distinct mutually apolar conies, 

disc(A) = disc(B) = d, 

F = x[A,B}+yd-2[A,B}2£L0(A,B), 

G = iCD + n[C, D}2 G Afo(C, D), 

then 

< F, G >= ^ < [i4, B], [C, b}> {-x£, + 2xr] + disc(A)disc(B)(2yZ - Ayr])) 

+yr) < [A,B],[C,D] >2 +xrj < A.C.D >< B.C.D > +y^ < A.B.C >< A.B.D > . 

Further, if F = E'(y), G = a{E"{y)), then 

* = !, ^ = l + y, 77 = (H-42/)2/12 

(see (11.11)). 
Now, using Theorem (7.14), it is not hard to see that < E,(y),a(EN(y)) > is 

proportional to the left hand side of (11.17). 

(11.18) Remark. The substitution 

y - (1 - 3^/2 

simplifies equation (11.17): 

(11.19) 8£3 + 6(c + 4)£2 -42*+ 15 = 0. 

The discriminant D of the latter cubic polynomial, more precisely, of the corresponding 
binary form 

Stl + 3 • 2(c + 4)^i + 3 • (-14)*o*? + 15*?, 

is presented by 

(11.20) D = 27(201c - 26) = 25(97 + 201i\/l5), 

the discriminant is not a square in the field Q(c). 
If one would like to indicate an equation with rational coefficients for a root t of 

equation (11.19), then we can write it down. This root is a root of the equation 

(11.21) 64t6 + 408*5 + m4 - 1902*3 + 2529£2 - 1260* + 225 = 0 
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The last equation has a solvable Galois group over Q, because we saw a reduction 
of the equation to the cubic equation (11.19) over the quadratic field Q(v/-15). The 
discriminant Di of the sextic polynomial (11.21) has the following factorization 

£>i = 218 x 319 x 57 x 601. 

We add that 601 = 36 — 27 = 54 — 52 + 1. Also, the last factor arises by factorization 
of the norm of the number D from (11.19): 

Norm(2-4£>) = Norm(2(201c - 26)) = 153856 = 28 • 601. 

It is a curio that 

Norm(2(201c+ 26)) = 27 x 5 x 17 x 257 = 27(221 + 1)(222 + 1)(223 + 1). 

(11.22) Example. A four-dimensional subalgebra of Salmon algebra. Suppose 
that quadratic forms A, B generating a Salmon algebra are normalized in such a 
way that their discriminants are equal: disc(^4) = disc(i3). In this case, the pair 
(Li(A,B),Mi(A,B)), where Li(A,B) is spanned by 

AB, A2+B\ (A + B)[A,B], [A,B]2, 

Mi (A, B) is spanned by 

12+B2, AB,   (A + B)-[A,B],   [i4,JB]2, 

is a subalgebra of Salmon's algebra. We will not need this subalgebra. 

12. Proofs of theorems (1.9), (1.10), (1.11). 
(12.1) Proof of (1-9). A preliminary remark. The fifteen idempotent pencils 

will be WifiJj), i / j, i,j G {1,2,3,4,5,6} (see Notation (11.9), Theorem (11.10), 
Definition (11.12)). That is for formation of the cogredient parts 

Lo(fi,fj) = (\fifj+n[fi,fj}
2) 

of the pencils, we mix the bases (7.14)(i) and (7.14)(iii). A similar process goes by 
formation of contragredient parts. Formally, we do not need Theorem (7.14), but 
it seems that the heart of the matter of the weak idempotency is hidden in the big 
matrix from the proof of (7.14), because the minimal polynomial of the matrix is 
quadratic, that is the matrix is an idempotent of level 1 in some sense (or in the sense 
of Definition (1.6) applied to the matrix algebra). 

Let us fix a root y of equation (11.17). Then quartics 

Eij = fifj + yc~*[fijj] 

and their reciprocals a (Eij) constitute two mutually reciprocal bases according to 
Theorems (11.15), (11.16). Quartics 

Pid=fif3+yc4[fiJj] 

have similar properties. 

(12.2) Proof of (1.10). The fifteen semisimple (according to (10.25)) subalgebras 
are S(fufj) (i / j), ij G {1,2,3,4,5,6} (see Notation (11.1), Theorem (11.4)). 
These Salmon subalgebras contain Wiman subalgebras from (12.1), therefore we may 
take the bases from (12.1). 
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(12.3) Proof of (1.11). It is necessary to prove that if Ai1..., AQ are six mutually 
apolar conies, then the union of the base loci for Wiman pencils LQ^A^AJ) (see 
Notation (11.9)) is the union U of points of intersection of the conies. If A,B are 
two mutually apolar conies, then the base locus of LQ{A, B) consists of eight points 
of reciprocal contact of the pencil of quartics ( these eight points are the points of 
contact of four bitangents for A, B). Indeed, for the case of canonical coordinates, it 
was indicated by R. Rodriguez and V.Gonzalez-Aguilera in [23] (page 53 and Figure 
5 of page 54), see also Remarks (10.22), (10.23), (11.13). 

Now we may apply Theorem (7.15). 
The theorems are proved. 

13. The bialgebra of ternary sextics. 
(13.1) Formulas for the reciprocal of a ternary sextic. A ternary sextic 

has 28 coefficients. Its full description is 

F{xo,xi,x<2) = y^ a^jklmnjXjXjXkXiXmXn = 

a(000000)4 + a(llllll)x? + a(222222)^ 

+6a(000001)^xi + 6a(000002)4x2 + 6a(111110)^xo 

+6a(111112)x^2 + 6a(222220)xlxo + 6a(222221)xlx1 

+15a(000011)a;fc? + 15a(000022)a;^| + 15a(111100)a;fc§ 

+15a(111122)^ + 15a(222200)x%xl + 15a(222211)^ 

+20a(000111)^ ■+ 20a(111222)^ + 20a(222000)^ 

+30a(000012)a;^ia:2 + 30a(111102)^a:oa:2 + 30a(222201)^oa;i 

+60a(000112)^rc2 + 60a(000221)a:^rci + 60a(111002)a:^rr2 

+60a(111220)^a;2Xo + 60a(222001)^a:^i + 60a(222110)x|x^o 

90a(001122)xlx2
1xl. 

If 
F — [F, F]/2 = Q(uo,ui1U2) = ^jp{ijklmn)uiUjUkUiUmUn't 

then some of the coefficients of F are written below, formulas for other coefficients 
can be derived with the help of permutations of indices 0,1,2. 

p(000000) = a(llllll)a(222222) - 10a(111222)2 

-6a(111112)a(222221) + 15a(111122)a(222211), 

p(000001) = a(111112)a(222220) - a(222222)a(111110) 

+5a(222221)a(111102) - 5a(111122)a(222201) 

+10a(111222)a(222110) - 10a(222211)a(111220), 

j9(000011) = a(111122)a(222200) + a(222222)a(111100) - 2a(111102)a(222220) 

-4a(111222)a(222001) - 4a(222221)a(111002) 
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+6a(222211)a(001122) - 6a(222110)2 + 8a(111220)a(222201), 

p(000012) = a(222220)a(111110) - a(111100)a(222221) - a(222200)a(111112) 

+2a(222110)a(111220) - 3a(111102)a(222201) - 6a(111222)a(001122) 

+4a(222211)a(111002) + 4a(111122)a(222001), 

p(000112) = a(000111)a(222221) + a(222200)a(111102) 

-a(000222)a(111122) - a(111100)a(222220) 

+3a(111222)a(000221) + 3a(001122)a(222110) - 3a(222211)a(000112) 

-5a(111220)a(222001) + 2a(222201)a(111002), 

p(000112) = a(000111)a(222221) + a(222200)a(111102) 

-a(000222)a(111122) - a(111100)a(222220) 

+3a(111222)a(000221) + 3a(001122)a(222110) - 3a(222211)a(000112) 

-5a(111220)a(222001) + 2a(222201)a(111002), 

p(000111) = a(000222)a(111222) - a(222222)a(000111) 

+9a(222110)a(222001) - 9a(001122)a(222201) 

+3a(222220)a(111002) + 3a(222221)a(000112) 

-3a(222200)a(111220) - 3a(222211)a(000221), 

j9(001122) = -3a(001122)2 

+a(000011)a(222211) + a(000022)a(111122) -h a(222200)a(111100) 

+2a(000112)a(222110) + 2a(000221)a(111220) + 2a(222001)a(111002) 

-2a(000111)a(222201) - 2a(000222)a(111102) - 2a(111222)a(000012). 

The bilinearization of these formulas generates formulas for the bimultiplication in the 
bialgebra of ternary sextics. 

(13.2) Example.     An example of a sextic idempotent (that is from S6(W)). 
Let us consider the following sextic 

F = 27x1 - 135x2Xo^i - 45x1x1x1 + Qx^frl + xl) + lOxlxf. 

This (nonsingular and of genus 10) sextic is indicated by A. Wiman [31],page 533, see 
also formula (7) at page 638 of [9]. Wiman wrote that the sextic is invariant with 
respect to Valentiner's group Gseo of plane collineations (the group is isomorphic to 
alternating group AQ.) Using formulas (13.1), one can calculate that F is proportional 
to 

-ul + 45^2^0^! 4- 135*Z2^o - 81^2(^0 4- u?) - 1215^?, 
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and that F is proportional to F. Thus this sextic is an idempotent. 

(13.3) Example of a threedimensional sextic bialgebra. After appearing 
the sextic in Wiman's paper [31], some further discussions of the curve were in a series 
of works, the works (of XlX-th century at least) are mentioned in the book [9] by 
Fricke -Klein. Different (but projectively equivalent) equations of Wiman's sextic are 
presented in [31], formula (8), page 537, in [9] one can see formulas (15), (21), (19) & 
(22), (10) & (11) at pages 625, 628, 633, 639 respectively. 

Let us consider the following net of sextics (cf. formula (2),page 621 of [9], this 
net was also indicated by Wiman, see [31] formula (1), page 534). 

(13.4) X(x6
0 + xl + xl) + i/90xlxlxl 

fJsl-QiXnX]    i   XrxX'y "r Xi Xn n- XiXn   r ^o^O    '   ^l*^] /• 

It is not hard to see that net (13.4) together with the corresponding net where variables 
are ^0,^1,^2 (instead of 0:0,^1,^2) form a subalgebra of {SQ(W), [, ]). This net contains 
two Wiman's sextics C, C7, one corresponds to 

A      , 5-;\/l5 S + zVlS 

other corresponds to conjugate numbers 

,      ,               h + iVlS 5-t^ 
A = 1'   "= 20-'   ,,= --30—' 

(see formula (15) at page 625 of [9]). Wiman observed that the net (13.4) contains 
the Hessian curve of some Klein quartic (also, see (13.5) below). 

(13.4) Definition. The net (13.4) or its projectively equivalent net is said to be 
Wiman sextic net. 

(13.5) A conic description of Wiman sextic net. Let A, B be two mutually 
apolar proper conies, J(.,.,.) denote the Jacobian (see (7.3), (7.4)) The net 

A[i, Bf + /iAB[i, B] + 1/J(A, B, [A, B)) 

is a Wiman sextic net. 
It is evident, if we use canonical coordinates from (7.8-9). Also, using the coordi- 

nates, it is not hard to see that the Hessian forms of quartics from the Wiman pencil 
Lo(A, B) belong to the net. Note that the image of the pencil defines a rational cubic 
curve in the projective plane derived by the projectivization of the vector space of the 
last net. 

(13.6) Example of a two-dimensional semisimple sextic subalgebra.  If 
A, B are two mutually apolar proper conies, then the pair of subspaces 

(\ABlA,B]+iiJ{A,B,[A,B]))    c   S\W), 

(Ai.5-[A,5]+//J(i,B,[A,5]))    C   S\W*) 

is a subalgebra of (56(W),[,]). This subalgebra is semisimple. Indeed, using the 
canonical coordinates, one can see that this subalgebra is 

K(xl + xl + xl) + Kxlx\xl    C    SQ(W), 

K(ul + u\+ul) + Kulu\ul    C    SQ{W*), 
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and that 

are mutually apolar idempotents (see Definitions (1, 4), (7.6)). 

(13.7) Example of a four-dimensional semisimple sextic subalgebra. Let 
F,Ff be two nondegenerate ternary quadratic forms, p,q,r,s £ W* be four points of 
intersections of the conies F — 0, F' — 0 (more precisely, four elements p, g, r, s define 
a subset in the plane P(Wr*), this subset is the intersection ; also note that we can 
start with four points no three of which are collinear, these four points define a pencil 
of conies, the pencil contains a unique pair F, F' of mutually apolar conies). In terms 
of the bialgebra, the points are four independent solutions of the system 

<:E
2
,F>=0,    <X

2
,F' >=0. 

Let linear forms a, 6, c, d define tangents to F at points p, g, r, s respectively. The linear 
forms can be defined up to proportionality by the following conditions. 

<a,p>=0, <a2,F>=0, 

<b,g>=0, <62,F>=0, 

< c,r >=0, < c2,F >=0, 

<d,s >=0, < d2,F>=0. 

Similarly, let linear forms a7, b', d, d' define tangents to F1 at points p, g, r, s respec- 
tively. Further, let k, I, m, n be four bitangents for the pair of conies, u, v, w, z, uf, v!, w', 
z' € W* be eight points such that in the projective plane'P(W*), we have (using some 
inaccurate notations) 

{u} = F H fe, {v} = F H /, {w} = F fl m, {z} = F H n, 

{w'} = F' H Jb, {v'} = F' H /, V} = F' n m, {z7} = F' n n. 

Let 
[/ = [/(F,^) = (KFa'b'c'd' + KF'abcd 

+K[F,Tf 4-#FF'[F,F7]) C    56(PF), 

y = y (F, F') = (Fu'v'w'z' + A'F'w^^ 

+K[F,F,]3+KFF7[F,F,]) c    56(W*). 

Theorem. The pair of subspaces ([/, V) is a fourdimensional semisimple subal- 
gebraofS6(W),[,]). 

Proof. Let us use the canonical coordinates (7.9), (7.8), (also see proof of Theorem 
(7.15)). The above mentioned objects have the following coordinate description. 

F = xl + UJX\ + uJ1x\)   F' = XQ + w2xl + 00X2, 

p —   UQ - Ui - U2,    q — -UQ +Ui — U2, 

r = — UQ — Ui + U2,     S=   UQ -\-Ui +U2, 

U = —UQ -f- (JU
2
UI + UJU21     V =   UQ — UJ2Ui + UJU2, 

W—   UQ + UJ2Ui — LUUz,     Z—   UQ + LU2Ui + LOU2, 
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U1 — —UQ + LJUi + UJ2U2,     v' —   UQ — OJUi + CJ2W2, 

w' —   UQ + UJUi — UJ2U2,      z'—   UQ + LJUi + CJ2^, 

k =   XQ - Xi - £2,     I = -XQ + Xi - X2, 

m = -Xo - £1 + £2,   rc = ^0 + xi + X2, 

a = — £0 + kKEi + a;2X2,   a' = —XQ + LJ
2
XI + o;^, 

6 =  XQ — c<;a:i + a; X2,   b' =  XQ — UJ xi + a;a;2, 

c=  £0 + ^£1 — a;2X2,   c' =  XQ+a;2 — Xia;x2, 

d = XQ+CJXI+a;2X2,   </ = XQ + a;2xi + a;x2, 

C/ = (if (4 + x? + ^) + Kxlxlxl 

~T~I\. yXtyX-^ "T" X-^X^   1   X^Xnj 

-\-K\XQX<2 + 2:2X5^ + a^Xo)), 

F = (if(^ + wf + w^) + Kulu\ul 

-]-K{ulu\ + ^1^2 + ^2^0) 

It is easy to see (with the help of (10.12), (10.13) or (13.1)) that elements 

€,\ — XQ T" X-J^    1   X2 •)       €■2 ':~ ^0*^1*^2' 

63  =~ XQX-I   ~T~ X-tXn    \    X2XQ,      64   =:: XQX2  "T~ XnX-t   "T" Xi XQ 5 

are idempotents and mutually apolar. 
The theorem is proved. 

(13.8) Remark. If F, F' are mutually apolar proper quadratic forms, then there 
is a linear dependence between the following five ternary sextics. 

Fa'b'c'd', F'abcd, [F,^]3, 

FF'^T'l J^FMF,^]). 
For example, if the quadratic forms are written with the help of the canonical coordi- 
nates, as in the proof, then 

8(Fa,b,c,df + F'abcd) - 24[F, Tf + 8FF'[F, F*} + 9 J(F, F', [F, Fi}) = 0. 

Therefore the space U(F, F') contains the pencil from (13.6), Wiman's net from (13.5) 
or (13.2) and all the above mentioned sextics. 

(13.9) Definition of the Edge pencil. The Edge pencil is 

E^F') = {KFa'b'c'd' + KF'abcd) C U{F,F'). 

The pencil was studied by W. L. Edge in [7] . The following special base {W, P] 
of the pencil was also indicated by Edge. If F^F',a,b,c,d,a',b',c',$ are presented 
with the help of canonical coordinates as in the proof, then 

W = Fa'b'dd! + F'abcd = x^ + x\ + xl 

I^XQ -f- X^ T" ^2/\*^0   '   ^1   '   ^2/       1ZXQX^X2, 
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P=(LU
2
 - ^{Fa'b'dd1 - F'abcd) = (xj - xl)(xl - xl)(xl - xf). 

(13.10) Remark. A sextic projectively equivalent to W = 0 was indicated 
by Wiman [32], page 208. The sextic W admits a group Guo of 120 Cremona self- 
transformations (of which 24 are projective transformations). Another two remarkable 
sextics i?, R' from the Edge pencil are 

W + XP = 0, 

where 
A = 5\/5  or  A = -5V5. 

Both the curves are ten-nodal rational sextics. Four of the nodes are p,q,r,s (these 
points are singular for all the curves of the Edge pencil. If A = by/E (and the canonical 
coordinates are used), then corresponding curve R has nodes at the points 

(0:r:l),     (r : 1 : 0),     (1 : 0 : r), 

(0:-r:l),   (-r : 1 : 0),   (1 : 0 : -r), 

where 
r = (1 + >/5)/2. 

See [7] for details. 
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