
WILLMORE HYPERSURFACES IN A SPHERE* 

HAIZHONG Lit 

Abstract.   Let x : M —>• 5n+1 be an n-dimensional hypersurface in S'n+1, x : M —>• 5n+1 is 
called a Willmore hypersurface if it is an extremal hypersurface to the following Willmore functional: 

/ (S-nH2)2dv, 

where S = ^2(hij)2 is the square of the length of the second fundamental form, H is the mean 
*.i 

curvature of M.   In this paper, through study of the Euler-Lagrange equation of the Willmore 
functional, we obtain an integral inequality of Simons' type for Willmore hypersurfaces in Sn+1 

and give a characterization of Willmore tori by use of our integral formula.   We also classify all 
isoparametric Willmore hypersurfaces in Sn+l. 

1. Introduction. Let M be an n-dimensional compact hypersurface of the 
(n + l)-dimensional unit sphere Sn+1. If hij denotes the components of the second 
fundamental form of M, S denotes the square of the length of the second fundamental 
form and H denotes the mean curvature, then we have 

i,j k 

where en+i is an unit normal vector field of M in 5n+1. 
We define the following non-negative function on M 

(1.1) p2=S-nH2, 

which vanishes exactly at the umbilic points of M. 
Willmore functional is the following non-negative functional (see [4], [20] or [22]) 

f pndv= [ {S-nH2)%dv. 
JM JM 

It was shown in [4] and [20] that this functional is an invariant under Moebius (or 
conformal) transformations of 5n+1. We use the term Willmore hypersurfaces to call 
its critical points, because when n = 2, the functional essentially coincides with the 
well-known Willmore functional and its critical points are the Willmore surfaces. 

In this paper, we first prove the following theorem 

THEOREM 1. Let M be an n-dimensional hypersurface in an (n + l)-dimensional 
unit sphere 5n+1.  Then M is a Willmore hypersurface if and only if 

- pn-2(2HS -nH3-J2 hijhjkhki) 

+(n - l)/\(pn-2H) - J^ip^^inHSij - h^) = 0, 
(1.2) 

hj 
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where A is the Laplacian, {.),ij is the covariant derivative relative to the induced 
metric. 

Remark 1.1. When n = 2, Theorem 1 was proved by R. Bryant [2] and J. Weiner 
[21], (1.2) reduces to the following well-known equation of Willmore surfaces (see 
[2,21]) 

(1.3) AH + H(S-2H2) = 0. 

We note that Peter Li and S.-T. Yau [11] introduced a concept of conformal volume 
and obtained a partial solution of Willmore conjecture through estimating the eigen- 
values of the Laplacian. We also note that Pinkall [14] constructed some compact 
non-minimal Willmore surfaces in S*3. 

Remark 1.2. We should note that for n > 2, C. P. Wang [20] got the Euler- 
Lagrange equation of Willmore functional for any n-dimensional submanifold in an 
(n + p)-dimensional unit sphere Sn+P in terms of Moebius geometry. 

In order to state our Theorem 3, we first give the following important example 
EXAMPLE (C.F.[6]). The tori 

(1.4) wm^m = SmU1^^) xSn-™U^y    l<m<n-l 

are Willmore hypersurfaces. We call Wm,n-mj 1 < m < n — 1, Willmore tori. In fact, 
the principal curvatures ki, • • • , kn of Wm,n-m are 

(1.5) ki — - - • — km — * I ,     km+i — - • • — kn — — \    . 
V n - m V     m 

We have from (1.5) 

TT      if      I   m                         /n-m\       ri        m
2        (n- m)2 

H=-\mJ (n-m)J     ,    S= +v ; 

n \     \j n — m y     m     I n — m m 
3 3 

thus we easily check that (1.2) holds, i.e., Wmjn_m are Willmore hypersurfaces. In 
particular, We note that p2 of PFm,n-m for all 1 < m < n — 1 satisfy 

(1.6) p2=n. 

We recall that well-known Clifford minimal tori are 

(1.7)        Cm,n-m = Sm U^A x Sn-m ( \j -^-^ I ,        1 < m < n - 1. 

It is remarkable that Willmore tori coincide with Clifford minimal tori if and only if 
n = 2m for some m. 

Remark 1.3. When n — 2, we can see from (1.3) that all minimal surfaces are Will- 
more surfaces. When n > 3, minimal hypersurfaces are not Willmore hypersurfaces 

in general, for example, Clifford minimal tori Cm,n_m = 5m (^/^F) x S71'™ (A/
1
^) 

are not Willmore hypersurfaces when n ^ 2m. 
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In the theory of minimal hypersurfaces, the following Simons' integral inequality 
is well-known 

THEOREM 2. (Simons [17], Lawson [8], Chern-Do Carmo-Kobayashi [5]) Let M 
be an n-dimensional (n > 2) compact minimal hypersurface in (n + 1)-dimensional 
unit sphere SnJrl. Then we have 

(1.8) / S(n-S)dv<0. 
JM 

In particular, if 

(1.9) 0 < 5 < n, 

then either 5 = 0 and M is totally geodesic, or 5 = n and M is one of the Clifford 
tori Cm,n_m, which are defined by (1.7). 

In this paper we prove the following integral inequality of Simons' type for Will- 
more hypersurfaces. 

THEOREM 3. Let M be an n-dimensional (n > 2) compact Willmore hypersurface 
in (n + l)-dimensional unit sphere 5n+1. Then we have 

(1.10) / pn(n- p2)dv<0. 
JM 

In particular, if 

(1.11) 0 < p2 < n, 

then either p2 = 0 and M is totally umbilic, or p2 = n and M is one of the Willmore 
tori Wm,n-m? which are defined by (1.4). 

2. Preliminaries. Let x : M —> Sn+1 be an n-dimensional hypersurface in an 
(n + 1)-dimensional unit sphere 5n+1. Let {ei, • • • ,en} be a local orthonormal basis 
of M with respect to the induced metric, {0i, • • • ,#n} their dual form. Let en+i be 
the local unit normal vector field. In this paper we make the following convention on 
the range of indices: 

1 < i,j, k < n. 

Then we have the structure equations 

(2.1) dx = YJ0ieh 
i 

(2.2) dei = ^ OijCj + ^2 hijQjZn+i - QiX, 
3 3 

(2.3) den+i — -y^hijOjej. 

The Gauss equations are 

(2.4) Rijki = (SikSji - SuSjk) + (hikhji - huhjk), 

(2.5) Rik = (n - l)6ik + nHhik - ^ hijhjk, 
3 

(2.6) n{n - 1)R = n{n - 1) + n2H2 - 5, 
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where R is the normalized scalar curvature of M and S = J^ . h^j is the norm square 
of the second fundamental form and H is the mean curvature. 

The Codazzi equations are 

(2.7) hijk = hikj, 

where the covariant derivative of hij is defined by 

(2.8) 2^ hijkOk = dhij + 2^ hkjOki + 2^ ^ikOkj- 

The second covariant derivative of hij is defined by 

(2.9) 2^ hijkiOt = dhijk + 2_^ hijkOu + 2^ ^/ife% + 2^ hijiOik- 
i ill 

By exterior differentiation of (2.8), we have the following Ricci identities 

(2.10) hijkl — hijik = 2^ hmjRmikl + 2^ himRmjkl. 
m m 

We define the following non-negative function on M 

(2.11) p2 = S-nH2, 

which vanishes exactly at the umbilical points of M. 
Willmore functional is the following functional (see [4] or [20]) 

(2.12) f pndv= f (S-nH2)2dv. 
J M JM 

By Gauss equation (2.6), this is equivalent to 

(2.12)' [»(»-!)]* f (H2 

JM 
R + l)%dv. 

It was shown in [20] and [22] that this functional is an invariant under Moebius (or 
conformal) transformations of 5n+1. We use the term Willmore hypersurfaces to 
call its critical points. When n = 2, the functional essentially coincides with the 
well-known Willmore functional and its critical points are Willmore surfaces. 

In order to prove Theorem 1, we need the following Reilly's result 
LEMMA 2.1 (Theorem A of Reilly [15]). Suppose that f is any smooth function 

of n variables, x : M -> 5n+1 a compact hypersurface. Consider a one-parameter 
family xt : M -> 5n+1 with XQ = x, t G (-c,c). Let £ = ^fl^o, A =< £,en+i >. 
Then 

^       f f(Si,...,Sn)dv 

(213)   =[ H-SiHSi,...,Sn) + i2(SrSi-(r + l)Sr+i)Drf(S1,...,Sn) 

n 

+    Y,   {Drf{Su..;Sn))tijrr
i_1+Y,DrfiS^-^n){n-r + l)Sr^}dv, 

iJJr=l r=l 
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where Drf(Si1-" ,5n) denotes the partial derivative of f with respect to variable 
Sr, ('),ij denotes the covariant derivative relative to the metric induced by x. h = 
(hij) = (kiSij) and Sr the r-th elementary symmetric function of the the eigenvalues 
hi,-- ,kn of h, i.e., 

(2.14) So = l,    5i =A;i + --- + fen,     •••,    Sn = k1'"kn. 

The Newton transformation Tr is defined inductively by 

(2.i5) :#■ = %   r;^ = 5^1^-53^*^,   r = 0,-.-,n-l. 
k 

LEMMA 2.2 (see [16], c.f. [9,10]). Let M be an n-dimensional (n > 2) hypersurface 
in 5n+1. Then we have 

±Ap2 =\Vh\2 - n2\VH\2 + ^(hijh^j 

(2.16) 
+ nS - 52 - n2H2 + nHj2 hijhjkhki - ^A{nH2), 

where \Vh\2 = ^ h2
jk and \VH\2 = Y,^2. 

Proof. By the definition of A and p2, we have by use of (2.7) and (2.10) 

2 

(2.17) 

=^(E4)-^(^2) 

hhk i,j,k 

=\Vh\2 - n2|VF|2 + ^2(hijhkki)j +J2hij(h^Rm + huRij) - TMnH2). 

We can easily obtain (2.16) by putting (2.4) and (2.5) into (2.17) 

3. Proof of Theorem 1. Choosing in Lemma 2.1 

(3.1) f(Sir • • ,Sn) - Qn :=.[(n - 1)S? - 2nS2}% = n*(S - nH2)% = n V, 

and noting that 

(3.2) Dxf = n(n - l)Qn-2Su    D2f = -n2Qn-2,    Drf = 0, r > 3. 

Putting (3.1) and (3.2) into (2.13), we obtain by use of (2.14) 

n2 
dt* 
^|       / (S-nH2)Uv=±\       [ ((n-l)S2-2nS2)Uv 
dt t=o JM at t=o JM 

(3.3) = f A[-51Q
n + (5? - 252)n(n - l)Qn-2S1 - n2Qn-2(525i - SS3) 

JM 

+ n(n - l)A(gn-251) - n2 ^(Q71"2),^^^^ - /i^)]^. 
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Thus the Euler-Lagrange equation of Willmore functional (2.12) is 

-SiQn + (Sf - 252)n(n - l)<9"-25i - n2Qn-2(525i - 353) 

(3-4) +n(n - l)A(gn-25i) - n2 ^W"~2),«("5i^ - M = 0. 

From Q = nzp, we know that (3.4) is equivalent to 

-nSip" + (5? - 252)n(n - iK^Si - n2pn-2(525i - 3S3) 

(3-4)' +n(n _ l)A(/,n-25l) _ n2 ^^-2)^.(5!^. _ fty) = 0. 

Noting that 

5! = nH, S2 = i(S? - 5), 53 = ±(52 kf - 5x5 + SaSx), 
i 

we know that (3.4)' is equivalent to (1.2). This completes the proof of Theorem 1. 

4. Lemmas and Proof of Theorem 3. We first prove the following lemma 
(c.f. [7]) 

LEMMA 4.1. Let M be an n-dimensional (n > 2) hypersurface in Sn+1, then we 
have 

(4.1) iv/f > ^|Vi?|2, 

where \Vh\2 - £ hfjk, |Vtf|2 = £#?, Hi = ViH. 
i,j,k i 

Proof. We decompose the tensor Vft: 

(4.2) hijk = SijA; + Fijk, 

where 
77- 

^u* = —~r7;(Hidjk + ^O^i/fe + HkSij). 
72 + Z 

Then we can easily compute that 

3n2 

n + 2 
3n2 

|-B|2 = 22Eijk - ^"X^^^l2'   "^ Ei3k^Fi3k > = < Eijk,hijk - Eijk >= 0, 

i.e., E and F are orthogonal components of Vft. Then 

iv/^i2 > |£;|2 = f^ivz/i2, 

which proves the Lemma 4.1. 
Define trace-free tensor 

(4.3) hij = hij - HSij. 

We have by a direct calculation 

(4.4) J2hkk=0,    Y/~
hh=P2 = s-nH2> 
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(4.5) ^ hijhjkhki = ^2 hijhjkhki + SHp2 + nH3. 
i,j,k ijik 

From (4.4), (4.5) and Theorem 1, we have 

LEMMA 4.2. Let M be an n-dimensional hypersurface in the (n + 1)-dimensional 
unit sphere 5n+1. Then M is a Willmore hypersurface if and only if 

(4.6) (n-l)A(pn-2H)+pn-HHp2 + ^kJhkhi)-Y,(Pn~2),ij(nHSii-hij) = ()> 
i,j,k ij 

where A is the Laplacian,  (\ij is the covariant derivative relative to the induced 
metric. 

The following lemma is a key step of the proof of Theorem 3 

LEMMA 4.3. Let M be the n-dimensional hypersurface in the (n + 1)-dimensional 
unit sphere Sn+1, then we have 

*A(pB) 

= in(» - 2)p»-a|Vp|a + V-a{(|Vfc|a - -^IVffl2) + (^ - n)|V#|2 

2 2 n + 2 n + 2 

- n(n - l)|Vtf |2 + ^(/ly/ifefci),- + p2{n + nff2 - p2) 

(4-7) + nif ^ fty^jk/ifci - iACntf2)} 
ij,k 

>^Pn'2{-n(n - l)|Vtf |2 + ^(/ly^i),- + p2(n + nH2 - p2) 
ij,k 

+ nH 02 hijhjkhki - -A(n#2)} 
i,j,k 

Proof First it is easy to check the following identity 

(4.8) \A(pn) = in(n - 2)p"-2|Vp|2 + ^"-2A(p2). 

By use of (4.4) and (4.5), (2.16) can be written as 

^Ap2 =\Vh\2 - n2\VH\2 + ^(hijh^j 
ij>k 

+ p2(n + nH2 -p2) + nH ^ hijhjkhki - -A(nH2). 
(4.9) 

i,j,k 

Putting (4.9) into (4.8) and noting ^ - n = ^^ > 0, we obtain (4.7) by 
use of Lemma 4.1. 

LEMMA 4.4. Let M be an n-dimensional compact Willmore hypersurface in the 
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(n + 1)-dimensional unit sphere 5n+1, then we have 
(4.10) 

-n(n-l) / pn-2|Vtf|2 

=- n(n-l) f pn-2(HHi)i+n [ Hip^^nHSij-hi^-nin-l) f H2A(pn-2) 
JM JM JM 

- 2n(n -I) I HV(pn-2) -VH-n f Hpn-2(Hp2 + V hijhjkhki). 
JM JM iJ<k 

Proof. We first note the following identity 

-n(n-l)/>"-2|V#|2 

(4.11) = - n(n - l^p^iHEiJi - pn-2HAH) 

= - n(n-l)[pn-2(HHi)i-HA(pn-2H)+H2A(pn-2) + 2HV(pn-2) ■ VH}. 

Integrating (4.11) over M, we have (4.10) by use of (4.6). 
LEMMA 4.5.   Let M be an n-dimensional compact hypersurface in the (n + 1)- 

dimensional unit sphere Sn+1, then we have 

(4.12) / pn-2 Tihijh^j = n f HThijip"-2),^ + n2 / HV(pn-2) ■ VH. 
JM        ij<k JM     id JM 

Proof. We have the following calculation 

/ pn 2y2(hijhkki)j = / y^" 2hijhkki)j- [ y](pn 2)>iA*i 
JM ij,k jMi,i,k jMi,j,k 

= '     lL,(pn~2),Jhiihkki 

=- f ^((pn~2),jhijhkk)i+ f yvp"-2),^/^ 
JM

 i,j,k JM
 ij,k 

+ n2 [ ^^(p"-2),^ 
JMJ 

=n f Hy2hij(pn~2),ij+n2 [ HV(pn-2)-\7H. 
JM     itj JM 

Proof of Theorem 3. Integrating (4.7) over M, we have 

0 >^{Mn-l) [ pn-2|Vtf |2+ / pn-2 Tihijhkki)^ f pn(n+nH2-p2) z JM JM        ■ . k JM 
3) 

+ nf Hp^T hijhjkhi- I f pn-2A(nH2)}. 
JM ,■..■, l JM 
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Putting (4.10) and (4.12) into (4.13), we get 
(4.14) 

0>?{[-n(n-l) / pn-^HHih+n [ H ^{p^MnHSij - fty) z JM JM    77 
i,3 

(n-1) [ H2A(pn-2)-2n(n-l) [ HV(pn-2) • VH-n [ Hpn-2(Hp2 

JM JM JM 

+ E Whjkhi)} + [n [ HY] hijip"-2),^ + n2 [ HV(p"-2) • Vfl] 
i,j,k JM      i,j JM 

+ [ pn(n + nH2-p2)+n f Hp^^ijkkhi-l f pn-2A(nH2)} 
JM JM ijk 

L JM 

=5{-n(n-l) [ p^iHH^+n2 [ H2A(pn-2)-n(n-l) [ H2A(pn~2) z JM JM JM 

-2n(n-l) / HV(pn-2) • VH+n2 [ HV{pn-2) • V^+ / pn{n-p2) 
JM JM JM 

-U pn-2A(nH2)} 
z JM 

=?/ P>-A 

Thus we reach the following integral inequality of Simons' type 

(4.15) / pn{n-p2) <0. 
J M 

Therefore we have proved the integral inequality (1.10) in Theorem 3. 
If (1.11) holds, then we conclude from (4.15) that either p2 = 0, or p2 = n. In 

the first case, we know that 5 = niJ2, i.e. M is totally umbilic; in the latter case, 
i.e., p2 = n, we have from (4.7) 

JM ^ + 2 

we have H = constant, thus we have again from (4.7) 

V/i = 0. 

It easily follows that M is an isoparametric hyper surface with two distinct constant 
principal curvatures, M is one of the Willmore tori (see Theorem 5.1), that is, M = 
Wm^n-m for some m with 1 < m < n — 1. We complete the proof of Theroem 3. 

5. Isoparametric Willmore hyper surfaces. In this section, we give the clas- 
sification of isoparametric hypersurfaces in 5n+1. We need the following result 

LEMMA 5.1 (see [1,3,12,18,19]). Let M be an n-dimensional compact isoparamet- 
ric hypersurface (i.e. hypersurface with constant principal curvatures) in Sn+1. Let 
ki > kz > - - • > kg be the distinct principal curvatures with multiplicities mi, • • • , nig 
( so that n = mi +m2 + • - • + mg).  Then 

(a) g is either 1,2,3,4, or 6. 
(6) If g = 1, M is totally umbilic. 
(c) Ijg = 2,M = Sm(ri) x Sn-m(r2), r2+r2 = 1. 
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(d) 119 = 3, mi =m2=m3 = 2k, (fc = 0,1,2,3). 
(e) If g = 4; mi = ms anc? m2 = 7714. Moreover, (mi,7712) = (2,2) or (4,5), or 

mi + m2 + 1 is a multiple of 2(^mi_1). iJere 0(Z) is £/ie number of integers s with 
1 < s <l and s = 0,l,2,4 mod 8. 

(/) //# = 6, mi = m2 = • • • = ra6 = 1 or 2. 
(p) There exists an angle 0, 0 < 9 < ^   s^c/i £/m£ 

a - 1 
(5.1) fca=cot(^H TT),    a = !,•••, p. 

In the isoparametric case, p2 = constant, H = constant, we get from Theorem 1 
LEMMA 5.2. Let M be an n-dimensional isoparametric Willmore hypersurface in 

Sn+1. Then 

(5.2) 2HS-nH3-Y,k! =0, 
i 

where hij = kiSij. 
THEOREM 5.1. Let M be an n-dimensional compact isoparametric Willmore 

hypersurface in Sn+1.  Then 
(1) Ifg = 1, M is a totally umbilic hypersphere, satisfying p2 = 0. 
(2) If g = 2, M is one of the Willmore tori Wmjn_m> which are defined by (1.4), 

satisfying p2 = n. 
(3) J/0 = 3, fci = VS,k2 = O.ks = -V3. n = 3,6,12 or 24. M are Cartan 

minimal hypersurfaces, satisfying p2 = 2n. 
(4) J/fl = 4, 

(5.3) fci=A,    fc2 =-^Tj,    ^^"A'    
fc4 = ~A^nL' 

where A = (A - ^)2 is ^/le positive solution of the following algebraic equation 

(5.4) mi (mi + 2m2)2a;2 + 4mim2(m2 — mi)x — 16m2(m2 + 2mi)2 = 0, 

and (7711,7712) = (2,2) or (4,5), or mi + 7712 + 1 is a multiple of 2^rni~1\ Here (j){l) 
is the number of integers s with 1 < s < I and s = 0,1,2,4 mod 8. 

Among these isoparametric Willmore hypersurfaces, the only isoparametric min- 
imal hypersurfaces are case with mi = m2 = m3 = 7714 = 2, principal curvatures 
are 

*i = 1 + >/2,  ■ fe = >/2 - 1,    fc3 = 1 - \/2,    fcs = -(1 + >/2). 

(5) If g = 6, £/zen 

fci=2+v/3,    £2 = 1,    fc3=2-v/3,    *4 = -(2-V3),    *5 =-1,    &6 =-(2+>/3). 

7n ^/lis case, n = 6 or 12. These Willmore hypersurfaces are minimal and satisfying 
p2 - 5n. 

Proof (1) Case g = 1 is trivial. 
(2) If ^ = 2, let distinct principal curvatures are ki (multiplicity m) and A:2 

(multiplicity n — m). Then by (c) of Lemma 5.1 and (5.2), we have 

(5.5) l + fcife^O, 
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(5.6) 
2(mfc1 + (n-m)fc2)(rafc^ 

Putting (5.5) into (5.6), we have 

(5.7) (n - m)kl + (2n - 3m)kf + (n - 3m)kl - m = 0, 

that is, 

(S.r)' ((n - m)Jfe? - m)(A;1
2 + I)2 = 0. 

Thus 

(3) If p = 3, by (d) of Lemma 5.1, mi = m2 = ras := m, n = 3m. 
From (p) of Lemma 5.1, we have 

(5.8) k^cote,    k2 = cot(e+^) = ^-^-,    k3=cot(6+ln)=*1_+J^. 

Putting (5.8) into (5.2) and noting n = 3m, we obtain 

(5.9) ^i(A:1
2-3)(A:1

2-f-l)3 = 0. 

Thus we have ki = \/3, k2 = 0, ks = -\/3. 
(4) If g = 4, in this case 

772l =1713, ™>2 = ^4- 

By (^) of Lemma 5.1, 

TT       A — 1 
fci = cot0 := A,    k2 = cot(5 + —) = -r -, 

(5J0) ; m     27rN 1      , //,     37r, A + l 
£3 =cot(e + —) = --,    £4 = cot(<9 + —) = -3—j-- 

Write 

(5.11) A = A-i B = k2-^. 
A A;2 

Noting niJ = mi A + m2-B and 

(5.12) S = mi>l2+m2£2+ 2(7711+7712),    ^A;? = m1yl3 + m2^
3+3(miA + m25), 

i 

we have by putting (5.12) into (5.2) 

2 1 
/   .ox -(mii4 + m2jB)(mi^2+m252 + 2mi+2m2) T(mi^ + m25)3 

(5.13) n nz 

- {miA3 + m2B3 + 3miA + 3m2£) = 0. 
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Putting n = 2(mi 4-1712) into (5.13) and noting AB = -4, we get that 

mi (mi + 2m2)2A6 + 4mi(ml + 3mim2 + 5ml) A4 

— I6m2(ml 4- 3mim2 4- Sm2) — 64m2(m2 4- 2mi)2 = 0, 

which can be written as 

(5.15) (A2 4-4)[mi(mi 4-2m2)2^4 +4mim2(m2 -mi)A2 - 16m2(m2 4-2mi)2] = 0, 

that is equivalent to 

(5.16) mi (mi 4- 2m2)2A4 4- 4mim2(m2 - mi)A2 - 16m2(m2 4- 2mi)2 = 0. 

(5) If g = 6, in this case, by (/) of Lemma 5.1 we have 

mi = m2 = ms = 7714 = 7715 — TTIQ = 1,   or 2. 

By (</) of Lemma 5.1, 

A:i = cow,     fe = 7=-,    ^3 = 
(5.17) fcl+^' ^V^' 

Putting (5.17) into (5.2), we can get by a direct calculation 

(5.18) (kl - l)(ki - Ukf 4- l)[(Jb? - l)2(fcj - 14fc? + I)2 + 4A:2(3A:4 - lOfe? + 3)2] = 0. 

Thus we obtain 

fc1=2+>/3,    fc2 = l,     A;3 = 2-v/3,    *4 =-(2-V3),     ^ = -1,    fce =-(2+V3). 

We complete the proof of Theorem 5.1. 
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