WILLMORE HYPERSURFACES IN A SPHERE*
HAIZHONG LIt

Abstract. Let z : M — S™t! be an n-dimensional hypersurface in S**!, 2 : M — S™*1 is
called a Willmore hypersurface if it is an extremal hypersurface to the following Willmore functional:

/ (S =nH?)% dv,
M

where S = > (hi;)? is the square of the length of the second fundamental form, H is the mean

)
curvature of M. In this paper, through study of the Euler-Lagrange equation of the Willmore
functional, we obtain an integral inequality of Simons’ type for Willmore hypersurfaces in S™+1
and give a characterization of Willmore tori by use of our integral formula. We also classify all
isoparametric Willmore hypersurfaces in S™*1.

1. Introduction. Let M be an n-dimensional compact hypersurface of the
(n + 1)-dimensional unit sphere S™*!. If h;; denotes the components of the second
fundamental form of M, S denotes the square of the length of the second fundamental
form and H denotes the mean curvature, then we have

1
S = Z(hij)z, H= ’,,'_l‘ thken+1’ H= ,H,,
%,J k

where e, is an unit normal vector field of M in S™+1.
We define the following non-negative function on M

(1.1) p> =S —nH?,

which vanishes exactly at the umbilic points of M.
Willmore functional is the following non-negative functional (see [4], [20] or [22])

/p"dv:/(S-—nHz)%dv.
M M

It was shown in [4] and [20] that this functional is an invariant under Moebius (or
conformal) transformations of S"*1. We use the term Willmore hypersurfaces to call
its critical points, because when n = 2, the functional essentially coincides with the
well-known Willmore functional and its critical points are the Willmore surfaces.

In this paper, we first prove the following theorem

THEOREM 1. Let M be an n-dimensional hypersurface in an (n+ 1)-dimensional
unit sphere S™t1. Then M is a Willmore hypersurface if and only if

— p"_2(2HS —nH3 - Z hijhjkhk,;)

(1.2) , Bk
+(n - 1)A(p"*H) - Z(Pn—"),ij (nHéi; — hij) =0,
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where A is the Laplacian, (.); is the covariant derivative relative to the induced
metric.

Remark 1.1. When n = 2, Theorem 1 was proved by R. Bryant [2] and J. Weiner
[21], (1.2) reduces to the following well-known equation of Willmore surfaces (see
[2,21))

(1.3) AH + H(S —-2H?) =0.

We note that Peter Li and S.-T. Yau [11] introduced a concept of conformal volume
and obtained a partial solution of Willmore conjecture through estimating the eigen-
values of the Laplacian. We also note that Pinkall [14] constructed some compact
non-minimal Willmore surfaces in S3.

Remark 1.2. We should note that for n > 2, C. P. Wang [20] got the Euler-
Lagrange equation of Willmore functional for any n-dimensional submanifold in an
(n + p)-dimensional unit sphere S"*? in terms of Moebius geometry.

In order to state our Theorem 3, we first give the following important example

EXAMPLE (C.F.[6]). The tori

(1.4) Wm,n_m=sm( ";m)xs"—m( T), 1<m<n—1

n

are Willmore hypersurfaces. We call Wy, ,—m, 1 < m < n—1, Willmore tori. In fact,
the principal curvatures ki, - ,kn of Wi n—m are

(1.5) ky=- =k, = , kmyr ==k =—

We have from (1.5)

n n—m m
3 3
o 3 m o n—m
;Ch,Jh]khkz—Zki—m<n_m) (n—m) (——m ) ,
2,7, 1

thus we easily check that (1.2) holds, i.e., Wy, n—m are Willmore hypersurfaces. In
particular, We note that p? of Wy, n—m for all 1 < m < n — 1 satisfy

(1.6) P’ =n.

We recall that well-known Clifford minimal tori are

(1.7) cm,n_m=sm( T)xSHﬂ( "‘m>, 1<m<n-1

n n

It is remarkable that Willmore tori coincide with Clifford minimal tori if and only if
n = 2m for some m.

Remark 1.3. When n = 2, we can see from (1.3) that all minimal surfaces are Will-
more surfaces. When n > 3, minimal hypersurfaces are not Willmore hypersurfaces

in general, for example, Clifford minimal tori Cp, n—pp = S™ (1 /%) x Snom (, / %)
are not Willmore hypersurfaces when n # 2m.



WILLMORE HYPERSURFACES IN A SPHERE 367

In the theory of minimal hypersurfaces, the following Simons’ integral inequality
is well-known

THEOREM 2. (Simons [17], Lawson [8], Chern-Do Carmo-Kobayashi [5]) Let M
be an n-dimensional (n > 2) compact minimal hypersurface in (n + 1)-dimensional
unit sphere S®*1. Then we have

(1.8) / S(n - S)dv < 0.
M

In particular, if

(1.9 0<S<n,

then either S = 0 and M is totally geodesic, or S = n and M is one of the Clifford
tori Crn,n—m, which are defined by (1.7).

In this paper we prove the following integral inequality of Simons’ type for Will-
more hypersurfaces.

THEOREM 3. Let M be an n-dimensional (n > 2) compact Willmore hypersurface
in (n + 1)-dimensional unit sphere S™*1. Then we have

(1.10) / p(n — p?)dv < 0.
M

In particular, if

(1.11) 0<p?<n,

then either p> = 0 and M is totally umbilic, or p> = n and M is one of the Willmore
tori Wi, n—m, which are defined by (1.4).

2. Preliminaries. Let x : M — S™! be an n-dimensional hypersurface in an
(n + 1)-dimensional unit sphere S™*!. Let {e1,--- ,en} be a local orthonormal basis
of M with respect to the induced metric, {61,--- ,0,} their dual form. Let e, be
the local unit normal vector field. In this paper we make the following convention on
the range of indices:

1<4,5,k<n.

Then we have the structure equations

(2.1) dz =" e,
i
(2.2) de; = Z 9,']'6]' + Z hij0j6n+1 —b;z,
J J
(2.3) den+1 = — Z h,-jejei.
i,j

The Gauss equations are

(2.4) Rijrr = (6irdj0 — 6udjr) + (hixhj — hithjr),

(2.5) R, = (n — 1), + nHhy — Z h,-jhjk,
J
(2.6) n(n —1)R=n(n—-1)+n*H? -5,
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where R is the normalized scalar curvature of M and S =3, ; hj;

of the second fundamental form and H is the mean curvature.
The Codazzi equations are

(2.7) hijk = hikj,

where the covariant derivative of h;; is defined by
(2.8) D hijebe =dhij + Y hiibri + Y ha;.
k k k
The second covariant derivative of h;; is defined by
(2.9) > hijb = dhijr + D hijibii + > by + Y higibug.
1 1 1 1
By exterior differentiation of (2.8), we have the following Ricci identities

(2.10) hijrr = hijie = Z b Rmikt + Z him Rmjkt-
m m

We define the following non-negative function on M
(2.11) p’=8—nH?,

which vanishes exactly at the umbilical points of M.
Willmore functional is the following functional (see [4] or [20])

(2.12) / pldv = / (S —nH?)%dv.
M M
By Gauss equation (2.6), this is equivalent to

(2.12) [n(n—1))2 /M(H2 -~ R+1)2dv.

h2. is the norm square

It was shown in [20] and [22] that this functional is an invariant under Moebius (or
conformal) transformations of S™*!. We use the term Willmore hypersurfaces to
call its critical points. When n = 2, the functional essentially coincides with the
well-known Willmore functional and its critical points are Willmore surfaces.

In order to prove Theorem 1, we need the following Reilly’s result
LEMMA 2.1 (Theorem A of Reilly [15]). Suppose that f is any smooth function

of n variables. = : M — S™! a compact hypersurface. Consider a one-parameter
family z, : M — S™*! with zo = x, t € (—€,€). Let £ = %&t|imo, X =< £, enq1 >.

Then

(2.13)

a
dt

/ F(S1, ...y Sp)dv
t=0JM
r=1

_ /M M=S81£(S1, s Sn) + 3 (8081 = (¢ + 1)S42) Dy f (St s Sn)

+ > (Drf (S, Sn)) i Ty + Y Def(S1, ey Sn)(n =1 +1)S,_1 }av,

%,7,r=1 r=1
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where D, f(S1,---,Syp) denotes the partial derivative of f with respect to variable
Sr, (.),i; denotes the covariant derivative relative to the metric induced by . h =
(hi;) = (kidi;) and S, the r-th elementary symmetric function of the the eigenvalues
ki,-+- ,kn of h, i.e.,

(214) So=1, Si=ki+---+ky, -, Sp=ki - -k,

The Newton transformation T, is defined inductively by

(2.15) Téj = 5,;j, Tﬁl—l = Sr+15ij — ZT:.;khkj, T = O, e, N — 1.
k

LEMMA 2.2 (see [16], c.f. [9,10]). Let M be an n-dimensional (n > 2) hypersurface
in S, Then we have

1
EApZ =|VA? =n?|VH> + > (hijhari);
i3k

+nS -8 —n’H?> +nH Y hijhjchii — 1 (nHz)

2,7,k

(2.16)

2 and [VH? = X, H?.
Proof. By the definition of A and p?, we have by use of (2.7) and (2.10)

where |Vh|* = 37, . h;

Ly 2
P
1 1
=335 H) - 580
2.17) 1
= z i + ;chijhkijk - §A(nH2)
‘J’ /L’]‘

1
=|Vh|? =n?|VH|?> + Z(hijhkki)j + Zhij(hlleijk + haRyj) — EA(nH2)~
ik

We can easily obtain (2.16) by putting (2.4) and (2.5) into (2.17)

3. Proof of Theorem 1. Choosing in Lemma 2.1
(81)  F(Si,--,Sa) = Q" i=[(n — 1)S? - 2nSs]¥ =nF(S —nHY? = np",
and noting that
(3.2) Dif =n(n-1)Q" %S, Dyf =-n?Q" % D,.f=0,r>3.
Putting (3.1) and (3.2) into (2.13), we obtain by use of (2.14)

d d

rn % = — _ 2 n
dttO/M(S nH?*)% dv dtto/M((n 1)Si —2nSs)zdv

n
2

n

63 = [ A-510"+(S] - 25nln - D@, Q5,5 ~ 359)
+n(n — 1)A(Q"?51) _nzz Q"?),:5(81855 = hij)do.

y]
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Thus the Euler-Lagrange equation of Willmore functional (2.12) is
-51Q™ + (S — 285)n(n — 1)Q™ 25, —n2Q"2(S2S1 — 3Ss)
(34) +n(n - DAQ"2S) —n? 3 (Q"2),ii(S16;5 — hij) = 0.
4,3
From Q = n2p, we know that (3.4) is equivalent to
» —nS1p" + (S — 282)n(n — 1)p" 28, — n2p""%(S, 8, — 3S3)
(3.4)' tn(n — DA 28) —n® 3 (0"2) (518 — hij) = 0.

i,j

Noting that

Sy =nH, Sy = %(52 S), S; = %(z k2 — 5,5+ S51),

we know that (3.4) is equivalent to (1.2). This completes the proof of Theorem 1.

4. Lemmas and Proof of Theorem 3. We first prove the following lemma

(cf. [7])
LEMMA 4.1. Let M be an n-dimensional (n > 2) hypersurface in S™1, then we
have

2
(4.1) VAP > 2

where |Vh|? = Z B2y, [VH|? = ZHQ, H;=V;H.
Proof. We decompose the tensor Vh:
(4.2) hijrx = Eijr + Fiji,
where
Eijk = nLH(Hi5jk + H;dir + Hidij).
Then we can easily compute that

|E|> =Y E}j = |VH!2 < Eiji, Fijr. >=< Eijk, hijk — Eijr, >=0,

i,5,k

i.e.,, E and F' are orthogonal components of Vh. Then
2
VA > |Bf = 22|V AP,
n+2

which proves the Lemma 4.1.
Define trace-free tensor

(4.3) hij = hij — Hé;j.
We have by a direct calculation

(4.4) D k=0, Y h¥=p*=S-nH?
k 4,J
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(45) 2 hijhjkhki = Z ilijﬁjkilki + 3.H,D2 +nH3.
1,4,k 1,5,k

From (4.4), (4.5) and Theorem 1, we have

LEMMA 4.2. Let M be an n-dimensional hypersurface in the (n + 1)-dimensional
unit sphere S*T. Then M is a Willmore hypersurface if and only if

(4.6) (n— 1)A(pn_2H) +p"'"2(Hp2 + 2 Eijﬁjkilki) - 2(pn_2),ij (nHé;5 —hij) =0,

1,5,k ,j

where A is the Laplacian, (.);; is the covariant derivative relative to the induced
metric.

The following lemma is a key step of the proof of Theorem 3

LEMMA 4.3. Let M be the n-dimensional hypersurface in the (n+ 1)-dimensional
unit sphere S™t1, then we have

1
ZA(p™
58(0")
1 n 3n? 3n?
=-n(n—2)p"?|Vp|* + 5p"{(IVh]* - —|VH|? - n)|VH|?
S = 2" |Vpl + Zon (VA = S VHP) + (s~ )| VH]
—n(n—1)|VHP? + Y (hijhirs); + p°(n + nH? — p?)
ijok
4.7 = o~ = 1
( ) +nHi]Zkhijhjkhki - §A(T7,H2)}
n
ZEP"_Z{—n(n — DIVH]? + Y (hishirs); + > (n + nH? — p*)
i,k
|
+nH Z hijhjkhe; — SAmH?)}
1,5,k
Proof. First it is easy to check the following identity
1 n 1 n—2 2, M on2 2
(4.8) SA(P") = gn(n = 2)p"FVpl” + o™ A7),
By use of (4.4) and (4.5), (2.16) can be written as
1
§AP2 =|VA]> =0’ |VHP + ) (hijhusi);
(4.9) bk o
+p?(n+nH? — p*)+nH Z hijhjkhe: — EA(nHZ).

ig.k
Putting (4.9) into (4.8) and noting % -n= 2”:1;1) > 0, we obtain (4.7) by
use of Lemma 4.1.
LEMMA 4.4. Let M be an n-dimensional compact Willmore hypersurface in the




372 H. LI

(n + 1)-dimensional unit sphere S"*1, then we have
(4.10)

—n(n—l)/ " 2| VH|?
——n(n— 1)/ 2(HH,) +n/ H(p™™?) 1 (nH6:5~ hiy) ~n(n— 1)/ H2A(p™2)

—2nn—l)/ HV(p"?)- VH—n/ Hp"2(Hp? +Eh”h,kh,“)

5,4,k
Proof. We first note the following identity

—n(n—1)p"2|VH?
(411) =-n(n—1)(p""*(HH:); - p"*HAH)
=—n(n-1)[p"2(HH;);—HA(p""2H)+H*A(p""2)+2HV (p""?) - VH].

Integrating (4.11) over M, we have (4.10) by use of (4.6).

LEMMA 4.5. Let M be an n-dimensional compact hypersurface in the (n + 1)-
dimensional unit sphere S"*!, then we have

(4.12) / "‘QZ(h”hkk”—n/ th”(p )i +n / HV(p"2)-VH.
M

4,5,k

Proof. We have the following calculation

/ i 22 hz]hkkz 7 —/ Z " 2hz]hkkz / Z n2 ) hz]hkkz

1,7,k z]k i,5,k
/Z hl]hkkl
4,4,k
/ Z n_) hz]hkk)z / Z n=2 )]zhz]hkk
4,4,k 4,4,k

wnt [ S a8

_n/ H  hij(p"72) 45 + n? / HV(p"?)- VH.
M

i.J

Proof of Theorem 3. Integrating (4.7) over M, we have

023 4n(0-1) [ P VHP+ [ 7 3 i)y + | =g
M M

2,7,k

+n/ Hp"™ " hijhjihii — / PV 2A(mH?)}.

4,5,k

(4.13)
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Putting (4.10) and (4.12) into (4.13), we get
(4.14)

025 {l-n(n=1) [ " HEH)+n [ A )08 = )

—n(n—1) /M H?A(p"™%) = 2n(n-1) /M HY(p""?)-VH-n /MHpn-2(Hp2

+ Y hijhjkhi)] + [n /M HZ hij(p"?) 35 +1° /M HV(p"?) - VH]
2,7

3,5,k
n 2 2 n—2 F ___]; n—2 2
+ [ p*(n+nH*—p*)+n [ Hp E hijhjxhes Pt A(nH?)}
M M ik 2

M
=§{—n(n—1)/ PP 2(HH;)i+n? [ H2A(p"?)—n(n—1) | H?*A(p"?)
2 M M M

—2n(n—1)/MHV(p"_2) - VH+n2/MHV(p"_2) - VH+/M p"(n—p?)

o e e)

=g /M pr(n~ p°).

Thus we reach the following integral inequality of Simons’ type
(4.15) / p™(n—p?) <0.
M

Therefore we have proved the integral inequality (1.10) in Theorem 3.

If (1.11) holds, then we conclude from (4.15) that either p2 = 0, or p> = n. In
the first case, we know that S = nH?, i.e. M is totally umbilic; in the latter case,
i.e., p? = n, we have from (4.7)

3n?
n—2 _ HI? =
[ i —mIvAE =0,

we have H = constant, thus we have again from (4.7)
Vh =0.

It easily follows that M is an isoparametric hypersurface with two distinct constant
principal curvatures, M is one of the Willmore tori (see Theorem 5.1), that is, M =
Wm,n—m for some m with 1 < m < n — 1. We complete the proof of Theroem 3.

5. Isoparametric Willmore hypersurfaces. In this section, we give the clas-
sification of isoparametric hypersurfaces in S™*!. We need the following result

LEMMA 5.1 (see [1,3,12,18,19]). Let M be an n-dimensional compact isoparamet-
ric hypersurface (i.e. hypersurface with constant principal curvatures) in S™+1. Let
k1 > ke > .-+ > ky be the distinct principal curvatures with multiplicities my,--- ,m,
( so thatn=m; +my+---+my). Then

(a) g is either 1,2,3,4, or 6.

) If g =1, M is totally umbilic.

() Ifg=2, M =8S™(r1) x S""™(r9), r2 +72 = 1.
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(d) Ifg=3, my =ma =m3 =2, (k=0,1,2,3).

(e) If g = 4, my = m3 and ma = my. Moreover, (my,ms) = (2,2) or (4,5), or
m1 4+ mse + 1 is a multiple of 2™~V Here o(l) is the number of integers s with
1<s<lands=0,1,2,4 mod 8.

(NIfg=6,m=my=---=mg=1 or2.

(9) There exists an angle 0, 0 < 6 < %, such that

(5.1) ko = cot(8 + a1

7‘-)’ a=1a"'7g'

In the isoparametric case, p? = constant, H = constant, we get from Theorem 1
LEMMA 5.2. Let M be an n-dimensional isoparametric Willmore hypersurface in
S+l Then

(5.2) 2HS —nH®* - "k} =0,

where hij = k,‘(sij.

THEOREM 5.1. Let M be an n-dimensional compact isoparametric Willmore
hypersurface in S**1. Then

(1) If g =1, M is a totally umbilic hypersphere, satisfying p? = 0.

(2) If g =2, M is one of the Willmore tori Wy, n_m, which are defined by (1.4),
satisfying p? = n.

(8) If g =3, k1 = V3,ks = 0,k3 = —V/3. n = 3,6,12 or 24. M are Cartan
minimal hypersurfaces, satisfying p*> = 2n.
4) Ifg=4
A-1 1 A+1
. = =——, k3=—7, k4=-"—=
(53) kl )‘7 k? )\+17 3 /\7 4 )\—1’

where A = (\ — %)2 is the positive solution of the following algebraic equation
(5.4) my1(my + 2ms)%z? + 4mima(my — my1)z — 16ma(ms + 2my)? =0,

and (m1,m9) = (2,2) or (4,5), or my +ma + 1 is a multiple of 2™~V Here ¢(1)
is the number of integers s with 1 < s <!l and s =0,1,2,4 mod 8.

 Among these isoparametric Willmore hypersurfaces, the only isoparametric min-
imal hypersurfaces are case with m; = ma = mg = my = 2, principal curvatures
are

Bi=14+vV2 k=v2-1, ks=1-v2, ky=—-(1+V2).
(5) If g = 6, then
ki =24+V3, k=1, k3=2-V3, ki=-(2-V3), ks=-1, ks=—(2+V3).

In this case, n = 6 or 12. These Willmore hypersurfaces are minimal and satisfying
2
p° =dn.
Proof. (1) Case g =1 is trivial.
(2) If ¢ = 2, let distinct principal curvatures are k; (multiplicity m) and ks
(multiplicity n — m). Then by (c¢) of Lemma 5.1 and (5.2), we have

(5.5) 1+ kiks =0,
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(5.6)
2(mk1 +(n—m)ks)
n

(mk§+(n—m)k§)—%(mkl+(n—m)k2)3-(mkf+(n—m')kg) ~0.

Putting (5.5) into (5.6), we have

(5.7 (n —m)kS + (2n — 3m)k} + (n — 3m)kl —m =0,
that is,

(5.7) (n —m)k? —m)(k? +1)2 =0.

Thus

kf:nf‘m, M:Wm,n_m=SM(,/”;m)xsn-m< %) 1<m<n-1.

(3) If g = 3, by (d) of Lemma 5.1, m; = mg =mg3 :=m, n = 3m.
From (g) of Lemma 5.1, we have

™ kl - \/5 2
. = —_ 0 —_) = —— — —_ —
(5.8) ki =cotf, ko= cot(f+ 3) T+ 3k ks = cot(6 + 371')

Putting (5.8) into (5.2) and noting n = 3m, we obtain

k1+\/§
1—3k

(5.9) ky (k2 — 3) (k% +1)3 = 0.

Thus we have k; = v/3, ks =0,k = —V/3.
(4) If g =4, in this case

m; =ms, mo = My.

By (g) of Lemma 5.1,

ki1 =cotf := X, ke =cot(d + %) = ;\‘_—_i,
(5.10) 21 1 3 ’ A+1
ks =cot(6 + T) = v k4 = cot(6 + ‘4—) = o1
Write
1 1
(5.11) A_)\_X’ B_kg——g.

Noting nH = m1 A + msB and

(5.12) S =my A% +myB?+2(my +msy), Z k} =my A% +myB3 +3(myA+m,yB),
i

we have by putting (5.12) into (5.2)

2 1
(5.19) ;l-(mlA + myB)(m1 A% + moB? + 2my + 2my) — n—z(mlA +myB)3

- (m1A3 + m233 + 3m1A + 3sz) =0.
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Putting n = 2(m; + my) into (5.13) and noting AB = —4, we get that

(5.14) my(my + 2m2)>A% + 4m1(mf + 3mims + 5m§)A4
- 16m2(m§ + 3myms + Smf) — 64ma(ms + 2m,)% =0,
which can be written as
(5.15) (A% +4)[my(my + 2my)2 A* + dmyma(ma — my) A% — 16ma(ms + 2m1)?] =0,
that is equivalent to
(5.16) my(my + 2mg)%A* + dmyma(my — my) A% — 16my(mg + 2m,)? = 0.

(5) If g = 6, in this case, by (f) of Lemma 5.1 we have

m) =Mme=mM3=mMy=ms=meg=1, or 2.

By (g) of Lemma 5.1,

3k =1 ki —3
ki =cotl, ky=—"——, 3= =
ki +V3 1+ 3k
(5.17)
. _k+Vv3 . 1+V3k
= —

BT 1Bk VB—k
Putting (5.17) into (5.2), we can get by a direct calculation
(5.18) (ki —1)(k{ — 14k3 + 1)[(k] — 1) (k{ — 14k] + 1)® + 4k7 (3kT — 102 + 3)%] = 0.
Thus we obtain
Ey=24V3, k=1, k3=2-v3, ki=-(2-V3), ks=-1, k¢=—(2+V3).
We complete the proof of Theorem 5.1.
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