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CONVEX POLYHEDRA IN LORENTZIAN SPACE-FORMS* 

JEAN-MARC SCHLENKERt 

Abstract. Aleksandrov [Ale51] characterized the metrics induced on convex polyhedra in E3,H3 

and S3. We give analogs for compact and complete polyhedra in Lorentzian space-forms. 
There are three types of convex polyhedra in the de Sitter space Sf. One, which includes 

generalized hyperbolic polyhedra, was treated in [Sch98a]. For the second, we characterize the 
induced metrics, and show that each is obtained on a unique polyhedron satisfying a natural condition 
at infinity. For the last type — compact polyhedra bounding compact domains — we describe the 
induced metrics, and give an existence and uniqueness result for a smaller class of metrics. 

The results on complete polyhedra are consequences of the study of the metrics induced on 
convex polyhedra in a natural extension of H3 by Sf. We also characterize the metrics induced on 
compact, convex polyhedra in the Minkowski space Ef. 

Those description are partly similar to those obtained in the Riemannian cases, but they also 
involve new elements of a metric and combinatorial nature. 

Resume. Aleksandrov [Ale51] a caracterise les metriques induites sur les polyedres convexes 
dans E3,H3 et S3. On donne des resultats similaires pour les polyedres compacts ou complets dans 
les formes d'espace lorentziennes. 

On distingue trois types de polyedres convexes dans I'espace de Sitter S3. L'un d'eux, incluant 
les polyedres hyperboliques generalises, est etudie dans [Sch98a]. Pour le second, on caracterise les 
metriques induites, et on montre que chacune est obtenue sur un unique polyedre satisfaisant une 
conditions naturelle a 1'infini. Pour le troisieme type — les polyedres compacts bordant des domaines 
compacts — on donne une description des metriques induites, et un resultat d'existence et d'unicite 
pour une classe plus restreinte de metriques. 

Les resultats concernant les polyedres complets sont des consequences de Petude des metriques 
induites sur les polyedres convexes dans une extension naturelle de H3 par S3. On caracterise les 
aussi les metriques induites sur les polyedres convexes dans I'espace de Minkowski E3. 

Ces descriptions sont partiellement analogues a celles obtenues dans le cas riemannien, mais elles 
font aussi intervenir de nouveaux elements de nature metrique et combinatoire. 

1. Introduction and main results. The metrics induced on convex polyhedra 
of 3-dimensional Riemannian space-forms are completely described by the following 
well-known theorem: 

THEOREM 1.1 (Aleksandrov [Ale51]). Choose KQ e {-1,0,1}. A Riemannian 
metric g on S2 with conical singularities is induced by a convex polyhedral embed- 
ding in the simply connected space MK0 with constant curvature KQ if and only if 
g has constant curvature KQ except at a finite number of singular points xi, • • • ,XJV, 

where the singular curvature is positive. The embedding is then unique modulo global 
isometrics. 

This paper intends to give similar results for compact polyhedra in two Lorentzian 
space-forms, the de Sitter and the Minkowski spaces. We will also describe the induced 
metrics on complete polyhedra in the de Sitter space, along the lines of [Sch98a] for 
complete hyperbolic polyhedra. 

Note that a basic reason to study the metrics induced on convex polyhedra in 
the de Sitter space is that there is a classical duality, in particular between convex 
polyhedra in H3 and in Sf, which exchanges the edge lengths and the dihedral angles 
(this is recalled in section 2). The dihedral angles of a convex hyperbolic polyhedron 
are therefore related to the induced metric on its dual, which is a convex polyhedron 
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in the de Sitter space (see [RH93]). Dihedral angles of convex polyhedra are inter- 
esting because of the Poincare theorem, which says that the group generated by the 
reflections in the faces of a convex polyhedron is discrete if and only if its dihedral 
angles are 27r/A:, k £ N \ {0}. 

The description of the metrics induced on polyhedra is more complicated in 
Lorentzian space-forms than in Riemannian spaces. One reason is that all faces are 
not similar, since they can be space-like, light-like, or time-like (which means that 
the signature of the induced metric is (1,1), or that their normal vector is space-like). 
This is the origin of many boring technical difficulties which will appear clearly below, 
but also of a rich combinatorics which in my opinion is of some interest. 

The results concerning non-compact polyhedra appear naturally in the setting of 
[Sch98a], where it was shown that some important properties of hyperbolic convex 
polyhedra (e.g. rigidity, or some compactness results for sequences of polyhedra when 
the sequence of the induced metrics converge) extend to polyhedra in a space (called 

~  3 
HS , and defined below) with a complex distance, which contains both H3 and the de 
Sitter space Sj*. It is therefore possible to describe the metrics induced on the convex 

~  3 
polyhedra in HS , and to give some existence and uniqueness results for those metrics 
(see theorem 1.3 below). Non-compact polyhedra in Sf or H3 are then considered as 

~   3 
the de Sitter or hyperbolic part of a "compact" polyhedron in HS . 

In all this paper, complete polyhedra have a finite number of faces, edges and 
vertices. Complete metrics also have a finite number of singular points. "Complete- 
ness" can be understood for instance as "geodesic completeness", since the metrics 
are, near the ends, isometric to domains in space-forms. 

Consider a convex polyhedron in a Lorentzian 3-dimensional space-form, for in- 
stance in the Minkowski space Ef. Each face F has an induced metric modeled on a 
Riemannian, Lorentzian or degenerate 2-dimensional space-form (E2, Ef or Ef0 for 
polyhedra in Ef), for which F is the interior of a convex polygon. The metrics on 
adjacent faces satisfy an obvious compatibility condition, namely that the restriction 
of each to the common edge is the same. We call such an object a polyhedral met- 
ric; each polyhedral immersion of a polyhedron P into a Lorentz space-form induces 
a polyhedral metric a on P. Polyhedral metrics are considered here up to isometry, 
i.e. they do not include the decomposition into faces that appear in their definition. 

We will actually consider induced metrics together with some additional combi- 
natorial data on the way the polyhedron is embedded in the Lorentzian space-form. 
One way to understand why this is necessary is to remark that a space-like face (for 
instance) can "degenerate" by becoming thinner and thinner until it is reduced to an 
edge; the resulting edge should be considered as "space-like", although it bounds two 
time-like faces. 

The same can happen with a space-like face becoming smaller and smaller until 
it is reduced to a vertex, and a time-like face can also "degenerate" to a space-like 
edge, bounding two space-like faces. This edge should be considered as a "degenerate 
time-like face". 

We want to define the set of "space-like" points of a polyhedron in a way that is 
stable under this kind of deformations. So we call E the subset of P containing: 

• the space-like faces of P; 
• the space-like edges e of P which bound two time-like or light-like faces such 

that, in each neighborhood of e, some space-like geodesic intersects both; 
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FIG. 1.1. A space-like face becoming an edge 

FIG. 1.2. A time-like face becoming an edge 

• the vertices v of P such that all geodesies of P (for the induced metric a) 
starting from v are time-like. 

Again, one reason why we add those edges and vertices is because they look like 
"degenerate" space-like faces. But we remove from S: 

• the space-like edges e of P bounding two space-like faces such that, in each 
neighborhood of e, some time-like geodesic intersects both; 

• the vertices v of P such that all geodesies of P starting from v are space-like. 
Those edges and vertices look like "degenerate" time-like faces. 

We also call T := P \ S. £ should be considered as the set of points in space-like 
faces (which might be "degenerate") while T is in a sense the set of points in light-like 
or time-like faces. The couple (cr, S) is the marked (polyhedral) metric induced 
by the polyhedral immersion. 

[Sch98a] contains the definition of a "convex" HS marked metric (see definition 
3.1).   Its main property is that the induced marked metric on a (strictly) convex 

~  3 
polyhedron in HS (or in any Lorentzian space-form) is convex, while, if a polyhedron 
is degenerate at a vertex v, then the induced marked metric is not convex at v. We 
can now state the main result in the Minkowski space. 

THEOREM 1.2. A marked metric (cr, S) on S2 is induced on a convex polyhedron 
P in Ef if and only if: 

1. (cr, E) is flat (modeled on E2,Ef or El0) except at M singular points; 
2. (cr, E) is convex (as in definition 3.1) at the singular points; 
3. E has two connected components E+ and E_, and each time-like geodesic in 
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FIG. 1.3. Edges and vertices added to/removed from S 

7" connects one to the other. 
P is then unique modulo global isometries of Ef. 

This theorem should show clearly why the definition of S above is necessary. 
The topological condition (3) in theorem 1.2 would not be correct if E was made for 
instance only of the space-like faces, since £_}_ and £_ can be made of a "special" 
edge or vertex corresponding to a "degenerate" space-like face. 

We will not consider complete, non-compact polyhedra in the flat case. It might 
be possible to give some results, but I do not believe that uniqueness holds without 
some conditions at infinity (for instance on the limit cone, see [Pog80] or [PS85] for 
analogous situations for the Minkowski problem on complete surfaces). 

There exist a projective model in S3 of both Sf (which sits between 2 spheres 
around the poles) and two copies of H3 (in those two spheres) which are denoted 
by H+ and H^_.   This model is defined in section 3 (following [Sch98a]), we call it 

~   3 
the "hyperbolic-de Sitter space" and denote it by HS ; it corresponds to a complex 
"distance" on S3 minus two spheres. Two points inside one of the spheres have a real, 
positive distance, while two points outside both spheres have an imaginary distance 
if they correspond to de Sitter points joined by a space-like geodesic, and a real, 
negative distance if the corresponding points in S3 are linked by a time-like geodesic. 
The distance is also defined between a "hyperbolic" and a "de Sitter" point. 

~  3 
If P is a polyhedron in HS , it inherits an induced marked HS metric cr, namely, 

each 2-face F of P has a "complex distance" for which it is isometric to the interior 
~  2 

of a convex polygon in one of three possible model spaces: HS , (S2, —can) or the 
~   2 

degenerate space HSj 0. The metrics on adjacent faces satisfy obvious compatibility 
conditions. The induced marked metric on P is the couple (a, E), where E is included 

~  3 
in the "de Sitter" part of HS and defined as above. We also call H the set of 
"hyperbolic" points of P (those which are in H^ U #3), and T := P \ (H U E). 

Let P be a polyhedron with an HS marked metric (a, E); there are two special 
kind of polygonal curves in P which play a special role. Recall that a geodesic in a 
Riemannian surface (for instance, a polyhedral metric like the one in theorem 1.1) is a 
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Polyhedra of hyperbolic type 

Bi-hyperbolic type 

FIG. 1.4.  Types of polyhedra in His 

Compact type 

curve such that each side is concave at each point. We say that a space-like polygonal 
curve g in P is E-geodesic if it remains in E and, at each vertex and on each side, 
either there is an element of T (face or edge), or the metric is concave. In the same 
way, g is T-geodesic if it remains in T and, at each vertex and on each side, either 
there is an element of E, or the metric is concave. The precise definitions are given 
in section 2. 

~  3 
It is easy to see that there are three main types of convex polyhedra in HS , which 

are different in the way the induced metric behaves; more precisely, the topology of 
the time-like geodesies in T is different in each case. They are: 

1. polyhedra which bound a convex domain intersecting H+, but not H^_. We 
call them of hyperbolic type here. They contain for instance all hyperbolic 
polyhedra, as well as their duals. It is not difficult to see that, in those 
polyhedra, any time-like geodesic in T goes from E to H.     

2. those bounding a convex domain intersecting both H\ and H^_. They are of 
bi-hyperbolic type. Then E = 0, and time-like geodesies of T go from one 
of the two connected components of H to the other. 

3. those which bound a compact, convex domain in S\, which are of compact 
type. Then H — 0, and all time-like geodesies in T go from one of the two 
connected components of E to the other. 

~  3 
The class of polyhedra of hyperbolic type is invariant by the duality in HS 

(defined in section 3). But this duality sends polyhedra of compact type to polyhedra 
of bi-hyperbolic type, and conversely.  The results below on the induced metrics on 
each type of polyhedra can therefore be translated as results on the dual metrics on 
polyhedra of the other type. 

Let c be a space-like polygonal curve in a Lorentzian surface; we will say that c 
is simple if c intersects any time-like geodesic at most once.  We can now give the 

~  3 
main theorem about the induced metrics on the convex polyhedra in HS : 

THEOREM 1.3.   Let (cr, E) be a marked HS metric on S2.   Suppose that (a, E) 
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is induced on a convex polyhedron P in HS> .    Then (cr, S) satisfies the following 
properties: 

A. (a, S) is convex (as in definition 3.1) at its singular points; 
B. Closed Ti-geodesic curves of (a, E) have length L > 27r; or L = 27r i/ i/ie?/ 

bound a degenerate domain in T; 
C. Closed, simple T-geodesic curves of (<7, E) /mve length L < 27r, or L = 27T if 

they bound a degenerate domain in T; 
D. One of the following is true: 

1. each time-like geodesic on T joins H to E (P is then of hyperbolic type); 
2. E = 0; H has two connected components H+ and H-, and each time-like 

geodesic in T joins H+ to H- (P is then of bi-hyperbolic type); 
3. H = 0, E has two connected components E+ and E_7 and each time-like 

geodesic in T joins E+ to E_; and, moreover, Y.-geodesic segments in E_j_ 
and E_ have length L < TT (P is then of compact type). 

Suppose now that (cr, E) satisfies properties (A), (B), (C), (D), and also: 
E. In case (D.3), E+ and E_ are convex, with boundaries of length less than 27r. 

Then (cr, E) is induced on a unique convex polyhedron in iJo . 

Note that, in the first case, E or H can be empty; condition (D.l) then shows 
that T — 0, so that the polyhedron P is a finite volume hyperbolic polyhedron in the 
first case, and space-like and dual of a compact hyperbolic polyhedron in the second 
case. This corresponds to the polyhedra described by Aleksandrov [Ale51] and by 
Rivin-Hodgson [RH93] respectively. 

I do not know whether all metrics satisfying conditions (A) to (D) are realized on 
convex polyhedra; condition (E) is necessary for technical reasons, namely because the 
proof of the connectedness of the space of metrics, which is necessary in the general 
proof, is difficult to carry on in full generality in case (D.3). 

We will now translate this theorem in terms only of convex polyhedra in the de 
Sitter space. Those polyhedra might be compact or not, depending on whether their 

~  3 
counterparts in HS   are in the de Sitter part or intersect also the hyperbolic part. A 
similar line was followed in [Sch98a], but for complete polyhedra in i73. 

Already for complete, non compact polyhedra in if3, a uniqueness assertion de- 
mands some conditions on the behavior at infinity on each end. We say that a poly- 
hedral embedding (j) in i73 is cylindrical if, for each end y^ there exists a 2-plane 
P in if3 such that (the extension of) each face of (j) at yi is orthogonal to P. The 
following extension of theorem 1.1 holds (see [Sch98a]): 

THEOREM 1.4. Let g be a complete Riemannian metric on S2 \ {yi, • • • ,2/M}; 

M > 2. Suppose that the area of each end is infinite. Then g is induced by a convex, 
polyhedral embedding (j) in H3 if and only if g has constant curvature —1 except at 
a finite number of interior singular points xi, • • • ,XN, where it has positive singular 
curvature.  There is a unique (up to global isometrics) such (j) which is cylindrical. 

The condition that M > 2 is not essential; for M = 1, however, "cylindrical" has 
to be understood in a slightly more general way, where the faces at the end can be 
either orthogonal to a given plane, or all going through a given point (which might 
be ideal). We leave the details to the reader, since this result follows from theorem 
1.3 in all cases. 

We now turn to complete polyhedra in the de Sitter space. We need an analog of 
the "cylindrical" condition defined for complete hyperbolic polyhedra above. We will 
say that a complete polyhedron in S3 is cylindrical if, for each end e, there exists a 
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~  3 
point Xe £ HS such that (the extension of) each face at e goes through xe. xe might 
be on one of the "boundary" spheres separating Sf from H+ and H^_. In purely de 
Sitter term, this means that either all faces at e go through a point xe (which might 
be an ideal point) or that all faces at e are orthogonal to a given space-like 2-plane 
a;*, which is the dual of xe G H3. 

We will also need a condition on the ends of a complete polyhedral metric. Let e 
be an end of such a metric, such that each face at e is modeled on Sf. Consider the 
holonomy h around e, it is an isometry of the universal cover Sf of Sf, which might 
be of elliptic type (i.e. a translation in Sf, or a rotation in H2), of hyperbolic type (a 
rotation in Sf) or of parabolic type. Define the angle 0(e) at e as the rotation angle 
of h if h is elliptic (then 6(e) G R) or hyperbolic (and 9(e) G iR), and 9(e) = 0 if h 
is parabolic. 

THEOREM 1.5. Let (cr, S) be a marked HS metric on a surface S homeomorphic 
to S2 minus N points (N > 0). Suppose that (cr, S) is induced on a convex complete 
polyhedron in Sf.  Then (cr, E) satisfies the following properties: 

A. (cr, S) is convex (as in definition 3.1) at its singular points; 
B. Closed Ti-geodesic curves of (a, S) have length L > 27r, or L — 27: if they 

bound a degenerate domain in T; 
C. Closed, simple T-geodesic curves of (cr, E) have length L < 27r; 
D. The angle at each end is in [0,27r] U2R_|_; 
E. One of the following is true: 

1. each time-like geodesic in T starts at E and goes to infinity; 
2. E = 0, iV = 2, S has two ends, and each time-like geodesic joins one end to 

the other; 
3. N = 0, E has two connected components E+ and E_, and each time-like 

geodesic in T joins E_(_ to E_; and, moreover, Y.-geodesic segments in E+ 

and E_ have length L < TT. 

Suppose now that (cr, E) satisfies properties (A), (B), (C), (D), (E) and also: 
F. The angle at each end is different from 2^, and, in case (E.3), E+ and E_ 

are convex with boundaries of length less than 27r. 
Then (cr, E) is induced on a unique convex cylindrical polyhedron in Sf. 

The condition that the angle at each end is different from 27r is not essential; when 
the angle is 27r, the polyhedron is not cylindrical, but satisfies another condition at 

~  3 
the end, corresponding to the fact that the hyperbolic part of its extension in HS is 
flat, i.e. has no vertex. 

The theorems above are illustrated in section 2 by several more explicit situations, 
concerning various kinds of polyhedra in Ef and Sf. Section 3 contains elements from 
[Sch98a], as well as some "translations" in the context of convex polyhedra in Sf. The 
crucial results on degenerations of polyhedra are in section 4. Section 5 deals with 
convex caps in Sf, for which existence results are proved (or recalled from earlier 
works); connectedness lemmas are then deduced in section 6. The proof of theorem 
1.3 is given in section 7, and section 8 contains the proof of theorem 1.5 from theorem 
1.3, as well as some considerations about complete polyhedra. Section 9 contains some 
remarks concerning smooth analogues of those results, the relations between them, 
and a few other things. It shows, in particular, how the method of Volkov [Vol60] to 
prove results on convex caps can be considered as a polyhedral version of methods 
which are now classical for the elliptic Monge-Ampere PDEs associated to the smooth 
case. 
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The rigidity lemma of section 3 is also valid in the anti-de Sitter space Hi, and 
~  3 

it is conceivable that the "compactness" results for HS   (in section 4) also extends 
~  3 

in some way to the space HSi (see [Sch98a]) which is made of two copies of Hi. We 
might therefore hope that some results similar to those described in this paper hold 
in Hi 

Most of the statements above will be proved mainly using a "deforma- 
tion method". The main technical results necessary, namely the rigidity of polyhedra 
and the description of degenerations when the induced metrics converge, were basi- 
cally given in [Sch98a] (although the degenerations results there where not exactly as 
needed, and are stated and proved again here in section 4). This paper is therefore 
mainly concerned with questions of connectedness of spaces of metrics. The way to 
prove them is partly based on an alternative approach (following the ideas of Volkov 
[Vol60] and Milka [Mil86]) to the existence of convex caps with given induced metric, 
which then leads to connectedness of spaces of metrics through deformations of convex 
polyhedra. 

I want to apologize for the changes in notations between [Sch98a] and this paper. 
I believe the notations used here are more convenient and coherent. E and T are 
used here instead of the combinatorial data given in [Sch98a] by the sets of edges A 
and B, and the sets of vertices 5^ and 5^. The polygonal curves which were called 
A-admissible in [Sch98a] correspond to E-geodesics here (with the minor difference 
that E-geodesics can bound a degenerate domain in T), and the B-admissible curves 
of [Sch98a] are now T-geodesics. 

2. Examples and applications. This section only gives translations and spe- 
cial cases of theorems 1.2, 1.3 and 1.5. 

Consider first the compact, space-like polyhedra in Sf. There exist two kinds of 
such polyhedra. The first kind is made of those which are duals of hyperbolic convex 
polyhedra; their orthogonal projection on any totally geodesic space-like 2-plane is 
one-to-one, and they do not bound a compact domain in Sf. They are part of case 
(D.l) of theorem 1.3, and of case (E.l) of theorem 1.5. The metrics on those polyhedra 
have been characterized by Rivin and Hodgson in the following result, which can be 
considered as an extension of a classical result of Andreev [And70] on the dihedral 
angle of convex hyperbolic polyhedra with acute angles. 

THEOREM 2.1 (Rivin, Hodgson [RH93], [Riv86]). A Riemannian metric g on S2 

is induced by a convex polyhedral embedding of hyperbolic type in Sf if and only if: 
• g has constant curvature 1 except at a finite number of singular points xi, • • •, 

xN; 
• the singular curvature of g at x\, • • •, XN is negative; 
• all closed geodesies of g have length L > 27r. 

The embedding is then unique modulo global isometrics. 

This theorem is obviously a special case of theorems 1.3 or 1.5. Theorem 1.3 also 
leads to the results of [Riv93] (see also [HIR92]) on the metrics induced on the duals 
of ideal hyperbolic polyhedra, and to results on the duals of polyhedra with some 
ideal and some non-ideal vertices. 

The second kind of convex, space-like polyhedra in Sf is made of those which 
bound a compact domain in S?. They correspond to cases (D.3) of theorem 1.3, and 
(E.3) of theorem 1.5, that is, they are of compact type in the terminology defined 
above.   Their orthogonal projection on a totally geodesic space-like 2-plane is not 
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surjective, and any point in the interior of the image has two inverse images. They 
are duals of bi-hyperbolic polyhedra. The metrics on those compact type polyhedra 
which have only space-like faces are described by the following result; here, as in the 
previous theorem, the "singular curvature" of a polyhedral metric at a singular point 
is 27r minus the sum of the angles of the faces at that point (this definition obviously 
does not depend on the decomposition into faces). 

THEOREM 2.2. A Riemannian metric g on S2 is induced by a convex, polyhedral 
embedding 6 of compact type in Sf if and only if: 

1. g has constant curvature 1 except at a finite number of singular points xi, • • •, 
XN; 

2. S2  = D+ U D-,  where D+,D-   are (topological)  disks intersecting on a 
curve C = dD+ = dD- of length L < 27r with vertices the singular points 
^1 5***7 *£p; 

3. the singular curvature of g at x^+i, • • •, XN is negative; 
4- D+,D- are convex for g, and strictly convex at each vertex of C; 
5. geodesic segments of D+^D- have length less than TT. 

<j> is then unique modulo global isometrics. 

Note that condition (4) implies in particular that g has positive singular curvature 
at xi, • • •, Xp, so that the singular points of g which lie on C are determined by g. The 
condition on L(C) is a direct consequence of condition (C) of theorem 1.3, because C 
is a T-geodesic. D+ and D- have to be convex because of condition (A) of theorem 
1.3, leading to the special form of the convexity condition (case (7) of definition 3.1) 
in this situation. 

A similar existence result was proved by Il'khamov and Sokolov [IS90] in E\\ it 
is a direct consequence of theorem 1.2. 

THEOREM 2.3 (H'khamov, Sokolov [IS90]). A Riemannian metric g on S2 is 
induced on a convex, compact polyhedron P in E\ if and only if: 

1. g is flat except at a finite number of singular points xi, • • •, XN; 

2. S2 = D+ \JD-, where D+,D- are (topological) disks intersecting on a curve 
C = dD+ = dD^ with vertices the singular points xi,- - • ,xp; 

3. the singular curvature of g at x^+i, • • • ,XN is negative; 
4. D+,D_ are convex for g, and strictly convex at each vertex of C. 

P is then unique. 
A simple example of application of theorem 2.2 is given by "convex caps" in 

Si. A convex cap (see [Pog73]) is the image of a convex polyhedral embedding of 
a disk sending the boundary to a totally geodesic space P, such that its orthogonal 
projection on P is injective. They appear here if g is identical on Z)+ and D_, since 
then (by uniqueness) (j){S2) has to be the union of two symmetrical convex caps in 
5?. Therefore: 

COROLLARY 2.4. A Riemannian metric g on D2 is induced on a convex cap in 
Sf if and only if: 

• g has constant curvature 1 except at a finite number of interior singular points 
%li * * * i^Ni 

• g has negative singular curvature at xi, • • • ,XAr; 
• dD2 is piecewise geodesic for g, strictly convex at each vertex, with length 

L < 27r; 
• geodesic segments of D2 have length less than TT. 
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g is then realized on a unique convex cap, modulo global isometrics. 

A similar result was proved by Milka [Mil96] in Ef , using (refinements of) meth- 
ods developed essentially by Volkov [V0I6O] to prove a similar result in E3. Of course, 
the length conditions do not appear in the Minkowski case. The existence part of 
corollary 2.4 will actually be proved (using the method of Volkov [V0I6O] and Milka 
[Mil96]) before theorem 1.3, and it will be used to show the connectedness of a space 
of metrics, a necessary point for the proof of theorem 1.3 in case (D.3). 

Theorem 2.2 is the special case of theorem 1.3, (D.3), when T is only a curve. 
Another special case is obtained when D+,D_ are points, and the result is a "cigar- 
like" surface in Sf all of whose faces are time-like: 

COROLLARY 2.5. Let g be a polyhedral metric on S2, locally modeled on S2, 
except at N points #1, • • •, XN- Suppose that: 

• the singular curvature of g at £3, • • • ,XN is in i(R- \ {0}); 
• each time-like geodesic in S2 \ {xi,^} has one end on xx and one on X2; 
• all closed, simple, space-like geodesies of S2 \ {^i,:^} have length L < 27r. 

Then (S2, g) has a unique polyhedral isometric embedding in Sf. 

Again, a similar existence result (without the lengths conditions) was proved 
by Gajdalovich and Sokolov [GS86] in the Minkowski space E3. Their result is a 
consequence of theorem 1.2. 

Actually, [Sch98a] contains a description of all metrics induced on compact type 
polyhedra in Sf. Here is a more precise result describing those metrics, which is again 
a consequence of case (D.3) of theorem 1.3: 

THEOREM 2.6. Let P be a convex polyhedron of compact type in Sf. Then, in 
the induced metric g: 

1. S2 — D+UTUD-, with D+,D- disks and T and annulus, such that D+nT 
and D- fl T are graphs; 

2. g is modeled on S2 on D+, D- and on S2 or S2
0 on T, away from the singular 

points; 
3. time-like geodesies ofT have one end on D- and the other on D+; 
4. g is "convex" (in the sense of definition 3.1) at each singular point; 
5. all closed, simple T-geodesies of T have length L < 27r; 
6. Yt-geodesic segments of D+,D- have length less than TT. 

// a marked polyhedral metrics satisfies (1) to (6) and, moreover, D+ and D- are 
convex and their boundaries have length less than IT;, then it is induced on a unique 
convex polyhedron of compact type in Sf. 

Condition (6) was missing in [Sch98a] (no existence statement was given there, 
only a description of the induced metrics). It is different from the other conditions; 
this is clear in theorem 2.6, where it is necessary not to define the boundary of the set 
of metrics which can be obtained, but to single out one connected component of the 
space of metrics satisfying the other hypothesis. This is discussed in section 5, where 
assertion 5.5 should clear up things. 

I do not know whether all metrics satisfying (l)-(6) are actually induced on convex 
polyhedra, nor whether a uniqueness result holds, without the additional assumption 
at the end of the theorem: again, it should be possible to extend the realizability part 
of this theorem by defining a wider class of metrics (satisfying (l)-(6)) and proving 
that it is connected. 



CONVEX POLYHEDRA IN LORENTZIAN SPACE-FORMS 337 

In this theorem, D+,D- might be made of several disks attached at points or by 
segments, and T might be made of disks joined together by segments. In this case, 
conditions (3) and (4) are empty on the segments. 

There are two kinds of convex (not necessarily compact) polyhedra in Sf, which 
are not of compact type. The first, which we called above hyperbolic type poly- 
hedra, are those which lie on one side of a totally geodesic, space-like 2-plane (for 
the compact ones, the definition is coherent with the one given right before theorem 
2.1). They correspond to case (E.l) of theorem 1.5. The other kind, of bi-hyperbolic 
type, are those which cross every space-like 2-plane (they can not be compact). They 
correspond to case (E.2) of theorem 1.5. 

We can then state the following result, which is a simple consequence of [Sch98a]. 
Actually, both this result and theorem 1.4 are consequences of the same theorem of 
[Sch98a]. 

THEOREM 2.7. Let g be a geodesically complete polyhedral metric on 
S2 \ {2/1, • • •, VM}- Suppose that the area of each end is infinite. Then g is induced by 
a convex polyhedral cylindrical embedding (j) of hyperbolic type in Sf if and only if: 

• S2 \ {1/1, • • • ,yM} can be decomposed into domains on which g is modeled on 
S2

; S
2 or the degenerate space S2

0, each domain being convex with geodesic 
boundary; 

• each yi has a neighborhood which is isometric to a domain in a quotient of 
S2 by a translation along a space-like vector of length \L\ < 2TV; 

• g is ''convex77 at each singular point (in the sense of definition 3.1); 
• each closed Yi-geodesic of g has length L > 27r; 
• closed, simple T-geodesies of g have length L < 27r. 

(j) is then unique modulo global isometrics. 

Here again, "X-geodesics" (see definition 3.3) are generalizations of space-like 
geodesies in space-like faces of the metric. The case where some end has finite area 
is not too interesting; it is rather easy to see (in the projective model of section 3) 
that there can be only one face at that end, and that its induced metric is degenerate. 
This end is therefore dual to an ideal end of a hyperbolic polyhedron. Both theorems 
1.4 and 2.7 are special cases of the main theorem of [Sch98a]. 

Finally, the metrics induced on convex polyhedra of bi-hyperbolic type are as 
follows: 

THEOREM 2.8. Let P be a non-degenerate bi-hyperbolic polyhedron in Sf. Then 
P is homeomorphic to S2\{y+,y-}, and the induced polyhedral metric g is such that: 

• S2\{2/+,2/_} is complete, modeled on Sf except at a finite number of singular 
points yi,--,yN; 

• g is "convex" at each singular point, i.e. its singular curvature is in 
t(R-\{0}); 

• ?/+ and y- have a neighborhood which is isometric to a domain in a quotient 

of S2 by a translation along a space-like geodesic, with angle 9(y±) 6 (0,27r); 
• closed, simple T-geodesies of g has length L < 2TT. 

Conversely, each such metric is induced on a unique cylindrical bi-hyperbolic polyhe- 
dron. 

3. Some tools and previous results. We recall in this section various defini- 
tions and results of [Sch98a]. The basic point is that there is a natural model of iJ3 
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and the de Sitter space Sf, which can be obtained by taking the "Hilbert metric" of a 
quadric in S3 (or, more generally, in Sn or RPn). There is a natural notion of convex 
polyhedra in those spaces. We obtain here the same construction in a simpler (but 
probably less interesting for subsequent generalizations) way. 

Consider the quadratic form: 

q(x, y, z, t) = x2 + y2 + z2 - t2 

in R4. Call (,) the associated bilinear form, which is just the scalar product of the 
Minkowski space. For X G R4, define r(X) to be the unique number in R+ U iR+ 

such that r2(X) = q(X). For X,Y in S3 such that q(X) ^ 0,q(Y) ^ 0, let dH(x,y) 
be a complex number such that: 

cosh(dj=r(-X',y))=    ^'^ 
r(X)r(Y) 

dn is then well defined modulo 27riZ and modulo sign. 
We then define the sign of rf//(X, Y) as follows: 

• if X and Y are in the same connected component of the set of directions 
where q < 0, then cfo(X, Y) > 0; 

• if they are in different connected components of that set, then dniX, Y) e 
iir + R_; 

• if q(X),q(Y) > 0, then dH(X,Y) G z[0,7r] or dH(X,Y) G R-, depending on 
whether (X,Y) < q(X)q(Y) or (X,Y) > q{X)q(Y); 

• if q(X) < 0 and q(Y) > 0, then cfo(X, Y) G Z7r/2 + R. 
Note that the signs are obtained directly by the definition in term of "Hilbert metric", 
it is then not necessary to give them explicitly. It is then fairly straightforward to 
check (as in [Sch98a]) that S3 is divided into 3 parts where q ^ 0: 

• above the tropic of Cancer (the set of points (x,y,z,t) G 53 with t > 0 and 
q(x,y,z,t) = 0), there is a projective model of iJ3, which we call H^. The 
distance between two points is just the hyperbolic distance; 

• the situation is identical below the tropic of Capricorn (the set of points 
(x, y, z, t) G S3 with t < 0 and q(x, y, z, t) =0); 

• between the tropics, we find a projective model of 53, where 2 points which 
are joined by a time-like geodesic have a real, negative distance, and two 
points joined by a space-like geodesic have a distance in 2[0,7r]. Points joined 
by a light-like geodesic are at distance 0; 

• if X G H\ and Y G -ffi, then dniX.Y) — in — r, where r is the distance 
between X and the antipode of Y; 

• the polar dual of a point is just the set of points at distance z7r/2 (this gives a 
natural extension of the usual notion of polar dual for points in Sf) and the 
dual of a p-plane is the intersection of the hyperplanes duals to its points; 

• if X G iJ3 and Y G S3, dniX.Y) = in/2 + r, where r is the (oriented) 
distance between X and the polar dual of F, or the opposite. 

~   3 
We call HS   the "hyperbolic-de Sitter" space obtained, i.e. S3 minus two spheres, 

o ~ 3 
with the complex distance dn- HS   is the quotient of HS   by the antipodal map, so it 
has only one copy of Hz and a hemisphere of S3. There is a natural notion of convex 

~  3 
polyhedra in HS : they are the convex polyhedra in S3 with no vertex on the two 
limit spheres. 

The main properties of 5f are easy to see in this model. Through each tangent 2- 
plane P goes a totally geodesic 2-plane, which is either space-like (it is then isometric 
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~  3 
to S2 with its canonical metric, and its extension P' in HS does not intersect dH^. 
or 3iJi), light-like (it is then isometric to a degenerate space S2 0, and P' meets dH+ 
and dHl_ at one point each), or time-like (and it is isometric to S\, and P' intersects 
Hi and Hi). 

The duality between points and 2-planes is also fairly easy to understand now; 
the dual of a hyperbolic point is a space-like 2-plane in the de Sitter space, while the 
dual of a de Sitter point is a hyperbolic plane and also the corresponding time-like 
plane in the de Sitter space. The dual of a light-like plane is its intersection with 
dH\ or dHl (depending on the orientation).  The class of hyperbolic polyhedra is 

~  3 
stable by duality in HS , and contains both the hyperbolic polyhedra and their duals 
(as well as the duals of ideal polyhedra, etc). Polyhedra of compact type are duals of 
polyhedra of bi-hyperbolic type, and conversely. 

~  3 
As stated in the introduction, given a convex polyhedron P in HS , there is also 

a natural notion of induced metric on P. That is, each 2-face of P has a "metric", for 
~ 2 

which it is isometric to the interior of a convex polygon in HS , the degenerate space 
HS2 0 (see [Sch98a]) or the sphere S2 (which actually appears here with a definite 
negative metric, which is minus the canonical metric). Those "metrics" on the 2-faces 
satisfy some natural compatibility conditions on the edges, and we call a HS metric 
such a structure on a polyhedron. Those metrics are considered here up to isometry, 
i.e. without the decomposition into faces which is needed for their definition. Marked 
metrics are as defined in section 1. 

We also need a special class of metrics, for which we will prove existence and 
uniqueness results.   Given a marked metric (er, E), we call ST the set of singular 
points p of a in T D S such that all geodesic segments starting from p are space-like. 
Then: 

DEFINITION 3.1. A marked metric (a, E) is convex at a singular point s if one 
of the following conditions is satisfied: 

1. s G H, and a has positive singular curvature at s; 
2. s is in the interior of E; and a has negative singular curvature at s; 
3. s is in the interior of T, and the sum of the angles at s of the incident faces 

is 27r + ir, with r > 0 (i.e. the singular curvature is in i(R_ \ {0}); 
4. s is an isolated point of E; 
5. s G ST, E \ {s} has two connected components in the neighborhood of s and, 

in each, the sum of the angles of the faces incident at s is in [0, TT); and T\{s} 
has two connected components in the neighborhood of s and, in each, the sum 
of the angles is in iR+z 

6. s E EnT\5r; T\ {s} is connected in the neighborhood of s, and the angles 
9i at s of the faces in T and the angles 9j at s of the faces in E satisfy: 

5> = *-«•!, $^ = r2 

with 7*1 £ R, r2 > 0, and either ri > 0 or r2 < TT; 

7. s G E n T \ S7-, T \ {s} is not connected in the neighborhood of s and, for 
each connected component C of T\{s} in the neighborhood of s, the sum a 
of the angles at s of the faces in C is in TT — 2(R+ \ {0}), or a = TT and all 
faces in C are light-like; and the sum of all angles at s is not 27r. 

In the last case, we forbid the situation where, in the neighborhood of 5, T\ {s} 
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has two connected components, each made of light-like faces, and E only has edges 
meeting s. 

We say that a convex polyhedron is degenerate at a vertex v if, in a neighborhood 
of v, P is in the union of two half-planes meeting along a geodesic containing v. The 
basic properties of definition 3.1 are proved in [Sch98a]: 

LEMMA 3.2. IfP is a convex, non-degenerate polyhedron in Ho , then the induced 
marked metric a is convex at each vertex. If, on the other hand, P is convex but is 
degenerate at a vertex v, then a is not convex at v. 

The important consequence is that the marked metrics induced on polyhedra 
which are on the boundary of the set of convex polyhedra are not convex. 

A polygonal curve in a polyhedral metric is a continuous, piecewise geodesic 
curve. 

DEFINITION 3.3. Ifj is a polyhedral curve for a HS metric g on S2, we say that 
7 is E-geodesic if: 

• 7 remains in E; 
• at each vertex s of 7, the connected components of S2 \ 7 which are in E in 

the neighborhood of s are concave at s. 

This can be considered an analogue of the geodesies in a Riemannian polyhedral 
metric. More precisely, if g is Riemannian, the E-geodesic curves are the same as 
"usual" geodesies. 

DEFINITION 3.4. 7/7 is a polyhedral curve for a polyhedral metric g on S2, we 
say that 7 is T-geodesic if: 

• 7 is space-like, and each of its segments is in the closure of T; 
• if s is a vertex of 7 such that all faces and edges of a at s on one side of 7 

are in T, then the sum of their angles at s is in ir -f ill+. 

The second condition is actually a concavity condition, too; definitions 3.3 and 
3.4 are therefore similar. 

- 3 
The following lemma is proved in [Sch98a], using an extension to HS   of a remark- 

able construction of Pogorelov [Pog73], which brings rigidity problems from non-flat 
to flat space-forms (see also [LS00] for a related extension of this lemma, and [SchOO] 
for another use of it which is not related to the problems considered here). 

LEMMA 3.5. Convex, non-degenerate polyhedra in HS> are rigid, i.e. any in- 
finitesimal polyhedral deformation inducing no variation of the induced metric is triv- 
ial. 

The construction in [Sch98a] actually extends to other spaces HS^., each contain- 
ing a pair of pseudo-Riemannian space forms. It does not deal, however, with the 
Minkowski space. A rigidity result there could be obtained by composing two appli- 
cations defined in [Sch98a] between flat and non-flat space-forms, but this would be 
very clumsy. The next lemma, on the other hand, is proved in a very simple manner, 
by using a clever trick discovered by Galeeva, Pelipenko and Sokolov [GPS82]. 

LEMMA 3.6. Let P be a compact, convex non-degenerate polyhedron in Ef, and 
let V be an infinitesimal polyhedral deformation of P. IfV induces no infinitesimal 
variation of the induced metric, then V is trivial, i.e. it is the restriction to P of an 
infinitesimal isometry of Ef. 
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Proof. Consider P as an abstract polyhedron, with a polyhedral convex embed- 
ding (j> : P c-> El. Choosing an orthogonal decomposition, we can write: El ~ 
E2eE\ and 0 = (A», with X : P -> E2, and z : P -> E1 - R. E3 ~ JB

2
 0 JB

1
, SO 

we find an embedding ip : P M- E3, and it is easy to check that it is convex. 

Now V = (X,^) induces an infinitesimal variation of the induced metric, which 
is zero if and only if, for m, m' E P in the same face of 0(P): 

((^(m7) - 0(m), y(m') - y(m)) - 0 

so if and only if: 

(X(m') - X(m),X (ra')- A" M) - (^K) - z(m))(z (m')- z (m)) = 0 

so if and only if W := (X, — ^) is an infinitesimal isometric deformation of ^(P) in 
E3. 

Now it is known, basically since Cauchy [Caul3], that convex, compact polyhedra 

in E3 are rigid.    (X, — z) is therefore the restriction to ^(P) of an infinitesimal 
isometry of E3, which we can write as (z/, —77) in E3 ~ E2 0 E1.  Then (^,77) is an 

infinitesimal isometry of Ef ~ E2 9 E1 inducing (X,^) on ^(P), so V is trivial. D 
The same proof actually shows the rigidity of convex caps in E3, from the rigidity 

of convex caps in E3, because the deformations which have to be considered are those 
which, on a totally geodesic space-like 2-plane PQ, are tangent to PQ. PQ of course has 
to be parallel to the factor E2 in the decomposition of E3 used. 

4. Degenerations of polyhedra. This section contains the compactness results 
needed for the proofs of the main results of this paper. It describes how a sequence 
of polyhedra can behave when the sequence of induced metrics converges. 

The simplest result concerns polyhedra in E3: 

LEMMA 4.1. Let P be a (combinatorial) polyhedron homeomorphic to S2, and 
(0n)n€N fl sequence of polyhedral convex embeddings of P into Ef. Suppose that 
the sequence of induced metrics (/in)neN converges to a limit /JLOQ. Then there exists 
a sequence (pn)nGN of isometrics of El such that (pn o (j)n)ne^ has a converging 
subsequence. 

Proof Restricting (0n) to a subsequence if necessary, we can choose two points 
mo, mi G S2 and a sequence (pn) of isometrics such that, for all n, (pn o 0n)(mo) = 
(0,0,0) and (pn o 0n)(mi) = (0,0, zn) in the canonical coordinate system of Ef. 

Then there exists R > 0 such that, for all n, the projection of (pn o 0n)(P) 
on the (x, y)-plane remains in the ball of radius R centered at 0. Otherwise, by 
convexity, there would exist a sequence of horizontal planes (Pn) such that the length 
of Pn fl (pn o (j)n)(P) —> oo; therefore, since Pn intersects only a bounded number of 
faces of (pn o 0n)(P), (//n) could not converge. 

Now this implies that there exists some Z{R) > 0 such that, for all n, zn G 
[—Z, Z]; otherwise, for any vertical plane 11 going through 0, the length of the time- 
like part of 11 fl (pn o 0n)(P) would go to infinity, which, again for the same reason, is 
impossible. 

Therefore, (pn o 0n)(P) remains in a bounded region of E3, so some subsequence 
of (pn o 0n) converges. D 

Note that the proof above (and the statement of lemma 4.1) could be given in 
any flat pseudo-Riemannian space-form E? without any important difference. This 
extension, however, is not necessary here. 
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[Sch98a] contains a description of degenerations of convex polyhedra of hyperbolic 
~  n+l 

type in HS when the induced metrics converge; but it is both too general (because 
it deals with higher dimensions) and not specific enough for here (it is precise enough 
only for polyhedra of hyperbolic type, which were the main object of the study of 
[Sch98a]). Theorem 4.2 below is simpler than the corresponding result of [Sch98a]. 
It could be extended in higher dimension, but then we would need some additional 
definitions for marked metrics and concave or geodesic polyhedral hypersurfaces, so 
we have not done this here. 

THEOREM 4.2. Let P be a (combinatorial) polyhedron homeomorphic to S2, and 

(0n)nGN o, sequence of polyhedral convex embeddings of P into Hs . Suppose that the 
sequence of induced marked HS metrics (//n)n€N converges to a limit //QO which is a 
marked HS metric.  Then: 

1. either there exists a sequence (pn)neN of isometrics of HS? such that (pn o 
0n)n6N has a subsequence converging to a polyhedral embedding (fio of P into 

H^; 
2. or fioo has a E-geodesic of length 27r; 
3. or fioo has a simple T-geodesic of length 27r. 

~  3 ~  3 
Proof In all the proof, we use the projective model of HS , i.e. a map ao : HS —t 

S3 sending the geodesic segments to geodesic segments (see [Sch98a]). Convergence of 
sequences of polyhedra means convergence in S3 of the images through the projective 
model. We denote by Q3 the disjoint union of two spheres which are removed from 

S3 to obtain HS3. 
First we choose (pn)neN so that (ao o pn o <f)n(P)) does not converge to a point 

XQ in Q3. This is possible because, if such a convergence occurs, applying a sequence 
~  3 

of isometries of HS   having #0 as a repulsive fixed point destroys it. 
Now (ao o pn o 0n(P)) is a sequence of convex polyhedra in S3, so it has a 

subsequence (ao o </>^)nGN converging to a limit ao o (j)'^. If the limit sends no vertex 
of P on Q3, then we are in the first case of theorem 4.2. We suppose now that this is 
not the case. So there exists a vertex v G P such that ao o fn(v) -> So 6 Q3. 

Let Qo be the tangent plane to Q3 at SQ; by proposition 6.4 of [Sch98a], some 
neighborhood of SQ in ao o ^ (P) is contained in Qo. The proof of this proposition is 
easy: otherwise, the distance between some vertex of P going to SQ and some other 
vertex of P would go to infinity in the induced metric, and this contradicts the fact 
that (fin) converges. 

Since Qo is a degenerate plane, L(d(Qonao0^(11))) = 27r, and the corresponding 
curve in P also has length 27r for //oo. We have to show that this curve is either E- 
geodesic or T-geodesic. There are now two cases to consider. In the first, the convex 
domain floo bounded by ao o <^(P) is on the same side of Qo as the connected 
component of Q3 containing 50. In the second, it is on the other side. 

The proof of theorem 6.3 of [Sch98a] applies almost as it is to the first case, we 
repeat it rapidly here. Let v be a vertex of d(Qo fl (ao o ^(P))). Choose a small 
enough convex neighborhood C of v in Qo H (ao ° <#)o(P))> and consider the inverse 
images Cn of C in P by TTQ O ao o <^, where TTQ is the orthogonal projection (in 53) 
on QQ. If /j,n is space-like on Cn, then (Cn) converges to a convex degenerate set for 
//oo, because the induced metric on Qo is degenerate. Therefore, if PQQ is space-like 
on the side corresponding to Qo fl ao o ^(P), then d(Qo fl (ao o ^(P))) is geodesic 
for poo on Qo fl (ao o ^(P)). We also have to prove that the other side is concave; 
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for this, we replace Qo H (ao o ^(P)) by a slightly tilted space-like plane, to obtain 
a new convex polyhedron for which v is a vertex in the interior of S, with the same 
faces as ^(P), except the faces corresponding to Qo fl ao o ^(P), and with one 
additional space-like face F. Since this polyhedron is convex at v, its induced metric 

~  3 
in HS is convex at v, i.e. the total angle at v is more than 27r. But since F is convex, 
its angle is less than TT. Therefore, the total angle of all the other faces is more than 
TT. This means that the complement of F is concave at v. Since this can be done with 
F as close as we want of a:o(Qo H ao o ^(P)) near v, is shows that the complement 
of Qo H ao o ^ (P) is concave at P for ^oo, as needed. 

In the second case (when fl^ and the connected component of Q3 containing so 
are on opposite sides of Qo) the proof is similar. The proof that d(Qo H ao o ^(P)) 
is geodesic at v for /ioo on Qo H ao o ^(P) is the same as above; for the other side, 
we replace Qo PI ao o ^(P) by a time-like face P', so as to obtain a new polyhedron 
P7 for which v is in the interior of T. Then, if all faces on the complement of Ff in 
the neighborhood of v in P' are time-like or degenerate, we apply lemma 3.2 (or more 
specifically proposition 8.7 of [Sch98a]), which shows that the total angle of P' at v 
is 27r + zr, with r > 0. But F' is convex at v, so its angle at v is TT — irf, with r' > 0. 
The total angle of the other faces is therefore TrH-zr, r > 0, and this proves again that 
the side of <9(Qo n ao o ^(P)) opposite to Qo fl ao o ^(P) is concave, as needed. D 

An important point is that, for each type of polyhedra, only one kind of degener- 
ation (along E-geodesics or T-geodesics) always happens. It was proved in [Sch98a] 
for polyhedra of hyperbolic type, where a E-geodesic of length 27r always appears in 
the degenerate case (this is not to say that a T-geodesic of length 27r can not also 
appear). In the other two cases — polyhedra of compact or of bi-hyperbolic type — 
it is easy to see that there is a T-geodesic curve of length 27r in the limit, simply 
because, in the proof of theorem 4.2, ao o ^(P) and the connected component of Q3 

containing so are always on opposite sides of Qo. 

5. Existence of convex caps. We prove in this section the existence of em- 
beddings inducing certain polyhedral metrics on the disk D2, and whose images are 
polyhedral "convex caps" in S3. The corresponding result for convex caps in Ef was 
proved by Milka; the method used here is similar, but new hypotheses are needed, 
namely that the length of the boundary curve of the cap is strictly less than 27r, and 
that geodesic segments in D2 have length less than TT. 

In the next section, we will use the results of this section to prove the connected- 
ness of some spaces of metrics, a key point in proving the existence and uniqueness 
of embeddings inducing given metrics on S2 in S3 or in Ef. 

The methods used here were developed by Volkov [Vol60] for convex caps in E3, 
and used also by Milka [Mil96] in Ef. We only refer to Milka's very carefully written 
paper for references to the tricky point of retriangulations, which appear here exactly 
in the same way as in [Mil96]. 

Recall that a polyhedral convex cap, in Ef or 53, is a polyhedral space-like 
embedding 0 of the disk sending the boundary to a polygonal curve 7 in a totally 
geodesic plane PQ, and such that the orthogonal projection to PQ sends 0(D2) to the 
inside of 7. 

LEMMA 5.1 (Milka [Mil96]). Let g be aflat, Riemannian polyhedral metric onD2; 
suppose that g has negative curvature at the inner vertices, and that dD2 is strictly 
convex at the boundary vertices, with L(dD) < 2'K. Then g is induced on a (unique) 
polyhedral convex cap in Ef. 
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We refer the reader to [Mil96] for the proof. But we will prove the de Sitter 
analogue (without the uniqueness now, it will come as a consequence of theorem 2.2). 
It is a reformulation of the existence part of corollary 2.4. The proof of lemma 5.2 
below can be applied, with a few differences and simplifications, to prove the existence 
part of lemma 5.1. 

LEMMA 5.2. Let g be a spherical, polyhedral, Riemannian metric on D2; suppose 
that g has negative curvature at the inner vertices, that dD2 is strictly convex at the 
boundary vertices with L(dD2) < 27r, and that geodesic segments of D2 have length 
less than TT.  Then g is induced on a convex polyhedral cap in Sf. 

The last condition, concerning lengths of geodesic segments, might at first sight 
appear redundant. A closer look reveals that it is not, and that some metrics on D2 

satisfy the other conditions, but not this one. A crucial point, however, is that those 
metrics can not be obtained by deforming any "usual" metric on D2 (say, the metric 
on a spherical disk of radius R < 7r/2) among metrics satisfying the other hypothesis 
of 5.2. In other words, the space of polyhedral, spherical metrics on D2 with negative 
singular curvature, such that dD2 is convex with L(dD2) < 27r, is not connected; one 
connected component contains only metrics with no geodesic segment of length above 
TT. 

The proof of lemma 5.2 is parallel to the one in [Mil96], and the notations here 
are similar, of course with some added details concerning the lengths of "geodesic" 
curves. The approach used here, however, avoids some of the technicalities of [Mil96]. 
We call a prism a domain of Sf bounded by a space-like convex polygon P, by 
part of the cylinder made of the union of the (time-like) geodesies orthogonal to P 
and intersecting dP, and by another space-like polygon P "above" P, i.e. whose 
orthogonal projection on the plane containing P has image P. For each vertex v of P, 
the height of v is the length of the time-like geodesic joining v to the corresponding 
vertex of P. 

A prismatic cap is a union of prisms glued along their "vertical" sides, so that 
the union of the "lower bases" Pi forms a convex surface S (which might have singular 
points), and so that the "upper bases" Pi meet the corresponding "lower bases" Pi 
on OS. We call S the lower surface, and 5 the upper surface, which is the union 
of the polygons P^ We say that the prismatic cap is normal if the singular curvature 
at each vertex of 5 is non-positive. 

Given a spherical polyhedral metric g on D2, call C the set of normal prismatic 
caps whose upper surface is isometric to g. If g has negative curvature at each vertex, 
then C is not empty, because it contains at least the "trivial" prismatic cap whose 
upper and lower surfaces both are {D2,g), with any polygonal decomposition (e.g. a 
triangulation). Call Co the connected component in C of this "trivial" prism. 

We need to understand what is the link of a vertex v of 5 for some C £ C. Let e be 
the vertical edge between v and the corresponding vertex v in 5. In a neighborhood of 
e, C is obtained by gluing prisms Pi along e. The link of each Pi at e is a segment (of 
length the dihedral angle of Pi at e), and the link of C at e is a closed curve of length 
the total angle 6e around e (if C is normal, then 6e > 27r).  The link of each point 

~   2 
p 6 e\{v,v} is therefore obtained by taking the universal cover of HS   minus two 
antipodal hyperbolic points (which correspond to e) and quotienting by a translation 

~  2 
along a space-like vector of S2 of length 9e. We call HS^ this space. The link of S 

~  2 
at v is a convex polyhedral curve in HS^. 

For C G C, call height of C the sum of the heights of the vertices of the polyhedra 
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Pi (counted once each, i.e. without the multiplicities). The proof of the existence of 
a polyhedral cap proceeds by a maximization argument on the heights of prismatic 
caps. 

PROPOSITION 5.3. // each point of (D2,g) is at distance strictly less than ir/2 
from the boundary, then there exists a normal prismatic cap of maximal height in CQ. 

This maximal element is the required polyhedral cap: 

PROPOSITION 5.4. A normal prismatic cap of maximal height is a polyhedral 
cap, i.e. it is isometric to the convex domain in Sf bounded by a convex cap and its 
orthogonal projection to the plane containing its boundary. 

The proof of lemma 5.2 clearly follows; the hypothesis of proposition 5.3 is satisfied 
because geodesic segments have length L < TT, and, by proposition 5.4, the maximal 
prismatic cap is a polyhedral cap, whose upper surface is isometric to (D2,g) as 
needed. 

To prove proposition 5.3, we must show that prismatic caps can not "degenerate" 
when we raise the heights of the vertices. In other terms, we have to find upper bounds 
on the heights and on the diameter of the lower surface, depending only on the length 
of the boundary dD2. The first point is that, for all prisms in Co, S contains no 
geodesic segment of length above TT: 

ASSERTION 5.5. Let (gt)te[o,i] be a 1-parameter family of spherical polyhedral 
metrics on D2 with negative curvature at the interior singular points, such that dD2 

is convex with length less than 27r. Suppose that geodesic segments of go have length 
less than TT.  Then geodesic segments of gi have length less than TT. 

Proof. Since polyhedral, spherical metrics with negative singular curvature and 
convex boundary can be approximated by smooth metrics with curvature K < 1 
and convex boundary, it is enough to prove the smooth analogue: if (ht)te[o,i] is a 
1-parameter family of metrics on D2 with K < 1 and convex boundary of length 
L(dD2) < 27r, if geodesic segments of ho have length less than TT, then the same is 
true of hi. The proof in the polyhedral case can actually be done along the same 
lines, with a little more care. 

Let to be the infimum of all t £ [0,1] such that ht contains a geodesic segment of 
length at least TT. The key point is that, in each ht for t < to, geodesic segments of 
length less than TT are minimizing. To see this, fix t < to, and let IQ be the infimum 
of all / such that there exists a non-minimizing geodesic segment of length /. There 
are a priori 4 possibilities: 

• some geodesic segment of length IQ in D meets dD2 at an interior points; 
this is impossible here since dD2 is convex; 

• some geodesic segments of length IQ has conjugate endpoints, but then IQ > TT 

since K < 1; 
• there are two geodesic segments of length IQ in D2 with the same end-points, 

and with angle less than TT at one end; this is impossible again, since it is 
easy to see, by moving a little one of the ends, that some geodesic segment 
of length less than IQ should then be non-minimizing; 

• there are two geodesies of length /Q with the same end-points, meeting at angle 
TT; those geodesies therefore add up to a closed geodesic 70. Since K < 1, 
some point in the disk Do bounded by 70 would have to be at distance at least 
7r/2 from 70. This is proved in a classical way by considering the variation 
of the length of the curves made of points of Do at distance r from 70, and 
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showing that the derivatives of those lengths can not vanish for r < 7r/2. But 
then DQ should contain a geodesic segment of length strictly larger than TT, 

which contradicts the definition of £0- 
Now consider ht0; it contains a maximal geodesic segment of length TT, with end- 

points xo,yo on dD2. As we have seen above, this geodesic segment is minimizing. 
Therefore, each connected component of dD2 \ {XQ, yo}, which is a path joining XQ to 
yo? has length at least TT, SO L(dD2) > 27r, a contradiction. D 

This means that heights can not become too large, because of the: 

ASSERTION 5.6. For each d < 7r/2; there exists h > 0 such that, if 70 is a 
space-like geodesic segment in S2, and 7 a polygonal space-like line in S2, sharing 
an end-point with 70; if the orthogonal projection of 7 to 70 is one-to-one, and if 
L(7o) < d, then the distance between 70 and each point of'7 is at most h. 

"Distance" here means the length of the (time-like) curve orthogonal to 70 joining 
70 to each point of 7. The proof is a simple exercise in the geometry of 5^, so we 
leave it to the reader. 

Proof of proposition 5.3. By assertion 5.5, each prism in Co has a lower surface S 
with no geodesic segment of length at least TT. SO each point of those 5 is at distance 
less than 7r/2 from OS. By compactness, there exists some d_< 7r/2 such that, for 
each c G Co, each point of 5 is at distance at most d from OS. Assertion 5.6 then 
shows that the heights of all vertices of the prisms c G Co is bounded by some h > 0. 
Moreover, the diameters of the "lower bases" are bounded by TT. Therefore, a maximal 
element exists. D 

Proof of proposition 5.4- Let Po be a normal prismatic cap whose height is 
maximal. Let Vo be the set of vertices of S which are on the boundary, or at which 
the singular curvature of 5 is 0, and let Vi be the set of the other vertices of S. Call 
Vb, Vi the sets of vertices corresponding to VQ, VI on the upper surface. We suppose 
(by contradiction) that Vi ^ 0. 

The first point is to show that it is possible to find a triangulation of 5 which 
is compatible with the metric of the prismatic cap, that is, such that any geodesic 
segment of 5, which joins a vertex of Vo and a vertex of Vi, and only cuts edges where 
the sum of the angles of the prisms is TT, is an edge of the triangulation. It is proved 
in [Mil86] that such a "retriangulation" is possible in the Ef setting, but it applies 
just in the same way in Sf, so we refer the reader to it for details. 

Consider now the modification of PQ obtained by leaving invariant the heights 
of vertices in Vo, and raising the height of vertices in Vi by some constant e. For e 
small enough, the retriangulation alluded to means that the result is again a convex 
prismatic cap , which we call Pi, with upper surface Sf and lower surface S . We will 
show that, again for e small enough, it is also normal, contradicting the definition of 

Let v be a vertex of 5 in Vi. By definition of Vi, the curvature of S at v is 
negative, so, if e is small enough, it remains so in the new prismatic cap. 

Consider a vertex v £ VQ of 5, and let v be the corresponding vertex on 5. If v 
is a boundary vertex, there is nothing to prove; if v is an inner vertex, we must show 
that the singular curvature of 5 at v remains non-positive. 

Let L be the link of S at v.   As explained above, it is a convex polygon in 
~ 2 ~ 2 ~ 2 

11827,- — HS .   The link 1/ of 5' at v is a convex polygon in HS^, and we want to 
prove that 9 > 2ir. U has the same edge length as L (because they correspond to 
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the inside angles of the faces of 5 and S', which are isometric). Since Pi is obtained 
from Po by raising some vertices around v, V is obtained from L by moving some 
vertices towards the concave side of L, keeping the edge lengths fixed, but going from 

~   2 ~   2 ~   2 
a polygon in HS   = H^^ to a polygon in HSg. 

~   2 -  2 
Now note that the duality defined above in HS   extends to HS^, at least for 

~  2 
convex, space-like polygons in the de Sitter part of HS^; this can be seen by defining 
the dual of such a polygon as the hyperbolic polygon whose vertices are the dual 

~  2 
points of the edges, each defined as the only point in HS^ which is at distance 27r/2 
on a geodesic segment orthogonal to the edge (with the right orientation). 

Let L* be the dual polygon of L, and Z/* the dual of V. L* is a convex polygon 
~  2 

in the hyperbolic part of HS , and Z/* is a convex polygon in the hyperbolic part of 
~  2 ~  2 

HSfl, around one of the singular points of HSg. Since L and U have the same edge 
lengths, L* and Z/* have the same angles 0*. Z/* is obtained from L* by moving some 
of its edges towards the convex side. If Q < 27r, this implies that the area A' of the 
convex domain bounded by Z/* is less than the area A of the convex domain bounded 
by L: 

Applying the Gauss-Bonnet theorem to L* shows that: 

i 

while the same theorem applied to Z/* leads to: 

i 

But if 0 < 27r, then A' < A, and we find a contradiction. 
But the height of PQ was assumed to be maximal, so that Vi had to be empty, so 

that PQ was already a convex cap. □ 
As stated above, the same proof works for convex caps in Ef; it corresponds there 

to a slightly simplified version of the proof given by Milka [Mil86]. It is also possible 
to use the same kind of ideas to give the existence part of theorem 2.1. In this case, 
the order relation should not be with respect to the sum of the height, but to the set of 
the heights at all vertices of the "lower surface" (which in this case is a sphere). The 
maximal element is no longer unique, but still corresponds to a polyhedral isometric 
embedding in Sf. 

6. Spaces of metrics. We will define in this section some natural spaces of 
metrics (those appearing in the main theorems of the introduction) and prove that 
they are connected. 

We need further combinatorial data about the way the upper and lower boundaries 
of the time-like part T of a metric might share some vertices and/or edges, and about 
how the singular points in the interior of T are located with respect to those shared 
edges. 

Let q-,q+ € N* be the number of vertices of those two curves. The vertices of 
the lower curve can be associated to elements of Z/g_Z, and those of the upper curve 
to elements of Z/q+Z. We need to describe first which vertices of the upper curve 
coincide with which vertices of the lower curve. 

Call Q(<7_,g+) the set of subsets Q C Zjq-Z x Zjq+L such that: 
• for each r € Zjq-Z (resp. r € Z/#+Z), there exists at most one pair (5, t) £ Q 

such that s = r (resp. such that t = r); 
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• if (si,ti),(s2,t2),(s3,t3) e Q with si < S2 < 53, then h <t2 < h (i-e. ^1,^2 
and £3 are ordered in the cyclic order of Z/g+Z). 

Each such Q G Q(^_,^+) has a cyclic ordering, defined by: (si,£i) < (52^2) < 
(53,^3) if si < S2 < 53. For Q G Q(g_,^+), define FQ r as the set of maps from Q to 
Z/rZ respecting the cyclic ordering on both sides. 

Let: 

Qfa-,<Z+,r) = {(Q,/) I Q G Q(g-,g+),/ G F^r}/ - 

where (Q,/) ~ (Q j/') if there exists p_?o G Z/g_Z,p+5o € Z/<7+Z,so G Z/rZ such 
that: 

(P-JP+) ^ 0 ^ (P- +P-,o,P+ +P+,o) € Q' 

V(p-,p+) G QJ'{p- +P-,o,P+ +P+,o) = f(p-,p+) + so . 

If C_, C+ are two simple closed space-like polygonal curves in a Lorentzian sur- 
face, bounding a compact connected domain H containing r marked points, with q- 
and q+ vertices respectively, we say that Q = (Q,f) G Q(g_,g-j_,r) describes the 
intersection of C_ and C+ if: 

• there is an order-preserving bijection between the vertices of C_ (resp. C+) 
and Z/g_Z (resp. Z/#+Z) such that Q corresponds to the pairs (v_,v+) 
where v_ and v+ are vertices of C_ and C+ respectively, which coincide; 

• if {s,i) and (s',t') are successive elements of <3, then f{s,
1t

!) — f(s,t) is 
equal to the number of marked points of 0 which are in the subdomain of ft 
bounded by the points v^v' G C_ fl C+ corresponding respectively to (s,t) 
and to (s',*'). 

Here are the necessary definitions of the spaces of metrics. First, for theorem 1.2: 

DEFINITION 6.1. Forp+,p^,q+,q-Jr e N, and Q G Q(q-1q+,r)7 E(p+1p-:q+, 
q-,r,Q) is the set of metrics on S2 satisfying the hypothesis of theorem 1.2, with 
p+ singular points in the interior of E+, p- in the interior of £_/ q+ on 9S+, q- 
on 9E_; r points in the interior of T, and such that Q describes the intersection 
between the lower and upper boundaries ofT. Ecip+.P-^q+Tq-iT^Q) is the set of 
those metrics for which E+ and £_ have convex boundary. 

~ 3 
For polyhedra of compact type in HS : 

DEFINITION 6.2. For p+,p-,q+,q-,r G N and Q G Q(g_,g+,r); C(p+,p_,g+, 
q-,r,Q) is the set of metrics on S2 satisfying (A), (B), (C), (D.3) and (E) of theorem 
1.5, withp+ singular points in the interior ofY,^, p- in the interior ofT,-, q+ on 9E-f, 
q^ on dTi-, r points in the interior ofT, and such that Q describes the intersection 
between the lower and the upper boundaries of T. 

Nothing is necessary for polyhedra of hyperbolic type, since they were already 
studied in [Sch98a], where the corresponding part of theorem 1.3 was already proved. 
Finally, the corresponding definition is simpler for polyhedra of bi-hyperbolic type: 

DEFINITION 6.3. For p+,p-,r G N, B{jp+,p-,r) is the set of metrics on S2 

satisfying (A), (B), (C), (D.2) and (E) of theorem 1.3, with p+ singular points in the 
interior of H+, p- in the interior of H-, and r points in the interior ofT. 

The main result of this section is: 
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LEMMA 6.4. Let p+,p-,q+,q-,r e N and Q G Q(g_,g+5r). If p+ + p- + 
r > 3, B(p+,p-,r) is connected. If q+,q- > 2, then E(p+,p-,q+,q-,r,Q) and 
C(p+)P-,q+,q-,Q,r) are connected. 

The proof of lemma 6.4 in the setting of theorem 1.2 (that is, the connectedness 
of E) is done by first proving that any metric on the upper of lower space-like part 
of a can be deformed to a metric which has convex boundary, without changing the 
lengths of the boundary edges (proposition 6.7). Lemma 5.1 is then used to deform 
metrics on the "upper" and "lower" parts of a, and a "surgery" on the time-like part 
of a finishes the proof. 

The space of metrics corresponding to this time-like part is described as follows. 
Remember that a space-like curve in a Lorentzian surfaces is simple if it intersects 
any maximal time-like curve exactly once. 

DEFINITION 6.5. Let q+^q- > 2, r e N, and Q € Q(g_,g+,r). Let 

L+ = a+,Z+,---,/++)G(B4.\{0}r, 

L- = (Zr>/2->---,Z-)G(R+\{0})^. 

TE(q+yq-,r,Q;L+,L~) is the space of polyhedral metrics g on S1 x [0,1] such that: 
• 51 x [0,1] has a decomposition into pieces on which g is isometric to the inside 

of a convex polygon in Rj or Rf 0 such that the metrics on each side of an 
edge have the same restriction; 

• at each interior vertex, the sum of the angles of the adjacent faces (for any 
triangulation) is in 2K + i(R.+ \ {0}); 

• S'1 x {1} and S1 x {0} are simple space-like curves, piecewise geodesic with 
q+ and q- segments respectively, with lengths iL+ and iL~ respectively; 

• Q describes the intersection between S1 x {0} and S1 x {1}. 
TE(q^,q-,r1Q) is the union of the TE(qjr,q^,r]L+,L~) for all possible values of 
L+,L-. 

The third condition means that the successive lengths of the geodesic segments 
in 51 x {1} are Zf, • • •, /+_ in this order, and similarly for L~. 

We also need spaces of metrics corresponding to the upper and lower parts of a: 

DEFINITION 6.6. Let p, q e N with q > 2. BE(p,q) is the space of polyhe- 
dral metrics h on the disk D2 which are flat Riemannian (modeled on R2^ except 
at p interior points, where the singular curvature is negative, with q vertices on 
the boundary; CE(p,q) is the set of elements of BE(p: q) for which the boundary 
is convex at all boundary vertices. Let L = (/]_, • • • ,lq) G (R+ \ {0})q; BE(p,q]L) is 
the set of elements of BE(p,q) with successive boundary edge lengths li, — -,lq, and 
CE(p,q;L) = BE(p,q;L)nCE(p,q). 

The connectedness of E follows from the following propositions, which will be 
proved below: 

PROPOSITION 6.7. Let p G N, q > 2, L G (R+ \ {0})q. For any go G BE(p, q; L), 
there exists a continuous path {gt)te[Q,i\ in BE(p,q:L) such that g\ G CE{p,q',L), 
and, moreover, that all boundary vertices which are convex for go remain convex for 
allgut£ [0,1]. 

PROPOSITION 6.8. If q+,q- > 2 and go G TE(q+,q-,r+ 1,Q;L+,L-), there 
exists a continuous path (gt)t£[o,i) inTE(q+,q-,r+l,Q;L+,L~) such thatlimt-^i gt G 
TE(q+,q„,r,Q'-L+,L-) for some Q' e Q(q-,q+,r). 
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PROPOSITION 6.9. Ifq+^q- > 2 and Q € Q(q-,q+,0), thenTE(q+,q-,{),Q) is 
(empty or) connected. 

PROPOSITION 6.10. Letq > 2, andgo,gi e CE(p,q). Denote by L0 = (Zi,/^---, 
lq) the successive lengths of the segments ofdD2 for go, and by L1 = (Zj, /^ *' * > lq) ^e 

lengths of the segments ofdD2 for gi. Choose a continuous path (^)te[o,i] connecting 
L0 to L1 in CE{p,q). There exists a continuous path (gt)te[o,i\ connecting go to gi in 
CE(p,q), such that 1} is the q-uple of lengths of dD2 for gt- 

The connectedness of E follows from those propositions, which will be proved 
later in this section. First, proposition 6.7 can be used to deform any metric a G 
£(p+,P-,2+,tf-,r,<2) to a a' G £c(p+,p_,tf-t_,g_,r,Q) in E(p+,p_,q+,q_,r,Q). 
The metric remains convex (in the sense of definition 3.1) at the boundary vertices 
through this deformation, because the convexity there is achieved if either the E side 
or the T side is convex; since proposition 6.7 moves the space-like part of the metric 
without making a convex vertex concave, all boundary vertices remain convex in the 
sense of 3.1. So it is enough to prove that Ec(p+,p-,q+1q-,r, Q) is connected. 

Then, for q+,q- > 2, TE(q+,q-1Q,0) is connected by proposition 6.9. A crucial 
point is that the convexity condition of the metric at the boundary vertices is empty, 
because the E part of the metric is convex there, and that is enough according to 
definition 3.1. Proposition 6.8 and 6.9 can then be used to show inductively on r 
that TE(q+,q-.,r,Q) is connected for q+,q- > 2 and r G N; namely, it follows from 
the connectedness of TE(q+,q-1r, Q) that some neighborhood of TE(q+,q-,r, Q) in 
TE(q+, q-, r + 1, Q) is connected, and then proposition 6.8 shows that TE(q+, q-, r + 
1,(2) is connected. 

Given <TO,(TI G Ec(p+,p-1q+,q-,r,Q), let #o,#i G TE(q+,q-,r,Q) correspond 
to the time-like/degenerate part of <7o,cri respectively, h^hf to the upper space- 
like parts, and HQ^HI to the lower space-like parts, go can be connected to gi by 
a continuous path (gt)te[o,i} m TE(q+,q-,r,Q)] let Lf and L~j~ be the g+-uple and 
g_-uple of lengths of the geodesic segments on the upper and lower boundaries of ^. 
By proposition 6.10, there exist continuous paths (/it")te[o,i] and (^r)i€[o,i] joining ho 
to h^ and h^ to h^ respectively in CE{jp+iq+) and in CE(p-,q-), with boundaries 
made of segments of lengths {Lf) and {LJ) respectively. For each t G [0,1], gt^hf 
and h^ can be glued along their boundaries to obtain at G Ec(p^.,p-7q+1q^:)r,Q). 
Ec(p+ ,p-,q+,q-,r,Q) is therefore connected. 

The connectedness of C(p+,p_,g+,g_,r, Q) is proved along the same lines, but 
more care is needed to take into account the length conditions. This is actually why 
we give the proof only in the case where E+ and E_ are convex with boundary lengths 
less than 27r, whence condition (E) of theorem 1.3. The relevant definitions are: 

DEFINITION 6.11.   Let q+,q- > 2, r G N, and Q G Q(g_,g+,r).   Let L+ = 

GMV",#+) e (R+\{0})*+,L- - (ir,^,---,^-) e (R+\{0})«- with^lf < 
27r, J^ Z~ < 27r. T5(g+,g_,r, Q;L+,L~) is the space of polyhedral metrics g on S1 x 
[0,1] such that: 

• 51 x [0,1] has a decomposition into domains isometric to the inside of convex 
polygons in S2 or in S2o, such that both sides of an edge agree; 

• the sum of the angles at each vertex is in 27r + i(R+ \ {0}); 
• 51 x {1} and S1 x {0} are piecewise geodesic with q+ and q- segments re- 

spectively, with lengths iL+ and iL~ respectively; 
• Q describes the intersection between S1 x {0} and S1 x {1}; 
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• closed, simple T-geodesic of g have length less than 2TT. 

Ts(q+,q-,r,Q) is the union of the Ts(q+,q-,r;L+,L~) for all possible values of 
L+,1,-. 

DEFINITION 6.12. Letp.q e N with q > 2. Cs(p,q) is the space of polyhedral 
metrics h on D2 such that: 

• g is spherical (modeled on (S2,— can),) except at p interior points, where the 
singular curvature is negative; 

• dD2 is convex and piecewise geodesic with q segments, and has length less 
than 27r; 

• Tt-geodesic segments of (D2,h) have length less than TT. 

The analogs of propositions 6.8, 6.9 and 6.10 are: 

PROPOSITION 6.13. Ifq+1q- >2,Qe Q(q-,q+,r), r e N, andgo E Ts(q+,q-, 
r+1, <3; I/+, L~), there exists a continuous path {gt)te[o,i) ^n Ts(q-)-,q-,r+l, Q; L"1", L~) 
such that lim^i <ft G Ts(q+,q-,r1Q

,]L+,L~) for some Q' G Q(^_,g'+7r). 

PROPOSITION 6.14. Ifq+,q- > 2 and Q e Q(g_,^+,0), thenTs(q+1q-10,Q) is 
connected. 

PROPOSITION 6.15. Letq > 2, and go,gi e Cs{p,q). Denote by L0 - (Z?,/^ •'"» 
l0q) the successive lengths of the segments of dD2 for go, and by L1 = (/J, l^, '• • •, l^) the 
lengths of the segments of dD2 for gi. Choose a continuous path (I^)te[o,i] connecting 
L0 to L1 and such that, for each t, J2i H < ^TT. There exists a continuous path 
(gt)t€[o,i] connecting go to gi in Cs(p,q), such that L1 is the q-uple of lengths of dD2 

for gt. 

The connectedness of C follows, as for the connectedness of Ec above. 

A slightly different approach is needed to show that Jf(p+,p_,r) is connected. 
The main points of the proof are: 

PROPOSITION 6.16. For each ao G H(p+ + l,p_,r) (p+ > 1) there exists a 
continuous path (^)i€[o,i) in H(p+ + I^P-JO 

5wc/i that linif^i at G H(p+,p-,r). 

PROPOSITION 6.17. For each ao e iJ(p+,p_,r + 1) (r > 1), there exists a 
continuous path {crt)te[o,i) ^n H(P+iP-->r + 1) such that lim^^i at G H(p+,p-,r). 

PROPOSITION 6.18. H(1,1,1), #(1,0,2) and #(2,1,0) are connected. 

The connectedness of H follows by a simple inductive argument. 

We now turn to the proofs of the propositions stated above. 

Proof of proposition 6.7. Let g G BE(p, q; L); call (6i)i£^q the (exterior) angles of 
the boundary at the boundary vertices (vi)ie^q, and (Kj)je^p the singular curvature 
at the interior vertices, (wj)jeNp- Then Vj,Kj < 0, and 0i G [0,7r) when D2 is convex 
at Vi, while 9i G (—7r,0] when D2 is concave at Vf. 

The proof rests on the following three elementary remarks: 
1. by the Gauss-Bonnet theorem, J]i 0i — 27r — V. Kj > 27r; 
2. if Q = (ui,U2,us1U4) is a non-degenerate convex 4-gon in E2, there exists a 

deformation of Q leaving its edge lengths fixed, decreasing the first and third 
angles, and increasing the other two angles; 
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3. if Q = (^1,^2,^3,^4) is a non-degenerate 4-gon in E2 which is concave at 
ui and convex at the other 3 vertices, then it admits a deformation leaving 
the edge lengths fixed, decreasing the angle at ^i and increasing the other 3 
angles. 

Now call 0 the sum of the |#;| over all boundary vertices where 0; < 0; we will 
show that we can decrease 0 down to 0 (so that the resulting surface is convex) 
without changing the boundary edge lengths, increasing the curvature at the interior 
vertices, or making a convex boundary vertex concave. 

To do this, consider the following situations: 
1. there exists a non-degenerate convex 4-gon Q — (111,112, us, 114) in D2 with 

no singular point in its interior, with ui and us boundary vertices, one of 
which is concave, and U2 and U4 either convex boundary vertices of interior 
vertices; then, by remark (2) above, we can deform the metric, decreasing the 
(total) angle at ui and U3 and increasing the total angle at U2 and U4, until 
Q is degenerate or one of the convex boundary points is almost concave. 0 
decreases in this deformation. 

2. there exists a non-degenerate 4-gon Q — (^1,^2,^3,^4) in D2 with no singular 
point in its interior, which is concave at the concave boundary point iti, 
with 1*2,^3 and u^ convex boundary vertices or interior vertices; then we can 
deform the metric along remark (3) above, increasing the angle at ui and 
decreasing it at U2, u^ and u^, again until one of the convex boundary vertex 
is almost concave. Again, this decreases 0. 

3. there exists a non-degenerate convex 4-gon Q = (^1,^2,^3,^4) in D2 with 
no singular point in its interior, with ui a convex boundary vertex which 
is adjacent to a concave boundary vertex UQ, ^3 a boundary vertex, and 
U2 and U4 interior or convex boundary vertices; then, following remark (2) 
above again, we can deform the metric to increase the convexity at ui, and, 
repeating the operation for the other boundary vertex adjacent to IZQ, we can 
get into case (1), using UQ as the concave boundary vertex in case (1). 

Now, because of remark (1) above, it is not difficult to check that, unless the 
boundary is convex, the metric is always in one of cases (1), (2) or (3), so that 
applying a finite number of times one of those 3 arguments leads to 0 = 0, and so to 
a metric with convex boundary, as needed. □ 

Proof of proposition 6.8. The first point is that, if QQ G TE(q+, g_, r+1, Q; L+, L~), 
then there exists a geodesic space-like segment 70 joining two singular points, one of 
which is interior. This is because go has an interior singular point m; if no space-like 
geodesic segment joined m to another singular point m' (interior or on the boundary) 
then no geodesic segment starting at m could reach the boundary, so the universal 
cover of (S1 x [0,1],#0) should contain the union of all space-like geodesies through 
m. This is clearly impossible, for instance because the area of #0 could then not be 
bounded. 

By definition 3.1, the sum of the angles of go at m is 27r -f 2i9m, for some 9m G 
R+ \ {0}. Let 7o~,7o" be the maximal (space-like) geodesic segments starting from 
m, making angles ±i9m with 70 at m. For 9 > 0 small enough, let 7^,7^" be the 
maximal (space-like) geodesic segments starting at ra', making an angle ±i9 with 70 
at ra'. 7^",7^~ are well defined and intersect 7o~,70~ for 9 G [0,#o], where 9o is such 
that one of the following alternatives is true: 

1. ra' is an interior singular point of go, and the sum of the angles at ra' is 
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27r + 2i0o; 
2. m' is on the boundary, and 7^ or 7^ follows the boundary in a neighborhood 

of m'; 
3. 7^ or 7^ goes through a singular point of QQ. 

For 6 G [O,0o)j define a new metric ge by removing from QQ the two triangles 
bounded by (7o?7o"?7^) and by (7ch7cn70~) respectively, and by gluing the corre- 
sponding edges, m is not a singular point of go (for 6 > 0), because the sum of the 
angles at of ge at m is 27r. But another singular point appears at the intersection of 
7o~ and 7^ (which is identified with the intersection of 7^ and 7^ in the metric 70). 
So, for 6 e [O,0o), 90 e TE(q+,q-,r + 1,Q;L+,L-). 

In case (1) above, g0o has one interior singular point less than #0? so the proposi- 
tion is proved. In cases (2) and (3), the same procedure can be used inductively for 
91 '-— 900 1 leading to a new metric #2 := ge^ and so on. Since the area decreases at 
each step, the minimal (for the area) metric obtained in this way from #0 has to be 
one for which case (1) applies. D 

The proof of proposition 6.9 is elementary: each metric a E TE(q+1q-^0:Q) is 
isometric to the domain bounded by two polygonal space-like simple curves (with q+ 

and q- vertices respectively) in the quotient of E^ or Ef 0 by a translation. We leave 
it to the reader to check, by deforming the boundary curves, that two such metrics 
can be connected by a continuous path in TE(q+, #_, 0, Q). 

Proposition 6.10 is a simple consequence of lemma 5.1. Both go and gi can be 
realized on convex caps Co,Ci in Ef, with boundaries FcFi in E2 C Ef. Given 
(I^efo,!]* it is easy to deform FQ into Fi through polygonal convex curves (Tt)te[o,i] 
in E2 C Ef. It is also easy, then, to find convex caps (Ct)te[o,i] ^n ^1 such ^at 

dCt = F^. The induced metrics {gt)te[o,i] on (Ct) provide the path we need. 

The proof of proposition 6.13 is similar to the proof of proposition 6.8, but more 
details are needed because of the length conditions. In the first step, we choose 70 
of length less than TT. The existence of such a space-like geodesic segment is assured 
only because simple T-geodesic curves of #0 have length L < 27r: this means that #0 
can not contain the union of all space-like geodesic segments of length TT starting from 
m. 

The construction of step 2 is as for proposition 6.8, but a crucial point is that 
ge remains in Ts(q+,q-,r -h 1,Q) because (since go is obtained from #0 by removing 
material) the length of the longest T-geodesic curve can not increase. In fact, for any 
metric g E Ts(q+,q-,Q,r + 1), the longest simple space-like curve is T-geodesic (it 
is possible to deform any space-like curve into a T-geodesic, by replacing parts of it 
by geodesic segments, therefore increasing the length); any T-geodesic c of ge can be 
"lifted" to a longer space-like curve c' of g (by adding a geodesic segment in the part 
of g which has been removed) and c is therefore shorter than a closed T-geodesic of 

9- 

Proposition 6.14 is proved as proposition 6.9; and proposition 6.15 as proposition 
6.10, using the condition that the sum of the elements of each L1 is less than 27r to 
realize L* as the successive lengths of the segments of a convex polygonal curve in a 
space-like 2-plane in Sf. 

To prove proposition 6.16, we use the same ideas as in [Pog73]: we choose a 
geodesic segment 70 joining two singular points mo,, mi in the upper hyperbolic part 
of CTQ, and call KQ = 2#o and Ki — 29i the singular curvatures of CTQ at mo and mi 
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respectively. Call To the hyperbolic triangle with vertices ^0,^1,^2 such that: 
• the distance between VQ and vi is the length of 70, i.e. the distance between 

mo and mi along 70; 
• the angle at ^0 is 0o; 
• the angle at vi is 9. 

Now define ae (for 8 G [O,0i]) by cutting CTQ open along 70, and gluing in two copies 
of Tg. Each copy of the segment (VQ.VI) is glued to one side of 70, and both copies of 
(^0,^2) and of (vi,V2) are glued together. For 6 e [O,0i), ae has two singular points, 
one at vi ~ mi, the other at V2 — the singular point at VQ 2^ mo disappears since 
the total angle after gluing is exactly 27r. For 8 = #1, the singular point at vi also 
disappears, so a01 G H(p+,p-,r) as needed. 

Proposition 6.17 is proved just like proposition 6.8 (or proposition 6.13); again, the 
existence of a space-like geodesic segment of length less than TT between two singular 
points comes from the condition that T-geodesic curves have length less than 27r. 

~ 3 
Finally, proposition 6.18 is just about special triangles in HS , because a triangle 
~ 3 

in HS   is determined by its edge lengths (see [Sch98a]) so that a HS metric with 3 
singular points is made of two copies of a triangle glued along their boundaries. We 
leave it to the reader to check that the three spaces of triangles under consideration 
are connected. 

~  3 
7.  Main proofs in HS    and E\.  The results of the previous sections are 

brought together here to give the proof of theorems 1.3 and 1.2. Since the important 
lemmas have been given above, the essential point that remains to be proved is that 
the number of inverse images of each metric, which is constant by a general argument 
given below, is in fact one. We prove this in a simpler and more general way than in 
[Sch98a]. 

Note that there are only three independent statements to prove; all the others 
results stated in the introduction about compact polyhedra are either consequences 
or proved elsewhere. Those three results are theorem 1.2, for compact polyhedra in 
the Minkowski space, case (D.3) of theorem 1.3, for compact type polyhedra in the 
de Sitter space, and case (D.2) of theorem 1.3 for polyhedra of bi-hyperbolic type 

~ 3 
in HS .   Case (D.l) of theorem 1.3 is a consequence of [Sch98a].  Theorem 2.2 and 
corollaries 2.4 and 2.5 are consequences of theorem 2.6, which is itself a translation of 
case (D.2) of theorem 1.3, for compact type polyhedra. The next section contains the 
proof of theorem 1.5 from theorem 1.3. The results of the introduction on complete 
non-compact polyhedra follow. 

The proofs of all three results are based on a "deformation" method: we define 
a natural operator $ from a space of polyhedra to a space of metrics with the same 
dimension. Then we prove that $ is locally injective (polyhedra are rigid) and proper 
(sequences of polyhedra can not degenerate if the induced metrics converge). $ is 
therefore a covering of the space of metrics by the space of polyhedra. Then we prove 
inductively on the number of vertices/singular points that it is actually a homeo- 
morphism. To avoid some technical complications concerning the space of metrics, 
we first consider only (as in [Sch98a]) polyhedra having at most one triangular face 
which is degenerate (and metrics with the corresponding property). 

Consider first the setting of theorem 1.2. 

DEFINITION 7.1. Let p+7p-,q+,q-,r e N and Q G Q(<7_,</+,r) with q+,q- > 
2.   A convex, non degenerate polyhedron P in Ef is in £'(p+,p-,q+,q-,r,Q) if it 
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has p+ vertices in the interior of D+, p- in the interior of D-, q+ on dD+, q- 
in dD- and r in the interior of T, and if Q describes the intersection of dD- 
and dD+. £(p+1p-,q+,q-,r,Q) is the quotient of £'(p+,p-,q+,q-,r,Q) by the ac- 
tion oflsom(Ef), £0(pjr1p-^qjt^q-^r1Q) the subset of polyhedra with at most one 
triangular degenerate face, and £1(p+Jp-,q+,q-,r1Q) := £(p+,p-,q+,q-,r,Q) \ 
£0(p+,P-59+5tf-,r,<2). 

"At most one degenerate triangular face" means here that the polyhedra can have 
at most one degenerate face, and that this face has to be triangular. An analogous 
definition holds in the space of metrics: E0 is the space of metrics in E which have 
at most one degenerate triangular face, and E1 = E \ E0. 

We now fix p+,p-,q+,q-,r,Q and stop writing them except when necessary; for 
instance, "£" means "£(p+,p_,^+,^_,r, Q)". 

E0 has a natural manifold structure. To define it around a point CTQ € E0, choose 
a triangulation r of CTQ such that, if CTQ has a degenerate triangular face, then it is 
a triangle of r. Then define a map </> from a neighborhood U of CTQ in E0 to R/4, 
where A is the number of edges of r, sending a G U to the A-uple of the squares of 
the (complex) lengths of its edges. Then (as proved in [Sch98a], proposition 9.2) </> 
sends U to a neighborhood of 0(cro) in RA Moreover, the maps coming from different 
triangulations of CTQ are compatible, so E0 is a manifold. We call T^o the associated 
topology on E0. 

£0 also has a natural (and simple) manifold structure: it is locally a product of 
3N copies of Ef (where iV is the number of vertices) quotiented by an action of a 
6-dimensional group. A rather simple counting argument then shows the: 

LEMMA 7.2. Both £0 and E0 have dimension 3N — 6, where N is the total number 
of vertices in of polyhedra in £, and of singular points of metrics in E. 

There is a natural morphism <&E • £ -> E, sending a convex polyhedron to the 
induced metric. Moreover, $E restricts to <&0

E : £0 ->■ E0. With the topologies 
defined above, it is easy to check that ^ is C1 - of course it is important here that 
the manifold structure on E0 was defined using the squares of the lengths of the edges. 
Now, a direct consequence of lemma 3.6 is that: 

LEMMA 7.3. $% is locally injective, i.e. its differential is an isomorphism. 

We can also reformulate lemma 4.1 as: 

LEMMA 7.4. ^ is proper. 

$0
E is therefore a covering of E0 by £0. Moreover, lemma 6.4 shows that E is 

connected; E0 is therefore also connected, because any path in E can be deformed to 
avoid metrics with more than one triangular degenerate face (see [Sch98a] for details, 
this is mainly because the condition to have at more than one triangular degenerate 
face is of codimension at least 2). We will then prove, inductively on the total number 
of vertices/singular points, the: 

LEMMA 7.5. $% is a homeomorphism from £0 to E0. 

To prove this lemma, we need to show that, when we add a vertex to the polyhedra 
and a singular point to the metrics (for instance by adding 1 to p+, p_, r or one of 
the other parameters) each point of E0 still has only one inverse image. We give 
the proof for the case where p+ is increased by one unit, the other cases are similar. 
Instead of writing all the parameters each time, we denote by E0 and £0 the spaces 
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corresponding to the initial value of p+, and by E  and S   the spaces for the value of 
p+ increased by 1. 

Since the number of inverse images is constant on E , we only need to prove the 

result for a special element of E . Choose PQ G £0 such that JD+ has at least one 
triangular face T, and let XQ be an interior point of T. Call 61,62,63 the edges of T, 
and vi,V2iV3 its vertices. Let CTQ = $0

E(Po). 

Note that (again with the manifold structure defined on E0 and on E above) 

E0 has a natural mapping into dE , since a metric with iV singular points can be 
obtained as a limit of a sequence of metrics with N + 1 singular points. So we can 
consider CTQ as in dE . 

ASSERTION 7.6. There exists a neighborhood U of ao in the closure of E such 

that, if a G U and $E(P) = a, then the geodesic segments of a joining vi,V2 and V3 
and corresponding to 61,62 and 63 are edges of P. 

The proof is easy: otherwise, there would exist a sequence of metrics in E   con- 
—0 

verging to CTQ, which are images by $E of a sequence of polyhedra with a combinatorics 
which is different from that of PQ; by lemma 4.1, some subsequence of this sequence of 
polyhedra should converge to a polyhedron with the same induced metric as PQ, but 
a different combinatorics. This is impossible, because we have supposed inductively 
that $E is injective. 

Now we only need a local argument to conclude: 

ASSERTION 7.7. Let To be a non-degenerate space-like triangle in Ef, and let yo 
be a point in the interior of TQ . Let V be a neighborhood of yo in the half-space above 
the plane containing TQ. Define a mapping (j) sending y G V to the metric m on the 
convex hull ofTo and y.IfV is small enough, then (j) is injective. 

We leave the proof to the reader; the point is that the position of y^ is uniquely 
determined by the lengths of the segments joining it to the vertices of To, which are 
also uniquely determined by the metric on the pyramid above TQ in the convex hull 
of TQ and m. 

The proof of lemma 7.5 follows, at least concerning the addition of a vertex in 
D+: by assertion 7.6, metrics close to CTQ are obtained on polyhedra which have the 
edges of T as edges, while assertion 7.7 shows that each metric close in E , close 
enough to CTQ, and differing only in T, is obtained only once on a polyhedron which 
has the edges of T as edges. 

We can conclude that $^ is a homeomorphism from £0 to E0. We also have 
to show that $£ is one-to-one from £l to E1. The fact that §l

E is surjective is a 
consequence of lemma 4.1: a metric a in El is the limit of a sequence of a limit 
of metrics in E0, which are induced on a sequence of polyhedra in £0, which has a 
converging subsequence. The limit has a as induced metric. 

The proof that §l
E is injective uses the same argument as in [Sch98a], based on 

the following analog of lemma 10.3 of [Sch98a]: 

PROPOSITION 7.8. Let a G E, and let U be a neighborhood of a in E. There 
exists another neighborhood V C U of a in E such that, if m' ,m" G V fl E®, there 
exists a path connecting mf to m" in U HE0. 

The proof can be done as for lemma 10.3 of [Sch98a] (essentially using the fact 
that E is defined by open conditions), so we leave it again to the reader. 
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Now suppose that P',P" € S1 are distinct with a = ^(P') = ^(P'O € J571, 
there would exist a neighborhood U of m in E such that P' and P'7 are in different 
connected components [/',£/" respectively of ($£;)_1 (J7). We could then choose a 
neighborhood F C U of a in E as in proposition 7.8, and call V, F'7 the connected 
components of P^P" respectively in (^£;)~1(I/r). 

If PQ € V fl f0 and P" G F" fl E0, there would exist a path 7 connecting 
CTQ := $E(PO) to CTQ = ^^(Po') in U H E0; since ^^ is a homeomorphism, we would 
obtain by deformation an inverse image of (7Q in U'; since OQ' has another inverse 
image in [/", <b% could not be injective, a contradiction. This finishes the proof of 
theorem 1.2. 

To prove theorem 1.3, we use similar definitions: 

DEFINITION 7.9. Let p+,p-,q+,q-,r e N and Q e Q(q-,q+,r) with q+,q- > 
2. A convex, non degenerate polyhedron P in Sf is in C^p^-^p-^q^^q-^r^Q) if 
it has p+ vertices in the interior of D+, p- in the interior of D-, q+ on dD+, 
q- in dD-, r in the interior of T, and if Q describes the intersection of dD- 
anddD+. C(p+,p_,^+,g_,r,Q) is the quotient 0/C/(p+,;p_,<7+,<7_,r,Q) by the ac- 
tion of Isom(5i)? C0 (p-|-, p_, 5+, ^_, r, Q) the subset of polyhedra with at most one 
triangular degenerate face, and Cl(p+,p-,q+iq-,r,Q) := C(p+,p-,q+,q-,r,Q) \ 
C0(p+,P-,q+,q-,r,Q). 

We fix p+1p-1q+,q-1r,Q again, and stop writing them. 
C0 has a natural manifolds structure, defined as for E0, but with the cosh of the 

(complex) lengths of the edges instead of the squares. We call Tco the associated 
topology on C0. C0 also has a natural (and simple) manifold structure: it is locally a 
product of 3N copies of S3 (each corresponding to a projective model) quotiented by 
an action of a 6-dimensional group. 

The analog of lemma 7.2 is: 

LEMMA 7.10. Both C0 and C0 have dimension SN — 6, where N is the total 
number of vertices of polyhedra in C, and of singular points of metrics in C. 

Now define $c ' Cs -» Cs, sending a convex polyhedron to the induced metric. 
$c restricts to ^ : C0 ^ C0, where C0 is the space of metrics in C which have at 
most one degenerate triangular face. With the manifold structures defined above, it 
is not difficult to check that $^ is C1 (it is necessary, though, to use the cosh of the 
edge lengths to obtain this result). Lemma 3.5 shows that: 

LEMMA 7.11. <I>^ is locally injective, i.e. its differential is an isomorphism at 
each point. 

Theorem 4.2 also contains, as the special case where the sequence considered is 
made of polyhedra of compact type, the: 

LEMMA 7.12. $^ is proper. 

$£ is therefore a covering of C0 by C0. Again, C and C0 are connected by lemma 
6.4. We prove, inductively on the total number of vertices/singular points, the: 

LEMMA 7.13. $^ is a homeomorphism from C0 to C0. 

The proof is the same as for lemma 7.5, except that the local argument needed 
(equivalent to assertion 7.7) is now in Sf instead of Ef. 

The analog of proposition 7.8 is again proved as in [Sch98a]: 
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PROPOSITION 7.14. Let a e C, and let U be a neighborhood of a in C. There 
exists another neighborhood V C U of a in Cs such that, if m',m" G V fl C0, there 
exists a path connecting m' to m" in U fl C0. 

The proof of theorem 1.3 is then as the proof of theorem 1.2 above. 

We now give the idea of the proof of case (D.2) of theorem 1.3. 

DEFINITION 7.15. Let p+,p-:r e N with p+ -f p- + r > 3. A convex, non- 

degenerate polyhedron P in HS> is in H'(p+,p-,r) if it has p+ vertices in H+, p- 
in H^_, and r in Sf.   %(p+,p_,r) is the quotient of %'(£>+,;?_, r) by the action of 

Isom(H£>), ?^0(p4_,p_,r) C ^(p+,p_,r) the subset of polyhedra with at most one 
triangular degenerate face, and 'H1(p+,p_,r) := Tify+^p-^r) \ 7i0(p+,p-,r). 

We fix p+,p-,r again, and stop writing them. 
H0 has a natural manifolds structure, defined as for E0, with the cosh of the 

(complex) lengths of the edges. We call THO the associated topology on H0. H0 

also has a natural (and simple) manifold structure: it is locally a product of 3iV 
copies of S3 (each corresponding to a projective model) quotiented by an action of a 
6-dimensional group. 

The analog of lemma 7.2 is: 

LEMMA 7.16. Both 1-i0 and H0 have dimension 3N — 6, where N is the total 
number of vertices in of polyhedra in H, and of singular points of metrics in H. 

Now define $H ' W* -+.H, sending a convex polyhedron to the induced metric. 
$H restricts to ^^f : ^0 ""* ^0> where H0 is the space of metrics in H which have at 
most one degenerate triangular face. With the topologies defined above, it is easy to 
check that $5/ 1S Cl. Lemma 3.5 shows that: 

LEMMA 7.17. $5f Z5 locally injective, i.e. its differential is an isomorphism at 
each point. 

We can also reformulate theorem 4.2, in the special case where the sequence of 
polyhedra considered is of bi-hyperbolic type, as: 

LEMMA 7.18. $0
H is proper. 

$0
H is therefore a covering of H0 by H0. Again, H and H0 are connected by 

lemma 6.4. We prove, inductively on the total number of vertices/singular points, 
the: 

LEMMA 7.19. $0
H is a homeomorphism from H0 to H0. 

The proof is the same as for lemma 7.5, except that the local argument needed 
~  3 

(equivalent to assertion 7.7) is now in HS instead of Ef; it can be in H3 for a 
hyperbolic face, or in Sf with a time-like triangle, depending on the kind of face 
which is modified by adding a vertex. 

The analog of proposition 7.14 is again proved as in [Sch98a]: 

PROPOSITION 7.20. Let a G H, and let U be a neighborhood of a in H. There 
exists another neighborhood V C U of a in H such that, if m' ,mn G V fl H®, there 
exists a path connecting m! to m" in U fl H0. 

The proof of case (D.2) of theorem 1.3 follows again as for theorem 1.2 above. 
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8. Complete polyhedra. This section contains the proof of theorem 1.5 from 
theorem 1.3. 

If P C Sf is a convex, complete (non compact) polyhedron, convex meaning that 
it lies on the boundary of its convex hull, then it is easy to see that P is the restriction 

~  3 
to Si of a convex polyhedron in HS , to which theorem 1.3 can be applied. We need 
to understand whether a complete polyhedral metric on S2 minus M points can be 
extended, by adding disks with complete hyperbolic metrics, to obtain a HS metric to 
which theorem 1.3 can be applied to find a polyhedron. The main remark is that the 
only invariant at each end is the "angle" defined in section 1, right before theorem 
1.5. 

The first point is that the angle at infinity of a complete hyperbolic metric on 
D2, with singular points of positive singular curvature, is in [0,27r] U «R+. 

LEMMA 8.1. Let a be a complete hyperbolic metric on D2, with N singular points 
where the singular curvature is positive. Then the angle 8 at the end is in [0,27r] UiR7 

and 9 = 27T if and only if (D2, a) is isometric to H2. 

This lemma could actually be extended to the case where the metric is hyperbolic 
only in a neighborhood of dD2, and is only HS and convex at its singular points. 

The second point is that there is no other restriction, and that all other angles 
can be achieved uniquely by taking a HS metric with only one singular point (but 
they might have a de Sitter part). There are no constraints at all for HS metrics 
which are de Sitter on a neighborhood of dD2: 

LEMMA 8.2. 
1. Let 6 G [0,27r). There exists a unique complete hyperbolic metric on D2 with 

one singular point where the curvature is positive (it is equal to 27r — 6); 
2. for 6 ■€ iR+, there exists a unique complete HS metric on D2, hyperbolic 

near D2, with one convex singular point (it is in a de Sitter component of the 
metric if 0 ^ 0); 

3. for 8 G RUiR, there exists a unique complete HS metric on D2, modeled on 
S2 near dD2 y with one convex singular point. 

The proof of theorem 1.5 is now straightforward. Suppose first that (cr, S) is a 
complete marked HS metric induced on a complete convex polyhedron P in Sf. Since 
P is convex — i.e. it lies on the boundary of its convex hull — it is easy to construct a 

convex polyhedron P C HS3 such that PnSf = PnS?. Conditions (A), (B), (C) and 
(E) of theorem 1.5 are the consequences of conditions (A), (B), (C), (D) respectively 
of theorem 1.3, while condition (D) of theorem 1.5 follows from lemma 8.1. 

Conversely, if (a, S) satisfies condition (D) of theorem 1.5, then, by lemma 8.2, 
we can add at each end a disk containing a single singular point, so as to obtain a 
convex HS metric (S,^). If conditions (A), (B), (C), (E) and (F) of theorem 1.5 are 
true, then theorem 1.3 can be applied to (D,^7), which is induced on a unique convex 

polyhedron P C HS . Moreover, P can be decomposed into a complete polyhedron 
P C Sf and M disks, each containing a single vertex, so that P is cylindrical — and 
(cr, S) is induced on P. This proves theorem 1.5. 

Here are the proofs of lemmas 8.1 and 8.2. 

Proof of lemma 8.1. The first remark is that the metric has angle 8 if and only 
if some neighborhood of dD2 is isometric to the a neighborhood of dD2 in (D

2
,<7N), 

where an is a complete HS metric on D2 with a single singular point p where o/v is 



360 J.-M. SCHLENKER 

~  3 
convex, p might be hyperbolic (then 8 £ [0,27r]) or in the de Sitter part of HS (and 
6 e iR). 

We will prove recursively an assertion slightly more precise than the lemma: if g 
is a hyperbolic metric with singular points on D2, pi, • • •, pk are singular points where 
the singular curvature of g is positive, and ft is a convex domain with pi, — - ,Pk in its 
interior, then D2 \ ft is isometric to the complement of a compact subset containing a 
single singular point qk in (D2, gk), where </& is a complete HS metric on D2. Moreover, 
gk is convex at qk- 

For k = 1, this is obvious, because g doesn't need to be modified. Suppose this 
assertion is established for k. Let pi, — - ^Pk+i be singular points of g in a convex 
domain ft'. Choose a convex domain ft C fi' containing k of the points Pi, • • • ,Pk+i', 
for simplicity, suppose that those points are pi,- • • ,pk. Apply the assertion to ft; 
D2 \ ft is isometric to the complement of a convex domain ft in (D2,gk), and fi7 

corresponds to a convex domain ft C (D2,gk) (with f] \ ft isometric to ft' \ ft), ft 
contains 2 singular points, qk and Pk+i, where #& is convex, and p^+i is a hyperbolic 
point. 

Now <7fc+i can be built from gk by a simple surgery. Call 26qk and 20pfc+1 the 
singular curvatures at qk and pk+i respectively. Let T = (p, q, r) be the (unique) 
triangle in HS such that: 

• the length of (p, q) is the distance between pk+i and qk] 
• the angle at p is 0pk+1; 
• the angle at g is #gfc. 

Then cut gk open along the segment joining p^+i to #&, and glue in two copies of T, 
with the two copies of (p, 9) going to the two edges of the cut, and the two copies of 
(p, r) and of (#, r) respectively glued to each other. The resulting metric p^+i has the 
properties needed. D 

Proof of lemma 8.2. The proof is elementary: in each case, one only needs to 
check that there is a unique metric with a single singular point as described, and that 
the angle at the end, which is 27r minus the singular curvature at that point, takes 
the necessary values. □ 

9. Smooth analogues. Most of the polyhedral theory of isometric embeddings 
of Riemannian surfaces has a smooth counterpart. The basic point in this area is the 
following classical result: 

THEOREM 9.1 (Nirenberg [Nir53], Aleksandrov [Ale51], Pogorelov [Pog73], 
Labourie [Lab89], etc.). Let g be a C00 Riemannian metric on S2 with curva- 
ture K > — 1 (resp. K > 0, K > 1). Then (S2,g) admits a unique C00 isometric 
embedding in H3 (resp. E3, S3). 

This result was originally proved (in a slightly weaker version with respect to 
smoothness) by approximating Riemannian metrics by polyhedral ones, applying the- 
orem 1.1, and taking the limit of a sequence of polyhedra to obtain a (not so) smooth 
surface. 

In Lorentzian space-forms, the polyhedral and smooth results for Riemannian 
surfaces are also parallel; [Sch96] gives a smooth analog of the polyhedral result of 
Rivin and Hodgson [RH93]. It should be pointed out that it is not as easy to go 
from the polyhedral case to the smooth situation (or the other way round) as in the 
Riemannian setting, because of some convergence problems: a sequence of polyhedra 
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could diverge (even if, say, the tangent space at a point is fixed) while the induced 
metrics converge. 

More recent proofs of theorem 9.1 ([Ham82], [Lab89] or [Sch96] in the de Sitter 
setting) use a Nash-Moser inverse function theorem between spaces of smooth met- 
rics and embeddings. On the other hand, Pogorelov [Pog73] proved that analogs of 
theorem 1.1 and 9.1 can be proved with very minimal smoothness assumptions, in the 
setting of Aleksandrov spaces. 

There are some results for the existence and uniqueness of isometric embeddings 
of smoooth convex surfaces in iJ3 and in Sf, related to theorem 1.4 or to theorem 
2.7 applied to space-like metrics. But they only deal so far with metrics of constant 
curvature [Sch98b]. The "cylindrical" condition at infinity does not seem to make 
much sense in this smooth setting, but it can be replaced by the hypothesis that 
the boundary at infinity of the surface is a disjoint union of circles — a well-defined 
condition since the circles of dooH3 are the traces of the totally geodesic 2-planes. 

Pogorelov [Pog73] also investigated convex caps in Riemannian space-forms. 
Again, some smooth results can be obtained by approximating smooth metrics by 
polyhedral ones. On the other hand, a direct proof of the existence of smooth embed- 
dings leads to the study of a PDE problem on a convex domain (the unknown function 
is the distance to a totally geodesic 2-plane, and the PDE is on the disk with the met- 
rics which one wants to embed). Since the PDE is elliptic of Monge-Ampere type, 
the methods developed by Caffarelli, Nirenberg and Spruck [CNS84] apply, leading to 
the existence of solutions. Other methods then show that the solutions are unique. 
It should be pointed out that the smoothness up to the boundary of the resulting 
embeddings is a subtle point, which was treated by Delanoe [Del88]. 

It is interesting to consider how the existence of solutions of those Monge-Ampere 
solutions is proved in e.g. [GS93] (see also [CNS84, HRS92, RS94, Spr95]). The ba- 
sic point is a notion of sub-solutions, and a maximization argument to prove that 
a maximal such sub-solution exists, and that it is actually a solution. This is com- 
pletely parallel to the method developed by Volkov [Vol60] to prove the existence 
of polyhedral convex caps, and used (along the lines of [Mil86]) in section 4. The 
height of the vertices as used by Volkov is the analog of the function appearing in the 
Monge-Ampere equations of [GS93], and it ends up being the distance to the plane 
containing the boundary. The Volkov method of [Vol60] could be considered as a 
polyhedral version of the method of [GS93] (or the other way round). The polyhedral 
situation involves some subtleties of a combinatorial nature absent from the smooth 
problem (one has to change the triangulations in an adequate way), but the results 
in the smooth case involve difficult questions on C2 estimates at the boundary (one 
should however be aware of the very geometric approach of [Lab97] concerning those 
questions). 

It might be interesting to understand whether the kind of results developed in 
~   3 

this text, about convex polyhedra in HS with both a hyperbolic and a de Sitter part, 
can be extended to the smooth case. This would mean understanding the metrics 
induced on smooth (strictly) convex surfaces in S3, when S'3 is considered with a 

~  3 
projective model of HS . Those surfaces might then have both a hyperbolic and a 
de Sitter component, both complete. The hyperbolic part of the metric should then 
be Riemannian and asymptotically hyperbolic, while the de Sitter part would be 
Lorentzian near the end, and in some way "asymptotically de Sitter". 

One might also wonder whether theorem 1.2, for instance, has a smooth analog. In 
other terms, is there a geometrically significant description of the metrics induced on 
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smooth, convex surfaces in Ef ? Such metrics should again have both a Riemannian 
and a Lorentzian part, but not complete. I do not know whether this leads anywhere. 

On the other hand, the works of Il'khamov and Sokolov [IS90] and of Gajdalovich 
and Sokolov [GS86] can be used to prove similar existence results for surfaces which 
are smooth, except along a line (for the analog of theorem 2.2) or on two points (as 
in corollary 2.5), by approximating a smooth metric (again except along a line or 
at two points) by a sequence of polyhedral metrics, and then taking a limit of the 
corresponding sequence of polyhedra (some care is needed to prove the convergence). 
The same could be done in the de Sitter setting, starting from the polyhedral theorem 
2.2 and corollary 2.5. A direct approach might lead to better results in term of 
smoothness, and might also lead to uniqueness results. 
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