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THE STRUCTURE EQUATIONS OF
A COMPLEX FINSLER MANIFOLD*

A. SPIROT

A mio padre

Abstract. For a strongly pseudo-convex complex Finsler manifold M, a bundle Ur(M) of
adapted unitary frames is canonically defined. A non-linear Hermitian connection on Up(M), in-
variant under local biholomorphic isometries, is given and it proved to be unique. By means of such
connection, an absolute parallelism on Up(M) is determined and a new set of structure functions
which generate all the isometric invariants of a Finsler metric is obtained.

A pseudo-convex complex Finsler manifolds M, which admits a totally geodesic complex curve
with a given constant holomorphic sectional curvature through any point and any direction, is called
E-manifold. Main examples of E-manifolds are the smoothly bounded, strictly convex domains in
C"*, endowed with the Kobayashi metric. A complete characterization of E-manifolds, using the
previously defined structure functions, is given and a smaller set of generating functions for the
isometric invariants of E-manifolds is determined.

1. Introduction. The main purpose of this paper is to give a complete set of
invariants, which characterize a strongly pseudoconvex complex Finsler metric up to
local biholomorphic isometries. Several properties of these invariants are immediately
related with the intrinsic geometry of the Kobayashi metric of the smoothly bounded,
strongly convex domains in C".

Let M be a complex manifold and J its complex structure. The well-known
infinitesimal Kobayashi pseudo-distance kp on TM = TM \ {zero section} can be
defined as follows ([Ko)]): for any x € M and any 0 # v € T, M, let A, the set of all
r € R* such that there exists a holomorphic map f : A, = M from A, = {|z| <r} C
C into M with f(0) = z and f*(a%) € Cv. Then

) 1
b0 = it
We consider the following class of complex manifolds.

DEFINITION 1.1. A complex manifold (M, J) is a Lempert manifold if

(1) the infinitesimal Kobayashi pseudo-distance kps is a strongly pseudoconvex
Finsler metric, that is:

a) it is a smooth function on 7'M with values in R*;

b) kar (W) = |A|kas(v) for any XA € C* and v € TM;

c) at any point x € M the hypersurface S, = {v € T, M : kp(v) = 1} is strongly
pseudoconvex in T, M,

(2) for any non-vanishing complex vector w € TCM C TCM, there exists a
complex curve v, : U C C — M, such that v,(0) = z, 7,,(0) = w and y(U) is a
totally geodesic submanifold of M;

(3) the metric, which is induced by ks on the totally geodesic complex curve
~Yw(U), is Kahler and with constant holomorphic curvature equal to —4;

(4) the (finite) Kobayashi distance dps, determined by kjy, is complete and the
exponential map exp : T, M — M is a diffeomorphism for any z € M.
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An immediate interest for Lempert manifolds comes from the well-known results
of L. Lempert on the Kobayashi metric of strongly convex domains in C* ([Le], [Lel]).
Some of his results can be stated as follows.

THEOREM 1.2. [Le] If M is a smoothly bounded, strongly convex domain in C",
then M s a Lempert manifold.

Since the convexity of a domain is not a biholomorphic invariant property, The-
orem 1.2 motivates the following question:

Are there some invariant properties of kar (to be added to (1) - (4) of Def.
1.1), which characterize the manifolds that are biholomorphic to a smoothly bounded,
strongly convex domain in C"?

Some encouraging results have been obtained by various authors (e.g. [Fa), [Pa],
[Le2], [BD], [AP], [AP1]). In particular, we would like to mention the following theorem
by J. J. Faran (see also [Pa]).

THEOREM 1.3. [Fa] (M,J) is a Lempert manifold if and only if it admits a
strongly pseudoconvex Finsler metric F, which verifies (2), (3) and (4) of Definition
1.1. In this case F coincides with the Kobayashi metric kys.

Faran’s Theorem has been improved by M. Abate and G. Patrizio in [AP] in the
following sense: they proved that if (M, J) has a strongly pseudoconvex Finsler metric
F, then it admits a natural non-linear Finsler connection and if the corresponding
torsion and curvature verify pointwise a certain set of conditions, then (M, J) satisfies
(2), (3) and (4) of Def. 1.1 and hence it is a Lempert manifold.

By Faran’s theorem, our previous question has positive answer if and only if
there exist some conditions, which are necessary and sufficient for the existence of a
biholomorphism between a Finsler manifold M, verifying (2), (3) and (4) of Def. 2.1,
and a strongly convex domain D C C".

The general problem of determining necessary and sufficient conditions for the
existence of a (local) isomorphism between two geometric structures is usually called
the (local) equivalence problem for those structures. In this paper we give a new
solution to the local equivalence problem for strongly pseudoconvex Finsler metrics
and, by means of this solution, we obtain a new complete set of invariant functions
which determine the complex Finsler metrics up to local biholomorphic isometries.
We also use these invariants to give a new characterization of Lempert manifolds.

Here are the contents of the paper. In §2 we recall and prove some preliminary
properties of complex Finsler metrics.

In §3 we introduce the concept of adapted unitary frames of a complex manifold
(M, J) with a strongly pseudoconvex Finsler metric F. The bundle Up(M) of all
adapted unitary frames turns out to be a subbundle of the complex linear frame
bundle LE(M), but in general it is not a principal subbundle; this is the case if and
only if there exists an Hermitian metric g so that F'(v) = 1/g(v,v) forall 0 # v € TM.

We also use the following terminology: any distribution which is complementary
to the vertical distribution and of dimension equal to dim M is named a non-linear
connection on Up(M). We say that a non-linear connection is of Hermitian type if it
is invariant w.r.t. the complex structure J of LE(M).

The main result of §3 is the following (Theorem 3.9).
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THEOREM 1.4. Let (M, J, F) be a strongly pseudoconvex Finsler manifold. Then
the unitary frame bundle Up(M) has a unigue non-linear connection of Hermitian
type. This connection is invariant under any biholomorphic isometry of (M, J, F).

This non-linear Hermitian connection on Ur(M) defines a non-linear covariant
derivation for vector fields of M which is invariant under any biholomorphic isometry.

In §4 we show that any fiber V, = n71(z) of Ur(M) is identifiable with the
adapted frame bundle of a pseudo-hermitian structure on the Finsler sphere S,. Us-
ing the Webster connection for pseudo-hermitian structures (see [We]), we define an
invariant absolute parallelism on each fiber V,, i.e. a set of vertical vector fields on
V., which at all points span T,V, and which is invariant under the automorphism of
the pseudo-hermitian structure of S, .

Using this absolute parallelism on the fibers and the non-linear Hermitian con-
nection H of Up(M), we obtain an absolute parallelism o on Up(M) which verifies
the following crucial property: the (local) biholomorphic isometries of (M, J, F) are
in 1-1 correspondence with the (local) diffeomorphisms of Up(M) which preserve o.

By Kobayashi’s theorem on the automorphisms of absolute parallelisms ([Kol]),
we immediately obtain the following result (Proposition 4.6):

THEOREM 1.5. Let (M, J) be a complex manifold of complex dimension n and F
a strongly pseudoconvex Finsler metric on (M, J).

The group of biholomorphic isometries Isop(M,J) is a Lie group of dimension
less or equal to n® + 2n. Moreover dimg Isop(M,J) = n? + 2n if and only if F is
equal to F(v) = \/g(v,v) for some Kdihler metric g of constant holomorphic sectional
curvature and (M, J, g) is a simply connected complez space form, i.e. CP™, C" or the
unit ball B® C C*, endowed with a Fubini-Study, flat or Poincaré-Bergmann metric,
respectively

In §5 we determine the Lie brackets of all possible pairs of vector fields of the
absolute parallelism ¢ of Up(M). By Cartan-Sternberg theorem the components of
these Lie brackets w.r.t. the vectors of the absolute parallelism generate a complete
set of invariant functions for the Finsler manifold (M, J, F') (see Proposition 4.6 and
Theorem Al). At the end of §5, we also give the so-called structure equations of the
Finsler manifold of (M, J,F), i.e. the equations that are verified by the 1-forms on
Ur (M) which are dual to the vector fields of the absolute parallelism.

At last, in §6, we determine the Euler-Lagrange equations for the geodesics of a
complex Finsler manifold. We recall the definition of complex geodesics (see [Ve] and
[AP]) and we find necessary and sufficient conditions for a complex Finsler manifold to
be of constant holomorphic sectional curvature and with a complex geodesic through
any point and any direction. We call such manifolds E-manifolds. Notice that the
Lempert manifolds are complete E-manifolds with holomorphic sectional curvature
equal to -4.

For the E-manifold, we also prove that the torsion and the curvature can be
expressed in terms of the other structure functions of the absolute parallelism on
Up(M) and hence that these structure functions are the actual generators for the
invariants of E-manifolds (see Theorem 6.9).

We have to mention that an alternative solution to the equivalence problem has
been given by J. J. Faran in [Fa]. He determines another set of invariant functions, by
pursuing the steps of a general algorithmic procedure: it is our personal opinion that,
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by this reason, it is quite cumbersome to obtain simple geometric interpretations for
the invariant functions introduced by Faran.

As final remark, we want to point out that our non-linear covariant derivation
on complex Finsler manifolds is strictly related (but different) with the non-linear
covariant derivation invented by S. Kobayashi in [Ko2]. In a forthcoming paper, we
will discuss this relation and we will show how to use the components of the curvature
and torsion tensors in order to determine the set of invariant functions given in §5.

2. Preliminaries.

2.1. Notation and basic definitions. In all this paper, we use greek letters
a, 3, etc. for indices related to holomorphic vectors, barred greek letters &, 3, etc. for
indices related to the conjugated vectors and latin indices i, j, k, etc. to denote real
vectors.

We denote by {eo,€1,---,€2n—1} the standard real basis of V = R?” = C?; J, is
the complex structure of C*. The standard basis is ordered so that J,(e2;) = €24+ for
any:=0,...,n. Weset g, = %(eza —vV—1ezqq1), a=0,...,n—1,and e5 = 5. We
also use the notation {¢'}, {¢*} and {e®} for the dual bases of {¢;}, {€} and {e5},
respectively.

<, > is the standard Hermitian product of V = C".

W denotes the subspace

W = spanc{e1,-..,en_1} = C* L.
(M, J) is always a complex manifold with complex structure J and complex dimension
n. We let TM = TM \ {zero section} and PTM = TM/C*.

For any v € ToM, 1, : TeM — T,(T, M) is the natural isomorphism between
T,M and T,(T; M). Using the maps 1,, any vector w € T, (T, M) C T(T, M) extends
to a vector field X () on T, M by letting X(®)|, =1, o1y (w). We call X®) the trivial
extension of w.

For any v € T; M, J denotes both the complex structure on 7, M and on T, (T, M).
The vectors v!? and v°! are the holomorphic and anti-holomorphic components of v

w.r.t. J 1 1
v!0 = 5(1} —v=1Jv), 00! = E(v + v —-1Jv).

The dilatation field D (also called Euler vector field) is the vector field on T M defined
as
D|, =1, (v).

A linear frame at a point z of M is an R-linear isomorphism u: R o T,M. A
complex linear frame at a point x is a C-linear isomorphism u: C* — T, M. We
always identify a linear frame u with the corresponding basis {f;} in T, M where

fi=u(&) € T M.

If u is complex, we denote by u!® the corresponding holomorphic basis, that is
1
ut® = {ea = ulea) = §(f2a -V =1faas1)}-

For any linear frame u on T, M, the point = = 7 (u) is called base point of u.
An absolute parallelism is a set of vector fields {X1,...,X2,} which are linearly
independent at all points and, hence, constitute a smooth field of frames on M.
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The collection of all linear frames on M is denoted by L(M); recall that it is a
GLs,(R)-bundle w.r.t. the projection map w. The collection of all complex linear
frames is denoted by LE(M); it is a principal G Ly, (C)-subbundle of L(M).

It is well-known that LE(M) admits a unique complex structure J which verifies
the following two conditions:

a) the restriction of J to the vertical subspaces of LE(M) coincides with the
complex structure of GL,(C);

b) the projection m: LE(M) — M is holomorphic.
We call J the standard complex structure of LE(M).

For any subbundle P C L(M), we denote by 6 its tautological 1-form, which is
defined as follows. For any frame u = {f;} € P C L(M) and any vector X € T, P, the
projected vector 7, (X) can be written as m,(X) = S o7;" 6% (X)f; for some numbers

6 (X). The tautological 1-form  is the R?"-valued 1-form

2n—1

(21) bu(X)= Y 6(X) i
=0

If P is a subbundle of LE(M), any vector X € T, P admits the decomposition X =
X104 x01 — Xx10 4 X10 where X0 is the holomorphic part of X wr.t. J. We
denote by 62(X°) and 6#3(X°) the components of m,(X'°) and 7.(X°') w.r.t. the
holomorphic and anti-holomorphic frame u'® and u°, respectively. In this way two
sets of C-valued 1-forms 6 and 6% are defined at all points of P. They are called
holomorphic and antiholomorphic components of the tautological 1-form 6.

Finally, for any A € gl,.(R), we denote by A* the associated fundamental vector
field, that is the vector field on L(M) whose flow is

34" (u) = uoexp(tA).

Since GL,(C) acts freely and transitively on the fibers of LE(M), the fundamental
vector fields span any vertical subspace V,, C T, L°(M). Therefore if P is a subbundle
of LE(M) (not necessarily a principal subbundle), we may consider the subspace g, C

g[n((c)
(2'2) Bu = { Ae g[n((c)7 A:; € TuP}'
We call g, the algebraic vertical subspace of P at the point u. Notice that P is a

principal subbundle if and only if g,, is a subalgebra of gl,(C) independent on u € P.
In this case g, = g = Lie(G), where G is the structure group of P.

2.2. First properties of complex Finsler manifolds.
DEFINITION 2.1. A complex Finsler metric on (M, J) is a continuous function
F:TM — R*

satisfying the following properties:
i) F is smooth on TM;
ii) F(u) >0, for all u € TM;
iii) F(Au) = |\|F(u) for all u € TM and any X € C.
A complex Finsler manifold is a complex manifold (M, J) endowed with a complex
Finsler metric F.
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A (local) biholomorphism f: M — N between two complex Finsler manifolds
(M,J,F) and (N, J', F') is called (local) biholomorphic isometry if F'(f.v) = F(v),
for any v € TM.

Note that any complex Finsler metric F' is in particular a real Finsler metric (see
e.g. [Cal, [Ch], [Ch1], [BC], [AP], [Sp]).

For any complex Finsler manifold (M, J, F'), the Finsler pseudo-sphere at a point
z is the hypersurface

(2.3) Se={veTyM : Flv)=1} Cc T, M.
We say that F' is associated with the Hermitian metric g if for any ve TM

(2.4) F(v) = Vg(v,v).

If this is the case, for any & € M the hermitian metric g, is recovered from F by

(2.5) gz (v, w) = %hvo (v, w),

where h is the quadratic form defined in the following formula (2.6) and v, is any non
zero vector of T, M. Note that if dimgc M = 1, then any complex Finsler metric is
associated with a Kdhler metric g.

The quadratic form h, the cubic form H and the quartic form H of a complex
Finsler metric F are the following multilinear forms on T(T'M). Let X,Y,Z,W €
Ty(TyM) and X, Y, Z and W be their trivial extensions. Then we set

b
v

(2.6) h,,(X,Y):X[Y(FZ)”v; Hv(X,Y,Z)=X[Y[Z(F2)]]

27) Hy(X,Y,2,W)= X [V [2[W (72)]]]

v

Since any set of trivial extensions commute, it is immediate to realize that h, H and
H are multilinear and totally symmetric in their arguments.

In all the following, for any v,w,z,t,y € T M, we will use the simplified no-
tation h,(w,z), Hy(w, 2,t) and H,(w, 2,¢,y) in place of h,(2,(w),2,(2)), Hy(2y(w),
1(2),15(t)) and H, (2, (w), 2(2), 14 (2), 2 (y)), respectively.

The gquadratic form E, the cubic form H and the quartic form H of a Finsler
pseudo-sphere S, C T, M are the the restrictions on T'(S;) of h, H and H. Note that,
since a Finsler pseudo-sphere is a level set of F'2, it follows that ﬂv is equal to

(2.8) h,(X,Y) = X'(Y'(F?)),
where X', Y’ are two arbitrary vector fields, which are tangent to S, and which
coincide with X and Y at v € S;. A similar result holds for H and H.

Since p; = (F? — 1)|1, i is a defining function for the Finsler pseudo-sphere S,

we have the following immediate Lemma, .

LEMMA 2.2. Let D, C T,,(S;) be the mazimal J-invariant subspace of T,(S;) of a
Finsler pseudo-sphere S and let DS = D°+D the corresponding decomposition into
holomorphic and anti-holomorphic subspaces. Let also L, the Levi form of S, C T, M
given by py (for the definition, see e.g. (3.1) in §3). Then for any X1° Y10 € DIO,

(2.9) L,(X10,Y10) = h,(X°,Y10).
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DEFINITION 2.3. A complex Finsler metric F' is called strongly pseudoconvez
(resp. Levi non-degenerate) if for any z € M the Levi form of the Finsler pseudo-
sphere S, is positive definite (resp. non-degenerate) at all points.

Note that if a complex Finsler metric F' is strictly convex as real Finsler metric
(for the definition, see f.i. [Ch], [AP] or [Sp]), then it is also strongly pseudoconvex.
The converse is obviously not true.

The following two Lemmata give some basic properties of h, H and H.

LEMMA 2.4. Let (M, J, F) be a complex Finsler manifold. For any 0 # v € T, M
consider the trivial extension ¥ of the vector D, = 1,(v) and let X, Y, Z, X; €
T(T,M),i=1,...,k, some trivially extended vector fields. Then

a) D (Fz)v =2F? and (JD) (F2)v =0;
b) D (X1 (X2 (... Xk (F2) )))| =(2-k) X1 (X2 (- Xe(F?)...))], 5
) JXi (X2 (... Xk (F?)...))], +X1(JX2( X (F2).0))], + -
ot Xy (X2 (- IXg (F?).0)], + ID (X (X (- Xk (F2)..)))], =05
d) D(F?)= D (F?) = F? and
ho(X10,819) =0, hy(X19,8%) = X1O(F?),;
e)
(2.10) H,(X'0,Y% 419 = H,(X10,Y% %) =0,
(211) Hv(Xlo,YIO,’Ulo) — —hU(XIO,YIO),HU(XIO,YIO,’UOI) — hU(XIO,YIO),
(212) v(,ﬁOl XIO YIO ZOl) __ 0’ U(,DlO X10 YOl ZOl) — 0,
(213) H ( ~10 XlO YlO ZOI) H (XIO YlO ZOl)
(214) H (AOl XlO YOl ZOl) (XIO YOl ZOl)

Proof. Consider on T, M the flows
(2.15) &, 0, T,M — T, M, ®,(v) =et-v, Tyv)=e’ v
Definition 2.1 (iii) is equivalent to
(2.16) (F? 0 ®,)(v) = €' F2(v),  (F%0¥;)(v) = F%(v)

for any v € TM and any t € R. If we identify any vector X € T, (T, M) with the
corresponding element in Ty, () (T M) and Ty, () (T M), the differentials ®;, and ¥,
can be written as

(2.17) Bpulp(X) =€ - X,  Tu|(X)=€7 X
Therefore for any trivially extended vector fields X; € T(T,M),i=1,...k,
(2.18) e [ Xy (Xa (- (Xk (F2)) ) e

= [B0a(X) [80:0) [+ (20 (K0) [F2]] ] o

=e® (X1 (X2 (.- Xk (F2))))],
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(2.19) et X, (6” - X ( . (e“ - X (Fz)) : ")){exp(tJ)v
= U () [Ten(Xa) [+ [Te(X) [F2]] D] g, o)
=X (X2 (.- (X (FP)..))], -

v

Taking the derivative at ¢ = 0 of (2.16), (2.18) and (2.19), one immediately obtains
a), b) and c).

d) follows from a), b).

To prove e), observe that b) and c) imply that

Hy(V,W,v) = o(V(W(F?)))s = D(V(W (F?)))s = (2 = 2)V(W(F?)), =0,
WV (W(Z(F?))) = (2 = 3)H(V, W, Z) = ~H,(V, W, Z),
and
H,(V,W, Jv) = JD(V(W(F?)))s = —ho(JV, W) = hy(V, JW),

From these identities and some straightforward computations (2.10) - (2.14) follow.
0

LEMMA 2.5. Let (M, J,F) be a strongly pseudo-convez Finsler manifold. Then
F is associated with an Hermitian metric g if and only if one of the following two
equivalent conditions are satisfied:
i) the cubic form H vanishes identically;
i) for any point x € M, any vector 0 # v € T, M and any X,Y € T,(T. M)

ho(X10,Y10) = 0.

Proof. If F is associated with an Hermitian metric, then (ii) is clearly satisfied.
Moreover, if (ii) hold§, for any three vectors 0 # X,Y,Z € T,(T.M), with trivial
extensions X,Y and Z, we get

Hv(Xlo,Ylo,Zlo) — Zlo(h(Xlo,Ylo))lv =0,
Hv(.XIO,YIO,ZOI) — ZOl(h(.XIO,YIO))Iv — 0’

and this implies (i). So, in order to conclude, we just need to show that (i) implies
that F' is associated with an Hermitian metric.

Note that if (i) holds, for any two trivially extended vector fields X and Y,
the value of h,(X,Y) is independent of v. Moreover, from (2.11), h, (X1, ¥10) =
H,(X°,¥10 391) = 0 and hence

hy(X,V) = by (X%, 7%) + 1, (X, V1),
So the quadratic form g, defined by (2.5) is an Hermitian metric on T, M and, by
Lemma 2.4 d), g.(v,v) = h,(v'°,2°!) = D1°(F?), = F2. O

From this point on, if the opposite is not stated, by complex Finsler metric and
complezx Finsler manifold we will mean strongly pseudoconvex complex Finsler metric
and strongly pseudoconvex complex Finsler manifold, respectively.

3. The non-linear Hermitian connection of a complex Finsler mani-

fold.
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3.1. The H-sphere bundle of a complex Finsler manifold.

DEFINITION 3.1. An Hermitianized sphere bundle on (M, J) (or, more shortly,

H-sphere bundle) is a pair (SM, p) where:

a) SM C TM is a smooth subbundle;

b) each fiber S, C T, M is a star shaped strongly pseudoconvex hypersurface of
(T, M, J), diffeomorphic to a sphere;

¢) pis a smooth real function on TM such that SM = { v € TM : p(v) = 0}.
An H-sphere bundle (SM, p) is called circular if SM is invariant with respect to the
linear group of transformations T* = {e!’, ¢ € R} and p is T'-invariant.

Two H-spheres bundles (SM, p), (SM', p') over (M, J) and (M’, J'), respectively,
are biholomorphically isometric if there exists a biholomorphism f: M — M’ such
that p = p' o ful7p,-

The main examples of H-sphere bundles are the Finsler sphere bundles.

DEFINITION 3.2. The H-sphere bundle of a complex Finsler manifold (]~\4, J, F)
is the pair (SFM, pr), where SF M is the bundle of the Finsler spheres in TM and
pr=F?—1.

Notice that (SF M, pr) is always circular. Moreover it is clear that two Finsler
manifolds are biholomorphically isometric if and only if the corresponding H-sphere
bundles are biholomorphically isometric.

Remark 3.8. Let S, C T, M be a sphere of a circular H-sphere bundle (SM, p)
and p, the restriction p, = p|r,m, so that S, = {p.(v) = 0}. Let also D, C TS,
be the family of the maximal J-invariant tangent spaces of S; and £, the Levi form

of S, i.e. the collection of the Hermitian forms on the spaces Dz, C TySy, v € Sq,
defined by

(3.1) Lo(X, )]y = X(TY (p2))lo)

where in the right hand side X and Y denote the trivial extensions of the vectors
X,Y € Dglp.

By definitions, D, and £, are T'-invariant and each space D,|,, v € S,, projects
isomorphically onto the tangent space at [v] of

P, = T,M/C* = S, /T".

Hence the Levi form £, induces an Hermitian metric £, on each tangent projective
space IP,. It is not difficult to see that £, is indeed a K&hler metric and that it depends
smoothly on the point = of M.

3.2. Adapted unitary frames of an H-sphere bundle. In the next definition
we introduce the concept of adapted unitary frames of an H-sphere bundle. In all
formulas, for any frame u = {Jo,..., fan—1} We use the symbols fi,..., fon—1 also to
denote the vectors in Ty, (T M) which correspond to the vectors of u via the natural
identification map 5, : Toe M = Ty, (T, M).

DEFINITION 3.4. We say that a complex linear frame u = {fy,..., fan—1} at
x = 7(u) is adapted to the H-sphere bundle (SM, p) if
a) fo € S; and f1 = J fo;
b) the vectors f,..., fan—1 span the maximal J-invariant subspace Dy, of
TfoSa:3
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¢) the holomorphic vectors ey, ... , e,_1 constitute a unitary basis for Dy, with
respect to the Levi form £, defined by (3.1).
The subbundle U,(SM) C LE(M) of all adapted unitary frames of (SM,p) is
called the unitary frame bundle of (SM, p).
If (SM, p) is the H-sphere bundle of the complex Finsler manifold (M, J, F), its
unitary frame bundle is denoted by Ur(M).

It is immediate that 7: U,(SM) — M is a subbundle of LE(M) on which Uy,
acts freely and fiber preserving.

Moreover, if (SM,p) is circular, then for any fiber V, = n~1(z) C U,(SM),
the quotient V,/T? is equivalent to the unitary frame bundle Uz, (Ps), where L, is
the Kéhler metric defined in Remark 3.3. This implies U,(SM) is a principal bundle
only if all compact Kéhler manifolds (P, £,) are homogeneous spaces of a complex
subgroup G C GL,(C) which properly contains U,_; xT'!. Since this condition is very
strong, it is natural to expect that generically U,(SM) is not a principal subbundle
of LE(M).

In fact:

PROPOSITION 3.5. The unitary frame bundle U,(SM) C LE(M) of an H-sphere
bundle (SM, p) is a principal subbundle if and only if it is the unitary frame bundle
of an Hermitian metric g on (M, J).

Proof. If U,(SM) is a principal subbundle of LE(M) with structure group G C

GL,(C), then the group G verifies the following conditions:
i) it is compact;

ii) it acts transitively on each sphere S, = V. /Up_1;

iii) the isotropy subgroup of the G-action on each sphere S; =V, /U, is Up—1.
From the list of the compact Lie groups acting transitively on a sphere ([MS], [Bol],
[Bo2]), it follows that the only group which verifies i), ii) and iii) is G = U,. By
standard arguments this implies that U,(SM) = Uy(M) for some Hermitian metric.
a

The following Lemma gives an alternative way to define the adapted unitary
frames of a complex Finsler manifold.

LEMMA 3.6. A frame u = {f;} € LE(M) belongs to Ur(M) if and only if the
corresponding holomorphic frame u'® = {e,} verifies

(3.2) hio(earez) = dap
forany 0 < a,B<n-—1.

Proof. By definition of adapted frame, u € Urp(M) if and only if it verifies the
follow three conditions for 1 < A\, u <n —1:

a) F2(fo)=1; b) ex(F)ls =05 ) Lalso(er,en) = hyy(en, en) = oxu-

Since eo(F?)| o= DY(F?)| 5,» by Lemma 2.4 d) and the identity between h and h on
the tangent spaces of the Finsler spheres, the conditions a), b) and ¢) can be rewritten
in the form

a’) hfo (eanﬁ) =1 bl) hfo (6,\,6(‘)) =0; cl) hfo (6,\,6‘7) = 5»\;“
which is simply (3.2). O '
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From Lemma 3.6 and Proposition 3.5, it follows that Ug (M) is a principal bundle
if and only if F' is associated with an Hermitian metric g and that in this case Up(M) =
Uy (M).

3.3. Linear and non-linear connections of Hermitian type.

DEFINITION 3.7. Let P C LE(M) be a subbundle of LE(M), 2 : P — LE(M) be
the immersion map and J the standard complex structure of LE(M). Then:

(1) a (non-linear) connection on P C LE(M) is a distribution H, of real dimen-
sion 2n = dim M, complementary to the vertical distribution;

(2) if P is a principal G-bundle, the connection H is called linear if it is G-
invariant; if P is the unitary frame bundle U,(SM) of a circular H-sphere bundle
(SM, p), H is called nice if it is U,_1 x T'-invariant;

(3) a nice (non-linear) connection H on U,(SM) is called isometrically invariant
if for any biholomorphic isometry f of (SM, p), the lift fon LE(M) leaves H invariant;

(4) a (non-linear) connection H is called of Hermitian type if it is J-invariant,
i.e. for any u € P

(3.3) J((Mu)) = 1a(Hu);

(5) the connection form of a (non-linear) connection H is the unique gl,(C)-
valued 1-form w on P, which vanishes on H and verifies

(3.4) w(d;)=A
for any u € P and any A in the algebraic vertical subspace g, C gl,(C).
Remark 3.8. If H is a nice (non-linear) connection on U,(SM), for any curve
v:la,b] = PTM = U,(SM)/Up—1 x T,

which projects on a given curve v, in M, and any frame u € 7~ (y,) C U,(SM), there
exists a unique horizontal curve 4 : [a, b] = U,(SM), which is tangent to H, projecting

onto <y and with 4, = u. Since H is U, x T'-invariant, if 4% = u!® = {eo,...,en_1}
and 4% = {e}, ..., €el,_,}, the linear map

, T .
(3.5) T, :ToM - ToM, X=X & Xie!

does not depend on the frame u, but only on the curve v. We call it the parallel
transport along ~.

Furthermore, if U,(SM) is a principal subbundle of LE(M) and H is a linear
connection, the parallel transport (3.5) depends just on the curve v, : [a,b] - M
which is obtained by projecting on M the curve v of PT'M. In particular, (3.5) is
the classical parallel transport associated to a linear connection and it defines a linear
covariant derivation on M.

If ‘H is non-linear, the parallel transport (3.5) defines the following non-linear
covariant derivation V on M: let Y be a local vector field on M, X a vector in
Ty, PTM and 7 : [a,b] — PTM a curve such that 7o = X ; then

1,
(3.6) VY = Jim [Tﬂ[o'h](yz,,) - Yx] ,

where z and z;, are the base points of o = [v] and ~, respectively. If we denote by

#: Uy (SM) = PTM = U,(SM)/Up_y x T*
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the standard projection map, then VY|, is equal to
3.7 VY], = u(A0() + wu(X) -0.(Y)) ,

where w is the connection form of H, u is any frame in #~!(v) C U,(SM) and X and
Y are two vector fields on U,(SM) such that 7, (X), = X and m.(Y) =Y.

The derivation (3.7) is a linear function of the vector X, not of just its projection
to TM: this is in clear contrast with the properties of linear connections.

3.4. The non-linear Hermitian connection of a complex Finsler mani-
fold.

THEOREM 3.9. For any complex Finsler manifold (M,J,F), the unitary frame
bundle Urp(M) admits a unique non-linear connection of Hermitian type.
This non-linear connection of Hermitian type is nice and isometrically invariant.

We call the connection of Theorem 3.9 the non-linear Hermitian connection of
(M, J,F).

Proof. 1 First of all, notice that if f: M — M is a local biholomorphism and
f: L(M) — L(M) is the lifted map on the linear frame bundle, than clearly f maps
LE(M) into itself and it is a local biholomorphism w.r.t. to the standard complex
structure J. Therefore any local biholomorphic isometry f of (M,J, F) is so that
f(Urp(M)) C Up(M) and f, transforms any J-invariant non-linear connection into
another J-invariant non-linear connection. Hence, if there exists a unique non-linear
connection of Hermitian type, this connection is isometrically invariant.

Consider now the distribution H C TUp(M) of all maximal J-invariant subspaces,
i.e. such that for any u € Up(M)

Hy = T Up (M) N J(T,Up(M)).

We want to prove that such distribution constitutes a non-linear connection, i.e. it is
transversal to the vertical distribution and with dim H,, = 2n at any frame u. Since
any J-invariant distribution 7' is included in H, it follows immediately that H is
a unique such non-linear connection. Furthermore, since U,—1 x T* C GL,(C) acts
holomorphically on LE(M), it follows also that H is Uy,—; x T!-invariant and therefore
is a nice non-linear connection.

To prove the claim we need the following Lemma.

LEMMA 3.10. Let z € M and let L, = n7(z) C LS(M) and V, = 7~ 1(z) C
Ur(M) be the fibers of L°(M) and Ur(M) over z, respectively.
Then V, is a mazimally totally real submanifold of L., i.e. for anyu € V,,

T,Ve NJ(T,V,) = {0} and T,V,UJ(T,V,)=T,L,.

Proof. Let us identify the space of holomorphic vectors T:°M C TSM with C”
and let Gr,—1(C") be the Grassmanian of (n — 1)-dimensional complex subspaces in
TIM = C". Let also denote by J, the standard complex structure of C* X Gr,—1 (C).

Consider now the holomorphic surjective map

o:L; - C" x Gr,—1(C"), o(u) = (eo,span{ey,...,en—1})

1 For the following short and elegant way for proving Theorem 3.1, we are indebted to a kind
suggestion of an anonymous referee
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where we denote by u'® = {eo,...,e,—1} the holomorphic basis determined by the
frame u. It is clear that o : L, — C* X Gr,,—1(C") is a principle bundle with structure
group GL,(C) and base C* x Gr,—1(C").

Let S; C T, M be the Finsler sphere at z and let Q@ C C* x Gr,,—1(C™) be the
submanifold

Q={(@0%p) eC* xGrp_1(C*) : vES,, pCTOMNTES, }.
By definition, ¢(V,) = @ and the projection
olv,: ¥V, = Q

makes V, a principle bundle over ) with structure group Up—;.

Since S, is strongly pseudo-convex, by a result of Webster (see [Wel]), @ is a
maximally totally real submanifold of C* x Gr,_1(C™). Since also Up,—; is a maximally
totally real submanifold of GL,(C) and o is holomorphic, it follows that V, is a
maximally totally real submanifold as well. 0O '

Let us now prove the claim. From Lemma 3.10, it follows immediately that H is
transversal to the vertical distribution, that is for any u € Urp(M)

Hu NTyVa(e) = {0}.

Furthermore, dimL, = 2dimV, and hence dim L¢(M) = dim M + dimL, = 2n +
2dimV;. Since dim Up(M) = dim M + dimV,; = 2n + dim V;, it follows that at any
u € Up(M)

2n + 2dim V() > TuUr(M) + J(T,Ur(M)) — dim H, = 4n + 2dimV, — dim#,,

that is dim #,, > 2n. Since H, is transversal with T,V (,), we conclude that dim H, =
2n for any u and hence that H is a non-linear connection. 0O

Since the unitary frame bundle Uy (M) of an Hermitian metric g on (M, J) coin-
cides with the unitary frame bundle Ur(M) of the Finsler metric F(v) = /g(v,v),
Theorem 3.9 gives the following classical result as an immediately corollary (see e.g.
[KN], vol. II): an Hermitian manifold (M, J,g) has a uniqgue Hermitian linear con-
nection.

4. The absolute parallelism on Urp(M) and Kobayashi’s theorem.

4.1. Pseudo-hermitian structures on a real hypersurface. In this subsec-
tion, we recall the definition of pseudo-hermitian structure on CR manifold of codi-
mension one and Webster’s theorem on the existence and uniqueness of an invariant
linear connection for any pseudo-hermitian structures. This result is essential for the
construction of an invariant absolute parallelism on the unitary frame bundle Ur(M)
of a complex Finsler manifold.

Let S be a (2n — 1)-dimensional manifold. A CR structure on S is a pair (D, J),
where D C T'S is a distribution and J is a smooth family of complex structures J,,
on the subspaces D, C T,M. It is called integrable if the holomorphic distribution
D0 ¢ DT defined by J is closed under Lie brackets. It is called of codimension p if
the distribution D is of codimension p.

An CR structure (D, J) of codimension one is called Levi non-degenerate if D is
a contact distribution, i.e. if for any local 1-form 8 such that ker§ = D, then df, is
non degenerate on D, at any point p where 6 is defined.
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DEFINITION 4.1. [We] A pseudo-hermitian structure on S is a pair ((S,D, J);6)
where (S,D, J) is a codimension one Levi non-degenerate CR structure and 0 is a
1-form on S such that ker8, = D, for any p € S.

A pseudo-hermitian transformation of ((S, D, J); ) is a diffeomorphism f : S — S
such that f.(D) C D, f.oJ|p =Jo fu|p and f*6 = 6.

In the following, we denote a pseudo-hermitian structure only by a pair (S, 6).

A standard example of pseudo-hermitian structure is the following. Let S be
a smooth real hypersurface in C* and (D, J) the codimension one CR structure de-
termined by the maximal J,-invariant subspaces in T'S and the complex structures
determined by the complex structure J, of C*. Assume also that p is a smooth defining
function for S,i.e. S={p€ C* : p(p) =0}. The 1-form 6°

(4.1) 62(v) = dpp(Jov)

vanishes exactly on the vectors on D. Hence if (S, D, J) is Levi non-degenerate, then
(S,6%) is a pseudo-hermitian structure.

DEFINITION 4.2. Let (S,0) be a pseudo-hermitian structure and let v = {fi,
..y fan—1} a linear frame at a point p € S. The frame u is called adapted to (S, 6) if
a) 0(fi)=1land 6(f;) =0for2<i<2n-—1,
c) Jfai= faip1 for1<i<n-—1.
The collection Uy(S) of all adapted frames of frames of a pseudo-hermitian structure
(S, ) is called unitary frame bundle of (S,6).

Conditions b) and c) can be restated claiming that the vectors eq = faq — @ f2a+1,
with « = 1,...,n — 1, constitute a holomorphic basis for D},O - DS, which is unitary
w.r.t. the Levi form £(X,Y) = df,(X,Y). It can be checked that Up(S) is a principal
subbundle of L(S) with structure group Uy 4, where (g,q') is the signature of the Levi
form L (see also [We]).

For any linear connection H on Uy (S) and any frame u = {f1,..., fan—1} € Up(95),
let us denote by py = T.|3, : Hu — Tr(u)S the restriction of 7. on . We also denote

by {fi = p7*(f:)} the basis of H, which projects onto the vectors of u.
Since p, is a linear isomorphism between H,, and T5(,)S, we may always consider

the subspace D, = p;l(D,,(u)) C M. and the complex structure J on D, defined by
(4.2) J-v=(p;" o Jop,)(v).
(D, J) are called the horizontal lifts of the CR structure (D, J).

DEFINITION 4.3. Let H be a linear connection on Up(S) and let (D, J) the corre-
sponding horizontal lift of the CR structure of S. Let also é, the holomorphic vector
fields in D0 defined by

éa|u=f20|u_if2a+1|u€ﬁ11‘0, 1 <a<ln-1

We say that H is of Webster type if:

a) any Lie bracket between two vector fields of the holomorphic distribution
D10 ¢ DF s 0;

b) mu([€a, &) = —V=1dagm(f1) for any 1 < @, 8 <m—1;

¢) for any 1 < a < n—1 the complex vector field T, = [€q4, f1] is so that 7, (T)
takes values in D! = D10 at all points.
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We call the vector field Ty = [éq, f1] the a-th component of the torsion of H.
We conclude with the following important result by S. Webster.

THEOREM 4.4. [We] If (S, 8) is a pseudo-hermitian structure, there exists ezactly
one linear connection of Webster type on Us(S). This connection is invariant under
the group Aut(S,0) of pseudo-hermitian transformations of (S,6).

Moreover, the a-th components of the torsion Ty = [€q, f1] of the connection of
Webster type vanish identically if and only if the vector field f1, given by the first
vectors of all adapted frames, is an infinitesimal CR transformations of S.

We call such unique linear connection the Webster connection of (S, ).

4.2. The generalized fundamental vector fields on the unitary frame
bundle of an H-sphere bundle. Consider a circular H-sphere bundle (SM, p). For
any ¢ € M, let p, be the restriction py = p|1, m and 0, = 62 the 1-form on S, defined
by (4.1). Each pair (S;,8,) is a pseudo-hermitian structure.

Ifu = {fo,f1,---,fon} C T, M is an adapted unitary frame of U,(SM) and
if we identify the vectors {fi,..., fan} with the corresponding vectors at T4, S;, we
immediately see that u is also an adapted frame for the pseudo-hermitian structure
(Sz,0z)- In other words, the fiber V, = 7~1(z) € U,(SM) can be identified with the
unitary frame bundle Uy, (S,).

Let W, be the Webster connection on V, ~ Up_(S,). Notice that the flow of the
vector field f; on S, coincides with 1-parameter group of transformations given by 7.
Therefore by Theorem 4.4 each component of the torsion of the Webster connection
W, vanishes identically.

Using the Webster connection W, and the fundamental vector fields associated
to the Lie algebra u,_; ® R = Lie(U,_1 x T') we define an absolute parallelism on
any fiber V, C U,(SM) as follows.

DEFINITION 4.5. Let U,(SM) be the unitary frame bundle of a circular H-sphere
bundle (SM, p). For any z € M, let also W, be the Webster connection on the fiber
Ve = 77 Hz) ~ Uy, (Sz) = Up(S;) and # : V, = S, = V,/U,_; the standard
projection map.

For any element X € W @ (u,-1 ® R) we associate a vertical vector field X of
U,(SM) associated as follows:

(1) if X € up_y ® R, we set X = X*;

(2) if X € W(=C" 1), we set X to be the vector field so that, for any frame u,

X, is the unique vector in (Wi (y))u, such that 7.(X.) = u(X) € Ty, Sz;

(3) for any two vectors X, X' € W & (up—1 ® R), we set X+X'=X+X
Any vertical vector field X is called generalized fundamental vector field.

If {e;, E;} is a basis for W @ (up—1 @ R), the generalized fundamental vector fields
{&, Ei} are linearly independent at all points and they give an absolute parallelism on
each fiber V. By construction, the vector fields {¢;, Ei} are mapped into themselves
by any biholomorphic isometry of (SM, p).

One may also check that if U,(SM) is a principal subbundle (and hence with
structure group U,; see Proposition 3.5), the generalized fundamental vector fields
coincide with the fundamental vector fields of the elements in u,.

4.3. The absolute parallelism on Up(M) and the isometry group of
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(M, J,F). Let Up(M) be the unitary frame bundle of a complex Finsler manifold
(M, J,F) and H the non-linear Hermitian connection on Up(M).

At any frame u = {fo, ..., fan—1} € Ur(M) we denote by fz|u the unique vectors
in H, which project onto f; € Tyr(yyM. Let also {€;} the standard basis of W = C*~!,
t be a generator of R = Lie(T") and {E;} a basis for u,_;. Let also &,  and E; the
corresponding generalized fundamental vector fields on Up(M).

Then the set of vector fields

(43) UH = {fi)gja{) Ek}

is an absolute parallelism on Up(M). It is unique, up to a change of the generator
t and of the basis {E;} for u,—; and it is invariant under all local biholomorphic
isometries of (M, J, F).
We call o the absolute parallelism associated to the Hermitian connection H.
As a consequence of Kobayashi’s theorem on the automorphism group of an ab-
solute parallelism ([Ko]), the following result is easily obtained.

PROPOSITION 4.6. Let (M, J,F) be a complex Finsler manifold of complex di-
mension n and let H the non-linear Hermitian connection of (M, J, F).

(1) The local holomorphic isometries of (M, J, F) are in 1-1 correspondence with
the local diffeomorphisms of Urp(M), defined on open saturated subsets =1 (U), which
preserve the absolute parallelism o™. For any local biholomorphic isometry f the
corresponding local diffeomorphism is the restriction on Up(M) C LE(M) of the dif-
feomorphism

fiLM) = LM),  f)=fiou.

(2) The group Isop(M) of all biholomorphic isometries of (M,J,F) is a Lie
group of dimension less or equal to

dimg Up(M) = dimg V + dimg W + dimg(u,_1 ® R) = n? + 2n.

(3) dimg Isop(M) = n?+ 2n if and only if F is associated with a Kdhler metric
g and (M, J,g) is (CP™,g.2), (C*,go0) or (B™,g_.2), where g.2, go and g_.2 denote
the Kdhler metrics with constant holomorphic sectional curvature c?, 0 and —c2, re-
spectively. ’

Proof. (1) It is proved with the same arguments of Proposition 3.3 in [Sp]; they
are very similar to the arguments of the proof of Proposition VI. 3.1 in [KN] Vol. I.

(2) It is an immediate corollary of (1) and of Theorem I1.3.2 in [Kol].

(3) If dimg Isop (M) = n? + 2n, then Ur(M) is a principal subbundle of LE(M)
and any isotropy subgroup Isop (M), acts transitively on any fiber V,, of Ur(M). By
Proposition 3.5 and Lemma 3.6 it follows that Isor(M), ~ U, for any z € M and
that F is associated with an Hermitian metric g. Since for any £ € M we have that
Isop(M), = Isog(M), ~ U, , we also have that (M, J, g) is an Hermitian symmetric
space, g is Kéhler and the holomorphic sectional curvature is constant.

We claim now that M is simply connected. Suppose not and let 7 : M — M be
its universal covering map and § = n*g. For any £ € M and any y € 7~ !(z), the
isotropy subgroup Isoy (M), ~ U, is embedded into I s05(M), and hence Isoz(M), =
Isog(M); ~ Uy. This implies that any deck transformation I' belongs to the normal-
izer Ny, i) (Iso§(M)y) of the subgroup Isoz(M), in Iso;(M). Suppose now that §
has positive holomorphic sectional curvature. By the classification of simply connected
complex space forms, M is CP", Isog(M) = SUpy1 and Ny, iy (Iso5(M)y) =
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Nsu,.,(Un) = Uy. This means that any deck transformation I" belongs to Isoz(M),,
and this cannot be because I' fixes no point. Suppose then that § has non-positive
holomorphic sectional curvature. In this case for any non-trivial deck transformation
and any h € Iso5(M),, there exists some h' € Iso5(M)y so that hoT' =T'o h' and
hence h(I'(y)) = I'(h'(y)) = I'(y). Since h fixes y and I'(y), it fixes point by point the
unique length minimizing geodesic between y and I'(y). But this cannot be because
Isoz(M), = U, and it fixes no vector in T, M.

Since M is simply connected, the claim follows from the classification of simply
connected complex space forms. 0O

5. The invariants of a complex Finsler manifolds.

5.1. Notation. In all the following sections, the greek indices «, 3, 7, 6, €
always run between 0, ...,n — 1; the indices A, p, v, p, o run between 1 and n — 1.

We denote by E§ = g ® €* the elements of the standard basis of gl,,(C). An
element A = AgEg € gln(C) can be also expressed using just the complex matrix Af.

For any adapted unitary frame u = {f;} and corresponding holomorphic frame
ul® = {e,}, we set

h’aﬂ(u) = hfo(el‘neﬁ)? HQB‘Y(U) = Hfo (6a,eg,€—y), HC!,@’Y'5(U‘) = Hfo (eaieﬂye"meé)'
The symbols hs5(u), Hapy(u), Hypy(u), etc. have analogous meanings.
On Up(M) we have the following distributions and CR structures:
- H is the non-linear Hermitian connection;

- W =U,ecp We is the distribution obtained as union of the Webster connec-
tions W, of the fibers V, = 7 1(z) = Uy, (Sz);

- (D, J) is the CR structure given by D = {J,¢; Dr and J = U, ¢ Jz» where
each (ﬁm J;) is the horizontal lift in W, of the CR structure of the Finsler sphere S,
(see Definition 4.3).

Notice that (74, J) and (D, J) are both integrable CR structures on Ug (M) (see §4.1).

w is the connection form of # (see Def. 3.7) and we define w§ as the C-valued
1-forms on Up (M) which verify

w= ZEZ; ®uwl.
a8

We also set w§ = wg. We call w§ and wg‘ the holomorphic and anti-holomorphic
components of the connection form w.

We denote by £§ and by £5 the complex vector fields on LE(M) defined by
]‘ * * a
&5 =5 [(Bg) - V-1(LE§)*], €E3=E%.
Note that, if we extend C-linearly the 1-forms w§ and wg, we have that
wg(&5) = 0565, wg‘(é’j) =0.
Moreover, we recall that by the properties of fundamental vector fields (see [KN])

Lipgy0 == [ES,e,]®07 - > [ES,e5] @67,

Y Y
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L(JOES).G == Z v —l[Eg,S—y] ®0"+v-1 Z[Eg,&'ﬁ] ® 67.
v v

This implies that

1 N
Legb =3 [Ligg)0 = V=1Ls,5)-0] = —e5 ®0%, Legb =Leg0 = —e5006°.

For any fiber V, = 7~!(z) C V., we denote by
g : Vg = UoI(Sz) =8, = Vz/Un_l

the standard projection map of V, = Up_(S;) onto S, =V, /Up_1.
For any i =0,...,2n — 1, f; is the vector field in H such that at all u € Up(M)

W*(ﬁ)lu = fi = u(€;) € Tr(u)M.

For any a = 2,...,2n — 1, &, is the generalized fundamental vector fields which cor-
responds to elements of the real basis {ez,...,€2,—1} of W = C*~1 (see §2.1). By
construction, any vector field &, is vertical, it takes values in D C W and Jéa; = éai41.

Finally, we denote by é, and €y the holomorphic vector fields
5 1/, : . 1. .
ba =3 (f2a - V"'lf2a+1) ) =3 (€21 — vV —1€2r41) -

They coincide with the complex vector fields in H€ and D€ C W€, which are mapped
by 7. and .. onto the holomorphic vectors of the corresponding adapted frames of
Tz M and of T;_(u)S, respectively.

5.2. The algebraic vertical subspaces of Ur(M) and the distribution
W. We want to determine the algebraic vertical subspaces of g, (see definition in
§2.1). For this we give the following technical lemma, which follows directly from
definitions and Lemma 2.4 e).

LEMMA 5.1. For any choice of the indices A, B, C, the functions H ¢ are totally
symmetric w.r.t. to A, B and C. Furthermore, for any u = {fo, ..., fan—1},

(5-1) Hopo(u) = Hapo(u) =0, Hapo(v) = —hap(u), Hapgo(u) = hap(u).

Now recall that for any A € gl,(C) and any v € LE(M), the corresponding
fundamental vector field A} at u is equal to the tangent vector at t = 0 of the curve
a(t) = u o et4. Therefore, by Lemma 3.6, the element A belongs to the algebraic
vertical subspace g, if and only if

d
(5.2) 5 [heea sy (€™ - ea, ™ - €5)]|  =0.

Representing A with the associated matrix A%, condition (5.2) can be written as:
(5.3) A%65 + dary A% + ATHo g, (u) + AJHogy (u) = 0.

Using Lemma 5.1, we immediately obtain the following.
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PROPOSITION 5.2. For any u € Up(M), the algebraic vertical subspace g, C
1,(C) is defined by the following equations:
A3+ AD=0, A} + A3+ ABha(u) =0
(5.4) ) i
AX + A} + A Hypy(u) + AFHapp(u) =0

Equations (5.4) are called the defining equations of the algebraic vertical subspace
Gu-

For any u € Up(M), consider the following basis for g, (A > p):

(5.5) t=J,- E,
(5.6) EY, =E),—EY, Eji,=J, (E)+EY),
(5.7) Eoz(u) =E9 — [Re{hap(u)} + 0xu ES — Im{hyp(u)}J, - EE

~ Re{Houa ()} BY — Im{Houx ()}, - E
(58)  Eaagr(w) =Jo- ES — [Refhau(u)} — 0] Jo - B +TIm{ha, (u)}EY
— Re{Hpux(u)}J, - B + Im{Hp,(u) } B

Consider also the complex valued vector fields €}, € defined as

(5.9) lu=1z {sz(u )*lu = V=1E2xs1(u)*|u}, &lu = & lu-

If we consider the vector fields &) and the generalized fundamental vector fields Ef’ 0
Ef ,» t as vector fields of TCLE (M), we may write them as linear combinations of the
vector fields £5 and Sg. In this way, we obtain the following expressions:

(5.10) ER, = (&) — &) + (63 — €F), EL, =V=1(E) + &) —V=1(E) + £F)
(5.11) t = V- 50 v “15(?7 €\ = g,\lu - 5€|u —= hux (WEG lu = Hppr (u)EY |u-
Notice that the vectors Ef,u, E/{,u constitute a basis for u,_;; hence any complex
vector X € TEVx, which is vertical w.r.t. the projection fiy(s) : Va(z) = Sr(e) =
Va(z)/Un-1, is linear combination of the vectors Eﬁﬂ(u), E{”(u) and hence, by (5.10),
it is of the form
(5.12) X = Ol (E1)u — €E1.)
for some uniquely determined C# € C.

At the same time, for any u € Up (M), the generalized fundamental vector fields ¢

and E;j(u), i = 2,...,2n — 1, span a subspace of T, V(y), which is of dimension 2n — 1
and which is complementary to the vertical distribution. More precisely we have the
following;:

LEMMA 5.3. For any u € Up(M)
€1lu = t|lu mod spang{A%, A € u,_1},

€2)\|u = (E2)\(u))*|u mod spanR{AZ, Ae un—l}y
(5.13) E2A+1|u = (E2>\+1 (u))*|u mod spanR{AZ, Ac un_l}.
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Moreover, there exist some complex valued functions S2 and S?, such that

(5.14) &y = tlu — SE(w)(E7 |u — €2]u),
(5.15) éxl. = 5f\)|u—Eé\lu—hax(u)53|u—HﬁaA(U)5glu—55,\(1!) (5§|u-5£|u) .

Proof. In order to prove the claim, observe that, for any fiber V, and any frame
u={fo,---, fon-1} € Vg, the element y = [u] = #,(u) € V;/Upn—1 = $?>*~! may be
identified with the first element fo = u(eg) of the frame. Therefore the vector t*|, is
projected by 7, onto the vector of Tj,—,Sz given by
sJoEQ ) —

. d . d
fax(t'|u) = - (a(uoe I e e77°E3 (¢))
s=0

=uo J,Ed(e0) = uo J,EJ(eo + £5) = ulieo — ieg) = fi.

s=0

By a similar argument one can check that (Eay(u))*|, and (Ezxa+1(u))l are mapped
by 75 onto the vectors fax, fea+1 = J fan, respectively. This proves (5.13).

From (5.13) and (5.12), the formulae (5.14) and (5.15) follow. 0O

In the following, in order to have more symmetry in some formulas, we will often
write Hg,(u) in place of hgx(u), since they coincide by Lemma 5.1.

5.3. The structure functions of the absolute parallelism of Up(M).
Cartan-Sternberg theorem (see [St]; we recall the complete statement - which is indeed
quite long - in the Appendix) implies that a complete set of invariant functions for an
absolute parallelism {X;,...,Xn,} is given by the structure functions cj.k, defined by
[X;, Xi] = ¢, Xi, and by their derivatives X, (... X;,(c3) - - -), with p less or equal to
some finite order . The order 7 in general depends on the absolute parallelism, but,
in case of real analytic data, there exists an upper bound for r which depends only on
the dimension of the manifold (this is a consequence of Cartan-Ké#hler theorem; see
[BCG]).

From this remarks and Proposition 4.6 (1), we conclude that the structure func-
tions cj~ « and the derivatives X, (... X, (cj-k) ...) of the absolute parallelism (4.3) are
a complete system of invariant functions for the complex Finsler manifold (M, J, F).

In this section we want to describe these structure functions.

The structure functions cj- r corresponding to Lie brackets of two generalized fun-
damental vector fields X,Y, with X and Y in {t,EY,, EX ,}, are computed by the
Lie brackets in u,_; ® R. In fact, X and Y are the fundamental vector fields in

——

the usual sense and hence [X,Y] = [X,Y]. In particular, for those Lie brackets, the

corresponding structure functions cj; are the structure constants of the Lie algebra
u,—1 &R

The structure functions c§~ « corresponding to Lie brackets between a fundamental
vector fields X, with X € {ER,,Ef ,} and a vector field Y in the set {€;,¢;} can be
evaluated recalling that X is a fundamental vector field associated to an element in
u,_1 and that Y belongs either to # or to W, which are both invariant under the
action of U,_;. This implies that the action of X on the set {¢;,¢;} is equal to the
standard action of X € u,_; on the basis {¢;,¢;} of V& W = C* @ C*! (see e.g.
Prop. 2.3 in [KN], vol. I). Therefore, also for these Lie brackets, the corresponding
structure functions are constant.
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The structure functions corresponding to the Lie brackets of two vector fields in
the set {é;, ;,%} are given by the real and imaginary parts of the Lie brackets described
in the following Propositions 5.4, 5.5 and 5.6.

PROPOSITION 5.4. A Lie bracket of a pair of vector fields in the set {ég,é5,t} or
of a pair in the set {€y,éx,t} has one of the following forms:

(5.16)  [és, 6] = —T§, 8,

(5.17)  [és,é5] = —RQpyéx + R3psx + V—1R{s5t — RO 5,
(5.18)  [f,é5) = V—=18p0é0, [f,é5] = —V~1dp0és,

(519)  [64,8]=0, [é4,é5] =—V—1 6Wt” — (0060, — Q5,5) (&7 — £2),
(520)  [},&)u = —vV=1& — V=1Q0, (&) — &7),

(521)  [f,é5] = V—1& — vV-1Q%, (& - 5;;),

where Tg‘,y, Rg,ys, Q" oup Q% and QUOV are some uniquely determined C-valued func-
tions.

( _86)7

Proof. Recall that the vector fields é, are holomorphic vector fields in H!® c HC.
Since the CR structure (H,J) is 1ntegrable, [ég, €,] takes values in H!°. From this
(5.16) follows.

To prove (5.17), we first claim that it is a complex vertical vector. In fact, for
a given u € Up(M), consider a local holomorphic embedding o : i C M — Up(M)
with u € o(i{). Since m : LE(M) — M is holomorphic, &; = (0 o 7)x(éslow))
and & = (0 o 7).(é5]sw)) are holomorphic and antiholomorphic vector fields on
o(U), respectively, and hence [€5,€5] = 0. Since at any v’ = A-o0(z) € Up(M)|y
we may write ég and é5 in the form ég(u’) = A‘Sﬁ “ €5lo(z) + Fgﬁ(u’)(Eg)ﬂur and
ey = A -€|p(u) + T (w')(EE)*|w, a simple computation shows that m.([eg, es]u) = 0,
i.e. that it is a complex vertical vector. Since at any u, the vectors € |u, €5 |u, V=1t
and £ |, — 2|, are linearly independent over C and the complexified vertical subspace
V€ C TCUR(M) is equal to their span, (5.17) follows.

To check (5.18), recall that # is the fundamental vector field in LE(M) associated
to J, - E3; then the formula follows from definitions and the fact that # is U,,_; x T-
invariant.

(5.19) is a consequence of the properties of the distribution W (see Definition
4.3), of (5.14) and (5.15).

The proof of (5.20) is the following. Pick a frame u, € Urp(M) and let X, the
complex vector field in TCLE(M) defined by

Xy = €0 — EF — Haow (u0)ES — 82, (uo) (E2 — E2).
From definitions and Lemma 5.3, one can check that
[57 é'V]uo = [E’ XV]UD mod Spanc{ggluo’ gg [uo ) é‘,gluo}'

By the properties of the Lie brackets between fundamental vector fields in LE(M), it
follows that there exists some complex functions Q4. p such that

[E, éV] = _\/—_le'/ \/_QUOV \/—_QUOV p \/_QO’OVE .
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Notice that by (5.10) and (5.11) the vector
[Ea él/]u +V _lél/]u =-Vv- QO’OV u)£g|u A QUOI/ V= |UQ0’0V( go‘lu

belongs to spanc{élu,éslu, tlu, €7 lu — E5lu} only if an,,( ) = 0 and QF,(u) =
Q%0 (uw). This concludes the proof of (5.20). (5 21) is obtained from (5.20) by conju-

gation and taking into account the fact that ¢ =¢. O

PROPOSITION 5.5. At any frame u € Up(M) and for any p, o, \, p=1,...,n—
1,

(1) 8%, (u) = 0; in particular €\ = éy;

(2) anu( u) =0 and

,,)\”(U) = eu(Ha,\p)| = Hppox (u) = hﬁﬁ(u)ha,\ (u) — Hupﬁ(U)HaAD (u);

(3) the Lie brackets [€x,éo), [€5,€0], [Ex,€u], [Ex,€u] have the following forms:

(5.22) [éx,é0] = éx + V—1Pgzof — Pyoéy + Poyoés — Pp,\o( - £&7),

(5.23) [éx,éu] = —Hauréa + V-1 Po,\u — P\ ,6v + P, &5 — P, (€8 — £7),
(5.24) [é5,é0] = —V—1P%, ¢ + POXO ~ P50 + pm( -£&7),
(5-25) [Ex,eu]l = —0au€0 — V= OAut + B oxuy ~ Pv)\ue" + pz\u(gp 5;_7),

where Pfp are some uniquely determined complez valued functions.

Proof. (1) For any frame u, let us denote the vertical subspace of Up(M) by V.
We claim that

(5.26)  [Ex,é0]u =&éx mod VS, [Ex,éulu = —(Hapr + S5y)éa mod VL,
(5.27)  [E5,€0)u =0 mod VS, [&5,é,] = —drué0 + 5%, &, mod VE,

where 57, and S7, are the complex functions defined in Lemma 5.3 and we let Spy =
To prove (5.26), let us fix a frame u, and consider the complex vector ﬁeld X A In
TCLE(M) defined by

Xy = £ — & — (Haon (o) + S2x(w0))EZ + 8% (u0)EX.

Let us also extend ég to a vector field on a neighborhood & C LE(M) of u,.
From (5.15) and from definitions we get
[é/\7 éo]uo = [X/\7 éo]uo mOd Spa’nc{gg!uo ? 6;!“0}

In particular, 6, ([éx,é0]) = Ou, ([Xr,€é0]). Moreover, Xx(6(ép))|u, = 0: in fact
Xxlu, = €xlu, and hence it is tangent to Up(M); on the other hand 6(é) = e
at all points of Ur(M).

Therefore

(5-28) euo([Xka é0]) = _(l:XAH)uo (éO) = _(ﬁgg_gge)uo (éo)
+ (Hapx (uo) + S5 (o)) (Le28), (€0) = S5\ (40)(Lez0)u, (é0) = e

This implies that at all points the vectors [€x, €] and é, differ by a complex vertical
vector. This implies the first identity in (5.26). The second identity in (5.26) and the
two identities of (5.27) are proved with the same arguments.
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Now, we can prove that Sf;,, = 0. Indeed from the Jacobi identities, Proposition
5.4, (5.26) and (5.27)

0 = 6%([éx, [€, eoll) + 6% (&, [0, &]]) + 6% (80, [Ex, &5]]) = 6 ([ér, [é0, Ex]]) = ~S},.-

(2) is a consequence of (1), (5.26), (5.27), the Jacobi identities and Lemma 2.4.
In fact,

0 = 0°([éx, [€r, &) + 6°([€r, (5, EN]]) + 6°([é0, [En, Ea]])
= 0°([éx, [€n, €o]]) + 67 ([én, [65, €A]]) + 03000 — Q14
= —0,00% + &x(Hpor) + 05000 — Qb y
and

0 = 0°([2, [&n, & 11) + 0% ([€n, [0, T]]) + 67 (&0, [£, Eall) = V=1 Q5.

Now, using Lemma 2.4, (5.15) and the fact that S?, = 0, a straightforward computa-
tion shows that

éﬁ (Hﬁak) = _hﬁﬁhak - HuﬁﬁHa)\l'/ + Hﬁﬁo‘)\
and this concludes the proof.

(3) is an immediate consequence of (5.26), (5.27) and of claim (1). O

PROPOSITION 5.6. The structure functions ch p defined in Proposition 5.5 are
the followzng

(1) K Op'r Op'r_Pgm_ng'r_Pfj\p'r_Pﬁ\m_0;
(2) P(;\ﬁ'y - e’Y(h/\p) p,p'y e’Y(H)‘p.p)

Proof. It suffices to use the Jacobi identities, Proposition 5.4 and Proposition 5.5.
In fact

0= 96([ép’ [éﬁ’é’r]]) + 96([‘37’ [ép’ éﬁ]]) + 96([é6’ [é'w ép]]) = ng'y’
0 = 6°([é7, [0, &4))) + 8°([6+, €5, o)) + 0° (€0, [4, &5]]) = — P,
0 = 0*([&,, [0, &) + 07 ([&5, [60, &0]]) + 67 (€5 (64, &,])) = PRy,
0 = 6*([&5, [0, &) + 07 ([&5, [E5, &l]) + 0> ([é0. [64,&5]]) = —PY,
0 = 6°([&,, [E5, 4]]) + 6% (64, [, &5]]) + 6 (€5, (&4, E]))

= PO/\p'r - Hﬁ/\UPgm P(;\m«’
0= eﬁ([ém [ex, &) + 9”([‘37’ (€0, &) + 67 ([e5, [&4, &ll) = PI_lAp’)d
0 = 6°([&5, [ex, &4]) + 6° (64, [E5, €51)) + 00 (&5, 64, E5]))

= —éy (m Op'y = C’Y(h/\p) P6\p7
0 = 07([E5, (5, €)]) + 67 (24, (&, 5]]) + 0% ([e5, 6+, &)

= —&, (Hpxp) — Puﬁ'r =—&(H,55) — um o

By the previous remarks and Propositions 5.4, 5.5 and 5.6, we now have the
complete list for the structure functions of o and they generate a complete system
of invariant functions. We summarize the results in the next corollary. For notation
and indexing conventions, see §5.1.
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COROLLARY 5.7. The structure functions c;'.k of the absolute parallelism

o™, associated to the non-linear Hermitian connection of a complex Finsler manifold
(M, J,F), are the following:
i) the structure constants of (up—1 + R) x C*, where the action of (up—; + R)
on C™ is the one induced by the standard action of u, on C*;
ii) the real and the imaginary parts of the functions hy, and Hy,5;
iii) the real and the imaginary parts of the functions

P0>;7'y = —é’Y(h:\ﬁ)a P;;\ﬁ'y = _é’Y(H/—\uﬁ)a Qg}\ﬁ = Hﬁﬁaz\ - hﬁﬁha/\ - HvﬁﬁHaAD;

iv) the real and the imaginary parts of the functions T§ and Rf;; defined by
(5.16) and (5.17).

5.4. The structure equations of a complex Finsler manifold. The struc-
ture equations of Ur (M) consist in the identities verified by the tautological 1-form 6,
the connection form w and the differentials of their components. They are direct conse-
quences of the defining equations of the algebraic vertical subspaces and the structure
functions of the absolute parallelism. The results are in the following theorem.

For notation and indexing conventions, see §5.1 and §5.2.

THEOREM 5.8. Let (M, J,F) be a complex Finsler space and let w the connec-
tion I-form on Urp(M) associated with the non-linear Hermitian connection H of

(M, J,F).
i) The holomorphic and anti-holomorphic components of w verify:

(5.29) w +w(-,6 =0, uf +wé\ + hawy =0, w;} +w§‘ + Hs,,,wi + Hy,pwh = 0.
ii) Let wj be the C-valued I-forms on Up(M) given by

0o_,0 A_ A 0 _ X — Py & _—a
Wy =Wy, Wy =wp, Wy =—wp, @y, =wy +Huawp, wj=wg.

Then wg verify:

(5-30) wﬁ_ = —wh,
(5.31) @ (8u) = Gaus @0 (€) =0, w(EL) =0, @R (Ex) = —bxp,

(5.32) w3 () = W} (E,) = =R (Ey,) =0, wo () = wp(BY,) = @p(E,,) =0;

iii) The differentials of the tautological 1-form 0 and of the C-valued 1-forms wfj
are given by the following identities:

(5.33) d9* + w§ A 6° = 0% + £%;
(5.34) dwd + @y Al = Qf;
(5.35) dw{,\+w2}/\w€=ﬂf}+ﬂf}, dwf)\-i-ngwf:Qf{-FHg;

(5.36) dwi‘ + wé A wﬁ = Q,); + H;} + <I>;};
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where ©%, £*, OF, 1y, IS, II;, and @, are the the following C-valued 2-forms:

(537) O = TP NG, 2= Huynw) A6, Qf = RGs0" A6,

(5.38) T3 = —é5(hap)wh A0, Ty = —é,(hs;)wy A0,
(5.39) I} = —&,(Hx,;)w) A0 — é5(Hs,,)wh A7,

(5.40) ‘P;)Z = (H,'\aup = h3zhup — u?\&Hf/up) wp A w2-

where T, and Rg,yg are the complez functions defined in (5.12) and (5.13).

We call the equations (5.29) and (5.33) - (5.36) the structure equations of the
non-linear Hermitian connection of (M, J, F).

Proof. (5.29) follows from the defining equations of the algebraic vector subspaces.
To check (5.30) - (5.32), one has only to use the definitions, Lemma 5.3 and Proposition
5.5 (1). The structure equations (5.33) - (5.36) are proved by evaluating both sides
on all possible pairs of vector fields of the absolute parallelism (4.3) and checking that
both sides give the same result. This can done directly by using Propositions 5.4, 5.5,
5.6 and formulae (5.31) and (5.32). 0O

Consider the following 2-forms on Up(M) with values in gl,(C) & C":

n—1 n—1 n—1
0=)e®0% T=) €03, Q=) EioQ;,
a=0 a=0 a,3=0
n—1 n—1 n—1 n—1
N=Y) E}@My+) EYyel,+ ) ELieM, &= ) Eied).
A=1 p=1 Ap=1 Ap=1

We call © the (pure) torsion form and X the Finsler torsion form. The 2-form  is
called the (pure) curvature form; finally we name Il and ® oblique Finsler curvature
and wvertical Finsler curvature, respectively.

The Finsler curvature and torsion forms are 0 if the Finsler metric is associated
with an Hermitian metric. The following Proposition gives an important criterion to
see when this occurs.

PROPOSITION 5.9. A complex Finsler metric F is associated with an Hermit-
ian metric g if and only if the component ¥° of the Finsler torsion form vanishes
identically.

In this case, ¥ =0, Il =0 and ® = 0 and O and Q coincide with the torsion form
and the curvature forms of the linear Hermitian connection of (M, J,g), respectively.

Proof. From definitions, ¥° vanishes if and only if for any z € M, any 0 # v €
T, M and any two trivially extended vector fields X,Y € T(T, M), h(X1°,Y10) = 0.
By Lemma 2.5, this occurs if and only if £ is associated to an Hermitian metric h.
The other part of the claim follows immediately from the identity between Up(M)
and the unitary frame bundle corresponding to the Hermitian metric associated with
F. 0O

Taking the exterior differential of both sides of the structure equations, one can
obtain several identities that must be satisfied by the structural functions and by the
torsion and curvature forms. Some of them are given in the following Proposition.
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When F is associated with an Hermitian metric, they reduce to the usual symme-
try identities and to the Bianchi identities of the torsion and curvature of a linear
Hermitian connection.

PROPOSITION 5.10. Let © and ) the pure curvature forms of a complex Finsler
manifold (M, J,F). Then the components © = Tg 6° A§7 and Qf = Rg 567 A 6
verify the following identities:

(5.40) 05 = —5’2;
(First Bianchi Identities)

(5.41) es(T3s) + &4(Tsp) + &5(Tg,) + TpT5; + T5Th, + T T = 0,

(5.42) Ry 5 — RYg5 — é5(Tg,) — H&AﬁR373 + H&MRSL"S =0,

(Second Bianchi Identities)

(5-43) év (Rgﬁe‘) — &5 (3275-) + Rgge—Tfa + é7(Hag;)R(>)\5§ - éJ(HaﬂX)que' =0,

(5.44) &5(Rf,c) — éz(RS,5) — RS, Ty, — éz(Hapa) Ry 5 + 65(Hapa) R),e = 0.

Proof. (1) The identity (5.30) implies that dwj = —dwh. Then (5.40) follows
directly from this and the structure equations.

Now, consider the exterior differential of both sides of the structure equations
(5.33) - (5.36). It can be easily checked that the 3-form

(QF — Harg) A6° —dO>, dOY, dQy +dIy, dOS+dIY, dO) +dII)

vanish identically on any three vectors of horizontal distribution #. This implies that
the components of these 3-forms with respect to the forms

N N L N N N AN L N N

have to vanish identically. Such components are exactly the left hand sides of (5.41)
-(544). 0O

Remark 5.11. The exterior differentiation of the structure equations give several
other identities for the torsion and the curvature, which are not listed in Proposition
5.10.

When the Finsler metric is associated with an Hermitian metric, those identities
express only the property that Tg (u) and qug(u) depend on the frame u = {e;} as
the components of some suitable tensor fields on M. But when the Finsler metric F
is not associated with an Hermitian metric, these identities give new (and somehow
unexpected) relations between ©, 2 and the Finsler torsion and curvatures X, II and
.

One can obtain a complete list of these identities (and avoid several tedious com-
putations) using some symbolic manipulation computer program.

6. The structure equations of Lempert manifolds.

6.1. Geodesics of a complex Finsler manifold. We continue to use all
conventions given in §5.1, §5.2 and §5.4.
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Let v : [a,b] C R — M be a smooth regular curve, that is a smooth curve such
that the tangent vector 4; is different from O for any ¢ € [a,b]. A smooth curve
7 : [a,b] = Ur(M) is called lift of « if it satisfies:

a) Toy=1;

b) for any ¢ € [a,b], the frame % = {fo(t),..., fan-1(t)} C TJ2M is so that
fo(t) € C .
Notice that a curve 7 : [a,b] = Up(M) is a lift of « if and only if it projects onto
and there exists a smooth map ¢ : [a,b] — R such that for any frame 5; = {f;(¢)}

(6.1) Bt = F()e?” - (fo(t)) = F(¥e) (€ eo(t) + e **e5(t)) .
We call length of v and energy of -y the integrals L(vy) and E(v) defined by

b b
(6.2) Liy) = / F)dt, E(y) = / F?(3)dt.

Note that if 4 is any lift of v on Up(M), then

b b .
(63) Liy) = / VOGIOG A, B = / 6° ()60 (3, ) dt.

We recall that a variation with fized endpoints of 7 is a smooth map V : (=§,4) x
[a,b] = M such that

(1) V(0,t) =y for all t € [a, b];

(2) for any s € (—9,6), the curve y(*) = V(s,%) is a regular curve such that
% =4, and 4" = .

DEFINITION 6.1. A regular curve v : [a,b] — M is called geodesic of the complex
Finsler manifold (M, J, F) if for any variation V with fixed endpoints, the family of
curves Y(®) = V (s, %) is so that

dE(y*))

(6-4) & |,

=0.
The equations of Euler-Lagrange for a geodesic of a complex Finsler manifold are
given in the following Theorem.

THEOREM 6.2. Let vy : [a,b] = M be a regular curve.
(1) For any lift 7 : [a,b] = Urp(M) of v consider the complex functions A(7):,
B(%): and C(7): defined by

L. O/2
AR = wd(3,)8°(F,) - ia_d(:_s)

)

t
B(A)e =@ (F) + T15.°(),  C(A)e = o2 (F1) + T 15.8° ()

They vanish identically for one lift of v if and only if they vanish for any lift of 5.
(2) v is a geodesic if and only if for any lift 7 and any t € [a, b]

(6.5) AEG) _ o 00603, - 2

dt

ds =0,

t
(6.6) @3 (e) + Tiol5.0°(3:) =0,  @3(%) + Tl5.6°(3,) = 0.
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Proof. (1) Let 4 and ¥’ be two lifts of v. Let also ¢; and ¢} two real functions
so that (6.1) holds for 4 and 4’, respectively. This means that 4] = 4; o (e(*"““’lt)J )

and that ’)"'t = (Re(w_%),) (ﬁlt) for any t. From the invariance properties of 6, w
*

and of the torsion 2-forms ©% under the action of T, it follows immediately that
A(F') = eV~Hei=9) A(7), B(¥') = eV~1(»:=9) B(3) and C(7') = eV~ 10\~ m)c( ).
(2) Consider a variation V : (=6,6) x [a,b] = M of v with fixed endpoints and
let V : (=4,8) x [a,b] = Up(M) be a smooth map such that for any s € (-4, ), the
curve 7(8) = V (s, ) is a lift of the curve y(3) = V (s, ).
Let also X and Y the vector fields, which are tangent to V((=6,8) x [a,b]) C

7 (M), defined by
- (0 - (0
X_V*(§>’ Y—V*(E)'

Note that [X,Y] =V, ([Z, 32]) =0.
From definitions and he commuting property of X and Y we get that

(s)
(6.7) @%;l

a

=0

/ "y (eO(X)eG(X)) |& dt = / ' [deO(Y, X)6°(X)
+6°(X)deO (Y, X) +X

(6°(Y)) 89(X) + 6°(X)X (oﬁ(y))] _dt

= / b [d&O(Y, X)80(X) + 6°(X)d8%(Y, X) — 8°(Y) X (9"’(){)) _

dt + / "x (9°(Y)95(X) + 0°(X)06(Y))‘ dt.

e

~6°(¥) X (6°(X)) ]

e
Now,
(6.8)

b
/ X (206 (X) +6°(X)6°(V)) | dt = (0°()6°(X) +6°(X)6°(V))

¥
= =0

Ya

because §°(Y)5, = 0°(Y)5, = 0 since V is a variation with fixed endpoints.
Using (6.8), the fact that 6%(X) = §36°(X) and the structure equations (5.29)
and (5.33), we get

dE(y)
ds

(6.9) = /b {[—(wg AT, X) + 0°(Y, X) + Z°(Y, X))6°(X)

s=0
+00(X) [~ (8 A 6%) (Y, X) + OO(Y, X) + 20(Y, X))

— (V)X (X)) -0 (V) X (X))} dt
_[ 5 wy(X) __X(°(X))
_/a {HO(X)OO(X)}% {gO(Y) gé’(X) - GO(X)Gﬁ(X)]
Zy(X) _ X(0°(X)) @} (X)
w0 " 0°(X)06(X)] 00 [+ 78
)

+7(Y) [eﬁ(X) +T§’ﬁ” dt.

+6%(Y)

Tt
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Hence 7 is a geodesic if and only if equation (6.6) and the following equations (6.10)
are identically satisfied:
(6.10) WO (X) - X(E°(X))|, =0, w(X)E(X) - X(6°(X))| =0.

Tt ot
Since wd + @] = 0, multiplying the first and the second equation by 6°(X) and §°(X),
respectively, and then adding them together we get:

d(@°(X)6°(X)) _ dF*(%)
dt o dt
This shows that the equations (6.10) are equivalent to the equations (6.5) and it
concludes the proof. O
In analogy with what happens in Riemannian geometry, it is not hard to realize
that a regular curve is critical w.r.t. the length functional if and only if, up to a
parameterization, it is a geodesic.

(6.11) =0.

6.2. Complex geodesics, E-manifolds and Lempert manifolds. Let
(N, Jn) be a complex manifold of dimension dim¢ N < dimM =nandletz: N - M
be a holomorphic embedding. In analogy with the Riemannian and Hermitian settings,
an holomorphic embedding is said to be totally geodesic whenever any geodesic 7 :
[a,b] = N of the induced Finsler metric Fy = F o1, is embedded as a geodesic
v =107 of M.

We give here the concepts of complex geodesics and complex pre-geodesics. Note
that our definition of complex geodesics coincides with that of segments of complex
geodesics given in [AP]. They are strongly related (but different) with the complex
geodesics as defined by Vesentini in [Ve] (see remarks in [AP], p. 129).

DEFINITION 6.3. A complex pre-geodesic of a complex Finsler manifold (M, J, F')
is a totally geodesic holomorphic embedding 1 : I' = M of a simply connected complex
curve (T, J,).

A complex geodesic is a complex pre-geodesic ¢ : I' = M such that the Ké&hler
metric induced on I' by M has constant holomorphic sectional curvature.

A complex Finsler manifold (M, J, F) is called E-manifold if

i) for any x € M and any vector v € T, M there exists a complex geodesic
1: I' = M passing through x and tangent to v;
ii) all complex geodesics have the same holomorphic sectional curvature.

As we mentioned in the Introduction, the examples of E-manifolds we are mainly
interested in are the Lempert manifolds (see Definition 1.1): they are E-manifolds with
complex geodesics of holomorphic sectional curvature —4. Other interesting examples
of complete E-manifolds, with complex geodesics with non-negative holomorphic sec-
tional curvature, are given by the classification of non-negatively curved Kahler-Finsler
manifolds given by Abate and Patrizio in [AP1].

The goal of this subsection is to give some properties on the torsion and the
curvature, which gives a complete characterization of the E-manifolds. In the follow-
ing Theorem 6.7, we will show that the E-manifolds are exactly the complex Finsler
manifolds, which are geodetically torsion-free and with constant holomorphic sectional
curvature (see Definition 6.4 below).

Notice that what we call geodetically torsion-free Finsler manifolds coincide with
the manifolds that Abate and Patrizio christened weakly-Kdhler Finsler manifolds (see
[AP).
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We begin with the equations of complex pre-geodesics and the complex geodesics
of a complex Finsler manifold.

Let » : ' - M be a holomorphic embedding of a complex curve I' and let
Fr = F o1, the induced Finsler metric on I'. We call adapted unitary frame of
(T,12) any frame u = {fo,..., fan-1} € 7 1(1(T)) C Up(M) with fo, tangent to 1(T).
We denote by U,(T") the bundle of adapted unitary frames. It is immediate to realize
that U,(T)/Un-1 = Ugy ().

Let us denote by 7 : U,(T') — Up(M) the natural immersion map. Then we have
the following commutative diagram.

U,(I) T Ur(M)
(6.14) Up.(T) = U,(T)/Up—y — SM =Up(M)/Up_;
r — M

Let us also define on U,(T") the following 1-forms
(6.15) 9% =7"0%, 7§ =T"wj.

If we denote by 69 and 09 the holomorphic components of the tautological 1-form of
Ur.(T'), then

(6.16) P =762, 9 =0

LEMMA 6.4. Let2:T — M be an holomorphic embedding of a complex curve T’
in (M,J,F) and let ?’g the components of the Hermitian connection of the induced

metric Fr = F o1, on . The embedding is totally geodesic if and only if for any
A=1,...,n—1:

(1) @ = #*d;

(2) 3 =0 and 7 = 0;

(3) T, 07 =0.
In particular if 1 is a totally geodesic holomorphic embedding, then for any u € Up.(T)
and any @ of 77 (u) € U,(T), R y5liw) = O and the holomorphic sectional curvature
clu of Fr s equal to

clu = Rogoliw)-

Proof. Let v : [a,b] — T be a regular curve in I' and let ¥ : [a,b] = U,(T') C
Ur(M) be a lift of the curve 7, =20. By (6.16) and Theorem 6.2, v is a geodesic
for the induced metric if and only if

d9° ()

) ) _o, 973 (37%8) G - —

di di =0

t

(6.17)

Using again Theorem 6.2, -, is a geodesic for the Finsler metric of M if and only if 4
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verifies also

02 05y 0
(6.18) Py - L) o
t - -
(6.19) T3 + TRol5,9°(7) = 0, 75 () + TRel59°(7) = 0.
Therefore the embedding is totally geodesic if and only if (1) holds and
(6.20) 7"9\|u = —T)?olu'??u ngu = “_fx(muﬁg

for any u € U,(T'). On the other hand, by the structure equations (5.29) and (5.30)
and by (6.16)

(6.21) 0=dP = —m A +2°0* =70 AP,
From (6.20) and (6.21) it follows that
(T% 0 7)° A° =0

which implies that T9, 07 = 0 since 9° A 90 = 7*(62 A 62) # 0. From this, (2) and (3)
are immediate.
The last claims follows from (1), (2) and the structure equations of Ug.(I'). O

We can now give the characterization of E-manifolds. Let us first introduce some
terminology.

DEFINITION 6.5. We say that a complex Finsler manifold (M, J, F') is called
geodetically torsion-free if the 2-form @0 is of the following form

(6.22) 0% = %Tg”o* A B*

(ie. the complex functions T9, vanish identically).
(M, J,F) is called with constant holomorphic sectional curvature if there exists a
constant ¢ so that the 2-forms Q3 and Q3 are of the form

(6.23) 0f = ct° A6° + R ;67 N67 + RY,56° A6° + R),,0° A 67,
Q5 = R3,50° N7 + Ry 567 A6° + Rpo,6° A 67,
03 = RY,,0° N7 + RS 567 A6° + R3,0° A 67

(i.e. RSy; =cand Ry = R =0).
If M has constant holomorphic sectional curvature, the constant c is called the
holomorphic sectional curvature of M.

Remark 6.6. Assume that F' is associated with an Hermitian metric g. In this
case, using the fact that the functions Tg, (u) depends on the frame u as the compo-
nents of a tensor of type (1,2), it can be inferred that F' is geodetically torsion-free
if and only if g is torsion free and hence Kahler. With the same arguments, it can
be shown that F' is of constant holomorphic sectional curvature if and only if the
Hermitian metric g is of constant holomorphic sectional curvature.

Notice that the notion of manifold with constant holomorphic sectional curva-
ture is not the same as manifold with constant holomorphic curvature as defined by
Abate and Patrizio in [AP], although the two notions turn out to be equivalent in
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the Hermitian case. In [AP], the conditions R}; = R%,; = 0 are not included in the
definition of manifolds with constant holomorphic curvature.

Here is the characterization we were looking for.

THEOREM 6.7. Let (M, J,F) be a complezx Finsler manifold.
i) There ezists a complex pre-geodesic through any point © € M and tangent to
any vector v € T, M if and only M is geodetically torsion-free.
i) (M,J,F) is an E-manifold if and only if it is geodetically torsion-free and
with constant holomorphic sectional curvature.

Proof. (i) The necessity follows immediately from Lemma 6.5. Suppose now that
(M, J, F) is geodetically torsion-free and consider the distribution C on Ur(M) given
by all vectors X € TUp(M) such that

(6.24) 2 (X)=0, 6X)=0, w}(X)=0, @YX)=0

for A =1,...,n — 1. Using the structure equations, one can check that the equations
(6.24) define an integrable distribution whose integral leaves of maximal dimension
project onto holomorphic curves in (M, J). Moreover, if S C Up(M) is an integral
leaf of C with corresponding holomorphic curve T' = 7(S) C M and if 1 : T' - M is
the standard immersion of I', then S is equal to the adapted frame bundle U,(T') and
the immersion ¢ : I' = M is a totally geodesic isometric embedding. Since there exists
an integral leaf of C for any frame u € Ur(M), this concludes the proof of (i).
The proof of (ii) is analogous. O

Remark 6.8. Equivalent characterizations of the E-manifolds can be also found
in [Fa], [Pa] and [AP].

6.3. The torsion and curvature of an E-manifold. In the following last
Theorem 6.7, we prove that the torsion and the curvature of an E-manifold are uniquely
determined by the Finsler torsion and the Finsler curvatures. This implies that in
order to have a complete set of invariants for an E-manifold, it suffices to consider the
structure functions described in Corollary 5.7 i), ii) and iii). We also give the explicit
formulae for some components of the torsion and the curvature and an application
of these formulae, which gives a short proof of an Abate and Patrizio’s result on
Kahler-Finsler manifolds with positive sectional curvature (Theorem 1.1 in [AP1]).

For the notation and the indexing conventions, see §5.1 and §5.2.

THEOREM 6.9. Let (M, J, F) be an E-manifold with constant holomorphic sec-
tional curvature c. Then:

(1) the torsion and the curvature of the non-linear Hermitian connection of M

are uniquely determined by the structure functions hy,, Hxup, Py, = éy(hx;) and

ﬁm = Hppor — haphor — HupsHoro and their first order derivatives; in particular,

Rgoﬁ =6 Rgoﬁ = RS\O(_J = Rg,\(‘) = Rgox =0, R(/)\u() = cha, R())\Oﬁ = chx;,
c c c

Rgon = 5(&\;1 + hz\phﬁﬁ)y Réuﬁ = 5(‘5/\;: + h/_\ﬁhﬂﬂ)7 Rg)\ﬁ = 5(5/\;1 - huphﬁ,"\)’
c N N

Rzoﬁ = 5(5/\u - hvuhﬁx) - e(—,(hu,,)eo(h-,—,).

(2) if c #0, the 0-th component of the torsion ©° = T}.,)AIGB A 87 vanishes identi-
cally and the whole set of components of the torsion is given by the following expres-
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stons:
Tg7 =0, Toﬂ‘y eO(h,BV) vy T& = é’y(ho'a?)huﬁ - éﬁ(h&?/)hwy-

(3) if ¢ > 0 and the functions éy(Ty)) vanish identically for any A =1,...,n—1,
then F' is associated with a Kdhler metric of constant holomorphic sectional curvature;

in particular, if (M, J, F) is also simply connected and complete, then it is biholomor-
phic to CP™.

Proof. (1) The proof is based on iterated use of the identities (5.36), the Bianchi
identities and the Jacobi identities applied to three vector fields v;, vz and v3 on
Up(M), where v, and vy are of the form é, or é; and v3 is a vector field of the form
€ or é5. The arguments are simple and straightforward and we are going to show only

how to determine the expressions for the components RZ 5 were at least two indices
are equal to 0 or 0. The way to determine all other components of the curvature and
of the components of the torsion are analogOus

By hypotheses, for any A =1,...n -1, R000 =¢ R )‘00 = Réor) =0and T, =0.
Then, from the Bianchi identities (5. 42) we get

(6.25) RY\5 — R305 — €0(Ton) — HouoRb\5 + HounRbys = Ry5 — R = 0.
On the other hand, by (5.36)

(6.26) RS ;=

From (6.25) and (6.26), we conclude that R s = R} 5 =0
Now, using the notation of §5, by the Jacobi identities we have

R?

ady

(6.27) wp ([, € Ell) + wi ([ [€0, 1)) + w (€0, [Ex, eull)

_po ~ 0 0 —
—qu(‘) —éx( ouo) HeoxpRoo5 = qu() —chy, =0.

From (6.27) and (6.26), it follows also that Ry, = Rx 5 = chxa-
Let us use again the first Bianchi 1dent1t1es and the Jacobi identities:

(6'28) Rgor; - RgAﬁ - A'(TQO) - H(‘)VAREOIL + H(-)VORS)\[L
=R(/{Oﬁ - RgAy, ChI/Ahup, =
(6.29) wg([éx, [éo, €xl]) + wo([eo, [e,—“e,\]] )+ wg ([éa, [éx, éo]])
— &x(Roop) + R0z — Rogo0ru + Rioan = Riop + Royg — cOxu = 0.
From (6.28), (6.29) and (6.26), it follows that
c
R(;\Op, = R())‘uo = (5>\u + hl/)\hﬁﬁ)y Rg)\ﬁ = 5(6&; - hr//\hﬁﬁ)-
Using again the Jacobi identities,
wh ([€5, [é0, &5]]) + wE ([é0, (€5, &x]]) + wE ([€0, [€5, €o]))
c R R
ZR;)O(') — ¢, + 5(6>\u + huphsz) + € (R )éo(hy;) = 0.

(2) Assume ¢ # 0. From the Bianchi identity (5.43) and (1),

(Rovo) &4(Rogo) + RyssTh, = cTj, =0,
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and this implies Tgv = 0. Then using again the Jacobi identities, by the vanishing of
> eyetic perm. 0°([vi; [vj, ve]]) = 0 when v; = &,, v; = &, and v3 = &5, one obtains the
remaining expressions for Ty, and for T;;\,,,

(3) From the Bianchi identity (5.36), we have that
Ri\s — Rioo — &(T53) = 0.

By the expressions for the curvature components given in (1), this becomes

%(1 + 3 1al?) - 1 - Z o) + leeo (hap)® = &(T5))
=1 p=1 p=

=" (clhapl® + €5 (hap)I?) — &5(Tgy) = 0.

This implies that, if ¢ > 0 and é&(Ty)) = 0 for any A, then é5(hy,) = hy, = 0 for
any A and p. Therefore, by Lemma 2.5, F' is associated with an Hermitian metric g,
which is geodetically torsion free and with constant holomorphic sectional curvature.
By Remark 6.6, we obtain that (M, J, g) is Kahler and locally isometric to CP™. The

conclusion follows from standard facts on complex space forms. O

Appendix. We recall here the Cartan-Sternberg theorem on the local automor-
phisms of an absolute parallelism. The theorem was first proved for real analytic
vector fields by E. Cartan and in this case it is a corollary of Cartan-Kahler theorem
(see e.g. [BCG]). Later it was proved by S. Sternberg for smooth vector fields ([St]).

Before stating the theorem we need some preliminaries.
Let ¢ = {Xi,...,Xn} be an absolute.parallelism on a manifold N. The structure
functions of o are the smooth functions c}; defined by

(X5, Xx) = Zc]kX

Let us also denote by c%

“k.ma...m, the smooth functions defined inductively on r as

c;'k,'nu = Xml (c;k)’ c_zjk,ml...m, = er- (c;'k,ml...m,._l)'

Finally, for any integer a > 0 let F(®) be the family of smooth functions

(a) — [pi i i
F = {Cjks Cikmyr -+ > Cikyma.ma }

and call Q, the number of functions in the set F(®). We consider F(®) as the set of
components of a smooth map from M into R®=. A point p € M is called a regular
point for o if there exists two integers s and r such that rank F(*) = rank F(s+1) = r
at all points of a neighborhood U, of p.

If s is the smallest integer such that this occurs, then s and r are called order
and rank of the regular point p, respectively.

It can be shown that rank F(® = r for all @ > s and that there exists a system
of coordinates {z1,...,z,} : Up = R such that all maps }'(")|Up, a > 0, depend
only on the first r coordinates {z1,...,z,} (see [St]). Such a system of coordinates is
called adapted to the absolute parallelism.
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For any the adapted system of coordinates {z1,...,z,} on a neighborhood Uy,
we call slice of U, any set of the form

S(c;,...,c,) = {q eU : ID](Q) =C1y--- 7371‘(‘1) =Cr }7
for some (cy,...,c.) € R".

THEOREM A.l. (Cartan -Sternberg) Let 0 = {X1,...,Xn} be an absolute paral-
lelism on M and let p,p' € M be two regular point of ranks r, and ry and orders sp
and sy, respectively. Let also U and U’ be two neighborhoods of p and p', respectively,
which admit two adapted systems of coordinates {zl} and {z}}.

If q is a point of the slice S(c,,....c,) C U and ' is a point of the slice S(¢; . 1) C
U’, there exists a local diffeomorphism f : U — U’ such that f(q) = ¢’ and f.(X ) =X;
foralli =1,...,n, ifand only if rp =1y =7, s, = sy = 5 and .7-'(s)|s(c1 YYYYY o=
f(s)ls(c, ) and the functional dependence of .7:(3+1)|U on the functions .7-'(3)|U 18

.....

the same of the functional dependence of FTV |y on the functions .7-"(3)|U:.

In particular, if U = U’, there exists a local diffeomorphism f:U — U such that
fl@) = ¢ and f.(X;) = X, for alli =1,...,n if and only if ¢ and ¢' belong to the
same slice Sc,,...c,) for some (c1,...,c;) €R".

REFERENCES

[AP] M. ABATE AND G. PATRIZI0, Finsler Metrics - A Global Approach, Lecture Notes in Math-
ematics 1591, Springer-Verlag, 1994.
[AP1] M. ABATE AND G. PATRIZIO, Kdhler Finsler Manifolds of constant holomorphic curvature,
Inter. Jour. of Math., 8:2 (1997), pp. 169-186.
[BC] D. BAo AND S. S. CHERN, On a notable connection in Finsler geometry, Trans. Am. Math.
Soc., 79 (1955), pp. 378-180.
[BCG] R. L. BRYANT, S. S. CHERN, R. B. GARDNER, H. L. GOLDSHMIDT, AND P. A. GRIFFITHS,
Ezterior Differential Systems, Springer-Verlag, 1991.
[Be] A. BESSE, Einstein Manifolds, Springer-Verlag, 1987.
[Bol] A. BOREL, Some remarks about Lie groups transitive on spheres and tori, Bull. Am. Math.
Soc., 55 (1949), pp. 580-587.
[Bo2] A. BOREL, Le plan projectif des octave et les sphéres comme espaces homogénes, C. R. Acad.
Sc. Paris, 230 (1950), pp. 1378-1380.
[Ch] S. S. CHERN, Local equivalence and euclidean connections in ansler spaces, Sci. Rep. Nat.
Tsing Hua Univ. (Ser. A), 5 (1948), pp. 95-121.
[Ch1] S. S. CHERN, On Finsler geometry, C. R. Acad. Sc. Paris, 314 (1992), pp. 757-761.
[Fa] J. J. FARAN, V, Hermitian Finsler metrics and the Kobayashi metric, J. Diff. Geom., 31
(1990), pp. 601-625.
[Le] L. LEMPERT, La métrique de Kobayashi et la représentation des domaines sur la boule, Bull.
Soc. Math. France, 109 (1981), pp. 427-474.

[Lel] L. LEMPERT, Intrinsic Distances and Holomorphic Retracts, Complex Analysis and Applica-

tions 81 (1984), Sofia.

[Le2] L. LEMPERT, Holomorphic invariants, normal forms and the moduli space of convex domains,

Ann. of Math., 128 (1988), pp. 43-78.
[Ko] S. KoBayasHl, Hyperbolic manifolds and holomorphic mappings, Dekker, New York, 1970.
[Kol] S. KoBAYaAsHI, Transformation Groups in Differential Geometry, Springer-Verlag, 1972.
[Ko2] S. KoBAYASHI, Negative vector bundles and complez Finsler structures, Nagoya Math. J., 57
(1975), pp. 153-166.

[KN] S. KoBayasu1l AND K. Nowmizu, Foundations of Differential Geometry I & II, Interscience
Publ., 1963-1969.

[MS] D. MONTGOMERY AND H. SAMELSON, Transformation groups of spheres, Annals of Math.,
44 (1943), pp. 457-469.



326 A. SPIRO

[Pa] M.-Y. PANG, Finsler metrics with properties of the Kobayashi metric on convez domains,
Publicationes Matematiques, 36 (1992), pp. 131-155.
[Sp] A. SpirO, Chern’s orthonormal frame bundle of a Finsler space, to appear on Houston J.

Math..
[St] S. STERNBERG, Lectures on Differential Geometry, Prentice Hall, Englewood Cliffs, N.J.,

1964.
[Ve] E. VESENTINI, Complez geodesics, Comp. Math., 44 (1981), pp. 375-394.
[We] S. WEBSTER, Pseudo-hermitian Structures on a Real Hypersurface, J. Diff. Geo., 13 (1978),

pp- 25-41.
[Wel] S. WEBSTER, On the reflection principle in several complez variables, Proc. Amer. Math.

Soc., 71 (1978), pp. 26-28.





