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THE STRUCTURE EQUATIONS OF 
A COMPLEX FINSLER MANIFOLD* 

A. SPIROt 

A mio padre 

Abstract. For a strongly pseudo-convex complex Finsler manifold M, a bundle £/p(M) of 
adapted unitary frames is canonically defined. A non-linear Hermitian connection on UF(M), in- 
variant under local biholomorphic isometries, is given and it proved to be unique. By means of such 
connection, an absolute parallelism on UF(M) is determined and a new set of structure functions 
which generate all the isometric invariants of a Finsler metric is obtained. 

A pseudo-convex complex Finsler manifolds M, which admits a totally geodesic complex curve 
with a given constant holomorphic sectional curvature through any point and any direction, is called 
E-manifold. Main examples of E-manifolds are the smoothly bounded, strictly convex domains in 
C1, endowed with the Kobayashi metric. A complete characterization of E-manifolds, using the 
previously defined structure functions, is given and a smaller set of generating functions for the 
isometric invariants of E-manifolds is determined. 

1. Introduction. The main purpose of this paper is to give a complete set of 
invariants, which characterize a strongly pseudoconvex complex Finsler metric up to 
local biholomorphic isometries. Several properties of these invariants are immediately 
related with the intrinsic geometry of the Kobayashi metric of the smoothly bounded, 
strongly convex domains in Cn. 

Let M be a complex manifold and J its complex structure. The well-known 
infinitesimal Kobayashi pseudo-distance kjw on TM = TM \ {zero section} can be 
defined as follows ([Ko]): for any x G M and any 0 ^ v G TXM, let Av the set of all 
r G M+ such that there exists a holomorphic map / : Ar —>• M from Ar = {\z\ < r} C 
C into M with /(0) = x and /*(^) G Cv. Then 

kM(v) —   inf   -. 
reA{v) r 

We consider the following class of complex manifolds. 
DEFINITION 1.1. A complex manifold (M, J) is a Lempert manifold if 
(1) the infinitesimal Kobayashi pseudo-distance kM is a strongly pseudoconvex 

Finsler metric, that is: 
a) it is a smooth function on TM with values in M+; 
b) kM(^v) = \X\kM(y) for any A G C* and v G f M; 
c) at any point x G M the hypersurface Sx = {v G TXM : kuiv) = 1} is strongly 

pseudoconvex in TXM; 
(2) for any non-vanishing complex vector w G T^M C TCM, there exists a 

complex curve 7^ : U C C -* M, such that 7^(0) = x, 7^(0) = w and ^{U) is a 
totally geodesic submanifold of M; 

(3) the metric, which is induced by kM on the totally geodesic complex curve 
lw(U), is Kahler and with constant holomorphic curvature equal to —4; 

(4) the (finite) Kobayashi distance C?M, determined by kM-, is complete and the 
exponential map exp : TXM —)■ M is a diffeomorphism for any x G M. 
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An immediate interest for Lempert manifolds comes from the well-known results 
of L. Lempert on the Kobayashi metric of strongly convex domains in Cn ([Le], [Lei]). 
Some of his results can be stated as follows. 

THEOREM 1.2. [Le] If M is a smoothly bounded, strongly convex domain in Cn, 
then M is a Lempert manifold. 

Since the convexity of a domain is not a biholomorphic invariant property, The- 
orem 1.2 motivates the following question: 

Are there some invariant properties of RM (to be added to (1) - (4) of Def. 
1.1), which characterize the manifolds that are biholomorphic to a smoothly bounded, 
strongly convex domain in Cn ? 

Some encouraging results have been obtained by various authors (e.g. [Fa], [Pa], 
[Le2], [BD], [AP], [API]). In particular, we would like to mention the following theorem 
by J. J. Faran (see also [Pa]). 

THEOREM 1.3. [Fa] (M, J) is a Lempert manifold if and only if it admits a 
strongly pseudoconvex Finsler metric F, which verifies (2), (3) and (4) of Definition 
1.1. In this case F coincides with the Kobayashi metric ku- 

Faran's Theorem has been improved by M. Abate and G. Patrizio in [AP] in the 
following sense: they proved that if (M, J) has a strongly pseudoconvex Finsler metric 
F, then it admits a natural non-linear Finsler connection and if the corresponding 
torsion and curvature verify pointwise a certain set of conditions, then (M, J) satisfies 
(2), (3) and (4) of Def. 1.1 and hence it is a Lempert manifold. 

By Faran's theorem, our previous question has positive answer if and only if 
there exist some conditions, which are necessary and sufficient for the existence of a 
biholomorphism between a Finsler manifold M, verifying (2), (3) and (4) of Def. 2.1, 
and a strongly convex domain D C Cn. 

The general problem of determining necessary and sufficient conditions for the 
existence of a (local) isomorphism between two geometric structures is usually called 
the (local) equivalence problem for those structures. In this paper we give a new 
solution to the local equivalence problem for strongly pseudoconvex Finsler metrics 
and, by means of this solution, we obtain a new complete set of invariant functions 
which determine the complex Finsler metrics up to local biholomorphic isometrics. 
We also use these invariants to give a new characterization of Lempert manifolds. 

Here are the contents of the paper. In §2 we recall and prove some preliminary 
properties of complex Finsler metrics. 

In §3 we introduce the concept of adapted unitary frames of a complex manifold 
(M, J) with a strongly pseudoconvex Finsler metric F. The bundle UF(M) of all 
adapted unitary frames turns out to be a subbundle of the complex linear frame 
bundle LC(M), but in general it is not a principal subbundle; this is the case if and 
only if there exists an Hermitian metric g so that F(v) = y/g{v/v) for all 0 / v G TM. 

We also use the following terminology: any distribution which is complementary 
to the vertical distribution and of dimension equal to dim M is named a non-linear 
connection on UF(M). We say that a non-linear connection is of Hermitian type if it 
is invariant w.r.t. the complex structure J of LC(M). 

The main result of §3 is the following (Theorem 3.9). 
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THEOREM 1.4. Let (M, J, F) be a strongly pseudoconvex Finsler manifold. Then 
the unitary frame bundle UF(M) has a unique non-linear connection of Hermitian 
type. This connection is invariant under any biholomorphic isometry of (M,J,F). 

This non-linear Hermitian connection on UF{M) defines a non-linear covariant 
derivation for vector fields of M which is invariant under any biholomorphic isometry. 

In §4 we show that any fiber V^ = 7r~1(a:) of UF{M) is identifiable with the 
adapted frame bundle of a pseudo-hermitian structure on the Finsler sphere Sx. Us- 
ing the Webster connection for pseudo-hermitian structures (see [We]), we define an 
invariant absolute parallelism on each fiber V^, i.e. a set of vertical vector fields on 
Yx, which at all points span T^Va; and which is invariant under the automorphism of 
the pseudo-hermitian structure of 5a.. 

Using this absolute parallelism on the fibers and the non-linear Hermitian con- 
nection H of UF{M), we obtain an absolute parallelism a on UF(M) which verifies 
the following crucial property: the (local) biholomorphic isometrics of (M, J, F) are 
in 1-1 correspondence with the (local) diffeomorphisms ofUpiM) which preserve a. 

By Kobayashi's theorem on the automorphisms of absolute parallelisms ([Kol]), 
we immediately obtain the following result (Proposition 4.6): 

THEOREM 1.5. Let (M, J) be a complex manifold of complex dimension n and F 
a strongly pseudoconvex Finsler metric on (M, J). 

The group of biholomorphic isometrics ISOF(M,J) is a Lie group of dimension 
less or equal to n2 + 2n. Moreover dim^IsoF(M, J) = n2 + 2n if and only if F is 
equal to F(v) = y/g(v,v) for some Kdhler metric g of constant holomorphic sectional 
curvature and (M, J, g) is a simply connected complex space form, i.e. CPn, Cn or the 
unit ball Bn C Cn, endowed with a Fubini-Study, flat or Poincare-Bergmann metric, 
respectively 

In §5 we determine the Lie brackets of all possible pairs of vector fields of the 
absolute parallelism a of UF(M). By Cartan-Sternberg theorem the components of 
these Lie brackets w.r.t. the vectors of the absolute parallelism generate a complete 
set of invariant functions for the Finsler manifold (M, J, F) (see Proposition 4.6 and 
Theorem Al). At the end of §5, we also give the so-called structure equations of the 
Finsler manifold of (M, J, F), i.e. the equations that are verified by the 1-forms on 
UF(M) which are dual to the vector fields of the absolute parallelism. 

At last, in §6, we determine the Euler-Lagrange equations for the geodesies of a 
complex Finsler manifold. We recall the definition of complex geodesies (see [Ve] and 
[AP]) and we find necessary and sufficient conditions for a complex Finsler manifold to 
be of constant holomorphic sectional curvature and with a complex geodesic through 
any point and any direction. We call such manifolds E-manifolds. Notice that the 
Lempert manifolds are complete E-manifolds with holomorphic sectional curvature 
equal to -4. 

For the E-manifold, we also prove that the torsion and the curvature can be 
expressed in terms of the other structure functions of the absolute parallelism on 
UF{M) and hence that these structure functions are the actual generators for the 
invariants of E-manifolds (see Theorem 6.9). 

We have to mention that an alternative solution to the equivalence problem has 
been given by J. J. Faran in [Fa]. He determines another set of invariant functions, by 
pursuing the steps of a general algorithmic procedure: it is our personal opinion that, 
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by this reason, it is quite cumbersome to obtain simple geometric interpretations for 
the invariant functions introduced by Faran. 

As final remark, we want to point out that our non-linear covariant derivation 
on complex Finsler manifolds is strictly related (but different) with the non-linear 
covariant derivation invented by S. Kobayashi in [Ko2]. In a forthcoming paper, we 
will discuss this relation and we will show how to use the components of the curvature 
and torsion tensors in order to determine the set of invariant functions given in §5. 

2. Preliminaries. 

2.1. Notation and basic definitions. In all this paper, we use greek letters 
a, /?, etc. for indices related to holomorphic vectors, barred greek letters a, /?, etc. for 
indices related to the conjugated vectors and latin indices i,j,k, etc. to denote real 
vectors. 

We denote by {eo, ei,..., e2n-i} the standard real basis of V = M2n = C1; J0 is 
the complex structure of Cn. The standard basis is ordered so that J0 fai) — e2i+i for 
any i = 0,..., n. We set ea = ^(e2a — v^-T^a+i)? a = 0,..., n — 1, and €& = £^. We 
also use the notation {e2}, {ea} and {e*} for the dual bases of {e;}, {6:a} and {£«}, 
respectively. 

<, > is the standard Hermitian product of V = Cn. 
W denotes the subspace 

W = spanc{ei,...,en-i} = Cri~1. 

(M, J) is always a complex manifold with complex structure J and complex dimension 
n. We let TM = TM \ {zero section} and PTM = TM/C*. 

For any v E TXM, iv : TXM —> TV(TXM) is the natural isomorphism between 
TXM and TV(TXM). Using the maps iv, any vector w € TVo(TxM) C T(TXM) extends 
to a vector field X^ on TXM by letting X^\v = ivo%-f{w). We call X^ the trivial 
extension of w. 

For any v G X^M, J denotes both the complex structure on TXM and on TV(TXM). 
The vectors v10 and v01 are the holomorphic and anti-holomorphic components of v 
w.r.t. J 

v™ = hy - v^lJt;), v01 - hv + y/^lJv). 
2v /7 2> 

The dilatation field D (also called Euler vector field) is the vector field on TM defined 
as 

D\v = iv(v). 

A linear frame at a point x of M is an M-linear isomorphism u: R2n -> TXM. A 
complex linear frame at a point a: is a C-linear isomorphism u: Cn —> T^M. We 
always identify a linear frame u with the corresponding basis {/$} in TXM where 

If u is complex, we denote by u10 the corresponding holomorphic basis, that is 

U10 = {ea - U(ea) = -(/2a - V^l^a+l)}- 

For any linear frame u on T^M, the point x = 7r(u) is called base point of u. 
An absolute parallelism is a set of vector fields {Xi,... ,X2n} which are linearly 

independent at all points and, hence, constitute a smooth field of frames on M. 
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The collection of all linear frames on M is denoted by L{M)\ recall that it is a 
GZ/2n(M)-bundle w.r.t. the projection map TT. The collection of all complex linear 
frames is denoted by LC(M); it is a principal GI/n(C)-subbundle of L(M). 

It is well-known that LC(M) admits a unique complex structure J which verifies 
the following two conditions: 

a) the restriction of J to the vertical subspaces of LC(M) coincides with the 
complex structure of GLn(C); 

b) the projection TT: L
C
(M) -> M is holomorphic. 

We call J the standard complex structure of LC(M). 

For any subbundle P C L(M), we denote by 6 its tautological 1-form, which is 
defined as follows. For any frame u = {/*} G P C L(M) and any vector X G TnP, the 
projected vector 7r*(X) can be written as 7r*(X) = ^i^o"1 ^LPO/i ^ov some numbers 
OHX). The tautological 1-form 6 is the M2n-valued 1-form 

2n-l 

(2.1) 9u(X)=Yl^(X)-ei. 

If P is a subbundle of LC(M), any vector X G TUP admits the decomposition X = 
X10 + X01 = X10 + X1^ where X10 is the holomorphic part of X w.r.t. J. We 
denote by 0^(X10) and 6^(X01) the components of 7r*(X10) and 7r*(X01) w.r.t. the 
holomorphic and anti-holomorphic frame u10 and u01, respectively. In this way two 
sets of C-valued 1-forms 6a and 0a are defined at all points of P. They are called 
holomorphic and antiholomorphic components of the tautological 1-form 6. 

Finally, for any A G glznW, we denote by A* the associated fundamental vector 
field, that is the vector field on L(M) whose flow is 

$f* (u) - izoexp(L4). 

Since GLn{€) acts freely and transitively on the fibers of LC(M), the fundamental 
vector fields span any vertical subspace Vu C TUL

C(M). Therefore if P is a subbundle 
of LC(M) (not necessarily a principal subbundle), we may consider the subspace QU C 
sUC) 

(2.2) 9u = {Ae9ln(C), A*ueTuP}. 

We call QU the algebraic vertical subspace of P at the point u. Notice that P is a 
principal subbundle if and only if QU is a subalgebra of gln(C) independent on u G P. 
In this case QU = g = Lie(G), where G is the structure group of P. 

2.2. First properties of complex Finsler manifolds. 

DEFINITION 2.1. A complex Finsler metric on (M, J) is a continuous function 

FrTM—>R+ 

satisfying the following properties: 
i) F is smooth on TM; 

ii) F(u) > 0, for all u G TM; 
hi) F(\u) = \X\F(u) for all u G TM and any A G C. 

A complex Finsler manifold is a complex manifold (M, J) endowed with a complex 
Finsler metric F. 
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A (local) biholomorphism fiM^N between two complex Finsler manifolds 
{M,J,F) and {N.J'.F1) is called (local) biholomorphic isometry if F'tf+v) = F(v), 
for any v G TM. 

Note that any complex Finsler metric F is in particular a real Finsler metric (see 
e.g. [Ca], [Ch], [Chi], [BC], [AP], [Sp]). 

For any complex Finsler manifold (M, J, F), the Finsler pseudo-sphere at a point 
x is the hypersurface 

(2.3) Sx - {v e TXM  : F(y) = 1} C TXM. 

We say that F is associated with the Hermitian metric g if for any v G TM 

(2.4) F(v) = y/O&v). 

If this is the case, for any x e M the hermitian metric gx is recovered from F by 

(2.5) 9x(v,w) = -hVo(v,w), 

where h is the quadratic form defined in the following formula (2.6) and VQ is any non 
zero vector of TXM. Note that if dimcM = 1, then any complex Finsler metric is 
associated with a Kahler metric g. 

The quadratic form h, the cubic form H and the quartic form H of a complex 
Finsler metric F are the following multilinear forms on T(TM). Let X,Y,Z,W G 
TV(TXM) and X, Y, Z and W be their trivial extensions. Then we set 

(2.6) MX,y) = l[f (F2)][;        EV(X,Y,Z) = X[Y[Z(F2) 

(2.7) UV(X,Y,Z,W) = X[Y[Z [W (F2)]]] [ . 

Since any set of trivial extensions commute, it is immediate to realize that h, H and 
H are multilinear and totally symmetric in their arguments. 

In all the following, for any v.w.z^t^y € TXM, we will use the simplified no- 
tation hv(w,z), Hv(w;,z,^) and iav(w1z1t,y) in place of hv(iv(w),iv(z)), H^z^iu), 
iv(z),iv(t)) and Hv(iv(w),iv(z), iv(t),iv(y)), respectively. 

The quadratic form h, the cubic form H and the quartic form H of a Finsler 
pseudo-sphere Sx CTXM are the the restrictions on T(SX) of h, H and H. Note that, 
since a Finsler pseudo-sphere is a level set of F2, it follows that h^ is equal to 

(2.8) hv(X,Y)=X'(Y'(F2)), 

where X', Y' are two arbitrary vector fields, which are tangent to 5^ and which 
coincide with X and Y at v G Sx- A similar result holds for H and H. 

Since px = (F2 — 1)\TXM is a defining function for the Finsler pseudo-sphere 5^, 
we have the following immediate Lemma . 

LEMMA 2.2. LetVv C TV(SX) be the maximal J-invariant subspace ofTv(Sx) of a 
Finsler pseudo-sphere Sx and let V^ = V^+V®1 the corresponding decomposition into 
holomorphic and anti-holomorphic subspaces. Let also Cv the Levi form of Sx CTXM 
given by px (for the definition, see e.g. (3.1) in §3). Then for any X10,F10 G V]?, 

(2.9) /:V(X
10,F10) = hv{X

10,Y™). 
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DEFINITION 2.3. A complex Finsler metric F is called strongly pseudoconvex 
(resp. Levi non-degenerate) if for any x € M the Levi form of the Finsler pseudo- 
sphere Sz is positive definite (resp. non-degenerate) at all points. 

Note that if a complex Finsler metric F is strictly convex as real Finsler metric 
(for the definition, see f.i. [Ch], [AP] or [Sp]), then it is also strongly pseudoconvex. 
The converse is obviously not true. 

The following two Lemmata give some basic properties of h, H and H. 

LEMMA 2.4. Let (M, J, F) be a complex Finsler manifold. For any 0 / v € TXM 
consider the trivial extension v of the vector Dv = iv(v) and let X, Y, Z, Xi G 
T(TXM), i = 1,..., k, some trivially extended vector fields. Then 

a) D {F2)v = 2FV
2 and (JD) (F2)v = 0; 

b) i)(X1(X2(...X,(F2)...)))[ = (2-A:)X1(X2(...X,(F2)...))|v; 

c) JX1(X2(...Xk(^)...))\v + X1(JX2(...Xk(^)...))\v + ... 

...+ X1(X2(...J^(F2)...))^ 

d) D10(F2) = JD01(F2) - F2 and 

hv(x
ioyo) = o, M*10,i)01) = X10(F2U 

e) 

(2.10) Hv(X
10,Y0\v10) = ^(X10,y01^01) = 0, 

(2.11) Hv{X
10,Y10,v10) = -WX^Y^MX^Y^v01) = ^(X10

7r
10), 

(2.12) Hf;(fi01,X10,y10,Z01) = 0,    Hv(v
10,X10,Y0\Z01)=0, 

(2.13) Hl,(t)
10,x10,y10,z01) = -frf,(A:10,y10,z01), 

(2.14) H^t)01,^10^01,^01) - -H(X10,Y0\Z01). 

Proof. Consider on TXM the flows 

(2.15) $t, *4: TXM -> raM, *t(t;) = e* • v,     9t(v) = etJ - v. 

Definition 2.1 (hi) is equivalent to 

(2.16) {F2 o $t)(v) = e2tF2(v),        {F2 o %){v) = F2^) 

for any v-e TM and any t G M. If we identify any vector X G TV{TXM) with the 
corresponding element in ^^^(T^M) and ^(^(X^M), the differentials $t* and #£* 
can be written as 

(2.17) *f|tiPD = e* • X,        tf^U-Y) = eiJ • X. 

Therefore for any trivially extended vector fields Xi G T{TXM), i = 1,... k, 

(2.18) ekt.[X1(X2(...(Xk(F>))...))\etv} 

= [^.(Xx) [*t.(X2) [... [*,.(**) [F2]] ...]]]|#,w 
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(2.19) etJ-Xi{JJ-X2{-(JJ.-Xll(F*))...))\^tJ)v 

= VfiXx) [%*(X2) [...[9t.(Xk) [F
2]] ...]]!*,(„) 

= X1(X>(...(Xk(F*))...))\v. 

Taking the derivative at t = 0 of (2.16), (2.18) and (2.19), one immediately obtains 
a), b) and c). 

d) follows from a), b). 
To prove e), observe that b) and c) imply that 

Ev(V,W,v) = v(V(W(F2)))v = D(V(W(F2)))V = (2 - 2)V(W(F2))V = 0, 

v(V(W(Z(F2))))v = (2 - 3)H„(V; W, Z) = -EV(V, W, Z), 

and 
HV(V, W, Jv) = JD(V(W(F2)))V = -hv(JV, W) - MV, JW), 

JD(V(W(Z(F2mv = -JIV(JV9 W, Z) - nv{v, JW, Z) - KV(V, W, JZ). 

From these identities and some straightforward computations (2.10) - (2.14) follow. 
□ 

LEMMA 2.5. Let (M, J, F) be a strongly pseudo-convex Finsler manifold. Then 
F is associated with an Hermitian metric g if and only if one of the following two 
equivalent conditions are satisfied: 

i)  the cubic form H vanishes identically; 
ii) for any point x G M, any vector 0 ^ v € TXM and any X, Y G TV(TXM) 

hv(X
10,Y10)=0. 

Proof. If F is associated with an Hermitian metric, then (ii) is clearly satisfied. 
Moreover, if (ii) holds, for any three vectors 0 ^ X, Y, Z G TV(TXM), with trivial 
extensions X, Y and Z, we get 

Hv(x
10,y10, z10) = z10(h(x10, y10))!, = o, 

Hv(x
10,y10,z01) = z01(h(x10,y10))|v = o, 

and this implies (i).  So, in order to conclude, we just need to show that (i) implies 
that F is associated with an Hermitian metric. 

Note that if (i) holds, for any two trivially extended vector fields X and F, 
the value of YLV{X,Y) is independent of v. Moreover, from (2.11), hv(X

10,y10) = 
H„(X10,f 10,i)01) = 0 and hence 

hv(x,y) = hw(A'10,y01) + hf;(Jc01,f10). 

So the quadratic form gx defined by (2.5) is an Hermitian metric on TXM and, by 
Lemma 2.4 d), gx(v,v) = h<>10,?;01) = Z?10^2),, = F2. D 

From this point on, if the opposite is not stated, by complex Finsler metric and 
complex Finsler manifold we will mean strongly pseudoconvex complex Finsler metric 
and strongly pseudoconvex complex Finsler manifold, respectively. 

3. The non-linear Hermitian connection of a complex Finsler mani- 
fold. 
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3.1. The H-sphere bundle of a complex Finsler manifold. 

DEFINITION 3.1. An Hermitianized sphere bundle on (M, J) (or, more shortly, 
H-sphere bundle) is a pair (SM, p) where: 

a) SM C TM is a smooth subbundle; 
b) each fiber 5^ C TXM is a star shaped strongly pseudoconvex hypersurface of 

(T^M, J), diffeomorphic to a sphere; 
c) p is a smooth real function on TM such that SM = { v G TM : p(v) — 0}. 

An H-sphere bundle (SM, p) is called circular if SM is invariant with respect to the 
linear group of transformations T1 = {e*J, t G E} and p is TMnvariant. 

Two H-spheres bundles (SM,/?), (SM',//) over (M, J) and (M', J'), respectively, 
are biholomorphically isometric if there exists a biholomorphism /: M -» M', such 
that p = p' of*\fM. 

The main examples of H-sphere bundles are the Finsler sphere bundles. 

DEFINITION 3.2. The H-sphere bundle of a complex Finsler manifold (M, J,F) 
is the pair (SF

M^PF), where SFM is the bundle of the Finsler spheres in TM and 
pF = F2 - 1. 

Notice that (S
F
M,PF) is always circular. Moreover it is clear that two Finsler 

manifolds are biholomorphically isometric if and only if the corresponding H-sphere 
bundles are biholomorphically isometric. 

Remark 3.3. Let Sa; C TXM be a sphere of a circular H-sphere bundle (SM,p) 
and px the restriction px — PIT^MJ SO that S^ = {px(v) = 0}. Let also Vx C TS^ 
be the family of the maximal J-invariant tangent spaces of Sx and £x the Levi form 
of Sec, i.e. the collection of the Hermitian forms on the spaces T>x\v c TVSX, v G Sx, 
defined by 

(3.1) Cx(X,Y)\v=X(JY(px))\v, 

where in the right hand side X and Y denote the trivial extensions of the vectors 
X, Y G 'Dxly. 

By definitions, Vx and Cx are TMnvariant and each space Vx\v, v G Sx, projects 
isomorphically onto the tangent space at [v] of 

rx = TxM/C =SX/T1. 

Hence the Levi form Cx induces an Hermitian metric CX on each tangent projective 
space Pg;. It is not difficult to see that JCX is indeed a Kahler metric and that it depends 
smoothly on the point x of M. 

3.2. Adapted unitary frames of an H-sphere bundle. In the next definition 
we introduce the concept of adapted unitary frames of an H-sphere bundle. In all 
formulas, for any frame u = {/o,..., /2n-i} we use the symbols /i,..., /2n-i also to 
denote the vectors in Tf0(TxM) which correspond to the vectors of u via the natural 
identification map 2/0 : TXM -> Tf0(TxM). 

DEFINITION 3.4. We say that a complex linear frame u — {/o,... ,/2n-i} at 
x — 7r(u) is adapted to the H-sphere bundle (SM, p) if 

a) /o G Sz and /i = J/o; 
b) the vectors /2,...,/2n-i  span the maximal J-invariant subspace Vf0 of 

^7o Sx 5 
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c) the holomorphic vectors ei, ... , en_i constitute a unitary basis for VfQ with 
respect to the Levi form Cx defined by (3.1). 

The subbundle UP(SM) C LC(M) of all adapted unitary frames of (SM,p) is 
called the unitary frame bundle of (SM,p). 

If (SM,/9) is the H-sphere bundle of the complex Finsler manifold (M, J,F), its 
unitary frame bundle is denoted by UF(M). 

It is immediate that TT: UP(SM) ->» M is a subbundle of LC(M) on which Un-i 
acts freely and fiber preserving. 

Moreover, if (SM,p) is circular, then for any fiber V^ = TT
-1
^) C Up(SM), 

the quotient V^/T1 is equivalent to the unitary frame bundle U^ (Fx), where Cx is 
the Kahler metric defined in Remark 3.3. This implies UP(SM) is a principal bundle 
only if all compact Kahler manifolds (Pa;,>Cx) are homogeneous spaces of a complex 
subgroup G C GLn(C) which properly contains Un-i xT1. Since this condition is very 
strong, it is natural to expect that generically Up(SM) is not a principal subbundle 
ofi:c(M). 

In fact: 

PROPOSITION 3.5. The unitary frame bundle UP(SM) c LC(M) of an H-sphere 
bundle (SM, p) is a principal subbundle if and only if it is the unitary frame bundle 
of an Hermitian metric g on (M, J). 

Proof If UP(SM) is a principal subbundle of LC(M) with structure group G C 
GLn(C), then the group G verifies the following conditions: 

i) it is compact; 
ii) it acts transitively on each sphere Sx = Yx/Un-i] 

iii) the isotropy subgroup of the G-action on each sphere Sx = Yx/Un-i is Un-i. 
From the list of the compact Lie groups acting transitively on a sphere ([MS], [Bol], 
[Bo2]), it follows that the only group which verifies i), ii) and iii) is G = Un. By 
standard arguments this implies that UP(SM) = Ug{M) for some Hermitian metric. 
D 

The following Lemma gives an alternative way to define the adapted unitary 
frames of a complex Finsler manifold. 

LEMMA 3.6. A frame u — {/;} e LC(M) belongs to UF(M) if and only if the 
corresponding holomorphic frame u10 = {ea} verifies 

(3.2) hf0(ea,ep) = Sa/3 

for any 0 < a, /? < n — 1. 

Proof By definition of adapted frame, u £ UF{M) if and only if it verifies the 
follow three conditions for 1 < A, p, < n - 1: 

a)  F2(/o) = l;    &)eA(F2)|/o=0;    c) Cx\f0(ex,eJ = h/o(eA,eA) = <JA/i. 

Since eo(F2)| f = D10(F2)| f , by Lemma 2.4 d) and the identity between h and h on 
the tangent spaces of the Finsler spheres, the conditions a), b) and c) can be rewritten 
in the form 

a') h/o(eo,eo) = 1;    b') h/o(eA,eo) = 0;    c') h/o(eA,e/i) = £A/i, 

which is simply (3.2).  D 
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From Lemma 3.6 and Proposition 3.5, it follows that UF{M) is a principal bundle 
if and only if F is associated with an Hermitian metric g and that in this case UF(M) = 
Ug(M). 

3.3. Linear and non-linear connections of Hermitian type. 

DEFINITION 3.7. Let P c LC(M) be a subbundle of LC(M), i : P -> LC(M) be 
the immersion map and J the standard complex structure of LC(M). Then: 

(1) a (non-linear) connection on P C LC(M) is a distribution Ti, of real dimen- 
sion 2n = dimM, complementary to the vertical distribution; 

(2) if P is a principal G-bundle, the connection H is called linear if it is G- 
invariant; if P is the unitary frame bundle Up(SM) of a circular H-sphere bundle 
(5M,p), H is called nice if it is Un-i x TMnvariant; 

(3) a nice (non-linear) connection H on Up(SM) is called isometrically invariant 
if for any biholomorphic isometry / of (SM, p), the lift / on LC(M) leaves H invariant; 

(4) a (non-linear) connection H is called of Hermitian type if it is J-invariant, 
i.e. for any u G P 

(3.3) JMftt.)) =»•(%,); 

(5) the connection form of a (non-linear) connection 7-1 is the unique flln(C)- 
valued 1-form u on P, which vanishes on ?{ and verifies 

(3.4) u>«) = A 

for any u G P and any A in the algebraic vertical subspace gu C gln(Q- 

Remark 3.8. If H is a nice (non-linear) connection on UP{SM), for any curve 

7 : [a, 6] -► PTM = [/p(5M)/C/n_i x T1, 

which projects on a given curve 70 in M, and any frame u G TT
-1

 (7a) C Up(SM), there 
exists a unique horizontal curve 7 : [a, b] -> Up(SM), which is tangent to H, projecting 
onto 7 and with % = u. Since % is J7n_i x Tl-invariant, if 7^° = u10 = {eo,..., en_i} 
and 7^° = {eg,..., e^i}, the linear map 

(3.5) TT:TXM->TX'MJ        X = X^i  h  X^^ 

does not depend on the frame u, but only on the curve 7. We call it the parallel 
transport along 7. 

Furthermore, if Up(SM) is a principal subbundle of LC(M) and Ti is a linear 
connection, the parallel transport (3.5) depends just on the curve j0 : [a, b] -¥ M 
which is obtained by projecting on M the curve 7 of FTM. In particular, (3.5) is 
the classical parallel transport associated to a linear connection and it defines a linear 
covariant derivation on M. 

If H is non-linear, the parallel transport (3.5) defines the following non-linear 
covariant derivation V on M: let Y be a local vector field on M, X a vector in 
T[v]FTM and 7 : [a, b] -> FTM a curve such that 70 = X ; then 

(3.6) V^F - lim i Pn1    (YXh) - rJ , 

where x and #& are the base points of 70 = [v] and 7^, respectively. If we denote by 

TT : t/p(5M) -+ PTM = Up(SM)/Un-i x T1 
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the standard projection map, then V^y|v is equal to 

(3.7) v^y|v - u (xuo{y) + uu(x) - eu{y)), 
where ui is the connection form of %, u is any frame in Tt~l{v) C UP(SM) and X and 
y are two vector fields on Up(SM) such that fc*(X)v = X and 7r*(y) = Y. 

The derivation (3.7) is a linear function of the vector X, not of just its projection 
to TM: this is in clear contrast with the properties of linear connections. 

3.4. The non-linear Hermitian connection of a complex Finsler mani- 
fold. 

THEOREM 3.9. For any complex Finsler manifold (M,J,F), the unitary frame 
bundle UF{M) admits a unique non-linear connection of Hermitian type. 

This non-linear connection of Hermitian type is nice and isometrically invariant. 

We call the connection of Theorem 3.9 the non-linear Hermitian connection of 
(M,J,F). 

Proof. 1 First of all, notice that if /: M -* M is a local biholomorphism and 
/: L(M) —»- L(M) is the lifted map on the linear frame bundle, than clearly / maps 
LC(M) into itself and it is a local biholomorphism w.r.t. to the standard complex 
structure J. Therefore any local biholomorphic isometry / of (M, J, F) is so that 
/(f7ir(M)) C UF{M) and /* transforms any J-invariant non-linear connection into 
another J-invariant non-linear connection. Hence, if there exists a unique non-linear 
connection of Hermitian type, this connection is isometrically invariant. 

Consider now the distribution % C TUF(M) of all maximal J-invariant subspaces, 
i.e. such that for any u G UF(M) 

Ku = TUUF(M) n J(TUUF{M)). 

We want to prove that such distribution constitutes a non-linear connection, i.e. it is 
transversal to the vertical distribution and with dim 7^ — 2n at any frame u. Since 
any J-invariant distribution H' is included in Ti, it follows immediately that fl is 
a unique such non-linear connection. Furthermore, since Un-i x T1 C GLn(C) acts 
holomorphically on LC(M), it follows also that Ti is Un-i x TMnvariant and therefore 
is a nice non-linear connection. 

To prove the claim we need the following Lemma. 

LEMMA 3.10. Let x e M and let Lx = TT"
1
^) C L

C
(M) and Wx = TT"

1
^) C 

UF(M) be the fibers of LC(M) and Up (M) over x, respectively. 
Then Vx is a maximally totally real submanifold ofhx, i.e. for any u G Vx, 

TUNX H J(TUVX) = {0}    and   TUVX U J(TUYX) = T^L,. 

Proof. Let us identify the space of holomorphic vectors X£0M C T^M with Cn 

and let Grn_i(Cn) be the Grassmanian of (n — 1)-dimensional complex subspaces in 
T^M = Cn. Let also denote by J0 the standard complex structure of Cn xGrn_i(Cn). 

Consider now the holomorphic surjective map 

cr iLz ->Cn xGrn-iiC1),        <T(U) = (eo,span{ei,...,en_i}) 

1 For the following short and elegant way for proving Theorem 3.1, we are indebted to a kind 
suggestion of an anonymous referee 
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where we denote by u10 = {eQ,...,en-i} the holomorphic basis determined by the 
frame u. It is clear that a : hx -> Cn x Grn_i(Cn) is a principle bundle with structure 
group GLn(C) and base Cn x Grn_i(Cn). 

Let Sx C TXM be the Finsler sphere at x and let Q C Cn x G^-^C71) be the 
submanifold 

Q = {(v10,p)eCnxGrn-1(Cn)  : v e Sx, p C T*0M nT^Sx }. 

By definition, a(Yx) = Q and the projection 

makes V^ a principle bundle over Q with structure group Un-i. 
Since S^ is strongly pseudo-convex, by a result of Webster (see [Wei]), Q is a 

maximally totally real submanifold of Cn x Grn_i (Cn). Since also Un-i is a maximally 
totally real submanifold of GLn(C) and a is holomorphic, it follows that V^ is a 
maximally totally real submanifold as well.    D 

Let us now prove the claim. From Lemma 3.10, it follows immediately that H is 
transversal to the vertical distribution, that is for any u G UF(M) 

Wt.nrtlV7r(iB) = {0}. 

Furthermore, dimL^ = 2dimVx and hence dimLc(M) = dimM + dimLc = 2n + 
2dimVx. Since dim Up(Af) = dimM + dimV^ = 2n + dimV^ it follows that at any 
u £ UF{M) 

2n + 2-dimV7r(tl) > TUUF(M) + J(TUUF(M)) - dimHu = 4n + 2dimVx - dim«u 

that is dim Hu > 2n. Since Hu is transversal with TtlV7r(i;), we conclude that dim Ku = 
2n for any u and hence that H is a non-linear connection.    D 

Since the unitary frame bundle Ug (M) of an Hermitian metric g on (M, J) coin- 
cides with the unitary frame bundle UF(M) of the Finsler metric F(v) = y/givyv), 
Theorem 3.9 gives the following classical result as an immediately corollary (see e.g. 
[KN], vol. II): an Hermitian manifold (M,J,g) has a unique Hermitian linear con- 
nection. 

4. The absolute parallelism on UF(M) and Kobayashi's theorem. 

4.1. Pseudo-hermitian structures on a real hypersurface. In this subsec- 
tion, we recall the definition of pseudo-hermitian structure on CR manifold of codi- 
mension one and Webster's theorem on the existence and uniqueness of an invariant 
linear connection for any pseudo-hermitian structures. This result is essential for the 
construction of an invariant absolute parallelism on the unitary frame bundle UF(M) 

of a complex Finsler manifold. 

Let S be a (2n — l)-dimensional manifold. A CR structure on S is a pair (V, J), 
where V C TS is a distribution and J is a smooth family of complex structures Jp 
on the subspaces Dp C TpM. It is called integrable if the holomorphic distribution 
V10 C Vc defined by J is closed under Lie brackets. It is called of codimension p if 
the distribution V is of codimension p. 

An CR structure (D, J) of codimension one is called Levi non-degenerate if V is 
a contact distribution, i.e. if for any local 1-form 9 such that ker# = V, then d0p is 
non degenerate on Vp at any point p where 0 is defined. 
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DEFINITION 4.1. [We] A pseudo-hermitian structure on 5 is a pair ((S,£>, </);#) 
where (5, V, J) is a codimension one Levi non-degenerate CR structure and 0 is a 
1-form on 5 such that ker0p = Vv for any p € 5. 

A pseudo-hermitian transformation of ((5, P, J); 6) is a diffeomorphism / : 5 —> 5 
such that /*(£>) C V, /* o J\v = J o f*\v and /*0 = fl. 

In the following, we denote a pseudo-hermitian structure only by a pair (5,0). 

A standard example of pseudo-hermitian structure is the following. Let 5 be 
a smooth real hypersurface in Cn and (P, J) the codimension one CR structure de- 
termined by the maximal J0-invariant subspaces in TS and the complex structures 
determined by the complex structure J0 of Cn. Assume also that p is a smooth defining 
function for 5, i.e. S = {p e Cn   : p(p) = 0}. The 1-form 0P 

(4.1) e^v) = dpp(J0v) 

vanishes exactly on the vectors on V. Hence if (5, V, J) is Levi non-degenerate, then 
(S18

p) is a pseudo-hermitian structure. 

DEFINITION 4.2. Let {3,6) be a pseudo-hermitian structure and let u — {/i, 
..., /2n-i} a linear frame at a point p G S. The frame u is called adapted to (5,6) if 

a) 0(/i) = 1 and Otfi) = 0 for 2 < i < 2n - 1; 
b) dBifiJj) = <% for 2 < 2, j < 2n - 1; 
c) J/22 = /2*+i for 1 < z < n - 1. 

The collection i7^ (5) of all adapted frames of frames of a pseudo-hermitian structure 
(5,0) is called unitary frame bundle of (5,0). 

Conditions b) and c) can be restated claiming that the vectors ea = /2a —if2a+i, 
with a = 1,... ,n — 1, constitute a holomorphic basis for P*0 C Up, which is unitary 
w.r.t. the Levi form C(X, Y) = d6p(X, Y). It can be checked that Uo(S) is a principal 
subbundle of 1/(5) with structure group Uq^, where (q, q') is the signature of the Levi 
form C (see also [We]). 

For any linear connection T-i on UQ(S) and any frame u = {/1,..., /2n-i} 6 UQ(S), 

let us denote by pu — TT*^ : l-iu —> Tn(u)S the restriction of TT* on ?{. We also denote 

by {/j = p~1(/i)} the basis of Hu which projects onto the vectors of u. 
Since pn is a linear isomorphism between 1-LU and T7r(u)5, we may always consider 

the subspace Uu = p^1(P7r(ti)) C 7^^ and the complex structure J on Uu, defined by 

(4.2) J-v = (pZ1oJopu)(v). 

(X>, J) are called ^e horizontal lifts of the CR structure (U, J). 

DEFINITION 4.3. Let H be a linear connection on Ue(S) and let (X>, J) the corre- 
sponding horizontal lift of the CR structure of 5. Let also ea the holomorphic vector 
fields in £>10 defined by 

Caltx = /2a|ii-*72a+lU € ^i0,       1 < a < n - 1. 

We say that 'W is of Webster type if: 
a) any Lie bracket between two vector fields of the holomorphic distribution 

U™ C Uc is 0;   _ 
b) TT^flece/?]) = -v^<WM/i) for any 1 < ^iS < ^ -1; 
c) for any 1 < a < n — 1 the complex vector field Ta = [eQ, fi] is so that 7r*(Ta) 

takes values in U01 = P10 at all points. 
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We call the vector field Ta = [ea,fi] the a-th component of the torsion ofH. 

We conclude with the following important result by S. Webster. 

THEOREM 4.4. [We] If (5,8) is a pseudo-hermitian structure, there exists exactly 
one linear connection of Webster type on UQ(S). This connection is invariant under 
the group Aut(S,8) of pseudo-hermitian transformations of (S, 9). 

Moreover, the a-th components of the torsion Ta = [ea,/i] of the connection of 
Webster type vanish identically if and only if the vector field fi, given by the first 
vectors of all adapted frames, is an infinitesimal CR transformations of S. 

We call such unique linear connection the Webster connection 0/(5,6). 

4.2. The generalized fundamental vector fields on the unitary frame 
bundle of an H-sphere bundle. Consider a circular H-sphere bundle (SM, p). For 
any x G M, let px be the restriction px = P\TXM and 0X = 6% the 1-form on 5^ defined 
by (4.1). Each pair (Sxi0x) is a pseudo-hermitian structure. 

If u = {fo,fi,...,f2n} C TXM is an adapted unitary frame of UP(SM) and 
if we identify the vectors {/i,... ,/2n} with the corresponding vectors at Tf0Sx, we 
immediately see that u is also an adapted frame for the pseudo-hermitian structure 
(Sx^x)- In other words, the fiber V^ = 7r~1(x) £ UP(SM) can be identified with the 
unitary frame bundle U0x(Sx). 

Let Wx be the Webster connection on V^ ~ UQX (SX). Notice that the flow of the 
vector field /i on Sx coincides with 1-parameter group of transformations given by T1. 
Therefore by Theorem 4.4 each component of the torsion of the Webster connection 
}Vx vanishes identically. 

Using the Webster connection Wx and the fundamental vector fields associated 
to the Lie algebra un_i © E = Lie(Un-i x T1) we define an absolute parallelism on 
any fiber V* C UP(SM) as follows. 

DEFINITION 4.5. Let Up(SM) be the unitary frame bundle of a circular H-sphere 
bundle (SM, p). For any x EM, let also Wx be the Webster connection on the fiber 
Yx = TT"

1
^) ~ Uox(Sx) = UeiSx) and TT : V* -» Sx = Vx/^n-i the standard 

projection map. 
For any element X € W 0 (un_i 0 E) we associate a vertical vector field X of 

Up(SM) associated as follows: 
(1) if X e un_i 0 E, we set X = X*; 
(2) if X G W(= Cn_1), we set X to be the vector field so that, for any frame it, 

Xu is the unique vector in ()/V7r(n))tz, such that 7t*(Xu) — u(X) G Tf0Sx; 

(3) for any two vectors X, X' e W 0 (un_i 0 E), we set X + X' = X + Xf. 
Any vertical vector field X is called generalized fundamental vector field. 

If {ei, Ej} is a basis for W 0 (un_i 0 E), the generalized fundamental vector fields 
{Q, Ei} are linearly independent at all points and they give an absolute parallelism on 
each fiber Vx. By construction, the vector fields {e^Ei} are mapped into themselves 
by any biholomorphic isometry of (SM, p). 

One may also check that if Up(SM) is a principal subbundle (and hence with 
structure group E/n; see Proposition 3.5), the generalized fundamental vector fields 
coincide with the fundamental vector fields of the elements in un. 

4.3. The absolute parallelism on UF{M) and the isometry group of 
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(M, J, F). Let UF{M) be the unitary frame bundle of a complex Finsler manifold 
(M, J,F) and U the non-linear Hermitian connection on UF{M). 

At any frame u = {/o,..., /2n-i} ^ UF{M) we denote by fi\u the unique vectors 
in Hu which project onto fc e T7r(w)M. Let also {e^} the standard basis of W = C72-1, 
^ be a generator of R = Lieft1) and {^Jj} a basis for un_i. Let also e*, f and JBj the 
corresponding generalized fundamental vector fields on UF{M). 

Then the set of vector fields 

(4.3) <rn = ifutiXEk} 

is an absolute parallelism on UF(M). It is unique, up to a change of the generator 
t and of the basis {Ej} for un_i and it is invariant under all local biholomorphic 
isometries of (M, J, F). 

We call cr^ the absolute parallelism associated to the Hermitian connection H. 
As a consequence of Kobayashi's theorem on the automorphism group of an ab- 

solute parallelism ([Ko]), the following result is easily obtained. 

PROPOSITION 4.6. Let (M, J, F) be a complex Finsler manifold of complex di- 
mension n and let % the non-linear Hermitian connection of (M, J, F). 

(1) The local holomorphic isometries of (M, J,F) are in 1-1 correspondence with 
the local diffeomorphisms ofUF(M), defined on open saturated subsets 7r-1(£/), which 
preserve the absolute parallelism an. For any local biholomorphic isometry f the 
corresponding local diffeomorphism is the restriction on UF(M) C LC

(M) of the dif- 
feomorphism 

f : L{M) -> L(M), f(u) = f*ou. 

(2) The group ISOF(M) of all biholomorphic isometries of (M, J, F) is a Lie 
group of dimension less or equal to 

dimR UF(M) = dimR V + dimK W + dimM(un_i 0 M) = n2 4- 2n. 

(3) dimR/sojp(M) = n2 + 2n if and only if F is associated with a Kdhler metric 
g and (M,J,g) is (CPn,gc2), (Cn,go) or (Bn,g_c2), where g^, go and g__c2 denote 
the Kdhler metrics with constant holomorphic sectional curvature c2, 0 and —c2, re- 
spectively. 

Proof. (1) It is proved with the same arguments of Proposition 3.3 in [Sp]; they 
are very similar to the arguments of the proof of Proposition VI. 3.1 in [KN] Vol. I. 

(2) It is an immediate corollary of (1) and of Theorem 1.3.2 in [Kol]. 
(3) If dimR ISOF(M) = n2 + 2n, then UF(M) is a principal subbundle of LC(M) 

and any isotropy subgroup ISOF(M)X acts transitively on any fiber V^ of UF(M). By 
Proposition 3.5 and Lemma 3.6 it follows that ISOF(M)X ~ Un for any x € M and 
that F is associated with an Hermitian metric g. Since for any x G M we have that 
ISOF(M)X = IsOg(M)x ~ Un , we also have that (M, J,g) is an Hermitian symmetric 
space, g is Kahler and the holomorphic sectional curvature is constant. 

We claim now that M is simply connected. Suppose not and let TT : M -» M be 
its universal covering map and g = 7T*g. For any x G M and any y G 7T~1(x)J the 
isotropy subgroup IsOg(M)x ~ Un is embedded into IsOg(M)y and hence IsOg(M)y — 
Isog(M)x c^ Un. This implies that any deck transformation F belongs to the normal- 
izer NIso,]^AIsOg{M)y) of the subgroup IsOg(M)y in IsOg(M). Suppose now that g 
has positive holomorphic sectional curvature. By the classification of simply connected 
complex space forms, M is CPn, IsOg(M) = SUn+i and Nl80,^{Isog{M)y) = 
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Nsun+i(Un) = Un. This means that any deck transformation F belongs to IsOg(M)y, 
and this cannot be because F fixes no point. Suppose then that g has non-positive 
holomorphic sectional curvature. In this case for any non-trivial deck transformation 
and any h € IsOg(M)y, there exists some h' G Isog(M)y so that h o F = F o h' and 
hence h(T(y)) = r(/i,(2/)) = T(y). Since h fixes y and T(y), it fixes point by point the 
unique length minimizing geodesic between y and T(y). But this cannot be because 
IsOg(M)y = Un and it fixes no vector in TyM. 

Since M is simply connected, the claim follows from the classification of simply 
connected complex space forms.    D 

5. The invariants of a complex Finsler manifolds. 

5.1. Notation. In all the following sections, the greek indices a, /?, 7, 5, s 
always run between 0,..., n — 1; the indices A, //, 1/, p, a run between 1 and n — 1. 

We denote by Ep = ep <8> ea the elements of the standard basis of gln(C). An 
element A = A^E^ G gln(C) can be also expressed using just the complex matrix Ap. 

For any adapted unitary frame u — {Ji} and corresponding holomorphic frame 
u10 = {ea}, we set 

hap(u) = 11/0(60,6/?), Hap7(u) = H/0(ea,e/?,e7), Hapl5{u) = H/0(ea,e/3,e7,e(5). 

The symbols hap(u), Hapj(u), Hap^(u), etc. have analogous meanings. 

On UF{M) we have the following distributions and CR structures: 
- % is the non-linear Hermitian connection; 
- VV = LLeM ^z ^s ^^ distribution obtained as union of the Webster connec- 

tions yvx of the fibers Vz = 7r_1(a;) = Uex{Sx)] 
- (X), J) is the CR structure given by f> = \JxeM Dx and J = {JxGM Jx, where 

each (T>x,Jx) is the horizontal lift in Wx of the CR structure of the Finsler sphere 5^ 
(see Definition 4.3). 
Notice that (H, J) and (X>, J) are both integrable CR structures on UF(M) (see §4.1). 

LJ is the connection form of W (see Def. 3.7) and we define Up as the C-valued 
1-forms on UF(M) which verify 

a,P 
»4- 

We also set u% = to p.   We call Up and a;| the holomorphic and anti-holomorphic 
components of the connection form u. 

We denote by £p and by £| the complex vector fields on LC(M) defined by 

^ = i[(^r-v^i(j0^r],    £$ = £*. 

Note that, if we extend C-linearly the 1-forms Up and u*, we have that 

u^)=<^,        a;|(^)=0. 

Moreover, we recall that by the properties of fundamental vector fields (see [KN]) 
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7 7 

This implies that 

For any fiber Vx = 7r~1(a:) C V^, we denote by 

** : V* = ^.(5X) -> 5,, = Vs/tfn-i 

the standard projection map of V^ = Uox{Sx) onto 5a: = Vx/C/n_i. 
For any i = 0,..., 2n — 1, /» is the vector field in % such that at all u G UF(M) 

Mfi)\u = fi = u(€i) e TV{U)M. 

For any a = 2,..., 2n — 1, ea is the generalized fundamental vector fields which cor- 
responds to elements of the real basis {e2,... ,€2n-i} o£ W = Cn_1 (see §2.1). By 
construction, any vector field 6a is vertical, it takes values in V C W and Je2i = €2i+i. 

Finally, we denote by ea and e\ the holomorphic vector fields 

Ca = r (Aa - V-T/ta+l) 5 ^A = - (e2A " V^T^A+l) • 

They coincide with the complex vector fields in 1-LC and Vc c Wc, which are mapped 
by TT* and Tr^ * onto the holomorphic vectors of the corresponding adapted frames of 
TXM and of T^^S, respectively. 

5.2.   The algebraic vertical subspaces of UF{M) and the distribution 
W. We want to determine the algebraic vertical subspaces of QU (see definition in 
§2.1). For this we give the following technical lemma, which follows directly from 
definitions and Lemma 2.4 e). 

LEMMA 5.1. For any choice of the indices A, B, C, the functions HABC are totally 
symmetric w.r.t. to A, B and C. Furthermore, for any u — {/o,..., f2n-i), 

(5.1) Ha0O(u) = H^o(u) = 0,   Haf3o(u) = -haf3(u),   H^u) = hap(u). 

Now recall that for any A G £jln(C) and any u G LC(M), the corresponding 
fundamental vector field ^4* at u is equal to the tangent vector at t = 0 of the curve 
a(t) = u o etA. Therefore, by Lemma 3.6, the element A belongs to the algebraic 
vertical subspace gu if and only if 

-0. (5.2) |[b^./0(e^.ca)e
M.e5)] 

Representing A with the associated matrix Ajg, condition (5.2) can be written as: 

(5.3) Al510 + 5a^ + AlHaBl{u) + AlHa^{u) = Q. 

Using Lemma 5.1, we immediately obtain the following. 
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PROPOSITION 5.2. For any u G UF(M), the algebraic vertical subspace gu C 
gln(C) is defined by the following equations: 

AZ + A§ = 0,        A0
X + A*+ A^hxAu) = 0, 

(5.4) 
A* + A* + AZH^iu) + A^Hxupiu) = 0. 

Equations (5.4) are called the defining equations of the algebraic vertical subspace 

flu- 

For any u € UF(M), consider the following basis for gu (A > fi): 

(5.5) t =J0 ■ ££, 

(5.6) E^=E^-El    E{tr = J0-(EZ + E*), 

(5.7) E2x(u) =El - [Re{ftAM(u)} + **„] E» - lm{hx^u)}J0 ■ E* 

- Re{^A(U)}^ - ImiH^iu)} J0 ■ E*, 

(5.8) E2X+i (u) = Jo • E0
X - [Re{hXll(«)} - dx^ J0 ■ E* + Im{hXtl(u)}E^ 

- Re{HPliX(u)}J0 ■ EH + Im{HPliX(u)}EZ. 

Consider also the complex valued vector fields e'x, e'^ defined as 

(5-9) e'x\u^^{E2X(ur\u-VZlE2X+1(ur\u},        e'-x\u=~^. 

If we consider the vector fields e^ and the generalized fundamental vector fields E^ , 

E{ , fas vector fields of TCLC(M), we may write them as linear combinations of the 
vector fields £% and £2   In this way, we obtain the following expressions: 

(5.10) js*. = (f* -^) + (s} -q), E{,» = V^iist + £*) - V=T(^ + £f) 

(5.11) t = ^£0° - V^lSl   e'x = £0
X\U- Si\u - h^x(u)£S\u - ^A(«)^|«. 

Notice that the vectors Eff , £j[ constitute a basis for un_i; hence any complex 
vector X G T^VX, which is vertical w.r.t. the projection 7r7r^ : V^x) —> S^x) = 

^7r(x)/Un-i, is linear combination of the vectors E^^u), E{ifJl(u) and hence, by (5.10), 
it is of the form 

(5.12) X = CS{S;\U-SS\U) 

for some uniquely determined Cj} G C. 
At the same time, for any u G UF(M), the generalized fundamental vector fields i 

and Ei(u), i = 2,..., 2n — 1, span a subspace of TuVn^, which is of dimension 2n — 1 
and which is complementary to the vertical distribution. More precisely we have the 
following: 

LEMMA 5.3. For any u e-UpiM) 

ciU.= i\u  mod spanu{Al, A G un_i}, 

C2A|ti = (E2\(u))*\u  mod spaTte{Al, A G un_i}, 

(5.13) e2\+i\u = (E2\+i(u))*\u   mod spanR{Al, A G un_i}. 
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Moreover, there exist some complex valued functions 5£ and S^x such that 

(5.14) exU = i\u - SZ(u)(£Z\u - £P\U), 

(5.15) ex\u = S0
x\u-£-X-Kx(u)SS\u-H^x(u)S^u-Sp

aX(u) {e;\u-££\u). 

Proof. In order to prove the claim, observe that, for any fiber Yx and any frame 
u = {/o,... ,/2n-i} € Va-, the element y = [u] = irx(u) G Vx/Un-i = S271'1 may be 
identified with the first element /o = u(eo) of the frame. Therefore the vector t*\u is 
projected by 7rx onto the vector of T[u]=f0Sx given by 

*«.(f|«)= ^-(^(uoc^^)) = i.(^oe^0
0
(eo)) 

ls=0 

= u o J0E$(€o) =uo J0E$(eo + CQ) = u(ieo - ieQ) = /i. 

By a similar argument one can check that (E2\(u))*\u and (J^2A+i(^))w are mapped 
by Trx onto the vectors /2A, /2A+1 = ^/2A? respectively. This proves (5.13). 

From (5.13) and (5.12), the formulae (5.14) and (5.15) follow.    □ 
In the following, in order to have more symmetry in some formulas, we will often 

write HQ^XM in place of hax(u): since they coincide by Lemma 5.1. 

5.3. The structure functions of the absolute parallelism of UF{M). 

Cartan-Sternberg theorem (see [St]; we recall the complete statement - which is indeed 
quite long - in the Appendix) implies that a complete set of invariant functions for an 
absolute parallelism {Xi,... ,Xm} is given by the structure functions c^, defined by 
[Xj,Xk] = CjkXi, and by their derivatives X^ (... Xip (Cjk)...), with p less or equal to 
some finite order r. The order r in general depends on the absolute parallelism, but, 
in case of real analytic data, there exists an upper bound for r which depends only on 
the dimension of the manifold (this is a consequence of Cartan-Kahler theorem; see 
[BCG]). 

From this remarks and Proposition 4.6 (1), we conclude that the structure func- 
tions Cjk and the derivatives X^ (... Xip (Cjk)...) of the absolute parallelism (4.3) are 
a complete system of invariant functions for the complex Finsler manifold (M, J, F). 

In this section we want to describe these structure functions. 

The structure functions cljk corresponding to Lie brackets of two generalized fun- 

damental vector fields X,Y, with X and Y in {*,^ ,£7^}, are computed by the 

Lie brackets in un_i 0 M.    In fact, X and Y are the fundamental vector fields in 

the usual sense and hence [-X*,?] = [X, Y]. In particular, for those Lie brackets, the 
corresponding structure functions Cjk are the structure constants of the Lie algebra 
un_i © E. 

The structure functions cljk corresponding to Lie brackets between a fundamental 

vector fields X, with X G {E?,Ex } and a vector field Y in the set {e^e^} can be 

evaluated recalling that X is a fundamental vector field associated to an element in 
un_i and that Y belongs either to H or to W, which are both invariant under the 
action of Un-i. This implies that the action of X on the set {ei,€j} is equal to the 
standard action of X G un_i on the basis {e^e^} of V 0 W = Cn © Cn_1 (see e.g. 
Prop. 2.3 in [KN], vol. I). Therefore, also for these Lie brackets, the corresponding 
structure functions are constant. 
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The structure functions corresponding to the Lie brackets of two vector fields in 
the set {ii, €j,i} are given by the real and imaginary parts of the Lie brackets described 
in the following Propositions 5.4, 5.5 and 5.6. 

PROPOSITION 5.4. A Lie bracket of a pair of vector fields in the set {ep, e^, i} or 
of a pair in the set {e^, e^, i} has one of the following forms: 

(5.16) [e/j)e7] = -T|yea> 

(5.17) [e0,e^ = -R^ex + R0
x^e-X + ^-lR0

mi - ■KM{£;-£$), 

(5.18) [t, eg] = V-lSpoeo,   [i, eg] — —vZ-l^oeo, 

(5.19) [eM,e,,] = 0,    [eM, ep] = -V-IS^J- (6£6ai, - QlvW; - 4), 
(5.20) [i, ~e„}u = -y/=iev - V^igSc^; - £$), 

(5.21) [t, ep) = V-lep - V-1QV(£; - ^1), 

where T^, R® ^ QanP> QaOv and Qiov are some uniquely determined C-valued func- 
tions. 

Proof Recall that the vector fields ea are holomorphic vector fields in H10 C H€. 
Since the CR structure (H,J) is integrable, [e/?,e7] takes values in 7{10. From this 
(5.16) follows. 

To prove (5.17), we first claim that it is a complex vertical vector. In fact, for 
a given u G UF(M), consider a local holomorphic embedding a : U C M -> UF(M) 

with u G cr(ZY). Since TT : LC(M) -> M is holomorphic, e^ = (a o TT)*^^^)) 

and e'^ = (a o 7r)*(e7|0.(^)) are holomorphic and antiholomorphic vector fields on 
cr(ZY), respectively, and hence [e^,e^] = 0. Since at any uf = A • a(x) € UF(M)\I( 

we may write ep and e7 in the form ^(w7) = Ap • e^l^^) + r|?j!3(zz')(.Ef)*|w/ and 

e7 = ^•e^|(7(w) +r~(w/)(jE|)*|u/, a simple computation shows that 7r*([e/3,e7]u) = 0, 
i.e. that it is a complex vertical vector. Since at any u, the vectors e\\u, e^lu, \/—T^u 
and £Z\u — £§\u are linearly independent over C and the complexified vertical subspace 
V^ C T^UF(M) is equal to their span, (5.17) follows. 

To check (5.18), recall that i is the fundamental vector field in LC(M) associated 
to JO'EQ', then the formula follows from definitions and the fact that H is Un-i x T1- 
invariant. 

(5.19) is a consequence of the properties of the distribution W (see Definition 
4.3), of (5.14) and (5.15). 

The proof of (5.20) is the following. Pick a frame u0 e UF{M) and let Xv the 
complex vector field in TCLC(M) defined by 

X,, = Si - £? - H^MSZ - Sp
aX(u0)(SZ - El). 

From definitions and Lemma 5.3, one can check that 

M«/]tio = fc-XVluo     mod spanc{£o \u0^p\u0^p\u0}' 

By the properties of the Lie brackets between fundamental vector fields in LC(M), it 
follows that there exists some complex functions QBCD 

SUC
^

1
 ^a^ 

[i,ev} = -V=leu - V^Q^SS - J-LQZo^ " ^Qnvtf- 
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Notice that by (5.10) and (5.11) the vector 

belongs to spanc{e\\u,ex\u,i\u,£Z\u - £?\u} only if Q°0t,(u) = 0 and Q^Qt/{u) = 
Q^0u(u). This concludes the proof of (5.20). (5.21) is obtained from (5.20) by conju- 

gation and taking into account the fact that i = i.  D 

PROPOSITION 5.5. At any frame u G UF(M) and for any p, a, \, /J, = 1,... ,n — 

1, 
(1) S^x(u) = 0; in particular e!x = e\\ 

(2) O^W = 0flnd 

Q^A/iW = ^(^Ap)U = Hppa\(u) - hfipi^Kxiu) - H^p(u)Haxp(u); 

(3) ^/ie Lie brackets [e\,eo], [e^,eo], [eA,eM]; [e^,^] /iave the following forms: 

(5.22) [eA, eo] = eA + ^/=IPo0AO? - ^AO^ + ^AO^ - i^o(^ - ^|)> 

(5.23) [eA) eM] = -H^xea + V^IP^J - P^e, + J* ^e, - ^(^ - f»), 

(5.24) [ex,eo] - ->/=li^0* + P^ - P^0eA + i£0(# - f»), 

(5.25) [eX) eM] - -dA/Je0 - V^l^t + PfoJ, - P°-XJP + !>%(£> - 6$), OAM   
T

    OA/i^"      ^ (/A/<0I/ ^ ^ pA/iV^-o-      "p , 

where PBCD 
are some uniquely determined complex valued functions. 

Proof. (1) For any frame u, let us denote the vertical subspace of UF(M) by Vu. 
We claim that 

(5.26) [ex,e0]u = ex  mod V^,   [eA.e^ =-(ffa^+ 5°A)ea   mod V^, 

(5.27) [es,eo]„ = 0 mod Vj,   [eA,e^] = -JA/,eo + S^ev  mod V^, 

where 5?^ and 5?A are the complex functions defined in Lemma 5.3 and we let 5°A = 0. 
To prove (5.26), let us fix a frame u0 and consider the complex vector field X\ in 

TCLC(M) defined by 

XX = S0
X - Si - (Ha<rx{uo) + S;x(u0))£Z + S;x{u0)£*. 

Let us also extend eo to a vector field on a neighborhood U C LC(M) of u0. 
From (5.15) and from definitions we get 

[e\,eo]Uo = [XA,eo]u0    mod spaiic{££|tt0,£f k,}- 

In particular, ^0([eA,eo])  = QUo([Xx,eo}).    Moreover, Xx(0(eo))\Uo   = 0:   in fact 
Xx\u0  — e\\u0 

an<i hence it is tangent to UF(M); on the other hand 0(eo) = eo 
at all points of UF(M). 

Therefore 

(5.28) 0uA[X\,eo]) = -(CxJ)u0(eo) = -(^o_E-x9)Uo(eo) 

+ (Hapx(uo) + S«x(uo)){jC6>e)uJe0)-Sp
a^^ 

This implies that at all points the vectors [eA,eo] and ex differ by a complex vertical 
vector. This implies the first identity in (5.26). The second identity in (5.26) and the 
two identities of (5.27) are proved with the same arguments. 
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Now, we can prove that 5^ = 0. Indeed from the Jacobi identities, Proposition 
5.4, (5.26) and (5.27) 

0 = ^([eA,[ep,eo]]) +^([ep,[eo,eA]]) +^([60,^,6,]]) = 6»([ePj[eo,ex]}) = -Sfc. 

(2) is a consequence of (1), (5.26), (5.27), the Jacobi identities and Lemma 2.4. 
In fact, 

0 = O'Uex, [en, e,]]) + ^([eAl [e,, eA]]) + ^([e,, [CA, e^]]) 

= ^([eA, [eP, ea}]) + ^([e>, [eCT, eA]]) + 5^ - Qp^ 

= S^Si + en{H-Pax) + %&*» - Qp„xp 

and 
0 = ^([t, [ep, eCT]]) + ^([eA, [e^t]]) + ^([e„ [t,eA]]) = >/=l Q^. 

Now, using Lemma 2.4, (5.15) and the fact that S^x = 0, a straightforward computa- 
tion shows that 

Cfiy-HpaX) =:: ~ilp,piT'cr\ ~~ ■tiup.p^aXu "r HjipcrX 

and this concludes the proof. 

(3) is an immediate consequence of (5.26), (5.27) and of claim (1).  D 

PROPOSITION 5.6.   The structure functions PBCD defined in Proposition 5.5 are 
the following: 

(■\\   pO     — pO     — po     _ pO     _ pA     _ pA     _ n. 
\LJ   rQp~i — M)p7 — r\p~i — r\p-f — rQpi — rLipi ~ u^ 

(2) P^ = -e^h-xp), P^ = -e^H-x^). 

Proof. It suffices to use the Jacobi identities, Proposition 5.4 and Proposition 5.5. 
In fact 

0 = ^([ep,[eo,e7]]) + ^([e7,[ep,eo]]) + ^([eo,[e7,ep]]) = P0
0
p7, 

0 = ^([ep-,[eo,e7]]) +^([e7,[ep-,eo]]) +^([eo,[e7,ep-]]) = -P0%, 

0 = e'x([epi [e-0,e7]]) + ^([e7, [ep,eg]]) + e~x([e-0, [e^ep}}) = P°,7, 

0 = ^([e?,[eo,e7]]) +^([e7,[e^,eo]]) +^([eo![e7,ep-]]) = -P^, 

0 = e5({ep, [eA, e7]]) + ^([e7, [ep, eA]]) + 0B([ex, [e7, ep}]) 
   pA        TT_      pO         pA 
—     0p7       rL0\(T-r<Tp'y ~ ^0/97' 

0 = e*{[ep, [eA,e7]]) + ^([e7, [ep,ex]]) + ^([ej, [e7!ep]]) = -P, 

0 = 05([ep-,[eA,e7]]) + ^([e7, [e,-,eA]]) +^([eA, [e7,ep-]]) 
Ax/97' 

= -e7 (HQXP) - Pop^ = -Cjikxp) - Pop-f 

0 = ^([6>, [e^e7]]) + ^([67, [ep-,6X]]) + 0*([cx, [e7,e>]]) 

= -e7 \Hjx\p) — P^p1 = —ej(H^p) — P^- □ 

By the previous remarks and Propositions 5.4, 5.5 and 5.6, we now have the 
complete list for the structure functions of an and they generate a complete system 
of invariant functions. We summarize the results in the next corollary. For notation 
and indexing conventions, see §5.1. 
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COROLLARY 5.7. The structure functions rffe of the absolute parallelism 
(jn, associated to the non-linear Hermitian connection of a complex Finsler manifold 
{M,J,F), are the following: 

i) the structure constants of (un_i + M) K Cn, where the action of (Un-i + M) 
on Cn is the one induced by the standard action of un on Cn; 

ii) the real and the imaginary parts of the functions hx^ and Hx^v; 
iii) the real and the imaginary parts of the functions 

iv) the real and the imaginary parts of the functions T^ and R^ ^ defined by 

(5.16) and (5.17). 

5.4. The structure equations of a complex Finsler manifold. The struc- 
ture equations of UF{M) consist in the identities verified by the tautological 1-form 8, 
the connection form u and the differentials of their components. They are direct conse- 
quences of the defining equations of the algebraic vertical subspaces and the structure 
functions of the absolute parallelism. The results are in the following theorem. 

For notation and indexing conventions, see §5.1 and §5.2. 

THEOREM 5.8. Let (M, J, F) be a complex Finsler space and let u the connec- 
tion 1-form on UF(M) associated with the non-linear Hermitian connection H of 
(M,J,F). 

i)   The holomorphic and anti-holomorphic components of u verify: 

(5.29) a;§+wg = 0>    wj + o^ + W^f = 0,    ^ + u;f + tf^a£ + tf^c^ = 0. 

ii) Let tta be the C-valued 1-forms on UF{M) given by 

—O   . ,0       —A   . ,A       _0        . ,A       __//   . ,/i _|_ zj       , ,A       <_rQ:   __a w0 — cc;0,   ZDQ — UJ0 ,   wx — -UQ ,   wZ — w^ + H^XUQ ,   w^ — w^. 

Then zu^ verify: 

(5.30) w% = -ml, 

(5.31) ^(eM) = (JAM, C7^(ep) = 0, t^(eM) = 0, ^(e^) = -«AM, 

(5.32) ^(t) = ^(^J = ^(^,J = 0, wl{t) = ^(E^) = TZ^J = 0; 

iii) T/ie differentials of the tautological 1-form 8 and of the C-valued 1-forms vo® 
are given by the following identities: 

(5.33) dea + w^/\9'3 = eQ + Ea; 

(5.34) dzv% + mo
0Azj$ = fig; 

(5.35) dG7£ + u^ A wj? = f# + Eft ,     derj +^ A wf = n0
x +Ul; 

(5.36) dts* + ^ A t^ = n^ + H^ + **; 
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where 0Q, S", fi^, UQ, 11°, H^ and $^ are tfte the following C-valued 2-forms: 

(5.37) e0 = |T|7^A^,    Ea = tfa^A0<\    ^ =/^^ A ^ 

(5.38) n^-e^^KA^,   n^ = -e7(^p-)^A^, 

(5.39) n^ = -e7(fl-w-)CT° A P - e^H-xJwp
0 A ^, 

(5.40) $* = (HXffw - htohw - H^H-^) wp
0 A m°. 

where TS   and R^ = are f/ze complex functions defined in (5.12) and (5.13). 

We call the equations (5.29) and (5.33) - (5.36) the structure equations of the 
non-linear Hermitian connection of (M, J, F). 

Proof. (5.29) follows from the defining equations of the algebraic vector subspaces. 
To check (5.30) - (5.32), one has only to use the definitions, Lemma 5.3 and Proposition 
5.5 (1). The structure equations (5.33) - (5.36) are proved by evaluating both sides 
on all possible pairs of vector fields of the absolute parallelism (4.3) and checking that 
both sides give the same result. This can done directly by using Propositions 5.4, 5.5, 
5.6 and formulae (5.31) and (5.32).    □ 

Consider the following 2-forms on UF(M) with values in gln(C) 0 Cn: 

n—1 n—1 n—1 

0 = Y, ea <8> 0a,        E = Y, e« ® £*>        ft =   ^ ££ ® fig, 
a=0 a=0 a,/3=0 

n—1 n—1 n—1 n—1 

n = 5»n0
A + £JE#®n2+ £ ££®II£, $=5] J^®*J. 

A=l M=
1 A,^=l A,^=l 

We call 0 the (pure) torsion form and E the Finsler torsion form. The 2-form fi is 
called the (pure) curvature form] finally we name 11 and $ oblique Finsler curvature 
and vertical Finsler curvature, respectively. 

The Finsler curvature and torsion forms are 0 if the Finsler metric is associated 
with an Hermitian metric. The following Proposition gives an important criterion to 
see when this occurs. 

PROPOSITION 5.9. A complex Finsler metric F is associated with an Hermit- 
ian metric g if and only if the component E0 of the Finsler torsion form vanishes 
identically. 

In this case, E = 0, 11 = 0 and $ = 0 and Q and fi coincide with the torsion form 
and the curvature forms of the linear Hermitian connection of (M, J, g), respectively. 

Proof. From definitions, E0 vanishes if and only if for any x G M, any 0 ^ v G 
TXM and any two trivially extended vector fields X,Y G T(TXM), h(X10,y10) = 0. 
By Lemma 2.5, this occurs if and only if F2 is associated to an Hermitian metric h. 
The other part of the claim follows immediately from the identity between UF(M) 

and the unitary frame bundle corresponding to the Hermitian metric associated with 
F. U 

Taking the exterior differential of both sides of the structure equations, one can 
obtain several identities that must be satisfied by the structural functions and by the 
torsion and curvature forms.   Some of them are given in the following Proposition. 
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When F is associated with an Hermitian metric, they reduce to the usual symme- 
try identities and to the Bianchi identities of the torsion and curvature of a linear 
Hermitian connection. 

PROPOSITION 5.10. Let 0 and fi the pure curvature forms of a complex Finsler 
manifold (M, J,F). Then the components Qa = T^ A 07 and fi^ = i^07 A 0s 

verify the following identities: 

(5.40) n% = -fig; 

(First Bianchi Identities) 

(5.41) ^(1%) + e7(r^) + isiTfr) + T?fiT$6 4- T^T|7 + T^T^ = 0, 

(5.42) Rp^ - R^ps - CsCTp-f) - HaXpRo^ + H^iRo0Z = 0' 

(Second Bianchi Identities) 

(5.43) e7(^-) - cj(^7ff) + R^T^ + ^(i?^)^- - ^(frwX)^ = 0, 

(5.44) e,-(i^-) - 4-(i^) - ^7C-2l - ^(^^A)^" + e-^H^R^ = 0. 

Proo/ (1) The identity (5.30) implies that dm% = -dm%. Then (5.40) follows 
directly from this and the structure equations. 

Now, consider the exterior differential of both sides of the structure equations 
(5.33) - (5.36). It can be easily checked that the 3-form 

(fig-frffiA/jfiJ)A^-dea,   dfig,   dfi£ + dn£,   dnl + dnl,   dn^ + dn* 

vanish identically on any three vectors of horizontal distribution ti. This implies that 
the components of these 3-forms with respect to the forms 

00 A 07 A 9s,   0^ A 07 A 0s, 00 A OV A 0s, 0? A 0* A 0* 

have to vanish identically. Such components are exactly the left hand sides of (5.41) 
- (5.44).    D 

Remark 5.11. The exterior differentiation of the structure equations give several 
other identities for the torsion and the curvature, which are not listed in Proposition 
5.10. 

When the Finsler metric is associated with an Hermitian metric, those identities 
express only the property that Tp7(u) and R® ^(u) depend on the frame u = {e^} as 
the components of some suitable tensor fields on M. But when the Finsler metric F 
is not associated with an Hermitian metric, these identities give new (and somehow 
unexpected) relations between ©, fi and the Finsler torsion and curvatures E, H and 

One can obtain a complete list of these identities (and avoid several tedious com- 
putations) using some symbolic manipulation computer program. 

6. The structure equations of Lempert manifolds. 

6.1. Geodesies of a complex Finsler manifold. We continue to use all 
conventions given in §5.1, §5.2 and §5.4. 
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Let 7 : [a, b] C M —> M be a smooth regular curve, that is a smooth curve such 
that the tangent vector 7* is different from 0 for any t G [a, 6]. A smooth curve 
7 : [a, b] ->> UF(M) is called &/£ 0/7 if it satisfies: 

a) TT o 7 = 7; 
b) for any t G [a,6], the frame jt = {/o(*)>--->/2n-iW} C T^0M is so that 

/o(*)eC*7*. 
Notice that a curve 7 : [a, b] -> UF(M) is a lift of 7 if and only if it projects onto 7 
and there exists a smooth map <p : [a, b] -> E such that for any frame 7^ = {fi(t)} 

(6.1) 7t = F(jt)e^
J ■ (fo(t)) = F(7t) (e^eo(t) + e-i¥"eo(f)) . 

We call length 0/7 and energy 0/7 the integrals £(7) and #(7) defined by 

(6.2) i(7) = f F(jt)dt,    E{i) = [ F2(jt)dt. 
J a J a 

Note that if 7 is any lift of 7 on UF{M), then 

(6.3) L(7)= [JsofoPfodt,  E^) = f e\%)e\%)dt. 
J a J a 

We recall that a variation with fixed endpoints of 7 is a smooth map V : (—S,S) x 
[a, 6] -> M such that 

(1) V(0,t) = 7*foraine[a,&]; 
(2) for any s £ (—5,5), the curve 7^) = V(s,*) is a regular curve such that 

7is) = 7a and 7^ = 7&. 
DEFINITION 6.1. A regular curve 7 : [a, b] -> M is called geodesic of the complex 

Finsler manifold (M, J, F) if for any variation V with fixed endpoints, the family of 
curves 7^) = V(s, *) is so that 

(6.4) dE^ 
dt 

= 0. 
s=0 

The equations of Euler-Lagrange for a geodesic of a complex Finsler manifold are 
given in the following Theorem. 

THEOREM 6.2. Let 7 : [a, 6] -> M be a regular curve. 
(1) For any lift 7 : [a, b] —)■ UF(M) 0/7 consider the complex functions -4(7)4, 

B^t and C^t defined by 

A{.l)t = *%{%)#>{%) ds 

They vanish identically for one lift 0/7 if and only if they vanish for any lift of 7. 
(2) 7 is a geodesic if and only if for any lift 7 and any t G [a, b] 

(6.5) ^2=0,    ^(^rt,)-*^!   =0, 
t 

(6.6) wlm + T°0M
0(^) = 0,    wltft) + T&h&fit) = 0. 
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Proof. (1) Let 7 and 7' be two lifts of 7. Let also yt and </?£ two real functions 

so that (6.1) holds for 7 and 7', respectively. This means that % = % 0 fe^*-^')'7) 

and that 7^ = f i? (^-^^j)   (7^) for any t. From the invariance properties of 0, u 

and of the torsion 2-forms 0^ under the action of T1, it follows immediately that 
A(f) = e^M-^Atf), B{f) = e^fa-^Btf) and C^) = e^^-^Cft). 

(2) Consider a variation V : (—5,5) x [a, b] ->• M of 7 with fixed endpoints and 
let y : (—5,5) x [a,b] -» UF(M) be a smooth map such that for any s 6 (—5,5), the 
curve 7W = ^(s, *) is a lift of the curve 7^) = V(s, *). 

Let also X and Y the vector fields, which are tangent to ^((—5,5) x [a, b]) C 
UF(M), defined by 

9' 
X = V* (!)• ^s^ 

Note that [X)y] = V;([|,^])=0. 
From definitions and the commuting property of X and 1" we get that 

(6.7) dEfrW) = /" y^o(x)e0(x))|  di= / U0(y,x)^(X) 
,=0       Ja V ^ 'TI 7a    L 

+ i90(X)d6i5(Y-,X) +X (6l0(F)) eG(X)+e0(X)X (f(YJ)]\_ dt 

= f [de0(Y,x)e6(x) + 60(x)d6°(Y,x) - e0(Y)x (0o(x)) - 

-9°{Y)X (e0(X))]     dt + [  X (e0(Y)9°(X) + 60(X)9°{Y)) I    dt. 

Now, 
(6.8) 

x (fl0(y)e0(x) + 0o(x)0s(y)) I   & = (0o(r)0D(x) + 0o(x)0D(y)) 
76 

= 0 

because 0o(y)^a = 0O(F)^6 = 0 since V is a variation with fixed endpoints. 
Using (6.8), the fact that 0a(X) = 5g;0o(X) and the structure equations (5.29) 

and (5.33), we get 

(6.9) 
dE{^) 

ds 
= f {[-{< A 6a){Y,x) + e0(Y,x) + i:o(y,x)]0o(x) 

+ 0o(X)[-(a;g A05)(y,X) + 0O(y,X) + S0^^)] 

-e0{Y)X{6°{X))-d°{Y)X{60{X)))   dt 
'It 

= f  {>(X)05(X)}    l90(Y) w0
0(X)       X(6P(X)) 

d0(X)      0°(X)0°(X) 

+ 96(Y) 

+9l(Y) 

wl(X)       X(90(X)) 
90(X)      90{X)90(X) 

dt. 

+ 9X(Y) 
. 60{X) 

+n \o 

*>HX) 

It 
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Hence 7 is a geodesic if and only if equation (6.6) and the following equations (6.10) 
are identically satisfied: 

(6.10)      w°(x)e*{x) - x{e*{x)) _ - o,   vol(x)e0(x) - x(e0(x)) 
n 

= 0. 
it 

Since WQ +tug = 0, multiplying the first and the second equation by 80{X) and d0(X), 
respectively, and then adding them together we get: 

^  "* = IT =0- 
This shows that the equations (6.10) are equivalent to the equations (6.5) and it 
concludes the proof. □ 

In analogy with what happens in Riemannian geometry, it is not hard to realize 
that a regular curve is critical w.r.t. the length functional if and only if, up to a 
parameterization, it is a geodesic. 

6.2.    Complex geodesies, E-manifolds and Lempert manifolds.      Let 
(iV, J/v) be a complex manifold of dimension dime N < dim M = n and let 1: N ->• M 
be a holomorphic embedding. In analogy with the Riemannian and Hermitian settings, 
an holomorphic embedding is said to be totally geodesic whenever any geodesic 7 : 
[a, 6] -» iV of the induced Finsler metric FN = F o 1* is embedded as a geodesic 
y = % o 7 of M. 

We give here the concepts of complex geodesies and complex pre-geodesics. Note 
that our definition of complex geodesies coincides with that of segments of complex 
geodesies given in [AP]. They are strongly related (but different) with the complex 
geodesies as defined by Vesentini in [Ve] (see remarks in [AP], p. 129). 

DEFINITION 6.3. A complex pre-geodesic of a complex Finsler manifold (M, J, F) 
is a totally geodesic holomorphic embedding i : T -» M of a simply connected complex 
curve (F, J0). 

A complex geodesic is a complex pre-geodesic i : F -> M such that the Kahler 
metric induced on F by M has constant holomorphic sectional curvature. 

A complex Finsler manifold (M, J, F) is called E-manifold if 
i) for any x G M and any vector v G TXM there exists a complex geodesic 

i : F —>• M passing through x and tangent to V] 
ii) all complex geodesies have the same holomorphic sectional curvature. 

As we mentioned in the Introduction, the examples of E-manifolds we are mainly 
interested in are the Lempert manifolds (see Definition 1.1): they are E-manifolds with 
complex geodesies of holomorphic sectional curvature —4. Other interesting examples 
of complete E-manifolds, with complex geodesies with non-negative holomorphic sec- 
tional curvature, are given by the classification of non-negatively curved Kahler-Finsler 
manifolds given by Abate and Patrizio in [API]. 

The goal of this subsection is to give some properties on the torsion and the 
curvature, which gives a complete characterization of the E-manifolds. In the follow- 
ing Theorem 6.7, we will show that the E-manifolds are exactly the complex Finsler 
manifolds, which are geodetically torsion-free and with constant holomorphic sectional 
curvature (see Definition 6.4 below). 

Notice that what we call geodetically torsion-free Finsler manifolds coincide with 
the manifolds that Abate and Patrizio christened weakly-Kdhler Finsler manifolds (see 
[AP]). 
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We begin with the equations of complex pre-geodesics and the complex geodesies 
of a complex Finsler manifold. 

Let z : F —> M be a holomorphic embedding of a complex curve F and let 
Fr = F o i* the induced Finsler metric on F. We call adapted unitary frame of 
(T,i) any frame u = {/o,... ,/2n-i} € 7r~1(z(r)) C UF(M) with fo tangent to z(r). 
We denote by Ut(r) the bundle of adapted unitary frames. It is immediate to realize 
that[/,(r)/(7n_i=[7Fr(r). 

Let us denote by i : Ut(T) —> UF(M) the natural immersion map. Then we have 
the following commutative diagram. 

Ut(T) —L-> UF(M) 

(6-i4) c/Fr(r) = Utiryu*-! ► SM = uF(M)/un^ 

I- 
—%—> M 

Let us also define on Ul(T) the following 1-forms 

(6.15) i)a=i*0a
:     7r%=i*vj%. 

If we denote by 9® and 9^ the holomorphic components of the tautological 1-form of 
UFAT), then 

(6.16) i?0=7r*flg,    T?
A
=0. 

LEMMA 6.4. Le^ 2 : F -> M 6e an holomorphic embedding of a complex curve F 
in (M, J, JP) anc? ?e^ ^7^ the components of the Hermitian connection of the induced 

metric Fr = F o i* on F. The embedding is totally geodesic if and only if for any 
A = 1,... ,n — 1: 

(1) 7r0
0=7r*^; 

(2) TT^ = 0 and TT^ = 0; 
(3)TA

0
0o?=0. 

In particular if % is a totally geodesic holomorphic embedding, then for any u G UFT (F) 
and any u of 7t~1(u) G ^(F), R^QQI^U) — 0 and the holomorphic sectional curvature 
c\u of Fr is equal to 

C\u — ttooo \i(u)' 

Proof Let 7 : [a, b] -> F be a regular curve in F and let 7 : [a,b] -> f/2(r) C 
UF{M) be a lift of the curve 72 = 1 o 7. By (6.16) and Theorem 6.2, 7 is a geodesic 
for the induced metric if and only if 

(617)      svflu^,,,^^,.^ 
Using again Theorem 6.2, 7Z is a geodesic for the Finsler metric of M if and only if 7 

= 0. 
t 
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verifies also 

(6.18) ^t)<{~t)_dfm   =0) 

t 

(6.19) nKJt) + rA
0
0M

0(7) - 0,    4(jt) + 2^,0°tf) = 0. 
Therefore the embedding is totally geodesic if and only if (1) holds and 

(6.20) TTSU = -TA
0
0|„<,        4\u = -no\uK 

for any u G Ut(T). On the other hand, by the structure equations (5.29) and (5.30) 
and by (6.16) 

(6.21) 0 = ddx = -TT^ A tf0 + 2*0A = ^5 A T?
0
. 

From (6.20) and (6.21) it follows that 

(7^oz)tf0Atf0 = 0 

which implies that T^o i = 0 since ^0 A tf° = 7t*(0$ A 0£) 7^ 0. From this, (2) and (3) 
are immediate. 

The last claims follows from (1), (2) and the structure equations of ?7jrr(r).  D 

We can now give the characterization of E-manifolds. Let us first introduce some 
terminology. 

DEFINITION 6.5. We say that a complex Finsler manifold (M,J,F) is called 
geodetically torsion-free if the 2-form 0° is of the following form 

(6.22) 0° = ^T^0X A 0" 

(i.e. the complex functions T°0 vanish identically). 
(M, J, F) is called with constant holomorphic sectional curvature if there exists a 

constant c so that the 2-forms QQ 
and ^x are of the form 

^0 _ (6.23) % = c90 A 0° + E°p90/> A 0* + i$pO0' A 0° + it:go^0o A 0*, 

Q0
A = iZo

A^0^ A 0* + i?o
A
pO0^ A 0° + i?0

A
0^

0 A 0*, 

nj = ^P^
p A 6* + E^0^ A 0° + i^00 A 0^ 

(i.e. ^o0 = Candi?0
A
o0 = i?Oo0 = 0). 

If M has constant holomorphic sectional curvature, the constant c is called the 
holomorphic sectional curvature of M. 

Remark 6.6. Assume that F is associated with an Hermitian metric g. In this 
case, using the fact that the functions Tp7(u) depends on the frame u as the compo- 
nents of a tensor of type (1,2), it can be inferred that F is geodetically torsion-free 
if and only if g is torsion free and hence Kahler. With the same arguments, it can 
be shown that F is of constant holomorphic sectional curvature if and only if the 
Hermitian metric g is of constant holomorphic sectional curvature. 

Notice that the notion of manifold with constant holomorphic sectional curva- 
ture is not the same as manifold with constant holomorphic curvature as defined by 
Abate and Patrizio in [AP], although the two notions turn out to be equivalent in 
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the Hermitian case. In [AP], the conditions R^ = R^ = 0 are not included in the 
definition of manifolds with constant holomorphic curvature. 

Here is the characterization we were looking for. 

THEOREM 6.7. Let (M,J,F) be a complex Finsler manifold. 
i)  There exists a complex pre-geodesic through any point x G M and tangent to 

any vector v G TXM if and only M is geodetically torsion-free. 
ii) (M, J, F) is an E-manifold if and only if it is geodetically torsion-free and 

with constant holomorphic sectional curvature. 

Proof, (i) The necessity follows immediately from Lemma 6.5. Suppose now that 
(M, J, F) is geodetically torsion-free and consider the distribution C on UF(M) given 
by all vectors X G TUF(M) such that 

(6.24) ex(X)=0\    9~X{X) = 0,    ZJ$(X) = Q,    w0
x(X) = 0 

for A = 1,... ,n — 1. Using the structure equations, one can check that the equations 
(6.24) define an integrable distribution whose integral leaves of maximal dimension 
project onto holomorphic curves in (M, J). Moreover, if 5 C UF{M) is an integral 
leaf of C with corresponding holomorphic curve T = 7r(5) C M and if i : T -» M is 
the standard immersion of F, then S is equal to the adapted frame bundle Ut(T) and 
the immersion i : F -> M is a totally geodesic isometric embedding. Since there exists 
an integral leaf of C for any frame u G UF(M), this concludes the proof of (i). 

The proof of (ii) is analogous.  D 

Remark 6.8. Equivalent characterizations of the E-manifolds can be also found 
in [Fa], [Pa] and [AP]. 

6.3. The torsion and curvature of an E-manifold. In the following last 
Theorem 6.7, we prove that the torsion and the curvature of an E-manifold are uniquely 
determined by the Finsler torsion and the Finsler curvatures. This implies that in 
order to have a complete set of invariants for an E-manifold, it suffices to consider the 
structure functions described in Corollary 5.7 i), ii) and hi). We also give the explicit 
formulae for some components of the torsion and the curvature and an application 
of these formulae, which gives a short proof of an Abate and Patrizio's result on 
Kahler-Finsler manifolds with positive sectional curvature (Theorem 1.1 in [API]). 

For the notation and the indexing conventions, see §5.1 and §5.2. 

THEOREM 6.9. Let (M,J,F) be an E-manifold with constant holomorphic sec- 
tional curvature c. Then: 

(1) the torsion and the curvature of the non-linear Hermitian connection of M 
are uniquely determined by the structure functions h\^, Hx^, P(^7 = e7(/i^^) and 
Qaxn, = Hfipv* ~ hftphaX — HUjipHa\p and their first order derivatives; in particular, 

-^000 ~ C'      "^AOO ~ ^000 = ""-OAO ~ ^00A = "'      "^A^O ~ ^A/ij       ^00/2 = C
^AAI' 

R\0ji - 2 (^/* + hxphpp),    R0fiQ = -(Sx^ + hxphPfl),    R0Xfi = j^V ~ hwhp\), 

Rlw = g^/* ~ h^hv\) * eci(ft^)eo(ftAp). 

(2) if c ^ 0, the 0-th component of the torsion 0° = Tp 9^ A #7 vanishes identi- 
cally and the whole set of components of the torsion is given by the following expres- 
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sions: 

T/3>y — 0?    ^07 " ~co{hj3D)hv7,    Tp^ = e>y(hai>)hvi3 — ep(hap)h^. 

(3) ifc>0 and the functions ^(Tj^) vanish identically for any A = 1,..., n — 1, 
then F is associated with a Kdhler metric of constant holomorphic sectional curvature; 
in particular, if (M, J, F) is also simply connected and complete, then it is biholomor- 
phic to CPn. 

Proof. (1) The proof is based on iterated use of the identities (5.36), the Bianchi 
identities and the Jacobi identities applied to three vector fields vi, V2 and vs on 
UF(M), where vi and V2 are of the form ea or ea and V3 is a vector field of the form 
e\ or e^. The arguments are simple and straightforward and we are going to show only 
how to determine the expressions for the components i?2 ^ were at least two indices 

are equal to 0 or 0. The way to determine all other components of the curvature and 
of the components of the torsion are analogous. 

By hypotheses, for any A = 1,... n - 1, R^ = c, R\^ = R^ = 0 and T0
0
A = 0. 

Then, from the Bianchi identities (5.42) we get 

(6.25) J?0AQ - it!A0Q - eo(TOA) - HQ^QR^ + HQ^RQQQ = -RQAO 
_ ^AOO 

= Q- 

On the other hand, by (5.36) 

(6.26) H*rf=Ki 

From (6.25) and (6.26), we conclude that R^ = R^ = 0. 
Now, using the notation of §5, by the Jacobi identities we have 

(6.27) ^([^Je^eo]]) +^([eM,[eo,eA]]) +^([eo,[eA5eM]]) 

From (6.27) and (6.26), it follows also that R$0fL = J?° 0 = cft^. 
Let us use again the first Bianchi identities and the Jacobi identities: 

(6.28) ii^ - R0Xfi - e^(rA0) - HQ^RQ^ + HQ^RQ^ 

^Rxop, ~ Roxp, ~ chvxhpii — 0 

(6.29) Lj°([ex, [eo, ^]]) + wg([eo, [ip, ex}}) + ^([e^ [ex,e0]}) 

= - exiRQQp) 4- R\oji - RQOO^^ 
+ Rooxfi — Rxop + ^OA/I ~ c^Xfi = 0. 

From (6.28), (6.29) and (6.26), it follows that 

       c* c 
Rxofi - RQ^O 

= 2^X^ + hl/xhp^'        Roxp. = ^(^ ~ hvxhvji). 

Using again the Jacobi identities, 

^0 ([gA? ft), eo]]) + W5 ([eo, [eo, eA]]) + a;£([e5, [CA* eo]]) 

=^00 ~ c^/i + g ^ + hv^h^ + eo(ft^)eo(ftAp) = 0- 

(2) Assume c ^ 0. From the Bianchi identity (5.43) and (1), 

£(3\ROyo) ~~ ^7(^0/30) + RosoTp-f = cTfo = 0, 
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and this implies T^ = 0. Then using again the Jacobi identities, by the vanishing of 
Ttcydic perm. ^(N^ faj>"*]]) = 0 when vi = ^a, ^2 = eu and ^3 = e*, one-obtains the 
remaining expressions for T^ and for T^u. 

(3) From the Bianchi identity (5.36), we have that 

By the expressions for the curvature components given in (1), this becomes 

|(1 + £ |^|2) - |(1 - £ IM2) + E l^(^)|2 - eo(T0\) 

= E W^PI
2
 + |eo(^p)|2) - 6o(T0

A
A) = 0. 

p=i 

This implies that, if c > 0 and eo(T(^A) = 0 for any A, then e^hxp) = h\p = 0 for 
any A and p. Therefore, by Lemma 2.5, F is associated with an Hermitian metric g, 
which is geodetically torsion free and with constant holomorphic sectional curvature. 
By Remark 6.6, we obtain that (M, J, g) is Kahler and locally isometric to CPn. The 
conclusion follows from standard facts on complex space forms.   □ 

Appendix. We recall here the Cartan-Sternberg theorem on the local automor- 
phisms of an absolute parallelism. The theorem was first proved for real analytic 
vector fields by E. Cart an and in this case it is a corollary of Cartan-Kahler theorem 
(see e.g. [BCG]). Later it was proved by S. Sternberg for smooth vector fields ([St]). 

Before stating the theorem we need some preliminaries. 
Let a = {Xi,..., Xn} be an absolute parallelism on a manifold N. The structure 

functions of a are the smooth functions c^ defined by 

n 

[Xj,Xk] = 22c%
jkXi. 

i=l 

Let us also denote by ck mi>< mr the smooth functions defined inductively on r as 

Cjk,mi  ~ ■^mi\cjk)'> Cjk,mi...mr ~ -^rrir VcjA;,mi ...mr_i /* 

Finally, for any integer a > 0 let T^ be the family of smooth functions 

T-(a) _ fJ      J ri \ J ~ X^jki ^jk,mi J * * * ' ^jk,mi...ma S 

and call Qa the number of functions in the set T^. We consider J7^ as the set of 
components of a smooth map from M into M^". A point p G M is called a regular 
point for a if there exists two integers s and r such that rank.?7^ — rank T^8^ — r 
at all points of a neighborhood Uv of p. 

If 5 is the smallest integer such that this occurs, then s and r are called order 
and rank of the regular point p, respectively. 

It can be shown that rank.?7^ = r for all a > s and that there exists a system 
of coordinates {xi,...,xn} : Up -> Mn such that all maps T^\up, Q- > 0, depend 
only on the first r coordinates {rci,..., xr} (see [St]). Such a system of coordinates is 
called adapted to the absolute parallelism. 
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For any the adapted system of coordinates {#1,... ,xn} on a neighborhood Up, 
we call slice of Up any set of the form 

S(Cl,...,Cr) = {g € 17  : x1(q)=Ci,...,Xr{q)=cr}, 

for some (ci,..., cr) € Mr. 

THEOREM A.l. (Cartan :Sternberg) Let a = {Xi,... ,Xn} be an absolute paral- 
lelism on M and let p, p' G M be two regular point of ranks rp and rp> and orders Sp 
andsp>, respectively. Let also U andU' be two neighborhoods ofp andp', respectively, 
which admit two adapted systems of coordinates {xi} and {x^}. 

If q is a point of the slice «S'(Clj...jCr) C U and q' is a point of the slice S(c> ,...,c;) C 
U', there exists a local diffeomorphism f : U -* U' such that f(q) = q' and /*(JQ) = Xi 
for all i = 1,... ,n7 if and only if rp = ry = r, Sp = Sp< — s and ^s^|s(c f...,Cr) = 

^^Is(c,     c/w and the functional dependence of T^^lu on the functions T^lu is 

the same of the functional dependence of T^^lu' on the functions F^lu1- 
In particular, if U = U', there exists a local diffeomorphism f : U -> U such that 

f(q) = q' and f*(Xi) = Xi for all i = 1,... ,n if and only if q and q' belong to the 
same slice 5(Clj...|Cr) for some (ci,..., cr) € W. 
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