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1. Introduction and statements of results 
In [20], Gross and Zagier proved a formula which relates the central derivatives of 
certain Rankin L-series and the heights of certain Heegner points on elliptic curves. 
Combined with Goldfeld's work on L-series [14], this formula gives a solution to Gauss' 
problem on class numbers; and combined with Kolyvagin's work on Euler system 
[16, 25], this formula gives the best evidence for the rank issue in the Birch and 
Swinnerton-Dyer conjecture. In [17], Gross has proposed a program to generalize this 
formula to totally real fields with anticyclotomic characters. In our previous paper 
[31], we have worked out the program when the character is trivial and the nonsplit 
level structure is small. 

The present paper is devoted to working out the weight 2 case of the program. 
One immediate application is to generalize the results of Kolyvagin and Logachev [26], 
and Bertolini and Darmon [6] to obtain evidence toward the Birch and Swinnerton- 
Dyer conjecture in the rank 1 case for modular elliptic curves over totally real fields 
twisted by some anticyclotomic characters. 

As a coproduct of the proof, we will also obtain a Gross-Zagier formula for the 
central values of certain Rankin L-series for forms with mixed holomorphic and Maass 
components at the archimedean places. There will be two applications of this Gross- 
Zagier formula. One is to generalize the recent work of Bertolini and Darmon [7, 8] to 
obtain evidence toward the Birch and Swinnerton-Dyer conjecture in the rank 0 case. 
The other one is to use the recent work [4] of Cogdell, Piateski-Shapiro, and Sarnak to 
prove the equidistribution of certain toric orbits of CM-points on quaternion Shimura 
varieties. This equidistribution statement generalizes a result of Duke [11] and is also 
recently announced by Cohen [5] using Duke's original method. 

If we further assume that the work [4] of Cogdell, Piateski-Shapiro, and Sarnak can 
be extended to unramified anticyclotomic characters which is predicted by GRH and 
(which holds over Q by recent work of Kowalski, Michel, and Vanderkam [27]), then 
our Gross-Zagier formula will imply the equidistribution to certain Galois orbits of 
CM-points and thus gives some evidence toward the Andre-Oort conjecture concerning 
the Zariski topology of CM-points. 

The applications to the Birch and Swinnerton-Dyer conjecture and the Andre- 
Oort conjecture will be treated in later papers. 

In the following, we will describe the main results about the Gross-Zagier formula 
and proof. 

1.1. Rankin-Selberg L-functions and kernels 

Let F be a totally real field of degree g and discriminant d, with ring of adeles A. Let 
0 be a Hilbert modular form of weight (2,..., 2,0, • • • ,0) over F, which is a cuspidal 
newform of level N and has trivial central character. 

Let K be a totally imaginary quadratic extension of F, and let UJ be the nontrivial 
quadratic character of Ax /FXNA^. The conductor c(u) is the relative discriminant 
of K/F. Let x be a character of finite order of A^/KXAX . The conductor c(x) is 
an ideal of Op, and we define the ideal D = c(x)2e(u;). The theory of theta series 
allows one to define a Hilbert modular form 0X of weight (1, • - • • ,1), whose L-function 
is equal to the Hecke L-series of x- 

In this paper we will study the Rankin-Selberg convolution L-function 

L(s,(i>,6x) = L(s,0,x). 
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This is defined by an Euler product over primes p of F, where the factors have degree 
< 4 in Np~*. This function has an analytic continuation to the entire complex plane, 
and satisfies a functional equation. We will assume the following 

(1.1.1.1.1) hypothesis: jMw>;ck>) = *' 

The functional equation is then 

(1.1.1.1.2) L{2-8,x,4>) = (-l)#*c(x,4>)1-sL(s,x,<t>) 

where c(x, (f>) is the conductor of the L-function L(s, x, 0), 

c(x,4>) = d4XF/Q[N,D}2(N,c(cj)) 

(here [•, •] denotes the least common multiple, and (•, •) denotes the greatest common 
divisor) and E is the following set of places of F: 

(1.1.1.1.3) 
v is inifinite, and </) has weight 2 at v, or 
v is finite, v \ D, and ^(iV) = -1, or 
v is finite, v \ (N,C((JJ)), and avbv = 1 

where av and bv are v-th. Fourier coefficients of (j) and 6X respectively. If v is in E and 
unramified in K, Xv — 1-  Furthermore, if v is ramified in K, Xv is unramified and 

The general theory of Rankin-Selberg convolutions is due to Jacquet [22], but we 
will follow [20] in the case above, and will show that there is a form 0(s,p) of level 
[N,D} on GL2(A) which is a kernel for the convolution. More precisely, we will show 
that for all new forms 0 of level iV: 

(1.1.1.1.4) L{s,x,<t>) = (<t>,Q{s,9))[N,D] 

where (•, *)[iv,£>] ls the Peterson product of level [N,D). 
We obtain the functional equation for L(s,x,(l>) from that of ®(s,g). Here our 

approach differs from [20], which computes tr^y,£>]/iv(®(s, #)) as a kernel of level N. 
However, this trace is too difficult to compute in the general case (in [20], the authors 
were forced to assume that D was square free, so C(UJ) was odd and c(x) = !)• 

Notice that the projection ®(s,g) in the representation space 11(0) is no longer a 
newform. But it is a multiple of a unique form dl of level [A7", D] which is perpendicular 
to (f) — (j)\. The multiplier is then 

L{s,xA) 
{4>1^1)ND 

We call (j>\ a quasi-newform and will give 0| a direct definition in §3.1 in terms of 
characters Xv for v ramified in K. 

1.2.  Central derivatives 

Our main formula expresses the central derivative 1/(1, x, 0) in terms of the heights of 
CM-points on a Shimura curve, when </> is holomorphic and the sign of the functional 
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equation (1.1.2) is -1, so #£ is odd. Let v be any real place of F, and let B =v B be 
the quaternion algebra over F which ramified at the places in E - {v}. Let G be the 
algebraic group over F, which is an inner form of PGL2, and has G^F) = Bx /Fx. 

The group G(FV) ~ PGL2(M) acts on H* = C- M. If F = A/ is the ring of finite 
adeles of F, and [7 C G(F) is open and compact, we get an analytic space 

MuiQ = G(F)\^± x G(F)/U. 

Shimura proved these were the complex points of an algebraic curve Mu, which de- 
scends canonically to F (embedded in C, by the places v). The curve Mu over F is 
independent of the choice of v in E. 

To specify Mu, we must define U C G(F). To do this, we fix an embedding 
K —> B, which exists, as all places in S are either inert or ramified in K. Then 
B = K + K\ with A G J5X satisfing aA = Aa for a € K. 

Let Ov C Fv be the local ring of integers, and let OK,V C KV be the integral 
closure of Ov. For each finite place v of F, let Av be an order of B defined by 

Av = £>c(xv) + OK,V ' Av • c{xv) 

Here 0c(Xv) is the order Ov + (5i<:^c(xt;) of Kv and A^ is chosen integral over Ov 

whose norm NAV satisfies the following condition: 

ordt,(NAt,)=ordl,(JV/(JV,jD)). 

Define an open compact subgroup Uv of G(FV) by 

(1.2.1.2.1) Vv = AZIOZ. 

Let U = YlvUv. This defines the curve Mu up to F-isomorphism. Let X be its 
compactification over F, so X = Mu unless F = Q and E = {00}, where X is 
obtained by adding many cusps. 

Notice that X admits a natural action by 

AT = n r(^) • 11 W) 
v\c(x) V\C(UJ) 

via right multiplication on G(A/), since AT normalizes U in G(A/). Let A denote 
the subgroup of G(A/) generated by AT and [/: 

(1.2.1.2.2) A = U- AT 

and let XA denote the character on A defined by 

(1.2.1.2.3) XA:     A—>AT-^C
X
. 

We will now construct points in J, the connected component of Pic(X), from 
CM-points on the curve X. The CM-points corresponding to K on M[/(C) form the 
set 

G(F)+\G(F)+ ■ z x GWIV = T(F)\G(F)/U, 

where z G H^ is the unique fixed point of the torus points Kx /Fx. Let rjx be a 
divisor on X with complex coefficient defined by 

vx=    E    x-Htm 
T(F)\T(A,)/UT 
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where 

uT = T{h})nu = d*(x)i6*. 

If % is not of form x — v ' ^K/F 
w^h u & quadratic character of Fx Ax , then 7]x 

has degree 0 on each fiber of X. Thus it defines a class xx in Jac(X) <g> C. Otherwise 
we need a reference divisor to send r)x to Jac(X). In the modular curve case, one uses 
cusps. In the general case, we use the Hodge class £ E Pic(X) (8) Q: the unique class 
whose degree is 1 on each connected component and such that 

Tmf = deg(Tm)£ 

for all integral nonzero ideal m of Op prime to ND. The Heegner class we want now 
is the class difference 

xx '•= fax - deg(77x)£] G Jac(X)(i^) 0 C, 

where deg(77x) is the multi-degree of r}x on geometric components, and Kx is the 
abelian extention of K corresponding to the group T(F)\T(Af)/U. 

Notice that this class has character XA under the action by A on Jac(iiTx). Let 
yx denote the ^typical component of rjx. 

Our main theorem is now the following 

THEOREM 1.2.1. Let $ be the quasi-newform as in §i and §#.i. Then 

L'(l,x,<t>) = 2^d-Ky* -UHl2 -WyJ* 

where 
d^K/F is the relative discriminant of K over F; • 

• 12 „* fA„ r2 is the Lr-norm with respect to the Haar measure dg which is the product 
of the the standard measure on iV(A)A(A), and the measure on the standard 
maximal compact group with 

vol(SO(F00)I/o([iV,JD]) = l; 

• \\yx\\ is the Neron-Tate height ofyx. 

Gross and Zagier [20] originally proved Theorem 1.3.2 in the following special 
case: 

> = Q, 
X is unramified, (D,2N) = 1, and 

p | iV =^ p is split in K. 

The case treated in our previous paper [31] is when 

F is totally real, 

X is trivial, (D,2N) = 1, and 
^ p2 | N => p is split in K. 

One immediate application of our Gross-Zagier formula is to generalize the work of 
Kolyvagin-Logachev and Bertolini-Darmon [16, 25, 6] to obtain some evidence toward 
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the Birch and Swinnerton-Dyer conjecture in rank 1 case. The details will be given in 
later papers. Here we just notice yx actually lives in some factor A whose L-function 
is given by 0 and its conjugates. 

Let Z[x(A)] be the subring of C generated by values x(A). and let Z[0] denote 
the subring generated by eigenvalues ap of Tp for all p \ N. Then we have 

THEOREM 1.2.2. There is a unique abelian subvariety of the Jacobian Jac(X) 
which is isogenous to Z[x(A)](g>z A (compatible with action by A). Here "(g)" means 
tensor product of abelian groups, and where A is an abelian variety over F of dimen- 
sion equal to rank Z [0] with an action by Z [(p] such that 

Z/(S,J4.) =      ] I     L(s,0<7)    mod (factors at places dividing N • oo) 
<r:Z[0]-»C 

By Faltings' theorem, A is uniquely determined by the above equality of L- 
functions up to isogenies. 

1.3. Central values 

We now return to the case where </> has possible nonholomorphic components, but we 
assume that the sign of the functional equation of L(s, x? 0) is +1, or equivalently, E is 
even. In this case, we have an explicit formula for L(l, x, 0), which has an application 
to the distribution of CM-points on locally symmetric varieties covered by (/%+)n 

where n is the number of real places of F where (p has weight 0. 
More precisely, let B be the quaternion algebra over F ramified at S, and G the 

algebraic group associated to Bx/Fx. Then 

G(F (g) R) ~ PGL2(M)n x SOrn 

acts on (/H±)n. The locally symmetric variety we will consider is 

Mu = G(F)\(^±)n x G(F)/U, 

where U = Y[UV was defined in the previous §. Then we have the following ^-principle: 

THEOREM 1.3.1 (§2.4). There is a unique cuspidal function <j)x on Mu with the 
following properties: 

1. (j)x has character XA under the action of A; 
2. for each finite place v not dividing N • D, (j)x is the eigenform for Hecke 

operators Tv with the same eigenvalues as (f>. 

The CM-points on Mu> associated to the embedding K —> B, form the infinite 
set 

G(F)+\G(F)+z x G(F)/U - H\G(F)/U 

where z is a point in Ti71 fixed by T and H C G is the stabilizer of z in G. Notice 
that H is either isomorphic to T if n ^ 0 or H = G if n — 0. In any case there is a 
finite map 

Cu :=T(F)\G(Af)/U —* Mu. 

The Gross- Zagier formula for central value we want to prove is the following: 
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THEOREM 1.3.2 (§4.4). Let ^ be the form defined in §i, 1. Then 

Ui,x,4>) = 2«+»d?/* ■ (m/Mx\\)2 ■ I^OAx)!2 

where 
1. ix((^x) is the integral against x(^~1) on T(F)\T(Af) with respect to the stan- 

dard measure; 
2. ||</>xl|2 are L2-norms with respect to the measure on G(A) which is the prod- 

uct of the standard measure on G(R) and the measure on G(A/) such that 
vol(A) = 1. 

Notice that ^X(0X) is actually the evaluation of (j)x at the cycle r)x defined in §1.2: 

teT(F)\T(Af)/UT 

There are two applications of this theorem. The first one is to generalize a recent 
work of Bertolini and Darmon [7, 8] to obtain some evidence about BSD-conjecture 
in rank 0 case. The second application is to use a recent work of Cogdell, Pieteski- 
Shapiro, and Sarnak [4] to obtain certain equidistribution statement of the toric orbits 
of CM-points. The details will be given in later papers. 

1.4.  Remarks on proof 

The proof in this paper will be based on the following principle used in the original 
paper of Gross and Zagier [20]: 

• The Fourier coefficients of a certain kernel form representing the derivative 
of the Rankin L-series should be given by the height pairing of CM-points. 

But the techniques used in their proof are difficult to apply in the more general 
situation due to following fundamental obstructions: 

• On a Shimura curve, there is no reference point such as a cusp, to send points 
on the curve to its Jacobian. 

• On a Shimura curve, there is no reference modular form such as a Dedekind 
77-function to be used to compute the local self-intersection on CM-points. 

• When an anticyclotomic character is ramified, since the trace computation is 
very massive, there is no workable expression of the kernel form to represent 
the derivative of the Rankin L-series, 

• On a Shimura curve or even a modular curve, there is no explicit semistable 
model which can be used to compute the local intersection index of CM-points 
at supersingular points. 

In our previous paper [31], we solved the first two problems by using multiplicity 
one for modular forms and Hodge index theory in Arakelov theory [12, 13]. The 
present paper is devoted to solve the remaining two issues with the following methods: 

• We will work directly on kernel functions of high level but use quasi-newform 
projection instead of newform projection. 

• We will not compute directly the local intersection at places where the 
Shimura curve has high level. Instead, we will obtain an asymptotic formula 
and show that this formula is sufficient by a toric newform theory. 

Besides these technical improvements, we will also develop a notion of geometric 
pairing and prove a local Gross-Zagier formula. This formula replaces all mass com- 
binatoric computations in the previous approaches and also provides a foundation for 
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spectral decomposition used to prove the Gross-Zagier formula for central values of 
Maass forms. 
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2. Automorphic forms on GL2 

In this chapter, we want to review various facts about automorphic L-functions of 
GLi, GL2, and the Rankin-Selberg convolution of two forms on GL2. Our basic 
references are the papers of Tate [29], Jacquet and Langlands [23], and Jacquet [22]. 

Beside the general theory, we will also try to make computations using certain 
newforms with respect to the action of unipotent subgroups or the torus. The unipo- 
tent newform theory, or Atkin-Lehner theory, is discussed in Casselman's paper [3] in 
the adelic setting, while the toric newform theory is mainly due to Waldspurger [30]. 

2.1. L-functions for GLi 

We first start with Tate's theory of L-functions for GLi. 

Nonarchimedean case. Let F be a nonarchimdean local field with a local pa- 
rameter TT. We normalize the absolute value on F such that q = ITTI

-1
 is the cardinality 

of the residue field of F. 
Let u be a character of Fx with conductor C(UJ) := TT^^OF, that is the maximal 

ideal of OF such that u is trivial on (1 + C(LJ))
X

 . The integer O(UJ) is called the order 
of u. Then the L-function of w is defined as follows: 

(2.1.2.1.1) L(8,u,)=l{1-U(:*)<r')~1    ifwi5unramified' 
1 1 if u is ramified. 

where s € C. 
Let ip be a fixed nontrivial additive character of F. For a function $ G S(F) (the 

space of compactly supported and locally constant functions) we define the Fourier 
transform by 

(2.1.2.1.2) $(*) =  f $(y)i;(xy)dy 

where dx is a Haar measure on F such that $(2;) = $(—x).  If il>(x) is changed to 
^a(#) := i/;(ax) then dx is changed to jal1/2^ and <&(x) is changed to ^^^^(ax). 
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For example if ^ has the conductor c(^) := TT^^OF, that is the maximal fractional 
ideal where ip is trivial, then dx is such that the volume of OF is ITT"

0
^)

1
/

2
. The 

integer o(^) is called the order of "0. 
For any $ 6 5(F) we define the Mellin transform by 

(2.1.2.1.3) Z(s,u,9)= [.  $(x)Lj{x)\x\sdxx       (s G C,    Re(s) » 0) 
JF* 

where dxx is a measure on F* such that the volume of Op is 1. Then Z(S,UJ,$) 

is really a rational function of qs,q~S' One may show that the set of all Z(s,u;, $) 
is a fractional ideal of C[qs ,q~s] with L(s,u) as a generator. The local functional 
equation shows the change when 5 is replaced by 1 — s: 

2.1.2.1.4 \    \ _\ J = e(s,u>,i>) ;;o y 
L(l — 5,0;  i) L(8,CJ) 

where e(s,uj,ip) is independent of $ and is called the e-factor of u with respect to tp. 
If ^ is changed to ?/>a then e(s,a;,V;) is changed to a;(a)|a|s~1/2e(8,a;,^). 

If a; is unramified, and ip is of order 0, then we may use the characteristic function 
$1 on Op to compute the e-factor: 

(2.1.2.1.5) £(5,*i) = £(*,"),        efo",^) = I- 

If a; is ramified and o(^) = 0, we may compute the e-factor by using the restriction 
^ of the function CJ

-1
 on 0^: 

Z(8,$UJ)=L(8,L>) = 1, 

(2.1.2.1.6) e^u^) ^eM)]^8-1/2, 

e(uj,ip) = lap2 /    a;(a:a)  1'ip(xa)dz 

where a is a generator of C(LJ) 
1. Notice that e(uj,2p) is a number of norm 1 if LU is 

unitary. 

Archimedean case.  First we consider the case where F = M with the usual 
absolute value. Then any nontrivial character will have the form 

1>(x) = e2wi6x,        (5eRx) 

The self-dual measure dx is {S]1/2 times the usual measure on M. 
Let UJ be a quasi-character of Ex of the form 

u;(t) = |t|rsgn(*)m, (r G C,     m = 0,1). 

Then we define 

(2.1.2.1.7) L(s,u) = n-^+r+m^2r (s_±[_t?l\ 

One may define the Mellin transform Zeta function as in the nonarchimedean case 
and show that L(S,UJ) collecting all poles of these Zeta functions, and that the Zeta 
functions and L-function satisfy the same functional equation as in nonarchimedean 
case. 
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Again to compute the e-factor we may assume that 6 = 1. We can use the function 

$„(*)= zme-*x2 

to compute the e-iactor: 

ZfaQu,) = L(s,u) 

(2.1.2.1.8) c(«,a;,^)=»f! •m 

We now consider the case where F = C with normalized absolute value |a|c = \z\2. 
Any nontrivial character of C has the form 

^(z) = e47riR<dz\        (6eCx) 

1 /2 
whose self-dual measure is \6\^   times 2dxdy (z = x + yi). 

Let a; be a quasi-character of Cx with the form 

:(z) 

\r ~m \zycz" 
or (r € C,     m > 0) 

We define the L-function of UJ to be 

(2.1.2.1.9) L(s, u) = 2(27r)-(s+r+m)r(5 + r + m). 

Assume that 6 = 1. We may use the function 

{e-n\z\22m 

or 
e-7r\z\2zm 

to compute the e-factor: 

(2.1.2.1.10) ^(s,*w) = i(«,w),        c(«,w,^) = «m- 

Global theory. Let F be now a global field and let A denote the ring of adeles 
of F. Let I/J : F\A -> C be a fixed nontrivial additive adele classes character of F. 

Let w : Ax /Fx -> Cx be an idele class quasi-character of F. Then we define the 
L-function L(s,u) and e-factor by the product: 

(2.1.2.1.11) L(S,UJ) = 1[L(S,UJV) 

v 

(2.1.2.1.12) e(a,u;) = Y[e(8,uiv,il>v) 
V 

where v runs through the set of all places of F, and uv and ^v are components of LU and 
t/j at the places v. One can show that these products are convergent for Re(s) >> 0, 
and can be continued to a meromorphic functions on the whole complex plane, and 
that L(s,u) satisfies a functional equation 

(2.1.2.1.13) L(s,v) = e(s,uj)L(l - S^UJ'
1
). 
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This functional equation can be proved by combining the local functional equation 
with the global functional equation 

JJ Z(s,uv, $„) = Y[ z(1 - S^v, $„) 
v v 

for some Schwartz functions $v which are the characteristic function of Ov for almost 
all places. This last functional equation is essentially a consequence of the Poisson 
summation formula. 

2.2. L-functions for GL2 

Nonarchimedean case. First we consider the case where F is a nonarchimedean 
local field. Let ^ be a fixed nontrivial additive character of F. 

Let 11 be an irreducible, infinite dimensional, admissible representation of GL2(F) 
with central character u, and with the L-function £($,11) which has the form 

(2.2.2.2.1) L(s,U)= 1 

(l-a\7r\s){l-P\7r\s)' 

Then 11 can be realized in a Whittaker model >V(n,^), a space of locally constant 
functions W on GL2(F) such that 

(2.2.2.2.2) w(J^   f) 5) = rl>(x)W{g),        Vx 6 F. 

The L-function L(s, 11) can be determined analytically by this model just as in GLi 
case. 

More precisely, for any W G W(n, ip) define 

(2.2.2.2.3) y(s,g,W) = J^W^   fj g^j \ar^d*a 

where dxx is an invariant measure on Fx such that the volume of Op is 1. Then 
one may show that this integral is actually a rational function of qs, q~s, that L(s, 11) 
collects all poles of these Mellin transforms, and that the Mellin transforms and the 
L-function satisfy the following functional equation 

(2.2.2.2.4) 
*(1 -s,wg,W) 

L(1-8,U) 

where 

= e(s, 11, ip)uj    (detg) 

• II is the contragradient of 11 which has the form 

n = n®cj-1; 

• W(g) = Wigp-^detg) which is in W(n,^); 

L(s,U)   ' 

e(s,n,?/>) is independent of $. 
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For S € Fx, if we change ip, W, W respectively to 

ti,        Ws(g):=w(J^   fjg^,       u(S)Ws, 

then e(s,n,^) is changed to uj(S)\5\2s~1e(s,Jl,^). Thus in the computation of e- 
factors we may assume that the conductor of ^ is 1. In this case, the efactor has the 
form 

(2.2.2.2.5) €(5, H, tl>) = \7r0(n) |5-1/2e(n, ^) 

where o(n) is a nonnegative integer and is called the order of 11. The ideal TT^^OF is 
called the conductor of 11, and the complex number e(n, ip) is called the root number 
of 11. Notice that the root number has norm 1 if OJ is unitary. 

Archimedean case. We now consider the real case F = E with additive charac- 
ter ip(x) = e27Tlx. Then an irreducible, admissible, and infinite dimensional represen- 
tation 11 of GL2(E) is really a representation of (G^U) rather than a representation 
of GL2(M) itself, where G = M2(ra) is the Lie algebra of GI^E), and U = CMM). 
Such a representation can still be realized in a Whittaker model W(n, ip) of smooth 
functions on GL2(M) with moderate growth where (G^U) acts by the right transla- 
tion. One still can define the L-function L(s, 11) which can then be determined (up 
to invertible functions) by analytic properties of >V(n,^). 

Principal series. Let F be a local field and let ^i,/i2 be two quasi-character of 
Fx. Let £(//i,/42) denote the space admissible  functions / on GL2(F) such that 

a   x 
0    b 

1/2 

/In    tU    =^i(a)w(6)  T       f(g),        V   "    l)eGL2(F) 
a    x 
0    b 

where admissible means locally constant in the nonarchimedean case, and means 
smooth and <92(M)-finite functions in the archimedean case. The #(/ii,/22) admits 
an admissible representation by right translations. One may show that B(fii,/j,2) is 
isomorphic to B(ii2,y>\) when it is irreducible. To construct a Whittaker model for 
this representation, we notice that for any function / in B(/JLI, H2), there is a Schwartz 
function $ G S{F2) such that 

(2.2.2.2.6) / = U{g) := ^(det^detfo)!1/2 /    ^[(O,^]^^1^)!*!^*. 
J F* 

The Whittaker function corresponding to / = /$ is given by the following formula: 

(2.2.2.2.7) W*{g)=ii1(te\lg)\dBt{g)\1l2 f   (p^)*)'^,*-1)]^^1^)^* 
JF

X 

where p(g) is the right translation, and $' is the inverse Fourier transform with respect 
to the second variable: 

{p(g)$y(x,y)= / $[(x,u)g]il>(-uy)du. 

Let OLF denote the norm on F: ajp(x) = |a:|. If pifo1 ^ aF1 ^e representation 
B(fjii,fJi2) is irreducible and is denoted by n(/zi,/Z2).   We call this representation a 
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principal representation. One has the following formula for the L-function and e- 
factors of 11 = 11(^1,^2) by the following formulas: 

(2.2.2.2.8) L(8,n) = L(s,/i1)L(a,/i2), 

(2.2.2.2.9) c(«,n,^) = €(«,W,^)c(5,/i2,^). 

The central character of 11 is u := ^1^2- The contragradient of n(^i,/i2) is 
n(/if 1,l*21)' ^ ^ is nonarchimedean then the order of 11 is 

(2.2.2.2.10) o(n) = o(/ii) + o(/i2). 

If F = E, we define the weight of 11 to be an integer k = 0,1 such that a;(—1) = (-l)fc. 

If fii/i^1 — CKFJ then we may write jii = /x • a/ , /i2 — ji - a^ ' with /x a 
quasi-character of Fx. Then B(^i,/i2) contains a unique irreducible representation 
of codimension 1. We call this representation a special representation with twist //, 
and denote it as o"(/x). We define the L-function and e-factor of 11 = o"(/i) by 

(2.2.2.2.11) L(s,n) = L(s,/zi), 

(2.2.2.2.12) e(S,n^) = €(g,Mi^M*,^)L( ■,7 ^^   ^ 

The central character of 11 is a; = /ii^2 = M2- The contragradient of n(/i) is n(/x~1). 
If F is nonarchimdean, then the order of 11 is 1 if /x is unramified, and 2o(/x) if n is 
ramified. If F = M, then the weight of 11 is defined to be 2. 

One case we will use is when F is nonarchimedean and /x is unramified. In this 
case cr(/i) has e-factor — //(TT) by taking limit s —> 1/2 in the above formula. 

If F is nonarchimdean, a representation is called supercuspidal if it is not principal 
or special. 

Weil representation. Let K be a quadratic extension of F. Let r) be a character 
on Fx corresponding to the extension K/F. Let x be a quasi-character of K*. Then 
there is a unique irreducible and admissible representation 11 = 11 (x) of G^iF) such 
that 

(2.2.2.2.13) L(5,n) = Ltf(5,x), 

(2.2.2.2.14) e(*,n,^) - e(s5u;,</0^(s,X,^), 

e(n,V0 = e(w,il>)eK(x,il>K), 

where tpK = ip ° tiK/F-   The central character of n(x) is cu = rj • XIF*-   If the 
residue character of F is not 2, every irreducible, admissible, infinite dimensional 
representation of GL2(F) is either principal, special, or isomorphic to 11 (x). 

If K/F is nonarchimedean, and x is of the form /x • N^/F? then 

(2.2.2.2.15) n(x)=n(/z,/x-7?) 

where /x is an unramified character of Fx. 
If K/F is nonarchimedean, and x is not of the form as above, then 11 (x) is 

supercuspidal in the sense that L(s, n(x) 0 /x) = 1 for any character /x of i?x. 
If K = C, and x has a form 

XM = \z\rcz
m,        (m > 0), 

then n(x) is discrete of weight m + 1. This means that 11 (x) appears in L2(GL2(M)) 
as discrete spectrum. More precisely, we may take this discrete spectrum generated 
by a holomorphic modular form of weight m + 1. 
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Jacquet-Langlands local correspondence. One may also construct repre- 
sentations by using a definite quaternion algebra B. By Jacquet-Langlands corre- 
spondence, there is a 1-1 correspondence between irreducible, admissible, and discrete 
representations of GL2 and irreducible representations of Bx. In this correspondence, 
one dimensional characters // • det of Bx will give special representations cr(/i). 

Langlands local correspondence. First lets consider the case F is nonar- 
chimedean. Let Wp denote the Weil group: the subgroup of Gal(F/F) of ele- 
ments whose images in the residue group Gal(F/F9) are integral powers of the Frobe- 
nius. Then Langlands correspondence gives a 1-1 correspondence between irreducible 
two dimensional representations of Wp and supercuspidal representations of GL2 (F) 
which is compatible with twists by characters and the formalism of L-functions and 
e-facts. For example if 11 = 11 (x) with x a character of Kx, here if is a quadratic 
extension of F, then we may consider x as a character of the Weil group WK via local 
class field theory. The representation of Wp corresponding to 11 (x) is the induced 
representation Ind^ (x). 

We now consider the case where F = M. Then the Weil group WR is generated 
by Cx and j such that 

f = -1, jx = xj,       Vx e Cx . 

lorphisms 

Wib ~ Kx • —> R* /RJ ~ Gal(C/R). 

The Langlands correspondence gives a 1-1 correspondence between irreducible repre- 
sentation of WR and discrete series of GL2(M) which has the same properties as in 
the nonarchimedean case. 

2.3. Theories on newforms 

We now continue to work on representations of GL2(F) for F a local field. 

Atkin-Lehner theory. Just as in the GLi case, the conductor or the order of 
11 will measure the ramification of 11. For any c > 0, lets define 

(2.3.2.3.1) Uo(7rc) = {7 € GL2(OF) :     7 = (l    *)     mod 7rc J . 

(2.3.2.3.2) U^) = {7 € GL2(0F) :     7 = (*Q    fj     mod 7rc|. 

We say that a function W in W(n,^) has level 7rc if it is invariant under Ui(7rc). 
Then we have the following: 

PROPOSITION 2.3.1 ([3]).   The order o(Il) is the minimal nonnegative integer c 
such that VV(n,^) has a nonzero function of level 7rc. Moreover, 

1. If c = o(n); then the space W(n, VO has a unique element Wn of level 7rc and 
takes value 1 at the unit element e in GL2 (JF) . 

2. If c > o(U.) then the space of functions in >V(n,^) of level 7rc has dimension 
c — o(n) + 1 and is generated by 

Wn,i(g) := W (g (*~*    j)) (» = 0,1, • • • ,c- o(U)). 
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The function Wn(p) is called a Whittaker newform with respect to character ip. 
With this function and definition in (2.2.3), one has the following 

(2.3.2.3.3) L(s,n) = tf(s,Wn), 

(2.3.2.3.4) Wu (gh) = e^^W^gMdetg)-1, 

where 

(2.3.2.3.5) ft:=(-°c    J).        c = 0(n) 

is the Atkin-Lehner operator of order c. 
In this paper we will use a modified notion of newforms. To define it, we assume 

that 11 is unitary. Then there is a hermitian and positive pairing 

(•,.):   w(n,^)xw(n,^) —>c 
such that 

(p(g)Wup(g)W2) = (Wl,W2). 

We say a vector W G VV(n,^) is quasi-new, if W is nonzero, and 

(W, Wu - W) = 0. 

Let V be a space of forms in >V(n, VO containing the newvector Wn- Then the 
correspondence 

v —> {w e V,    (v,w) = 0} 

gives a one-one correspondence between the quasi-newvector in V and hyperplane not 
containing Wn- 

For example, let c > o(n) be a fixed integer, then we may take V to be the space 
of forms of level 7rc. Then there is unique quasi-new vector perpendicular to 

W((V   1))'     c-o(n)>i>.i. 

Weights. The analogue of the order of a representation in the archimedean case 
is weight: we say a form W G W(n,^) has weight m if 

(2.3.2.3.6) W [g (_C^    ^) = T¥(5)e™ V^ G B/Z. 

One can show that the weight A; of a representation 11 is the minimal nonnegative 
integer such that 11 has a nonzero vector of weight k. Moreover for any integer n, the 
space of forms in VV(n,'0) is one dimensional if |n| > k, n = k (mod 2). Otherwise it 
is 0. 

If 11 is not of the form 11 = n(arisgn, ar2sgn), then with definition in (2.2.3), 
there is a unique and Whittaker functions Wu of weight k such that 

(2.3.2.3.7) L(s,n) = *(s,Wn), 

(2.3.2.3.8) Wn(^) = c(n,^)Wg((/)cj-1(det(/). 

Again, we call Wn the new vector for 11 with respect to the additive character ip. 
In case 11 = n(arisgn, Q;r2sgn), we call a Whittaker function W(g) of weight 0 a 

newform if VF(</)sgn(det#) is a newform for n(ari,ar2). Notice that \P(s, W) = 0 as 

W (J   J j is odd in a e Mx . 
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Waldspurger theory. Let F be a nonarchimedean local field. Let K be a 
quadratic extension of F (which is either split K = F © F or a field) embedded into 
M2(F). Let T denote the torus Kx/Fx in G = PGL2(F). 

Let Gf = Bx/Fx where B is a quaternion division algebra over F. We also 
embed K into B if K is nonsplit and also denote T, the torus Kx/Fx in G'. 

Let 11 be an irreducible, admissible, and infinite dimensional representation of 
G. If H is L2, let IT denote the corresponding representation of G' by the Jacquet- 
Langlands correspondence. 

Let ZY(n,T) (resp. i/(n',T)) denote the space of linear maps from 11 (resp. IT) 
to the space of continuous functions on T\G (resp. T^G') with compatible G. (resp. 
G') action. Set ^/(II'jT) to be zero if it is can't be defined as above. 

If T is not split, let nT (resp. (n7)7") denote the subspace of 11 (resp. IT) invariant 
under T. Then we have the following fundamental criterion for the existence of T- 
invariant vectors in 11 or IT. 

THEOREM 2.3.2 ([30], Proposition 1, Lemma 1, Theorem 2). With notation as 
above, one has that 

dim^(n,T) + dim(n,,T) = 1 

and that if T is not split then, 

dimZV(n,T) = dimnT,        dimi/^.T) = dim^')7'. 

Moreover, 
1. IfT is split or U is principal, then ZY(n,T) ^ 0. 
2. IfT is not split and 11 = cr(/i) (fj,2 = 1) is special, then 

U(U,T)^0 *=> /ioNtf/F^l, 
11(11!, T) ^ 0 <=> n o Nx/F = 1. 

3. If T is nonsplit and K/F is unramified, then 

U{U, T) ^ 0 <^ o(n)    is even, 

U(Jl\T)^Q <=> o(U)    is odd. 

Toric newforms and Gross-Prasad's theory. In [19], Gross and Prasad stud- 
ied the invariant vector from a different point of view, i.e., by analyzing the subspace 
nr (resp. (IT)1") of vectors invariant under T = Rx where R is an order of M2(F) or 
B of discriminant c(n) containing OR - 

THEOREM 2.3.3 ([19], see also [31]). Assume either K/F is unramified, or 11 is 
principal, or 11 is special with prime conductor. Then 

dimnr = dimW(n,r),        dim(n')r = dimW^jT). 

Everything is proved in [32] except the case where K/F is ramified and 11 = cr(/i). 

LEMMA 2.3.4 ([19]). If K/F is ramified and U = 11 (/z) is special of prime 
conductor, then 

1. nr is one dimensional and stable under T with a unramified character which 
sends TTK to —/J,(IT). 
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2. (n')r is one dimensional and stable under T with a unramified character 
which sends TTK to ^(n). 

Proof. Indeed, there is nothing to prove in the case of a one dimensional repre- 
sentation. In case of 11, T is isomorphic to C/oM while TTK acts like the Atkin-Lehner 
operator. Thus the lemma follows from the functional equation of the Whittaker 
newform and computation of the epsilon-factor e(II,?/>) = -^(TT). E 

Let x now be a character of Kx/Fx. We want to study invariant vectors under 
the action of T with character x under the same conditions as in Theorem 2.3.3. 
When x '1S unramified, then either x — 1 h* the situation of Theorem 2.3.3, or in the 
situation of Lemma 2.3.4 with described character. Thus we need only treat the case 
where x is ramified. 

We assume that o(n) < 1. Lets assume that OK is embedded into M2(OF) and 
let 

(2.3.2.3.9) r=(0K + c(x)M2(0F))\ 

Now x can be extended to a character of F in the obvious way. We are concerned the 
existence of a nonzero subspace nx of vectors v in 11 such that 

(2.3.2.3.10) jv = x(7K        7 e r. 

THEOREM 2.3.5. Assume that K/F is unramified, that x is ramified, and that 
o(n) < 1.  T/iendimlF = 1. 

Proof. Our assumption implies 11 is included in the space B(n, /2-1) of locally 
constant functions on GL2(i^) such that 

/((o    t)9)-^/b)\a/b\^f(g), 

where JJ, is an unramified character of Fx. It suffices to show the theorem for this 
space because in the case 11 = !!(//), /J? = a^, the one-dimensional subquotient of 
B{ii,n~l) is isomorphic to ji • det g which does not have x-eigen vectors. 

The x-eigen subspace of ^(/x,//-1) for F is the space of functions / on GhziOp) 
such that 

/((S    fj9l)=^lb)f{g)x{l) 

for all 7 in F. 
First we treat the case where K is a field. Let u be a trace-free element of (9£. 

Then we have an embedding K -» M^-F) given by 

a + bu —? \ L 9 
a      b 

bu2    a 

With this embedding one has the decomposition GL2(F) = Bi(F)T(F) where Bi(F) 

is the set of matrices of the form ( n      J.   Since x is trivial on Fx, the x-eigen 

subspace for F is included in the x-eigen subspace for T. But it is easy to see that 
the x-eigen subspace of T is one-dimensional and is generated by 

/o((o    l) *) = H^CaM*)- 
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To show the theorem for this case, we need only show that fo is in the x-eigen subspace 
of F. In other words we want to show for any g £ GL^F), 7 G F, that 

/o(07)=-/o(0)x(7)- 

Since T normalizes F and fixes the character x, one has the decomposition 

ff = /3'-i>        (/9€£i(n*eT(F)), 

^-i^a-r        (a€Bi(OF),r€r(OF). 

Thus P7 has the decomposition /3a • r^. The above equation follows easily. 
It remains to consider the case where K — F ® F and x = (/x,//-1). Let .ftf be 

embedded into M2 (F) diagonally. Then F consists of matrices congruent to elements 
in T(OF) modulo 7rn. It is not difficult to show that B(F)\G(F)/r is represented by 
the following elements 

e:=G 1)' a:=(i 1 
Pm := I ^m     J ,     7m := (     1     ^mj      (0 < m < n). 

One can verify explicitly that the x-eigen subspace of V is one dimensional and is 
generated by the following function supported on jE^i^aF: 

?o((; f) 07) = mWrta/bM-y). /( 

□ 
We call the space IP the space of toric newvectors with a prescribed character 

X- Notice when x is ramified, our treatment is slightly different than [19], where 
Gross-Prasad obtained the same result about invariants under R* with R an order 
of B containing 0C(X) optimally. 

2.4.  Automorphic forms on GL2 

Automorphic forms and cusp forms. Let F be a number field. Let A denote 
the adeles of F. Let a; be a quasi-character of FX\AX. Let A(u) denote the space 
of automorphic forms on GL2(A) which are the smooth functions with moderate 
growth on GL2(F)\GL2(A), and with character u under the translation by the center 
Z(A) = Ax . The space A(UJ) admits a representation p of GL2(A): 

(2.4.2.4.1) (P(9)f)(x) = f(xg) 

For each place v of F let 11^ be a representation of Fv such that for all but finite many 
v, Ilv is unramified with a fixed newvector vp. Then we can define the representation 
11 := ®VT1V of GL2(A) as a direct limit 

115 := QvesH-v 

over finite subsets 5 of F such that for two S C S! containing all archimedean places 
and ramified places of nv, the structure map IIs —> Us* is given by tensoring with 

®S'\SVp. 
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We say 11 is automorphic, if 11 is isomorphic to a subrepresentation of A(UJ). 

Let ip be a fixed nontrivial character of F\A., Then for (j) € A(UJ) one has the 
following Fourier expansion 

(2.4.2.4.2) 4,(3) = C0(5) +Y,W*((o   !) a) 

where (70(5) is the constant coefficient, and and W^ig) is the Whittaker coefficient of 

(2.4.2.4.3) ^"/-/((o    l)5)da; 

(2.4.2.4.4) W^g) := 1^ J ^   fj g^(-x)dx. 

Here dx is the associated self-dual measure on JP\A which is actually the unique Haar 
measure of volume 1. 

A form cj) e A(u) is called cuspidal if C^g) = 0 for all g G GL2(A). Let AQ(UJ) 

denote the space of cusp forms in A(LU) which is stable under the action by GL2(A). 
An irreducible, admissible, and infinite dimensional representation 11 of GL2(A) of 
central character LJ is called cuspidal if it appears in AO(UJ). It is well known that if 
11 is cuspidal then the multiplicity of 11 in p is 1: 

THEOREM 2.4.1 (Strong multiplicity one, [3]). Let U = ®I1V and IT = 011^ be 
two cuspidal representations of GL2(A) such that Iiv ~ U^ for all but finitely many 
places v of F.  Then 11 ~ IT. 

For a cuspidal representation 11, we let ^4(11) denote the space of cuspidal forms. 
Then for any collection of Whittaker functions in Wv G W(Iiv.^v) with almost all 
Wv are newform, one may form a global Whittaker function W = ®VWV, and a cusp 
form 

(2-4.2.4.5) #(,)=  E ^((o    Tjs)- 

L-functions. Let 11 = 011,, be a cuspidal representation of GL2(A). Let L(s,n) 
denote the product of 1/(5,11^) and let e(s, 11) denote the product of e(s, 11^,^) which 
is convergent for Re(s) >> 0. Then we have 

THEOREM 2.4.2. The function L(s,n) (lle(s) >> 0,) can be continued to a 
holomorphic function on the whole complex plane and satisfies the functional equation 

(2.4.2.4.6) L(s, H) = €(s, n)L(l - 5, H) 

Proof Indeed, for any place v, one may find a Whittaker function Wv such that 
\I/(s,e, Wy) 7^ 0, and that for almost all finite v, Wv equals the standard spherical 
function. Let (j> be a form with Whittaker function W := J] Wv. Then one has 

n*(*,e,W„) = JFX AJ (j    J) \*r1/2dxa, 
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and 

l[9(l-8,w,Wv) = J    AX^((o   J)^)^"1^)!^172"^^. 
v ^   <\Ax 

These two quantities are equal since 

□ 
Let d € Ax be such that every local additive character 

has conductor 1. Let W®(g) be the newform for nv. Then we may define a Whittaker 
function W(g) = ®Wv(g) for t/?0 := <g>^) and a newform (ftn by 

(2.4.2.4.7) 0n(^)=  ^ W ((*f   J) fl) 

-1 With this newform, since \6\ = dF , one has 

=4-1/2L(S)n). 

Hecke operators. Assume that u — 1 and let 0 be a fixed form in ^4o(^)- Let 
S be a finite subset of places such that if v ^ 5, then v is a nonarchimedean place 
and ^ is invariant under GIJ2{OV). For a nonzero a G 0s an integral finite 5- idele, 
let Ta be the Hecke operator corresponding to the characteristic function on the set 

(2.4.2.4.8) H{a) = {p G AWf),        detp ■ Of = a • Of} . 

Then ^(a) has a disjoint decomposition: 

(2.4.2.4.9) H{a) = [[  ft   ?) GMOf) 

where a, 7 are integral ideles modulo OF'
X
 such that a7 = a, and /? is an integral 

adele modulo a. 
It follows that for g G GL^As) and y G A5, 

7|?//5a P    mod a 

- E^f^W7 !))w"- 
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Thus we have the formula 

(2.4.2.4.10) TawJg(*   ;))=    E    wJgM^   J)) |7/a| 
7|(3//5,o) 

It follows that if a is prime to yf5, 

(2.4.2.4.11) ^(,(^   ;))=|a|Ta^(ff(j    ?)) . 

If cf) belongs to an irreducible and cuspidal representation 11, then we have \a\Ta(j) = 
n(a)0 where 

(2.4.2.4.12) n(a) = Ws fa   ^) 

It follows that 

(2.4.2.4.13) £n(a)Hs-1/2 = 11 L(S^P). 

For p £ 5, lip is unramified, thus is uniquely determined by L{s1Ilp) and then by 
ap. 

Jacquet-Langlands correspondence. Let B be a quaternion algebra over F 
and let G = Bx as an algebraic group over F. Then we have the same notions of 
automorphic forms, automorphic representations, and the multiplicity one or strong 
multiplicity one. 

Let IT = QU'V be an irreducible and admissible representation of G(A) and let 
11 = (g>nv be an irreducible and admissible representation of GL2(A) obtained by 
applying Jacquet-Langlands correspondence componentwise. Then 11' is automorphic 
and cuspidal if and only if 11 is automorphic and cuspidal. 

Proof of Theorem 1.2.2 and 1.3.1. We now return to the situation of Intro- 
duction where a form </> over a totally real field F and a character x of &K /K

X
A

X
 are 

given such that the hypothesis (1.1.1) is satisfied, where K is an imaginary quadratic 
extension of F. The functional equation of L(s,Xi(P) has sign (—1)#E where S is a 
finite set of places defined in (1.1.3). 

Let 5 be a finite set of archimedean places of F such that 
• 5 U S contains all archimedean places of F, 
• E — 5 has even cardinality. 

Let B be a quaternion algebra over F which is ramified exactly at places in £ - 5 and 
let G be the inner form of PGL2,F associate to Bx/Fx. Let A be an open compact 
subgroup of G(Af) defined in (1.2.2) and XA a character on A defined in (1.2.3). 

THEOREM 2.4.3. There is a unique cusp form (j)x on G(A) with the following 
properties: 

1. (j)x has the same weight as (/> at places in S, and has weight 0 at other infinite 
places; 

2. (j)x has character XA under the action of A; 
3. for each finite place v not dividing N • D, (j)x is the eigenform for Hecke 

operators Tv with the same eigenvalues as (j). 
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Proof. Let 11 be the irreducible and cuspidal representation of GL2 (A) generated 
by (j). For each place v in S, 11 v is nonprincipal. This is clear for v \ 00; for v finite, 
we just need to notice that any principal representation has even order. Thus 11 will 
have a Jacquet-Langlands correspondence IT of G?(A). The existence and uniqueness 
of 0X now is determined by the local representation 11^ and follows from the results 
in the last section §2.3. D 

To prove Theorem 1.2.2, we take S to be the set {r}. Then the form (j)x in 
Theorem 2.4.3 is on the Shimura curve X defined in §1.2. Theorem 1.2.2 now follows 
from the standard Eichler-Shimura theory. 

To prove Theorem 1.3.1, we take 5 = 0. 

^-expansion principle. Let IIoo = (nv,t; | 00) be a fixed representation of 
GL2(F0o) = Ildoo GL2(irv) at the archimedean place with trivial central character. 
Let N be an ideal of Op- For each representation H with conductor iV and infinite 
component IIoo, fix one quasi-newform (/>n. Let A^ (IIoo, N) denote the space of cusp- 
forms generated by 0n • Notice that A^ (IIoo, iV) is a finite dimension space with an 
action by Hecke operators Ta for (a, iV) = 1. 

Let £ be a unique linear functional on ^4^ (IIoo, N) such that 

*(0n) = I- 

THEOREM 2.4.4 (q-expansion principle). Let S be a set of places containing 
infinite places and places dividing N. Let T^ = T^(IIoo, N) denote the ring of endo- 
morphism of A^ = .4^ (IIoo, iV) generated by Ta for a prime to S.  Then the pairing 

TtxA* —>C        (t,(J)) = £(t(j)) 

is nondegenerate in both variables. 

Proof. The space A^ is a direct sum of one dimensional space C^n. The action 
of T^ is given by a character t —> an (t). The (strong) multiplicity one implies that 
the characters t —> an(£) are all different. The assertion now follows from the linear 
independence of the characters au(t). U 

2.5. Rankin-Selberg convolution 

In the rest of this chapter, we will review Jacquet's theory [22] of Rankin-Selberg con- 
volutions of L-functions for GL2. For our purpose, we only consider the convolutions 
which can be written as a single Mellin-transform of Whittaker functions. First, lets 
consider the nonarchimedean case. 

Nonarchimedean case. Let F be a nonarchimdean field. Let Hi (i = 1,2) 
be two admissible representations of GL2(F) with central characters a^. Then the 
convolution L-function Z/(s,ni x 112) is the inverse of a polynomial of q~s which is 
the common denominator of all the following Mellin transforms: 

(2.5.2.5.1) tf(*,Wi,W2,*)= [ W1(g)W2(eg)U(s,u,g)dg. 
JZ{F)N(F)\G{F) 

where e = ("^    J J, Wi € Wfl!*,^), * e <S(F2), u = ux • u>2, and 

(2.5.2.5.2) Ms,M,g) = \detg\8 [    $[(0,t)g]\t\2sL;(t)dxt. 
JF* 
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Again one has a functional equation: 

(MAM) #(!-..%,%,«) = e(8jIIl „ fM,*,*) 
L(I-8,UIXJI2) i(*,ni xn2) 

where 

(2.5.2.5.4) ^((/J = Wi^cj^det^))-1 

(2.5.2.5.5) $(a;,2/)=  / $(u,v)il;(yu — xv)dudv. 

The L-function L(s,ni x 112) can also be defined by algebraic means. If one of 
Ilf is principal, say Hi = n(/ii,/X2)j then 

(2.5.2.5.6) L(s, El x Hs) = L(5, /ii (8) IIs) • L(s, //2 <8> Hs) 

(2.5.2.5.7) c(5, Hi x I[2,ip) = c(3, //1 (8) n2, ^) • e(s, /i2 0 Hs, ^). 

If one of IIj is special, say Hi = a(fi), then 

(2.5.2.5.8) L(s, Hi x Hs) = L(5, /zaj/2 <g> Hs), 

(2.5.2.5.9) e(s, Hi x Hs, ^) = e(s, ^aj/2 0 Hs, V0e(s, ^a~1/2 0 Hs, ^) 

L(l-g,il2(8)a~1/2/x-1) 

Assume now that both II^ are supercuspidal.   Then each IIj corresponds to some 
irreducible two dimensional representation pi of the Weil group Wp. Then we have: 

(2.5.2.5.10) L{s,Ui x U2) = L(s,Pi x p2). 

(2.5.2.5.11) €(s,ni x n2,^) = €(s,pi x £2,^). 

In general, 1/(5,III x 112) is some combination of *(s, Wi, W2, $). But it will have 
a nice expression as a single Mellin transform under the following hypothesis: 

•  One of Hi is either unramified or special with an unramified twist. 
In this case, if we write 

2 2 

i-1 j=l 

then one can show that the Rankin-Selberg convolution L-function is given by: 

2 

(2.5.2.5.12) L(«,ni x Ha) =  JJ (1 - a^lTrl5)-1. 

Without loss of generality, we assume that Hi satisfies the above hypotheses and 

(2.5.2.5.13) ci := ord(ni) < C2 := ord^), 

and that the additive character ip has order 0. In the following we want to show that 

L(s,ni xn2) = *(s,Wi,W2,$), 
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where Wi be the Whittaker newfunction for Hi, and 

(2.5.2.5.14) *(a:,y)= < 

i ifoM = o,N<HcMj/|<i, 
u-^y)    ifo(a;)>0,M<|7r|cMy| = l, 

0 otherwise. 

Notice that an invariant measure dg on Z(F)N(F)\GIJ2(F) has decomposition 
dg — {a^dadk with respect to the decomposition G{F) = Z(F)N(F)A(F)U where 
da corresponds to the Haar measure on Fx such that Op has volume 1 and dk is a 
measure on GL2((9F)- We normalize the measure such that the volume of £/o(7rC2) is 
1. 

PROPOSITION 2.5.1. Assume that either Hi or II2 is not special of prime con- 
ductor. For each j between 0 and C2 — Ci, one has 

* (s'p (V    l) wi>w2>*) = \Mil'~1/2)aiL(8,Hj x n2) 

where an is defined by 

L(s,Il2) = J2a"WnS- 
n 

Proof. Using the decomposition G(F) = Z(F)N(F)A(F)U, we may write 

'Wi(( n     ?)k)f(s,uj,k^)\a\s-1dkdxa 

a. 

_ 0     1, 

If C2 = ci = j = 0, then by definition of $, one can show that for k £ U, 

/(s,tc;,fc,$) = L(2S,UJ). 

It follows that 

The proposition now follows from the formula 

n ^ ^ 

If C2 > c\ +j then $ = $1 -f $2 where ^1 is the restriction of a;-1 on 7rC2 O/r x O^ 
while $2 is either zero or the characteristic function of it02 Op x TrO/r. It is easy to 
see that $2 is invariant under C/i(7rC2_1). Thus in the above formula, we may replace 

$ by $1 since p ( ' n      1 ) Wi is invariant under ^(TT
02-1

) while 112 has conductor 

C2. Now for k G C/, 

/(s w jfc $i) = IW)"1   if&eC/oK2), 
10 otherwise, 
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where for k = I        ,) G C/o(7rC2) with C2 > 0, CJ(A:) is defined to be (jj(d). 

It follows that 

=/,-.((TO)^(("OO;))H-^ 

^I«-'«-,/F>W((; ;))"'»((? OK1^ 
=|7r|^s-1/2)aiL(«,ni xn2). 

Here we have used the fact that since TI2 is ramified, £($.112) is of degree 1 or 0 and 
aictj = Qjj+j. It follows that for a integral, 

w>{~? ;)=NJ/2^(T ;)• 
It remains to treat the case where C2 = Ci + j > 0. If u; is ramified, then we may 

use the same method to compute as above. If LJ is unramified then using the facts 
that 

^(^(V    ?))=C0118t-Wri(ff(-^    J))wi(detff), 

^2 (5 (_^2    J)) = const • W2(5)a;2(det5), 

where Wi is the standard Whittaker function for IIj, we have 

*(S'P(V    ?)Wi'W2,*)=cont-*^,W1,W2,p^°C2    J)* 

Since p f _  C2    n ] ^ is invariant under GL2(0F), the integral must be zero by using 

the decomposition G(F) = Z(F)A^(F)A(F)C/. D 

Archimedean case. Let Hi (i = 1, 2) be two irreducible, admissible and infinite 
dimensional representations of GI^M). Then we can define the Rankin-Selberg con- 
volution in the same manner as in the nonarchimdean case. In particular if one of 11; 
is principal, say 112 — HifJii,^) then one can show that 

(2.5.2.5.15) L(s, Hi x U2) = L(s, Ei ® Hi)L(s, Hi 0 /z2), 

(2.5.2.5.16) e(5,nixn2) = c(5,ni(8)^i,^)L(s,ni(8)^2,^). 

If both 11; are discrete, say 11; — 11 (x*), then one can show that 

(2.5.2.5.17) L(s, Hi x n2) = Lc(s, xi ® X2)ic(s5 Xi ■» X2) 
(2.5.2.5.18) €(5, Hi x Hs, ^) = €c(5, Xi ® X2, ipc)ec(s, Xi ® X2, ^c). 
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Indeed, Hi corresponds to two representations of the Weil group WR: Ind(xi) and 
Ind(x2) by Langlands local correspondence. Thus III (8)112 corresponds to Ind(xi) 0 
Ind(x2)- The conclusion now follows from the fact that 

Ind(xi) <8> Ind(x2) ^ Ind (xi 0 Ind(x2)|cx ) - Ind(xi 0 X2 © Xi ^ X2). 

As in the nonarchimedean case, we want to express L(s,ni x 112) as a canonical 
Mellin transform \I>(s7 Wi, Wb,$). For this, we assume the following 

• For each i, Hi is either discrete, or principal of type n(ari,ar2). 
Without loss of generality, we assume further that their weights ki satisfies ki > k2. 
Then we have Whittaker functions Wi of Hi of weights fci, — fe such that 

f   Wi§   j)|o|-1/2rfxa = L(«>IIi). 

Moreover our assumption implies that the function 

'a    0 
a—><l>i{a)—Wi.Q    1 

is either even or supported on one connected component of IRX. 
We fix a measure dg on 7V(E)Z(M)\GL2(M) which is a product {a^dadk with 

respect to the decomposition GI^M) = Z(E)iV(M)A(M)S02(M), where da is induced 
by a usual measure on Mx, and dk is such that S02(M) has volume 1. 

PROPOSITION 2.5.2. Assume that the conductor ofip is 1. Let $ be the function 
in 5(IR2) defined by 

*(a;,y) = c(ia; + 3/)ni-nae-ir(a:2+tf?), 

where c is a positive constant: 

{1 if 112 are principal, 
2*2-1    zyjj2 js discrete 

Then 

*(«,wri,W2>*) = L(5,ni xn2). 

Proof First we use the decomposition G(F) = Z(F)N(F)A(F)U and the fact 
that /<£ has weight k2 - ki. We may write 

9(8iWuW2^)^co /     M^M-a)Ms,ujJe)\a\s-1dxa 
Jo 

where CQ = 1 unless both E; are of weight 0.   Otherwise.CQ = 1.   Write u;(x) = 
\x\rsgn(x)kl~k2i then 

/<i>(s,Lj,e) = cG2{2s 4-^4-ii - fe). 

We need to compute the integral here. Write 

dis) - 7r'^2T(s/2),        G2(s) = 2(27r)-sT(s) = G^G^s 4-1). 
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Then we have cri, T* such that /25    ' t 

poo 

/     M^\ci\s~1/2dxa = dLis^Iii) = ddis + a^dis + a2), 
Jo 

rOO 

/    Ma)\a\s-1/2dxa = C2L{s,n2)=C2G1(s + T1)G1(s + T2), 
Jo 

where Ci = 1 unless 11^ is of weight 0. Otherwise Ci = 1/2. Now by Barnes lemma, 

/     Mo)M-o)\a\8  1dxa = 2 >J 

Jo Cri (25 + CTi + ^2 + Ti + T2) 

In summary we have 

Gi (25 + (Ti + cr2 4- Ti + r2j -V-V 

We now want to check if the right hand side equals L(s, Hi (g) 112). 
First case: both Hi are principal of weight 0. We write 

n^nK1,^2),       n2 = n(a£,a£), 
then 

< = (7i +(72 +TI +r2,        L(s,ni 0112) = JJGI^ + ^ + T,-). 

The identity follows. 
Second case: Hi is discrete and 112 is principal. Then we may write 

n1 = n(x),   x(z) = \z\hzm,     n2=n(a^,a^). 
In this case 

ai=r + m,    (72=r + m-M,    ki=m + l,    fe = 0, 

t = 2r + m + T1 +T2    £(5,11! 0 IIs) = JJCi^ + cr,- + r^). 

Again, the identity follows also. 
Last case: both 11^ are discrete. We write 

Hi - n(xi),        Xi(z) = \z\£z™,     (mi > m2). 

Then 

h = mi + 1,    <7i = ri + mi,     (72 = n + mi + 1, 

n = ^2 + ^2,    T2 = r2 +1712 + 1,    t = 2ri 4- 2r2 + mi 4- m2, 

Z/(s,ni x 112) — ^2(5 4-n 4-r2 4-mi +m2)G2(5 4-n 4-r2 4-mi). 

Equality now follows as we express everything in terms of Gi (s + u) using the formula 

Gi(2s) = 2s-1G2(s) = 2s-1Gi(5)Gi(5 + 1) 

D 
If Hi is discrete and 112 = sgn • H^ where H^ = (ari, ar2), then 

L(5,ni0n2) = L(s,ni0n^) 

Thus the proposition still works in this case. 
Similarly, we may treat the case Hi = sgn • 11^ of the above type. 
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Global case. Let F be a totally real field with nontrivial character I/J = ®^v of 
Ap/F. For 2 = 1,2, let 11^ be an irreducible and cuspidal representation of GL^A^). 
Then we can define the global Rankin-Selberg convolution L-function and e-factors: 

(2.5.2.5.19) Lfolli x U2) = JJifolli,,, x Efe,,,), 
V 

(2.5.2.5.20) e(s, Hi x n2) = J]e(s, Tllv x U2V,ipv). 
V 

Of course the definition of e(s,ni x 112) does not depend on the choice of ty even if 
the local components e{s,T[iv x 112^,^) do. One may show that the above product 
is absolutely convergent for Re(s) >> 0 and L(s,T[i x 112) can be continued to a 
holomorphic function to the whole complex plane. Moreover, L{s,Tli x 112) satisfies 
an obvious functional equation: 

(2.5.2.5.21) L(s, Hi x IIs) = e{s, Hi x Ii2)L{l - s, Hi x Hs). 

To prove the functional equation, one takes Whittaker functions Wi(g) — 
®vWiiV{gv) for Ili with respect to ^ and a function $ = (g)<I>v in <S(A2) such that 
^(s, Wiv* W2v> $v) 7^ 0 for every v. Let 0i now be automorphic functions with Whit- 
taker functions Wi{g). Let f$(s,g) denote a function on C x G(A) defined by 

(2.5.2.5.22) M8,g) = ]lUv(s,gv). 
V 

Then f^(s,g) is invariant under the left multiplication by B(F) and with character 
a;-1 under the action by the center Z(A). Let E{s,g) be an Eisenstein series defined 
by the following formula: 

(2.5.2.5.23) E*(s,g)=        ^        /*(s,70). 
7€J5(F)\G(F) 

Then 

/ <l>i{g)(i)2{g)E<s>(s,g)dg 
JZ(A)GL2(F)\GL2(A) 

= / <t>i(g)<i>2(eg)h(s,g)dg 
JZ{A)B(F)\GL2(A) 

= / <t>i{g)W2(eg)U(s1g)dg 
JZ(A)N(F)\GL2{A) 

= [ W1(g)W2(eg)Ms1g)dg 
JZ(A)N(A)\GL2(A) 

where the measures dg on PGL2(A) and iV(A)Z(A)\GL2(A) are chosen such that 
their "ratio" on N(F)\N(A) has volume 1. The functional equation now follows from 
the local equations and the functional equation for Eisenstein series: 

(2.5.2.5.24) E*(s,g,u) = Lj(detg)Ei(l - s,g,uj-1). 
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Let S € Ax such that the character ipy(x) := %l)(5~lx) of Fv has conductor 1 at 
every place. Assume that with respect to ^0 there are Whittaker functions W® of Hi 
and a function $ £ <S(A2) such that 

such as the selected cases we have treated in last two sections. Then if we define 

^M=«?((£;), 

It follows that 

V{8,WUW2,$) = leJI1/2"**^,^0,^0,*). 

In other words, if we take ^ with Whittaker functions Wi, then we have the simple 
expression for the Rankin L-function: 

(2.5.2.5.25) Lfolli x n2) = 151s-1/2 / <l>i{9)<h(9)E*{s,g)dg. 
JZ(A)G(F)\G(A) 

3. Kernel functions 

In this chapter we will study the kernel function for certain Rankin-Selberg convolu- 
tions. More precisely, we will first construct a kernel Q(s,g) as described in the end 
of §1.1. This kernel depends only on the character x and the type of <f) but is not 
be unique. We choose the simplest one so that a functional equation holds. Then 
we compute the central value, the central derivative, and the holomophic projection. 
These procedures are quite close to those used by Gross and Zagier [20]. 

The important difference is that we will not take the trace to the same level as (f). 
Actually some experimental computation shows that the trace is so complicated that 
there is no way to compare with the geometric pairing. Of course, there will be some 
problems created by high levels if we don't take trace. But this can be taken care 
of by our new notion of quasi-newforms in §2.3. On the other hand, since no trace 
needed, this method has better flexibility than [20]. For example even in the classical 
case F = Q, x — 1? our method works for even discriminant D. 

3.1. Kernel functions 

We now start with our basic setting as in §1.1. Let F be a totally real field. Let 11 be 
an irreducible and cuspidal representation of GL2(A) with trivial central character, 
and conductor iV. Assume that at each archimedean place 11 is either principal, or 
discrete of weight 2. 

Let K/F be a totally imaginary quadratic extension. Let u denote the as- 
sociated quadratic character of Ax with conductor c((j). Let x be a finite char- 
acter of AK/A

X
 Kx whose conductor c(x) is prime to c(u). Let n(x) be the in- 

duced irreducible representation of GL2(A). Then 11 (x) has weight (1, • • • ,1), level 
D — c(x)2c(a;)5 

and central character u). 
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Epsilon-factors. Assume that for p | D, OYdp(N) < 1. (For applications we 
need only assume this after both 11^ and Ii(x)p are twisted by quadratic characters 
at p.) Let -0 = Qipv be a nontrivial character of Ap/F. The e-factor is given as 
follows: 

(3.1.3.1.1) 

where 

ev(ni xlb,^) = 
[-^(-l)   ifveS, 

(3.1.3.1.2) E : 

infinite places where 11 has weight 2, 

finite places p \ D such that uJp(N) = — 1, 

finite places p | (N,C(UJ)) such that fipiyp(7r) = 17 

where np = np(/^), XP = ^P 
0 NKp/Fp. 

Notice that in the last case of the above list, fipiir) and ^(TT) are actually the pa- 
rameters of the local L-functions of lip and Xp: 

L(s,np) = — L(s,Xp) 
1 

■AipWH5'        ^'^    i-i/pMM'' 

Kernel ©y. We now want to apply §2.5toni=n, 112 = n(x). We write 

(3.1.3.1.3) L(«, Hi x Ha) =: L(s, H 0 *)■ 

Let 0 be the newform for 11, and let 0X be the newform for 11 (x) defined in (2.4.7). 
Then 

(3.1.3.1.4) L(5,n^x) = \Sr1/2 j'ct>(9)ex(9)E(s,g)d9 

where 5 G Ax is the conductor of any fixed additive character.   Thus |£|-1 is the 
discriminant d of F. 

Let 5 be the set of places dividing c(u). For each v G 5, fix a uniformizer 7rv such 
that ujv(7rv) = 1. For each subset T of 5, let hr denote the Atkin-Lehner operator 
of level c(u): an element in G(A) which has component 1 outside of T, and has 
component 

(3.1.3.1.5) hv := 
0 
o(u)v) 

at v E T, and let TTJ denote the idele which has component 1 out side T and has 
elements 

(3.1.3.1.6) 

at v. Also we define 

(3.1.3.1.7) 

nV   ' V 

7«(*) = ^KJ^-V:^2"' • (-i)#Mns. 
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Set 

(3.1.3.1.8) eT(s, (?) - lT(s)ex(ghT1)E(s1ghT1). 

LEMMA 3.1.1. For any integral idele a dividing [N,D]/N = D/(N,D), one has 

=\as-TlaT\s-ll2v*{a)L(s, H ® x), 

where 

10 otherwise. 

Proof. Indeed, let /i^ be the Atkin-Lehner operator of level c(n) over places over 
T, then by Proposition 2.5.1, 

/ * (g (V    l)) extehT)E{8,ghT)dg 

= /<A (^T
1
 ("o'    J)) 9x{a)E{8,g)dg 

=€(1/2, HT) 10 (^T1 ("Q
1
    J) ^r) 0x(9)E(8,g)dg 

=e(l/2,nTMir*T)\K*T-aS-T/aT\s-1/2CT(a)L(s,n®x), 

The conclusion now follows from the fact that 

,  /9 „ , _ J 1 if nv is unramified, 

^-/av(7r„)    if 7r„ = a(fj,v). 

D 

Kernel 0. We define a kernel function by 

(3.1.3.1.9) e(a,0) = 2-l5f|(5r-1/2 ^ 0T(5^). 

Then 

(3.1.3.1.10) L(5,n®x)= f <j>{g)Q{s,g)dg. 
J Z(A)G(F)\G(A) 

Notice that 0 has level N but 0 has level [N,D]. By Lemma 3.1.1, we have: 

LEMMA 3.1.2. For any integral idele a dividing [N,D]/N = D/(N,D), one has 

JZ(K)G(F)\G{K)      \    \   U        •l// 

= jjl«!2—+Wi_.J/.(a)L(a>n®x). 
v|5 
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The advantage of using 0 instead of OT is that it has more symmetry. Actually 
from Lemma 3.1.2, one sees that the projection of Q(s,g) on the space 11 should have 
the same functional equation as L(s,n <g> x). We will show this functional equation 
in the next section. 

But now let us give an important definition to describe this projection. 

DEFINITION 3.1.3. The quasi-new form <f>l is defined to be the unique quasi- 
newform of level [N,D] propotional to the projection of Q(s,g). In other words, 0| 
is perpendicular to the following hyperplane which is the orthogonal complement of 
Q(s,g) on the subspace of forms in U of level [N,D]: 

HTIV^D) 

where 

V(a). = n H5        + \o\v     S f ^(Q)    ifa\c(uj), 
2 10 otherwise. 

Write $ = 0j/2. 

By Lemma 3.1.2, we have 

PROPOSITION 3.1.4.  The projection of Q(s,g) on U is given by 

L(s,n®x)   .n 

3.2. Functional equation 

In this section we want to show the functional equation of the kernel function con- 
structed in the last section: 

THEOREM 3.2.1. 

0(s,0) = €(*,n®x)e(i-*,(?), 

where 

e(s, n ® x) = (-i)*E|c(V')-4c(n ® x)ls~1/2 

and 

c(n®x) = [N,D}2(N,c(u)). 

By Lemma 3.1.2, this gives a new proof of the following functional equation of 
Rankin-Selberg L-functions without using the local equations. 

THEOREM 3.2.2. 

L(S, n ® x) = €(«, n ® xW - s, n ® x). 
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The main idea of the proof is to use the functional equation of the Eisenstein 
series 

(3.2.3.2.1) ■E*(s,g)=u>(detg)Ei(l.-s,g) 

and a precise computation of $.  Notice that $ is a product of local $v in S(Fy). 
Thus we will compute <f>v case by case. 

LEMMA 3.2.3. Let Sv e F* such that tl>%(x) := ^(d^x) is of order 0. 
1. For a finite place v, 

$v(x,y) = \8vKv\*[fav)8vKv]> 

if (jjv is unramified, and 

$v(x,y) = \6v7rlc^2\€(u;^0)^v[-irCvSv(x,y)hv] 

if UJV is ramified, where 7rv is a fixed local parameter such that UJV(7TV) = 1, 
and cv = ordvQiV, D]), and 

hv = \-^  oj' 
2. For an archimedean place v, 

$v(x,y) = -\6v\$(x6v,y5v). 

Proof. Let $° denote the Fourier transform with respect to ip®. Then 

$v(x,y) = \6v\$°(x6v,y6v). 

Let assume that v is nonarchimedean first. For each character fj, of Fv
x define 

*/*(a?) = < 

1 ifc(/i)=0, |x| <1, 

^(x)    if c(/z) > 0, |a:| = 1, 
0 otherwise. 

Then 

$v(x,y) = $iv(
xKCv)$wAy) 

where 1^ denote the trivial character of F*. It follows that 

Notice that for a general character /J, of Fx, 

It follows that 

$v(x,y) = \6v\$
0

v(x5v,y6v) 

= |<J«<-+o(w)/2|a;«<w))e(a;l^
0)$u(y7r5-*t,)*t(;(-aw

0('-)(yt;). 
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If uv is unramified, then 

Qvfay) =\6virlv\$lv{yTr*'5v)&lv{x5v) 

= \Sv7rcv
v\^[(x1y)dv7rcv

v}. 

If uv is ramified, then cv = o((jjv), and 

*„(*,!/) = |*.^c'/2|««')e(w>^
0)#w(y^c''«„> -XTT^^) 

= \Sv^v
c^2\ij(^)e(u,^0)^v [-^Sv(x,y)hv]. 

It remains to consider the case where v is archimedean. In this case 

9v(x,y) = (ix + y)e-*(x2+y2\ 

$0
v(x,y) = -$v(x,y). 

U 
Lets now find a functional equation for f<j>(s,g). By definition, 

% (l-s,g) = \detg\l-s [    ^[(O,^]!^1-^^^. 
JF* 

h 

LEMMA 3.2.4.   Write fv(s,g) (resp. fv(s,g)) for fev(s,g) (resp. f^v(s,g)). Let 
f3v(s) denote the function 

(\Kv\28~1^v(Kv) ifv\oo, O{UJV) = 0, 

0v{s) = { \4Cv \s-1/2e(LJv^
0)    ifv\oo, O(LJV) > 0, 

L if v | oo. 

Then: 

fv{l-s,g)-. >lrl2s_1 
|^|2s  lu(-8v)(3v(s)fv{l -s,ghv).    if v ^ oo, O(UJV) > 0, 

\S\2s~1u;v(—8v)Pv(s)fv(l — s,g) otherwise. 

Proof of Theorem 3.2.1. Lets write 5 (resp. 5) for finite places where UJV is 
ramified (resp. unramified). Let /3(s) be the product of/?v(s), then 

/♦(l -s,9) = W-^iWWfil - s,ghs), 

E(s,g) = u(dstg)Ei(l -s,g) = \6\2s-1Lj(ddetg)/3(S)E(l - a,ghs). 

It follows that 

6(5,fl) =2-#s|<5r1/2 Y, lT(s)dx(ghT1)E(s,ghrl) 
TCS 

=2-*s\S\3s~^2Lj(Sdetg)) £ 7T(S)0* W1 W - s,gh^hs) 
TCS 

=2-#s\6\3s-VMSfetg) ^ j'^^ighTh^Eil - s,ghT), 
TCS 



GROSS-ZAGIER FORMULA FOR GL2 217 

where f = S \ T, 

Recall that 6X is a form whose Whittaker function is 

where 

7^00=miHs). 

/hittaker function is 

K(9) = I[wxM, 
V 

with WXiV a newform in VV(Il(xv)iipv) unless v is infinite and 11^ is of weight 2. If v 

is infinite and Tlv is of weight 2, p(e)W®v(g) is a newform of Ilv where e = (  n 

LEMMA 3.2.5.   Let oo+ (resp.  oo_ denote the archimedean places where Tlv is 
weight 2 (resp. 0). Then 

K,v (9) = Wx,v (g)0ujv (det g)        Vv G S U oo", 

PFX
0» = Wx%(^)a;v(- det0),        W E oo+. 

Proof. The first equality is true because both sides are newforms for 11^ = Ilv®uv. 
The second one follows from our Atkin-Lehner theory in §2.3 and the fact that 

e(ll(x)v,il>v) = e(yv,'*l>vW''v'Vv,il>v) = MKv)e(uv,il>v)- 

The last one is true because both sides are newforms after g is replaced by ge. D 
By this lemma, we have the following functional equation of theta series: 

ex(ghs1) = 9x(g)-Ll,(5tetg)(-l)*00-a, 

where 

a = JJ <xv,        av = uv(7rcv
v)e{u;VJ^). 

It follows that 

9(8,9) = 2-#s\5\3s-V2 Y, lT(s)Ox(ghT)E(l - 8,ghr), 
TCS 

where 

=n K-i28-1 • n kMs-i/2^«")(-i)#TnE 

veS v€T 

. JJ j^c+ofn.)r 1/2. (_!)#£ 

=(-i)#s n kM'"1/a • n k^^r^va -«). 
Theorem 3.2.1 now follows easily. 
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3.3. Fourier expansion 

In this paper we will study the Fourier expansion of 0 in great detail, i.e., the constant 
term Cx(s,g) and the Whittaker function Wx(s,g). Let 

(3.3.3.3.1) 0x(g) = Cx(g) + £ Wx ((j   J) g) , 

(3.3.3.3.2) E(8,g)=C{8,g)+'EiwUfe   f\g\ 

be Fourier expansions of 6X and E(s,g) respectively. Then Q(s,g) will have Fourier 
expansion 

(3.3.3.3.3) Q(s,g) = Cx(s,g) +  £ Wx (a, ^    fj g^j , 
a^F* 

with 

(3.3.3.3.4) Cx(8,g)=    ^   w(8>t>V>9) + C^g), 

(3.3.3.3.5) Wx(8,g)=    ^   W^^g)+ W*(s,g), 
£ + 77=1 

where 

(3.3.3.3.6) W(s,^r1,g) = 2-*s\Sr1/^yT(s)Wx^Q   j) ffft?1) 

(3.3.3.3.7) C*(a,5) - 2-#5|<5|s-1/2 ^ 7T(S)CX(^
1
)C(S,^

1
)) 

TCS 

(3.3.3.3.8) ^(S,5) = 2-*s\6\s-1/2 ^ 7T(S)(CX(^
1
)FF(S,^7;

1
) 

TCS 

+ Wx(g)C(s,gh^)). 

Notice that W(s1^,r]1g)J (7*(s,(/), and W*(s,g) share the same function equation as 
L(s, II^x) by the same argument as above, since the functional equation oiE(s, g) and 
6x(g) will give the same functional equations to each term of their Fourier expansions. 

In the following we want to compute the Fourier expansion explicitly for g of the 

form ( j. But first we need to compute them for E(s,gh^1) and O^gh^1). 

Fourier expansion of Eisenstein series. Lets first compute the constant term 
C{s,g) Using decomposition 

(3.3.3.3.9) GU{F) = P(F)]lP{F)WN{F),       w = ^   j) , 
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one may compute the Fourier expansion with respect to ip to obtain 

(3.3.3.3.10)    ' C(8,g)=J     E(8,Q   fj^j dx = f(g) + Jj (w (^   fj g^j dx 

=f(s,g)+cj(detg)f{s,g) 

Since f(s,g) and /(I — s,g) are in the space of principal series B(as~l^2
Ja

l^2~sio), 
we have the following 

LEMMA 3.3.1. 

c ((i)"11)h^)=|a|s/T(5)+\^~S^)JT{S), 

where 

}T{s) = \5\s~ll2f{s,h^),        7r(a) = |*|1/2-w(*)/(*,^1)- 

Lets now compute the Whittaker function. 

W{s, g) = I     E (s, (\   f\ \ ^{-x)dx = ff(w(l    i) a) ^{-x)dx 

= |detp|s f   \t\2sw{t)dtx [ $[(-t,-tx)g]il>(-x)dx 
VAX JA 

=|det5|s /   (/9(3)$)'(t,r1)|f|2s-1a;(i)dix, 

where $' is the partial inverse Fourier transform: 

$'(x,y)= /    $(x,u)ipv(-uy)du. 
JFV 

For each place v, write Wv (s, g) using the same formula in local integrals. In the follow- 
aST1   o\   rn_(oSz1   o\h_l ing we want to compute fv (g) case by case for g = (    i' ] or # = I    ^ j h, 

LEMMA 3.3.2.    Assume that v is finite and UJV is unramified.   For a G JPI;
X
; 

W ( 5, I     * ) ) 7^ 0 on/i/ 2/ |a| < [TT^ . In this case it is given by 

,  .1/2,^ ,.-1/*     /.    IflTTJr^r-1/2 - laTri-^l^-^CaTrj-^) 
a  / IV^I     / ^(^) j—TTZIT^—1   u/9-c   /—N • 

Proof. Recall that $v(x,y) is given by 
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where lv denotes the trivial character of F1 

= |a|s /    l^l1/2-*!,^-1^-6')*!.^"1^)!*!2*"1'*'^)^* 

= |an*t;|
1/2- / Itl2-1^^)^* 

J\*lva-ldv\>\t\>\8v\ 

ordv(a) —c„ 

=|ari^|s"1/2^(^)      J]      ITTV2^^*), 
i=0 

where the sum is zero if cv > ordv (a). D 

LEMMA 3.3.3. Assume thatv is finite and UJV is ramified. 

1. For a G F*, W ( 5, (    ^       1 ) ) ^ 0 only if \a\ < 1. In this case it is given 

by 
0       1 

2. For a G F*, W (s, (aS"      ° J h'1 j ^ 0 onty */ |a| < 1. /n this case it is 

given by 

laf-'leM^M-aJtOKI 

Proof. Again, we know that 

$v(x,y) = $lv(7r-Cvx)<f>u;v{y). 

The Fourier transform of $Wu with respect to the unramified character ip® is given by 

It follows that 

'aS-1    0> 
W U 0 

=\a\s [    \6v\1/2-aK\c*/2e(uv,1>i)*iA^ 
JF* 

=|*w|-
1/2w(-(5w)|7r5-|2-1/2cK,^)*i.(a)|ar- 

This proves the first part of the lemma. For the second part, we notice that 

$ (*,»)(**"«      jjfc-1 ^y.-aJ,,1^'"!). 
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It follows that 

*(.,(•*■ ;)*.-) 

=\a5-lix-^\s [    &(a8;1t,t-1)\t\28-1Lj(t)dxt 
JF* 

JF* 

=|a|1-|^|-1/M-^)K1'*i.(a). 
D 

LEMMA 3.3.4. Assume that Fv = M, then 

^(»,(t' ?))=i4r"M-««^2 

Proof. In this case, 

*v(x,y) = (ix + y)e-<x*+*2\ 

First change the order of the Fourier transform and Mellin transform: 

=\aS-l\s [    [ ^(aS-1t,x)e-27rit~1^xdx\t\2s-1u;(t)dxt 

=|a|5|<Jf,|
s-1/2a;(<Jt,) [    [ 9(at, -tx)e2*ixdx\t\2su(t)dxt 

JR* JR 

=\a\a\5v\
a^2u(5v) [ e2nixdx [   *(a*,-x*)|t|25sgn(*)dx*, 

JR JR* 

The integral over EX is 
rOO 

2{ia-x)        t'+^e-^^+^d^t 
Jo 

=(ia — x)- 

r(a2 4- x2) 

r(g + l/2) 
r(7r(a2+x2))s+1/2 

It follows that 

f \ s+l/2 

1*1.-1/2    ,^r(s + 1/2)   ii.    /"   (*o - a:)e2,ru! _, 

=|tfr-1^(-a^)r('+1
1/2) • H1- • f f" dx. 

7rs+1/J JR (i + x)(l + xz)s xlz 

D 
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Fourier expansion of theta series. Recall that the series 9X is a form in the 
space of the representation n(x) which has Whittaker function 

»?((S!)» 
where Wx{g) = YlWxv(gv) and Wy(gv) are new vectors unless v is archimedean 

where Tlv has weight 2. If Ilv is of weight 2, then W^v I g f  n     1 j ) is a new vector. 

In the following lets compute the Fourier expansion of 0X. Again we will start with 
the constant term. 

LEMMA 3.3.5. The constant term Cx(g) is nonzero only if x is of the form 
v • ^K/F with v a Quadratic character on FX\AX . In this case we have 

^((iT    j)^1)=''(a)|a|1/2cx>T + Mo)|a|1/%,r 

where CX,T, CX>
T
 

are constQ>nts independent of a. 

Proof The representation TL(x) is non-cuspidal only if x = v-~NK/F. In this case, 
it is the principle series n(z/, UUJ). Thus there is a $ G 5(A2) such that the constant 
term is given by 

where for two characters fii^2, 

U(g,fiUfi2)=fi1(detg)\detg\1/2 [   ^[(O,*)^!^1^^)!*!^*- 

The conclusion of the lemma now follows easily. D 

LEMMA 3.3.6. Assume thatv is nonarchimdean. 
1. If Kv =FV®FV, Xv = (/i^/i"1), then 

Kd;)=Ni/a 
i */H = i, 
0 otherwise. 

2. If KVIFV is unramified field extension, then 

"?(?!' = < 
'M1/2    i/xt; = l,ord(o)e2Z>o, 

1 if \a\ — 1, 

0 otherwise. 

3. If Ky/Fy is a ramified field extension, x = v 0 'NKV/FV, then 

wo   (a    0\= fM1^)    ,y|o|<l, 
x'v \0    l)      10 otherwise. 



GROSS-ZAGIER FORMULA FOR GL2 223 

Proof. All the conclusions follow from the identity 

X* Wx% (j   J) lal-V^^a = L(S,n(Xt,)) = L{s,Xv), 

and the fact that the value W f n    1 ) depends only on |a|. D 

LEMMA 3.3.7. i455tzme that Fv = E. 
l.IfU is of weight 0; i/ien 

^o    /a    0\ = ^H1/^^-    i/a>0; 

^'u \0    l)      ]o otherwise. 

2. Ifli is of weight 2, then 

/o    fa   0\ _/2|a|1/2e2^    t/a<0, 
x'v V^   -V       1 0 otherwise. 

Proof. It is sufficient to show the first part. Notice that in this case, the values 

of W at f n       j determine the values of W(g) as it has weight 1.  One only needs 

now to show that this W(g) gives the right L-function when twisted with characters 
of E*. D 

Fourier expansion of 0(s, g). Lets start with W(s, ^, rj, g) for g = f J. 

From our definition, it is actually a product of Wv(s,£, 77, #,;) where 

(3.3.3.3.11) Wv{s,Z,n,9) 

+ \w-l"iMwx.. ((j  J) 9*,-') w, («, (j;  J) «A.- 

if u)v is ramified; otherwise 

(3.3.3.3.12) Wv(8,li,r,,g) = \8\'-xl2Wx,v((^   J) ») ^ («• (Q   J) » 

Thus, the value of W(s,^,77,^) has been computed in the previous lemmas. When ujy 
is ramified, we have the following simplification: 

LEMMA 3.3.8. Assume that UJV is ramified.  Then W(s,€,ri,e) is nonzero only if 
both |£ < 1, and \rj\ < 1. In this case 

wv (s,z,r}, ^Q
1
   J)) ^i^-M-^M^-) • \v^ev\1/Mv)\K+r1/2 

■ [K-fl-1/2 + (-i){v}™<*v(-vZ)\<-Z\1/2-'] 

-1 

where 

7r*+ _     o(a;v)+o(n)/2 *+ _     oK)-^!!)^ 
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Proof. Apply Lemma 3.3.3, 3.3.6, 3.2.5. □ 
Also it is not difficult to check the following 

LEMMA 3.3.9. For each place v of F, £,77 G F*y 

It remains to treat C* and W*. 

LEMMA 3.3.10. The function C*(s, <?) = 0 unless x is of form v • ISK/F- It ^s a 

linear combination of functions in 

fi(s,9)'€ B{asv,a-Sv),        f2(s,g) e B{<x8vu,cr3vu)), 

h{s,g) e B^-i/u;,**-1!/*),        f4(3,9) G Bia1-*^-1*), 

which are holomorphic in s, of opposite weight as 11, and invariant under Uo([N,D]). 

Proof It is clear that the function C*(s, #) = 0 unless x 'ls 0f form ^ * ^K/F- In 

this case it is a linear combination of constant terms of products of a form in 11 (z/, VLJ) 

and a form in I^a*""1/2^1/2-^) with coefficients holomorphic in s. 
Notice that the constant term of a form Ef G n(//i,/Z2) has constant term 

fig) + /G/),      / e B(w-,/x2),   fe B(n2,ni)- 

Since the product of two principal in Bbii,^), B(v\,V2) will be in 

B(//ii/iQ;1/2,/i2^2Q:"1/2), 

we see that C*(5,p) is a linear combination of functions in 

/i(s,p) G /3(aV,Q;-sz/), f2{s,g) G 5(Q:
S

Z/CJ,Q;-
S

Z/CJ), 

/3(«^) G Bia1-*™^8-1™),        fA(s,g) G BCa^V.Q-1!/). 

D 

LEMMA 3.3.11. Let g denote ( n 1 1. If x is not of the form voNx/p, the 

function W* (s,g) (a G Ax ) is a sum ofW^r(s,g), where 

W£(*,-) G >V(n(x)0as,t/;), W'^s,-) G W(n(x) 0 a1"5,^). 

If X = v o Nx/p, then W^s^g) is a sum of the above two terms and two more terms 
W^is^g), where 

W+{s:-) G WfnfaV,**1-*!/^),^), W-(s,-) G >V(n(a1-V,aVa;),^). 

Moreover, W^   (resp. W^1) are invariant under Ui([N, D]) and holomorphic ins, and 
has opposite weight as 0X (resp. E(s, —)). 

Proof This follows from the definition and Lemma 3.3.1, 3.3.5, and the fact that 
every function f(s,g) in ^(a8-1/2^1/2-8^) is holomorphic in s. D 

3.4. Central values and derivatives 

Depending on whether S is even or odd, in this section we want to compute the values 
or derivatives of the Fourier coefficients of Q(s,g) at 5 = 1/2. 
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Central values. Assume that S is even. We want to compute the Fourier coeffi- 

cients of 0(1/2, #) for g = f j. The degenerate terms are easily deduced from 

Lemma 3.3.10, 3.3.11. We now treat compute Wv(l/2,€,T),g). First assume that F 
is non-archimedean and UJ is unramified. In this case, 

If Xv is unramified then by Lemma 3.3.6, 

""(ft1 ^-^((Sfi)*" 
only if a € ^{OK,V)- In this case 

'aS-1    0^ 
^•Ml    0       1 

_    j/2 J 1 if i^t, is a field, 

t£i+i=ord(a)M^"J)    if^ = Ft,©FfMx„ = (A«,/i-1). 

Similarly by Lemma 3.3.2, 

w«(^(a5f i))^0 

only if aTT~Cv 6 N(C/f). In this case, 

w.  fl   faS-1    0\\      . ,1/2     ,. ./l if ^ is a field, 

where cv = ordv([N,D]). We assume further that either cv or ordv(a) is zero. Then 
we have the following: 

LEMMA 3.4.1. Assume that both x and u are unramified. The value 

only if both rja and £a7r_c are in N(OK)- In this case it is given by 

Wv{ll2,fi,r1,g)=u}v{8v)\r1(i\
1l2\a\ 

if K is a field, and 

if K = F&F andx = (^M"1). 

If Xv is ramified, then 

'aS-1    0 
wxM[  o    ill^o 
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only if a is invertible. In this case 

wui ;)i=i. 

LEMMA 3.4.2. Assume that Xv is ramified. Let go = I  v ).  Then the value 

Wv(l/2,t;,r],go) ^ 0 only if both \rj\v = 1 and £7r_c are in N((9K>V). In this case it is 
given by 

Wv(l/2,^r1,g)=uJv(SvM\l/2 

if Kv is a field, and 

Wv{\l2^g) = ^V{SV)\^\1'
2
'OTA{^

1
'^) 

ifKv=Fv®Fv. 

Lets now treat the case where UJV is ramified. In this case Xv = v ' N with v a 
quadratic character of F*. 

LEMMA 3.4.3. Assume that UJV is ramified.  Then Wv(1/2, ^,77,^0) 7^ 0 only if 

\i\v<\,    M-VO = (-l)#Mnr. 

In this case, 

Wv(l/2,Z,T,,go) = e(u;,tl>v)-1\Titirc<'\y2t,(Ti). 

It remains to treat the archimedean case Fv = M.   By Lemma 3.3.4, 3.3.7, the 

kernel function Wv(l/2,g) with g = I j is a product of two functions 

^H1/^-2™    if a >0,v Goo", 

W^.t,^) = <( 2|a|1/2e27ra      if a < 0, v e oo+, 

0 otherwise, 

and 

Wt,(l/2,^)=cj(-a«Jf,)7r-1|a|1/2 / da? 
JRx   l + X 

_fo ifa>0, 

~ [-2zcc;v(^)|a|1/2e27ra    otherwise. 

Thus we have 

LEMMA 3.4.4. Assume that F = R.  T/ien 

^(1/2 ^ ^) = /-4i^^)l^l1/2lalc27rflK",,)    */^ > 0 ^^ < 0 

10 Otherwise 
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if Uv is of weight 0, and 

w mofi- n\     f-^v&MlVMe2"1^    if an < 0; a^ < 0 Wv(l/2,$,?7,^)= < 
10 otherwise 

if Jlv of weight 2 

The lemma actually implies that the complex conjugation of 0(1/2, #) is holo- 
morphic of weight 2 (resp. nonholomorphic of weight 0) at infinite places where 11 is 
of weight 2 (resp. non-holomorphic of weight 0). 

Central derivatives. Assume that S is odd. Then by Theorem 3.2.1, 
0(1/2,0) = 0. We want to compute its derivative Q'(l/2,g) at s = 1/2. Again 
the degenerate term can be easily deduced from Lemma 3.3.10, 3.3.11.   Lets now 

'aS-1    0^ 
compute the central derivative for W(s,£, 77,0) for g of the form I j. Recall 

that W(s,€,r),g) is a product of Wv(s,£,r),g), and that Wv(s,^,rj,g) satisfies the 
functional equation 

(3.4.3.4.1) Wv(s, £, 77, g) = a;v(-^)c(«, Uv <8> Xv)Wv(l - 5, £, 77, p), 

(3.4.3.4.2) e(l/2, ILV 0 x.) = (-l)#En^>. 

It follows that 

(3.4.3.4.3) W(l/2,e,ry)5) = ^Wl'(l/2,7?,e,5,')• ^(1/2,^,5) 
V 

where Wv is the product of Wt over places £ ^ v, and W^ is the derivative for the 
variable s, and v runs through the places with 

^(-^) = (-l)^*2^},        W€(_^) = (_i)#=nw)    v^ # t,. 

In particular we need only consider the finite places which are not split in K. In the 
following we want to compute W^(1/2, £,77,(7) such that 

(3.4.3.4.4) «.(-{„) = (-I)"***} = J1       »« <= E, 
1-1    if v ^ E. 

First, let's consider the case where v is a place of F which is inert and unramified 
for the extension K/F, and such that Xv is unramified. In this case 

Then by Lemma 3.3.2, 3.3.6, the WXtV term is nonzero only if ord(77a) is even and 
nonnegative in which case the value is given by |77a|1//2. Then the Wv(s,—) term is 
zero at s = 1/2 and has nonzero derivative only if ord(£a7r-c) is odd and nonnegative 
in which case the derivative is given by 

w&OKal^logleaTr1-6!. 

LEMMA 3.4.5. Let v be a finite place of F which is inert and unramified in K 
such that Xv is unramified. Then the only non trivial contribution is when ord(ria) is 
even and nonnegative, and ord(£a7r~c) is odd and positive. In this case, we have 

Wl(l/2,Z,r,,g) =uv(8vM\l'2 ■ \a\v -logKaTr1"^. 
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We now consider the case where v is inert in K and Xv is ramified. Assume that 
a — 5~l. The Wx,v term is nonzero only if 77 is invertible. In this case its value is 1. 

LEMMA 3.4.6. Let v be a finite place of F which is inert and unramified in K 
such that Xv is ramified. Then the only non trivial contribution is when ord(?7) = 1 
and ord(£7r~c) is odd and positive. In this case, we have 

^(1/2,^77,50) =W,(^)|elt/2 -log-teTT1-'!,,. 

Lets now treat the case where w is ramified. In this case, by Lemma 3.3.8, 
Xv = v- NK/F and for \ri\ < 1, 

(kr-|-1/2-kr-|1/2-*) 

LEMMA 3.4.7. Assume that UJV is ramified and Xv — v 0 "^K/F- Then the only 
case with nontrivial contribution is when both £ and rj are integral and 

ji     if vex, 
[-1    if v f S. 

In this case 

W'(l/2,Z,ri,go) = eiu^y^ir^Mv)^^'^ 

Finally we treat the archimedean place. The nontrivial case is when rja < 0 (resp. 
rja > 0) when v G oo+ (resp. v G oo~) and £a > 0. In this case, W^l/2,£,77,#) is the 
product of 

^((J   ;),)=2|,a|1/V |l/2   -27r|i7o| 

and 

»».(IA(« ;).) ^-^'-'^iiJ^JZ'X-^ 1/2' 

=2iu;v(6v)\^2qo{47r^a)e2^a
1 

= [  e-t^dxx. 
Jo 

where 

qo(t) 

Thus finally we have 

LEMMA 3.4.8.   The only trivial contribution is when rja < 0 (resp.  rja > 0) if 
v G oo+ (resp. v € oo~) and £a > 0. In this case, 

W'(l/2,S,r,,g) = ^(-MKI1/2 - M -qoi^a) ■ c2'««-l^l). 
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3.5. Holomorphic projection 

In this section we assume that S is odd, and that at every infinite place 11 is discrete 
of weight 2. We want to find the holomorphic projection of 0/(l/2,p). That is a 
holomorphic form $ of weight 2 such that &(l/2,g) - $ is perpendicular to any 
holomorphic form. Here a form 0 of weight 2 is called holomorphic if its Whittacker 
function satisfies 

(3.5.3.5.1) ^(^o''1    ?) = foW*. (*■    J) 

where </> is a function of integral ideles a, and W^ = Y[v\oo Wv is the Whittaker 
function for weight 2 such that: 

(3.5.3.5.2)      wj(* eyul206-9*8 ifa>0' V ; VV0    1JJ      \0 otherwise. 

The number 0(a) is called the a-th Fourier coefficient of 0. 
Lets first state a formula for holomorphic projection. For any Whittaker function 

W on GL2(A) of weight 2, any integral idele a € A?, and any complex number 
Re(cr) > 0, let's define 

(3.5.3.5.3) Wa (a) = (2^ f^^^' ^    J) ) e'^y'd* y 

provided the integral converges. 

LEMMA 3.5.1. Let(j) be an automorphic form for PGL2(A) which has asymptotic 
behavior Oda]1-6) near each cusp.   Then Wr   (a) is holomorphic at a = 0 and the 

holomorphic projection 0 of 0 /ias Fourier coefficients given by the following formula: 

0(a) - lim Wr   (a). 

Proof. For a fixed subgroup Uo([D,N]) as before and a finite idele a lets de- 
fine Ha^{g) to be a Whittaker function on GL2(A) of weight 2, invariant under 
Z(A)i7o'([iV,£>]), supported on Z(A)A(A)I/o([AN]), and such that 

MO-r ?])-< l»rWoo(r~   Jj)   ify/eaO^, 

v0 otherwise, 

where cr is a complex number. Let Pa,cr(g) denote the following Poincaree series 

yeZ(F)N(F)\GL2(F) 

Then P0>(T is absolutely convergent for Re(cr) > 0 and defines a nonholomorphic form 
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of weight 2 for Uo([N, D]). For any cuspform (f) for Uo([N, D]) of weight 2, we have 

fa Pa,*) = f *(9)PaA9)d9 = [ <t>(9)BaA9)dg 
J Z(A)G(F)\G(A) JZ(A)N(F)\G(A) 

= / (WfS^){g)dg = f {wfB„j.((°   J))^ 
JZ(A)N(A)\G(A)       * JA*        * \\U      V/     lal 

If ^ is the holomorphic projection of (f> then ((/>, Pa) = (0, P0). As WT(5) = 
^00(^00)^(5/), we have 

(0,PO) =(0,Pa) = 2'|<J||ar^ ((a<5
((

1    J)) ^+ e-4^y1+'dxy 

Taking the limit a ->• 0, the lemma follows. D 
We want to apply Lemma 3.5.1 to 0'. First of all lets study the asymptotic 

behavior at a cusp. 

LEMMA 3.5.2. There is an automorphic form E'(g) on PGL2(A) which is a sum 
of Eisenstein series or their derivatives such that for any g G GL2(A), a G Ax

; as 
a ^ oo, 

e^MS °>H((o ?)9) + 0»(l"r,)' 
More precisely, E'(g) ^ 0 only if x — v ' ^K/F- In this case it is a sum 

E'(g)= £[(1/2,0)+ E'2(l/2,g) 

where Ei(s,g) and E2{s,g) are Eisenstein series formed by functions 

fiis.g) G £(i/as,z/a-s),        fzfag) G B(vLuas^uja'8) 

which are holomorphic in s near s=l/2, of weight 2, and invariant under Uo([N,D]). 

Proof The constant term of an automorphic form the is always invariant from 
left under B(F). Thus we can form Eisenstein series using the constant term of 
©'(l/s,*?). To get informations on the asymptotic behavior, we want to study this 
constant more precisely.   From the Fourier expansion, one easily sees that for any 
(7GGL2(A), aGAx, 

&(l/2,(*   ;),)-q'(l/2,(j    ;),)+Op(|aM 

as a -> oo. By Lemma 3.3.10, the function C^(s,g) ^ 0 only if x = ^ * ^K/F- In this 
case it is a sum 

4 

i=l 
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as in Lemma 3.3.10. When taking the derivative at s = 1/2, we may assume fa = 
/4 = 0 as /4(1 - s,g) will be in the first space, and /3(1 - s,g) will be in the second 
space. 

Let Ei(s,g), £2(3,g) be Eisenstein series formed by /1 and /2. We define E to be 
the derivative at 1/2 of Ei + E2. Then E has constant term f[ + fy + f[ + fa where 

/1 6 B{a~sv,asv),        fc E (a~svu,OLsvu). 

Thus /{ and fa has the bound 0(log |a|) at the cusp. Thus, we have the right asymp- 
totic behavior given in the lemma. D 

Let us apply this lemma for the form 

(3.5.3.5.4) $(<?):= ©'(1/2,2) - £'(<?) 

which has the same holomorphic projection as 0'(l/2,g). Let $ denote its holomor- 
phic projection. With respect to the additive character ^, the Whittaker function of 
$ is a sum of following Whittaker functions: 

(3.5.3.5.5) W{v^ri,g) := Wv(l/2)^r],eg)W^l/2^,rj,eg), 

x (3.5.3.5.6) A(g) := W*' (1/2, eg),        B(g) := W'(eg), 

where e = I ), Wf(g) is the Whittaker function of E'(g), £,7) € Fx and v is a 

place of F such that 

£ + r? = l,        wt(-Zr)) = (-l)#WnE,    Vt?v. 

Let Wa(v, ^, rj, a), A<T(a) and ^(a) denote the integrals defined at the beginning of the 
section for these Whittaker functions. Then by Lemma 3.5.1, the Fourier coefficient 
of $ is given by 

(3.5.3.5.7) $(a) = lim f V W^v^^a)+A<r{a) + Ba{a) ) . 

Lets describe the contributions of the last two terms first. We need some notation. 

DEFINITION 3.5.3. LeiNp denote the semigroup of nonzero ideals of OF- For 
each a G Np, let \a\ denote the inverse norm of a. For a fixed ideal M, let NF(M) 

denote the sub-semigroup of ideals prime to M. 
A function f on NJT (M) is called quasi-multiplicative if 

f(a>ia>2) = f{ai) • ffa) 

for all coprime 01,02 G Nir(M). For a quasi-multiplicative function f, letV(f) denote 
the set of all /-derivations, that is the set of all a linear combinations 

g = cf + h 

where c is a constant, and h satisfies 

Mai 02) = Mai)/(a2) + Ma2)/(ai) 
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for all ai,a2 € Njr(M) with (0,1,02) = 1. 
For a representation H, the Fourier coefficients U(a) is defined to be 

n(a):=Wn./(;   J) 

where Wuj is the product of Whittaker newvectors at finite places. In other words, 
11(a) is defined such that the finite part of L-series has expansion 

L/(,,n) = ^n(o)|a|-1/2. 

Then 11 (a) is quasi-multiplicative. 
Let fa(ci) be a function on N/^M) which is meromorphically depends on a € C, 

Re(o') > 0 with at most a simply pole at a = 0, then we denote the quasi-limit 

0--»O 

the constant term in the Laurent expansion: 

1 lim fa{a) — lim (fa(a) — residue • cr-1) . 

LEMMA 3.5.4.  The function f^ is holomorphic at a = 0 with the constant term 

A:= lim A,, 6 Z>(n(x) <g>a1/2). 

The function Bo- is meromorphic at a — 0 with a simple pole with constant 

B :=' lim Ba G V(I[{al!2v,a-l/2v)) + V{U{al^vuj,a-^2vu)). 
cr->0 

Proof   Let's study Aa(a) first for a G NpiND).   By Lemma 3.3.11, for g = 
ayocS"1    0 

n 1 ., the Whittaker function W^ (s, ^) is a sum of four Whittaker functions 

W^(*,S), W±(s,g), 

where W^ ^ 0 only if x — v o NK/F. We want to study the contribution of W^. The 
argument for W^1 is similar. Due to the symmetry s —> 1 — 5, when we compute 
W*'(l/2,g), we may forget W~. Since W+ is invariant under Ti([N,D]), it has 
spherical decomposition 

where W® is the product of the newvectors in the space of Whittaker functions for 
the representation n(x) 0 as over places prime to ND, and where W^0(s: -) is the 
Whittaker function at oo with weight —1. It follows that the contribution to ^(a) 
from W+ is the derivative at s = 1/2 of the sum of the following integrals 

WxAs,a) := W? (s, (j    j)) • W+(s) - Ix(s,a), 
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where 

IX(s, a) = (2^ J^ W? (a, ("»    fj ) e^^t/^x. 

By explicit computation, one may show that Ix(s,a) is holomorphic at (5,cr)  = 
(1/2,0). It follows that the contribution of W^ part is the derivative of Wx^(s, a) at 

s = 1/2. It is indeed in £>(n(x) <8> a1/2). 
The computation for Ba(a) is similar. The only difference is that when computing 

the above integral with respect to the Whittaker function of n(as, a~s) of GL2(E) of 
weight 2, one gets singularity near (s,cr) = (1/2,0) of the form 

a 
const 

a-\-s-l/2' 

Thus its value at s = 1/2 has no singularity at a = 0 but its derivative at s — 1/2 
has a simple pole at a = 0. D 

It remains to compute 

(3.5.3.5.8)      W„{v,(-,ri,a) := (2n)° j^ W (v,1-,r,, (^^    J^ e-^yTd^y. 

If v is finite, it is equal to the product 

iy;(i/2,^-af  ;))^(iA^,(-af   1 

and 

W J^ We* (l/2,Z,T,, (^    J)) e-2"Vdx0 

which is nonzero only if ^a and rya are both integral. By Lemma 3.4.4, the last term 
is nonzero only if 0 < £ < 1. In this case, it is given by 

It follows that for a fixed a there are only finitely many triples £,^,f such that 
Wp^, £, 77, a) ^ 0. Thus, in the contribution from finite v, we may simply take special 
values. 

We now assume that v is an infinite place. Then Wa(v,£,rj,a) is the product 

and 

Loo-{v} 

and 

IvA^r,) := (2^) jT00 1^ (l/2,Z,T,, ( J'   J)) e^'Vd^. 
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By 3.4.4, I^i^r}) jt 0 only if 0 < ^oo-^} < 1 and the value is given by 

11 ^(Semm^-^1. 
eeoo-{v} v    / 

By 3.4.8, Iv^(^7]) ^ 0 only if ^v < 0, and W-term is equal to 

4ia;tf(i5v)|^i;/2|y|(R)(47r|e|l,y)c-2^. 

Thus the integral is equal to 
/•OO 

-SiMSMfrl1'2 /    9o(47r|^|t,2/)e-4^2/1+^x
2/ 

Jo 

PROPOSITION 3.5.5. PFz% respect to the standard Whittaker function for holo- 
morphic weight 2 forms, the a-the Fourier coefficients $(a) of the holomorphic pro- 
jection § of Qf(l/2,g) is a sum 

*(a) - A(a) + B(a) + ^ ^(a) 

where A, B are given in Lemma 3.5.4, and the sum is over places of F which are not 
split in K, with <&v (a) given by the following formulas: 

1. if v is a finite place then <&v(a) is a sum over £ G F with 0 < £ < 1 of the 
following terms: 

2. if v is an infinite place, then <frv(a) is the constant term at s = 0 of a sum 
over £ € F such that 0 < ^w < 1 for all infinite place w ^ v and £v < 0 of 
the following terms: 

(2*ri^2-^i/2,^(af J))-/c —dx 

xa + Kit,*)^'" 

4.  Geometric pairing of CM-cycles 

In this chapter, we will study the local term of the so called geometric pairing of 
CM-cycles induced by a fixed multiplicity function. The height pairing of CM-points 
on Shimura curves will be the sums of various geometric pairings by choosing dif- 
ferent quaternion algebras and multiplicity functions (or Green's functions). These 
algebras are the VB of the distance 1 from the odd set E, which admit an embed- 
ding K —>v B. Our main result is the local Gross-Zagier formula which relates the 
linking number of the pairing to some local components of the Fourier coefficients of 
the kernel functions and is given in the last chapter. This formula actually replaces 
all the combinatoric computation in the original approaches of Gross and Zagier. As 
an immediate application, we prove a Gross-Zagier formula for the central values of 
Rankin L-functions by spectral decomposition of the geometric pairing when the the 
multiplicity function is some Whittaker function. 
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4.1.  Geometric pairing of CM-cycles 

CM-cycles. Let G be an inner form of PGL2 over F. This means that G = 
Bx/Fx with B a quaternion algebra over F. Let K be a totally imaginary quadratic 
extension of F which is embedded into B. Let T denote the subgroup of G given by 
Kx/Fx. Then the set 

(4.1.4.1.1) C:=T{F)\G{Af) 

is called the set of CM-points. This set admits a natural action by T(A/) (resp. 
G(Af)) by left (resp. right) multiplications. 

There is a map from C to the Shimura variety defined by G 

G(F)^\nn x G(Af) 

as in §1.3 which sending the class of g G G(Af) to the class of (z,g) where z G Hn is 
fixed by T. This map is an embedding if G is not totally definite. In our later study 
of local intersection, there is a situtation where G is definite but Hn is replaced by 
the formal neighborhood Y of a supersiggular point of a Shiumra variety. Thus in 
this case, one has an embedding of CM-points into a formal Shimura variety. 

The set of CM-points has a topology induced from G(A/) and has a unique G(Af )- 
invariant measure dx up to constants such that every open and compact subset has 
finite and positive measure. Lets fix one measure on T(A/) such that the volume of 
T(OF) — Y{0^vFxIFX is 1. Then dx is uniquely determined by its quotient on 
T(Af)\G(Af) which we may define as a product of the measure on T(FV)\G(FV) over 
all finite places v of F. In practice, we will insist that vol(T(Fv)\T(i^) • Uv) = 1 for 
some compact and open subgroup of G(FV). 

The set 

(4.1.4.1.2) S(C)=S(T(F)\G(Af)) 

of locally constant functions with compact support is called the set of CM-cycles 
which admits a natural action by T(A/) x G(A/). The L2-norm induces a hermitian 
structure on <S(G) such that the action of T(A/) xG(A/) is unitary. Since T(F)\T(Af) 
is compact, one has a natural orthogonal decomposition 

(4.1.4.1.3) S{C) = ®xS(x,C) 

where the sum is over characters of T(F)\T(Af). 
There is also a local decomposition for each character x: 

(4.1.4.1.4) S(x,C) = ®vS(xv,G{Fv)) 

where tensor product is a limit tensor product over the set of all finite places of F 
and S(Xv,G(Fv)) is the set of locally constant functions on G^) with character Xv 
under the left multiplication by T(FV) and with compact support modulo T(FV). Fix 
a maximal order OB of B. Thus any element 0 in S(x, C) will have a decomposition 

0 = 05 ®v<tS 4>Qv 

where 5. is a finite set of finite places which contains all places over which Xv 'IS 

ramified, (jPp supported on T(Fv)-G(Ov) and takes value 1 on G(Ov), where G(Ov) — 
Og v • Fx /FX. The hermitian structure on S(x, C) is the product of a hermitian 
structure on S{xp,G(Fv)). 
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Geometric pairing. In the following we will define a class of pairings on CM- 
cycles which are geometric. To do this, lets write CM-points in a slightly different 
way, 

(4.1.4.1.5) C = G(F)\(G(F)/T(F)) x G(Af), 

then the topology and measure of C is still induced by those of G(Af) and the discrete 
onesoiG(F)/T(F). 

Let m be a real valued function on G(F) which is r(F)-invariant and such that 
m(7) = m(7~1). Then m can be extended to G(F)/T(F) x G(A/) such that 

(4.1.4.1.6) mfc.^H-rt    if^ = 1' 
10 otherwise. 

We now have a kernel function 

(4.1.4.1.7) k(x,y)=    ^   mix^jy) 

on C x C. Then we can define a pairing on S{C) by 

(4.1.4.1.8) (<f>^)=[   <l>{x)k{x,y)$(y)dxdy 
Jc2 

:= lim  /    (f)(x)ku(xJy)ip(y)dxdy 
u^i Jc2 

where U runs through the open subgroup of G(Af) and 

ku(x,y) = vo\(U)  2 /    k(xu,yv)dudv. 
Ju2 

This pairing is called a geometric pairing with multiplicity function m. For two 
function ip and 0 in <S(x,T(A/)\G(A/), one has 

(4.1.4.1.9) (0,<0)=/ (j)(x)    Y]   rn(x~1jy)2J;(y)dxdy 
J[T(F)\G(Af)]2 7^F) 

^2 m(7)(07V
;)7 

7€T(F)\G(F)/T(F) 

where 

(4.1.4.1.10) (0,^>7 = / E (f>(6yMy)dy 

= / ^{iy)^{y)dy 
JT^(F)\G(Af) 

and where 

(4.1.4.1.11) T7 := 7-^7 fl T = i^.^^_ JT   ifT^iVT, 
1     otherwise. 

where NT is the normalizer of T in G. The integral (</>, V7)7 is called the linking number 
of (j> and ^ at 7. 
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Local linking numbers. Let x be a character of T(F)\T(Af). In the following 
we want to compute the linking number of the pairing on the space <S(x7 C). In this 
case 

(4.1.4.1.12) <0,#y= / 4>(r(,y)4>{y)dy 
JT(Af)\G(Af) 

where 

(4.1.4.1.13) 0(7,2/)= / <f)(t-l7ty)dL 
JTi(F)\T(Af) 

If 7 G iVr, then 

(4.1.4.1.14) 5(7,2/) = vol(r(F)\T(A/)) • ^y) l1    ^ £Tor^ = 1' 
I u   otherwise. 

If 7 £ NT and (p = 00v, then we have decomposition 

(4.1.4.1.15) 4{'Y,y) = l[M'Y,yv),      Mj,yv)= [     ({>{t-lity)dt. 
JG{FV) 

Notice that when 7 ^ NT, <j>v{l-,yv) depends on the choice of 7 in its class in 
T(F)\G(F)/T(F) while their product ^(7,2/) does not. This problem can be solved 
by taking 7 to be a trace free element in its class which is unique up to conjugation 
by T(F). This can be seen for example by writing B = K + Ke where e € B is an 
element such that e2 G Fx and ex = xe. Notice that the function 

(4.1.4.1.16) e(o + 6c)-     N^e) 

N(a + 6c) 

defines an embedding 

(4.1.4.1.17) T(F)\G{F)/T{F) —> F 

such that £(7) = 0 (resp. 1) iff f G T (resp. ^e NT-T). The image of G(F) \ NT 

is the set of £ G F such that £ ^ 0,1 and where for any place v of F, 

!      fN(#x) if B, is split, 

^     e \FX \ N(KX)    if Bv is not split, 

or equivalently, 

(41.4.1.18) ujv(-Zri) = (-1)*^, 

where 7^ = 1 - f, and (J(JBV) = 0 if -Bv is split and S(BV) = 1 if Bv is nonsplit. Then we 
may write 7(£) for a trace free element 7 G G(F) with £(7) = £. We may write ra(£) 
for m(7(£)) and (/)(€, y) for ^(7(f)>2/)- We extend m(£) to all F by setting ra(f) = 0 
if ^ is not in the image of (4.1.17). 

In the following computation, we will fix one order R of B such that 

(4.1.4.1.19) Rv - OK,V + OK,V\V 

where 



238 S. W. ZHANG 

• Xv G B* such that \vx = xXv for all x G K, 
• Xl G F*, and Av is divisible by c(xv)- 

Let A be a subgroup of G(Af) generated by images of Rx and K* for v ramified 
in K: 

A= n KK/K- n ^x^x/^x 

vfc(cx;v) u|c(c«;v) 

and take an a G A?, such that ordv(a) = 0 if Rv is not maximal. Then we set 
the measure on C such that the quotient measure on T(A/)\G(A/) has volume 1 on 
T(A/)\r(A/)A. Now the character can be naturally extended to a character of A. 
We will compute the geometric pairing for 

(4.1.4.1.20) 0 = Ta0A,        </> = </>A,        <M = H <!>** 

with (j)^v supported onT(Fv) - Av and such that 

(4.1.4.1.21) 0A(tti) =.x(t)x(w),        tx G A. 

The Hecke operator here is defined as 

(4.1.4.1.22) To0(a;) = TTT(of,)0tM        T^^ - /       M^dg, 
JH(av) 

where 

(4.1.4.1.23) if(av) := {g G M2(a) :     \detg\ = |av|}, 

and c?^ is a measure such that GL2(Ov) has volume 1. Then we have 

(4.1.4.1.24) (Ta0A,0A) 

-vol(T(F)\T(A/)) (m(O)To0A(e) +m(l)Ta0A(c)(Jx2=1) 

+ £ w(on^(ord^a^'^ 

where e G A^T \ T, and 

(4.1.4.1.25) 4(n,0= /     rco^^rSK)*)*. 

4.2. Linking numbers 

In this section we want to compute the local linking numbers defined at the end of 
the last section. Thus, we change the notation to let F denote a nonarchimedean 
local field. Let B denote a quaternion algebra over F, and let G denote the algebraic 
group5x/irx. 

Let K/F be a quadratic extension of F embedded into B. Let R be an order of 
B of the type 

(4.2.4.2.1) R = OK + OK\,       X = 7r%e 

where 
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• e G NT \T such that ord(e2) = 0 unless B is nonsplit and K/F is unramified 
where ord(e2) = 1; 

• -KK G K
X
 is a local parameter if K is nonsplit; otherwise it is the local 

parameter of one component of K = F 0 F; 
• m > ordK(x)- 

Let T = Kx/Fx denote the subgroup of G. Let x be a character of T(F) and 
let A denote i?x if K/F is unramified, and Rx • T(F) if iiT/F is ramified. Then 
the character x c&n be extended to Rx. Let (ft be a function on G(F) supported on 
T(F) • A such that 

(4.2.4.2.2) (ft(tu) = x(t)x(u)        * € T(F),    u G A. 

Let n be a nonnegative integer such that n — 0 if A is not maximal. Then we 
want to compute the following degenerate terms 

(4.2.4.2.3) £(n,0) := TV-0(e),        *(n, 1) := TV-0(e) 

where e G iVr \ T and local linking number is 

(4.2.4.2.4) *(n,0:= /      T^-^A^S^)*)* 
7T(F) 

where the dx is a Haar measure on T(F) normalized such that the volume of T((9V) 
is one if v is split, and the volume of T{FV) is one if v is nonsplit. Here £ G F such 
that £ 7^ 0,1 and such that 

(4.2.4.2.5) l-r^^ ifBiSSPlit' v ; |FX \ N(i^x)    if B is non-split, 

and 7(0 G i?x is a trace free element such that £(7) = £. We extend this definition 
to all £ G F by insisting that £(n, f) = 0 if f does not satisfy the above condition. 
Lets start with the degenerate terms. 

Degenerate terms. 

LEMMA 4.2.1. Ifn = 0, then 

<(0,0) = 1,        /(0,e) = (j    ^2 = 1>™ = 0> 
10    otherwise. 

Ifn>0, K/F is nonsplit, then 

D(    nx      ,/    ^      fl    ifn = 0    mod 2, 
I 0    otherwise. 

Ifn>0 and K = F © F with x = (n,^1), then 

£(n,0) = *(n,l)=   ^  /iM^'- 

Proof. The case of n = 0 is clear. 
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If n > 0, then B is split and A is maximal so we may fix one isomorphism 
G ~ PGL2 such that A = PGI^C^F). We are thus reduced to the computation of 
the local integrals 

/        <i>{9)dg= /        <l>{z9)dg, 
JH(nn) JH(nn) 

where 

H(7rn) = {ge M2{Ov) :     ordv(det^) = n} . 

Lets evaluate this integral in two cases. 
Case 1: K is an unramified field extension of F. Then we may write 

M2(FV) = Kv + Kve, 

where e2 = 1 such that ex = xe for all x G OK,V   NOW H(7rn) is a sum of Hi 
(i = 0, • • • , [n/2]) where 

Hi = {it*{a + be) G H{<Kn) :     (a, b) = 1} . 

Notice that Hi is not disjoint with Kx if and only if i = n/2. It follows that 

'l    if ra = 0   mod 2, 

/. 
(j)(g)dg = 

if^n) 10    otherwise. 

Case 2: if = F © F, and x = (^JM
-1

)- Then Hfjr71) has the following represen- 
tatives modulo GL2((%): 

. ) i+j = n.x    mod TT
2
. 

0    7rJ J 

The term with x ^ 0 has trivial contribution to the integral. Thus we have 

/. 
Hg)dg= J2 11W 

H{^) i+j=n 

D 

Unramified case. We now assume that both K/F and x are unramified, that 
B = M2(F) is split, and A = PGI^Op) is maximal. We want to compute ^(n,£). 

LEMMA 4.2.2. Assume that K is a field. Let rj = 1 — f. T/ien £(n,^) 7^ 0 on/^/ «/ 
&0£ft ord(^7rn) anc? ord(777rn) are even and nonnegative. In this case, 

e(n,o = i. 

Proof. By definition £(n,£) 7^ 0 only if ord(l — ^~1) = ord(77^~1) is even or 
equivalently, ^ = £(7) for some trace free 7 G il^-F). 

Under our assumption, x — 1 an<^ ^(^) 7^ 0 only if g G 7rnA for some n. In this 
case it is 1. It follows that £(n,£) ^ 0 only if ord7r(det7) + n is an even number, say 
2m. It follows that 

*M= /       /        (t>{'K-rnt-l
1tg)dgdt. 

JT(F) JH(iTn) 
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Without loss of generality we assume that 7 is given by ^(l-j-ae) where u is a trace-free 
unit of OK, and e2 = -1. Let \ir\w = | det 7) = |1 - aa\. Then 2m = n + w. 

Now iy(7rn) is the union of Hi (0 < i < [n/2]): 

Thus 

where 

ffc = TT* {a.+ be G flr(7rn-2i),     (a, 6) = 1} . 

i>'0 

^(n,0= /       /   (t>^-rnt-lltg)dgdt. 
JT(F) JHi 

If i = n/2, then H(l) = A and 

yT(F) 

This is nonzero only if 7 € TT^A and is given by 

vol(T(F)) = 1. 

Notice that the condition 7 € irw/2A is equivalent to it; < 0. 
If i < n/2, as det(a + be) = aa — 7r2cbb) one even has |a| = \b\ = 1 for every a-{-be 

in iJf. Thus there is a finite subset Bi of b G Oi<: such that |N(&) - 1| = |7r|n~2i such 
that 

Hi =    (J  (1 + ftcjTT*A. 

To give a nice description of Bi, we notice that for 6, b' G O^ with 

\bb-l\ = \bb-l\ = \n\n-2i, 

we have 

(7rc + 6c)(7rc + 6/c)-1 G A, 

if and only if b = b' (mod TT
71
'

21
).   Thus the projection O^ —> (0K/irn-2i)x is 

injective on Bi.  The image of Bi is exactly the set (OK/nn~2t)N=1 of elements of 
norm 1, since every element b G {OKI^n~210K)

X
 with norm 1 can be lifted to an 

element b of O* such that |N(6) - 1| = |7r|n-2f. 
The contribution from Hi is given by 

V  /      0(7rt'-m(l + a*c)(l + 6€))dt. 

The matrix inside the integral is 



242 S. W. ZHANG 

If we first sum over b and then compute the integral, then the integral simply counts 
the number of 6 such that this matrix is integral. Write j = m — i = (n — 2i + w)/2 
then 2j — w = 2n — i > 0 and the contribution is 

l+rl>n)-#\ 166-11 = 1^-^        |6 + a|<|7rp'     J* 

Recall that |1 — aa\ = \7r\w. If|a| < 1, then w = 0 and the last equation gives 
j <0 < w/2. This is a contradiction. If |a| > 1, then w < 0 and |a| = ITT^/

2
. The 

last equation implies that w/2 > j, which is again a contradiction. Thus we must 
have |a| = 1 and w > 0. 

The last two equations imply that l^-1 — b\ < |7r|J' (resp. |d_1 — a| < |7rp) or 
equivalently, \bb — 1| < |7r|J (resp. \aa — 1| < |7r|J'). By the first equation (resp. 
definition of w) we have 2j - w > j (resp. w > j). Thus we have j = w > 0. Notice 
that in this case the system has a unique solution. 

In summary, we obtain that £(n, £) ^ 0 only if n — w is even and nonnegative. In 
this case, 

The lemma now follows since 

c_   -N(a) 
s      1 - N(a)' 

D 

LEMMA 4.2.3. Assume that K = F 0 F is split, and x = O^A*-1)-  Then £(n,€) 
is nonzero only if \^7rn\ < 1. In this case, 

/i(7r) -/i  1(ir) 

where rj = 1 — ^. 

Proof. In this case, we identify T with the group of matrices f 1 in PGL2, 

and set 

0    A /-I    a 
c=    1    nh 7=      1      1    ,        «= 

Now H(7Tn) is the union 

i+j=n 
x6(0F/7rk)X 

The function (j)(g) is nonzero if and only if this matrix is in I  n       v J A for some 

u,v such that \7r\u+v = | det^|. In this case the value of </> is given by x(7rU~t;)- Thus 

w4-v=n+it; 
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where u, v are integers, \ir\w = | det7| = |1 4- a|, and 

e(n,t,u,v)=     Y,     L^((V    Tr-Ofl1    "V 

The product of these 3 matrices is 

Change variable f —» i7rv~2 we obtain 

243 

j(o   5j)- 

t 7c-i(tx + iru-w) 

Notice that the value 

depends only on |f|. It follows that 

0 < i < n, 
l{n,S,u,v) = #{       k>0 

x    mod n1 
\x — an 

i > u 

\X + TT u—w—k\ < k i—A; 

First we assume that w > 0. Let /? = (a + l)7r~w e Op then 

0 < i < n, 

x    mod n1 

i>u 
\x + >Ku-w-k -l3<Ku-k\ <|7r|n 

\X + TT u—w—k I < |7r| i—k 

liu-w — k <0 then the third condition implies that u—w—k>i — koYu>w+i which 
contradicts to the first condition. Thus the quantity is nonzero only if n > u > w\ in 
this case, we may replace x by 7ru~w~k+7rt~ky for y G OF/^- The equation becomes 

u < i < n, 
£(n,Z,u,v) = #{   u-w>k>0 

y    mod 7r& 
IjZ-^-^lTr u+A;—i 

If w < i, then the condition implies u — i >u + k — i or simply k = 0 and y = 0. The 
contribution in this case is n — u. If u = i, then the equation has a unique solution in 
y. Thus the contribution is u — w + 1. Thus we have 

u> > 0 => l{n^,u,v) = 
\n — w + l    if n >u>w. 

[0 otherwise. 

We now consider the case w = 0. Write a = /JTT* with ^ > 0 and (3 G (9^. Then 

0 < i < n, 

x   mod TT* 

z > u 
\x - l37ru+t-k\ < \7r\u 

\x + 7Tu-k\ < (TT 2—A; 



244 S. W. ZHANG 

liu—k < 0, then the last equation gives u-k > i—k oru> i. Combining with the first 
equation we have u = i. The second equation is solvable only \iu + t — fc>0. In this 
case it has the unique solution x = f3uu+t~k, which also satisfies the third equation. 
Thus this case has nontrivial solution only if 0 < u < n; and the contribution is t ( = 
the number of fc's such that u + t > k > u). 

Assume now that u > k. Then i > k and we may replace x by —'7ru~k+7rl~ky 
with y € OF/K

1
*- The contribution is 

u < i < n, 
#{    u>k>0 

y    mod 7rk 
|y-(l + a)7r,|-*| < \ir\u+k-i 

If u < i, the condition implies that u — i > u — i + k. Thus k = 0. The equation 
has a unique solution and the contribution in this case is n — u ( = the number of i's 
such that u < i < n). If u = i, then still the equation has a unique solution and the 
contribution is u + 1. Thus we obtain 

jn + t + 1    ifn>u>0, 

10 otherwise. 

It remains to treat the case where w < 0. Let 0 = (a 4-1)^-^ £ OS then 

0 < i < n, 
£(n,£,ti,t;) = #<        A;>0 

x    mod TT
2 

z > u 
\x + 7ru-w-k -p7ru-k\ < \7T\

U 

It u — k < 0 then the second equation implies that u — k>u. Thus k = 0 and w < 0; 
in this case the second equation trivially holds for all x. The last equation is solvable 
only if u - w > 0 then it has a unique solution x = —7ru~w. The contribution in the 
case u < k is nonzero only if 0 > u > w. Then it is given by n 4-1 ( = number of i's). 

If u — k > 0, then we may replace x by 

The contribution is then 

w < i < n, 
#^      w> A:>0 

y    mod 7r2~u 
l^"* + 2/l < k i—k—u 

If fc > 0, then the equation implies that —k>i — k — u. Thus u = i. The contribution 
is u (number of k:s). If k = 0, then the equation still has a unique solution. The 
contribution is n — u 4-1 ( = number of i's). Thus the contribution in the case u>k 
is nonzero only if n > u > 0, and then it is given by n -f 1. Thus we have 

... [ n + 1    if w < u < n, 
w < 0 => £(n, ^ w, v) = < 

0 otherwise. 

We now apply the following formula for integers n > c, 

j2 *y= E *o+y+c=(*2/) 
«.n—c-f-1 _ ^.n—c+1 

o+c4l6+c _ /^AC . f; y 
X — 1/ 

c<a<n 0<a<n—c 
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We obtain that £(n, £) is nonzero only if w < n. In this case, 

where 7 = I   1      1 1, \ir\w = \ det 7), |7r|* = \a\. The lemma now follows si since 

1 a 
l-fa l + a 

D 

Ramified case. It remains to compute £(0, £) in the ramified case where A is 
not maximal. 

LEMMA 4.2A. Assume that K is split, that x = (/^A*-1)- Then t(0,£) is nonzero 
only if |f | < | det A|. In this case, 

£(0,0 = /i(-l)ord(f7rdet A"1). 

Proof.   We now embed K into the diagonal of M2(F) such that TTK is sent to 

f P   ^ j. Then R is the order of matrices (x    y)€ GL2((9F) with \z\ < \7r\m. As 

before we may take 7 = I ] with a = f/(I + f). The integral, 

is nonzero only if there are some elements u, v, t G Fx such that 

(,0    v){t 1   ) = {vt        v    JGA- 

This implies that u,v G O^, that |7r|ord(a)  < |t|  < |7r|m, and that ord(Q;)  > m. 
Conversely, if ord(a) > m, then 

J|7r|ord(«)<|t|<|7r|-       \\   r i     // 
.   . dt 

/|7r|ord(«)<|t|<|7r|- 

:/i(-l)(ord(a) -m + 1). 

The lemma follows. D 

LEMMA 4.2.5. Assume that K is an unramified extension of F. Then ^(0,f) is 
nonzero only if £ det A-1 zs even and non-negative. In this case 

'(Os0=x(ti). 

Proo/. Write ord(det A) = 8(B) + 2m where 5(B) = 0 if B is split and 5(5) = 1 
if 5 is nonsplit, and where u is any trace free unit of OK- 

By definition, £(0,%) ^ 0 only if ordv(^~17rv
( ') is even or equivalently, £ = £(7) 

for some trace free element in Bx. 
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In this way, we may write 7 = ^(1 + ae) with u a trace free unit of OK- NOW 

'(0,0= /      Mt-^dt. 
JT(OF) 

The integral is nonzero only if 7 G TA. This is equivalent to the fact that the 
number w = ord(det7) is even and < 0, and that |a| < \7r\m~w/2. This in turn is 
equivalent to |a| < |7r|m (then w = 0). In this case the integral equals x(u)' Since 
f = N(a)7r<5(B)/(l + N(a)7r*(B)), the lemma follows. □ 

LEMMA 4.2.6. Assume that K/F is ramified, that x is unramified with the form 
X = v o N.  Then ^(0,£) is nonzero only if 

KI<|detA|,        aa-fr) = (-!)'<*> 

where r] = 1 — £, anc? ^(^) = 0 if B is split and S(B) = 1 if B is nonsplit. In this 
case, 

where u is a (quadratic) character of Fx such that x = v 0 N. 

Proof By definition, A,(0, £) is nonzero only if 

^(i-r1) = <"„(-£?) = (-i)'(B) 

or equivalently, ^ = ^(7) for some trace free element 7 G i?x. In this case, the integral 
is a sum 

£(0,0= f        (l){t-1>yt)dt+ [ W^dt 

= f        {ttt-1^) + Ht'^^Kt)) dt 
JT{OF) 

= 0(7). 

In the last step, we have used the fact that -KK normalizes A. 
Now 0(7) is nonzero only if 7 G TA, or equivalently, |£| < |7r|m. In this case 

0(7) = z/(det7). We may choose 7 of the form TTR^I + ae) with TT
2

K = TT to be a 
parameter of F. Then 

0(7) = z/(—7r(l — e2N(a)) = i/(—TTT^
-1

) = ^(TTT/). 

4.3. Local Gross-Zagier formula 

We now go back to the global setting in §3.1 and §4.1 with even E and the quaternion 
algebra B ramified exactly at places in E and the elements A^ G Bx given by the 
following formula: 

/.«.«..x w,    >  N      [ordv(LD,iV])    if v is unramified in K, 
(4.3.4.3.1) ord(detAv) = ^      vU        J; . .,.,,.' 

0 11 v is rammed in K. 
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In this section we want to prove a local Gross-Zagier formula by comparing the 
local Fourier coefficients Wv(l/2,£,r],g) computed in §3.4 and the linking numbers 
£v(n,£) computed in §4.2. Then we apply this to the global case to get some pre- 
Gross-Zagier formula with arbitrary multiplicity function. 

Let v be a fixed finite place of F. We have extended the definition to all £ € 
F \ {0,1} by insisting that lv(n,£) = 0 when £ is not in the image of (4.1.17). 

LEMMA 4.3.1 (Local Gross-Zagier formula). Let r) = 1 — £ and g = (   v
n

v      1 

such that n = 0 if Av is not maximal  Then 

Wv Q,&»7,efl) = \c(uv)\1/2 ■ e{wv,il>v)xv{u) ■ |»tf|i/2K| •<?>,£) 

where u is any trace free element in Kx. 

Proof First lets consider the unramified case: cv = 0. This case follows easily 
from Lemma 3.4.1, Lemma 4.2.2, and 4.2.3. 

Lets consider now the ramified case: cv > 0 but UJV is unramified. The formula 
follows from Lemma 3.4.1, 3.4.2, 4.2.4, 4.2.5. 

The case where uv is ramified follows from Lemma 3.4.3 and 4.2.6. □ 

COROLLARY 4.3.2 (pre-GZF). Let (•, •) be the geometric pairing on the CM-cycle 
with multiplicity function m on F such that ra(£) = 0 if £ is not in the image of 
(4-1.17). Assume that 8V = 1 for v \ oo. Then there are constants ci, c^ such that for 
an integral idele a prime to ND, 

IcMl^^aKTa^A,^) =(0x771(0) + c1m(l))|a|1/2Wx,/^) 

+ ^:Q1     J      l^/2^/(V2,£,^)m(0, 
£en{o,i} 

where g = fa f        j. 

Proof This follows from the above theory and the fact that Ylv c(vv,il>v) — 1 and 
that for v \ oo, e(ujv,ipv) = i. D 

This pre-GZF will be used for odd E with E replaced by VE for each place v, 
where 

(4.3.4.3.2) Xt-l™    it"!S' 

Let VB denote the quaternion algebra ramified at VE. 

4.4.  Gross-Zagier formula for special values 

We now want to apply the pre-Gross-Zagier formula for multiplicity function to be 
the product of the Whittaker function on GL2(FV) (v | oo): 

(4.4.4.4.1) mfeffoo) = |^|-1/2rtF^W0O(l/2,^77,e50O) 

where g^ £ GL2(Foo) is viewed as a parameter. We set 

ra(0,£oo) ="1(1,000) = 0. 
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By corollary 4.3.2, one obtains: 

LEMMA 4.4.1.    The complex conjugate of the kernel function 0 has Whittaker 
function: 

W (l/2,e5oo • (aS
0 '    J)) = IcHl^laKT^)^ .) 

where a is a finite integral idele which has component 1 at those places where either 
X, n, or K/F is ramified. 

Let oo+ (resp. oo~) be the infinite places of F where 11 is discrete (resp. princi- 
pal). Then ra(£,<7oo) is a product of mv(^g) where mv(^,g) has weight 2 (resp. 0) if 

v e oo"1" (resp. v G oo_). By Lemma 3.4.4, its value at f n    1 j is given as follows: 

f4\a\e-27ra if 1 > f > 0, a > 0, v e oo+, 
(4.4.4.4.2)       rnv^^   ^ = 4\a\e27ra^-^    if a^ < 0, ar] > 0, v G oo", 

0 otherwise. 

Spectral decomposition. Let Uf = Y[v Uv be an open and compact subgroup of 
G(Af) defined in §4.1 with A^ given in §4.3, and let U be the subgroup Uoollf ofG(A) 
where Uoo is the unique maximal connected compact subgroup of G(M) containing 
T(K). Take a measure on G(F)\G(A) induced by a standard measure on G(M) and 
such that vol(U) = 1. We now consider m as a function on G(R) for a fixed #00 G 
GL2(M). Let &(#,?/) to be the kernel function 

(4.4.4.4.3) k(x,y) =    ^   mu{x~l^y) 
ieG(F) 

where 

(4.4.4.4.4) mu(x) = / mu(xu)du. 
Ju 

In this section we want to decompose k(x,y) into the eigenfunctions in x,y. 

LEMMA 4.4.2. As Whittaker functions on GL2(F00)y 

k(x,y)(g00) = 2^F:^+n y^ Wi(g00) • (j)i(x)4>i{y) + continuous contribution 

where n = #oo~, and the sum is over all cuspidal eigenforms (j) of Laplacian and 
Hecke operators on G(F)\G(A)/U. Here "continous contribution" means a sum of 
integrations of Eisenstein series.  Thus for a cuspidal eigenform (j), 

[ k(x9y)4(y)dy = ^^W^gMx). 
JG(F)\G(A) 

Proof Notice that for a function 0 on G(F)\G(A)/U one has the identity 

/ k{x,y)(j){y)dy = j      mu(y)(f)(xy)dy 
JG(F)\G(A) JG(A) 

m(y)(/)(xy)dy 
JGI JG(R) 

=:p(m)((j))(x). 
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Thus, it suffices to study the action defined by mv on the space of functions on 

G(FV)/UV = H* 

for v € oo~. 
It is well known that the action of p(mv) commutes with the action of the product 

of Laplacians 

2 f d2       92\ A = -y W + wJ' 
and that the induced action of p(mv) on each eigenspace of the Laplacian with fixed 
eigenvalue is constant. Thus if 0 an eigenform for A with eigenvalue \ -K2 with t G C, 
then cf) is also an eigenfunction of p(mv): 

p(mv)(j) := /     mv(x)(j)(xy)dy = A(j)(x) 

where A is a number depending only on t. 
For example, one may compute A by choosing a function (j) of weight 0 supported 

on GL2(M)+ such that 

*((!! i)H/2+"- 
Then 

A = (p(mv)4>)(e) = fmv (Yjj    ^ y-V^dxPy. 

Using coordinates 

ry    x\\ _    (y - I)2 + x2 

f 0    1)J 4y 

one obtains 

A = /       4\a\ exp 
Jay>0 

 \y\-3/2+itdxdy 
' x2+y2 + l 
—ZTTO- 

2?/ 
/»oo 

=4|a|1/2 J    exp [-7r|a|(j/ + y'1)] yHd*y 

=m ((«; 

where Wt is the Whittaker newfunction for the representation Ii(a'lt, a~lt) U 
It follows that the pairing (•, •) on functions on G(F)\G(A) with compact support 

is automorphic. More precisely, for any two functions (f) and ip on G(F)\G(A)/U1 let 
auifai/*) denote the form of PGL2(A) of weight 2 (resp. 0) at places of oo+ (resp. 
00~) by the following formula: 

(4.4.4.4.5) a((/>,ip)(z) = ]P<t>i{z)^((t>i,fyifii,^) + continuous contribution 



250 S. W. ZHANG 

where 0? is a quasi-newform of weight (2, • • • , 2,0, • • • ,0) in the representation Hi of 
PGL2(A) corresponding to the representation 11^ of G(A) generated by ^ via Jacquet- 
Langlands theory. We now have 

LEMMA 4.4.3. 

Proof. 

\a\{Ta<t>, ^){9oo) =H(Ta<A ® V', *(«,») (tfoo)) 

=2[F:Q]+„ ^ W.(5oo)(0.) |0|T0^)(^) 

i 

=2[F:Q]+„ ^ Wi(floo)(|o|T0^, 0)(^~VO 
i 

Gross-Zagier formula for central values. Fix a character x of T(F)\T(hf). 
We have defined a certain function </> = </>A on S(x,T(Af)\G(Af)) in §4.1. Let ^ 
denote the form 2[F:Qi+n|c(u;)|1/2a((?!),^) which has the form 

(4.4.4.4.6) 9(z) = 2^F:q^n\c(uj)\1/2 ^ 4(z) |£x(^lX)|2 + continuous contribution 

where 

(4.4.4.4.7) ^(^fX) - / ^.xWx^"1)^* 

where dx£ is a Haar measure such that O^ has volume 1, and where 0;,x is a toric 
newform in IT which satisfies the following conditions: 

02?x has character % under action by A. 

LEMMA 4.4.4. The forms 0(1/2, —) and $ have the same projection to quasi- 
newforms. 

Proof. Then by Lemma 4.4.1, 4.4.3, 4.3.2, 3.3.11, for fixed p^, we have shown 
that the form 

0(1/2,-)-2[F:Q]+n|cH|1/2^ 

has Whittaker function in W(Il(x) 0 a1/2) for 

a^1    0 
0       1 9=\    A       1 ]9co 

with a integral and prime to ND. It must be zero as 11 (x) <8> Q;1^2 has nontrivial 
central character. Thus 0 and ^ must have the same projection to quasi-newforms. 
D 
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Proof of theorem 1.4.1. Let 11 be an irreducible and automorphic represen- 
tation of weight (2, • • • , 0, • • •) of PGL2(A), and let $ and (j)x be the corresponding 
forms for 11 and IT, then 

(4.4.4.4.8)    £(1/2,11® *) = (^,0) = (</>»,*) = 2^^n\c{uJ)\
ll2 ■ Mi^O/gi2 

ll^xll 

where (j)x is a toric newform with character x under A via Jacquet-Langlands. Notice 
that the measures on PGL^A) and G(A) are taken by taking a standard measure at 
archimedean place such that [/b([Z?, JV]) and Rx both have volume 1. Theorem 1.4.1 
now follows easily. 

5. Shimura curves and CM-points 

In this chapter we want to review the theory of Shimura curves, following Shimura, 
Deligne[9], Caroyal[2], and the author's earlier work [31]. We will start with some 
canonical local system on the Shimura curves which is an analogue of the elliptic curve 
on modular curves. For example, CM-points now become the points with nontrivial 
endomorphisms. These system will be used to construct the integral models, and 
to study the reduction of CM-points. Finally we will study the local intersection 
index of distinct CM-point on the generic fiber on the model when the Shimura curve 
has minimal level structure. This is basically a consequence of Gross' theory [15] of 
canonical and quasi-canonical liftings. 

For high level structure, the local intersection numbers are difficult to compute 
as one has no explicit semistable model for Shimura curves. But the local index 
formula for minimal level will give an asymptotic formula for the index of high level. 
Thanks to the toric newform theory in §2.3, this asymptotic formula is sufficient for 
our computation in the next chapter. It may not be a bad idea in the future to recover 
the index formula for high level structure from the Gross-Zagier formula proved in 
the next chapter. 

5.1. Some local systems 

Lets fix a totally real field F and a quaternion algebra B of F indefinite at one place 
r = n of F and definite at other real places. In applications, B will be the algebra 
VJB, with v = r, associated to an odd set E containing all real places. In this chapter, 
we will let G denote the algebraic group Bx rather than Bx/Fx. 

Let ho denote an embedding S —> GR of algebraic groups over E with trivial 
coordinates at TI (i > 2), where § = Cx as an algebraic group over E. Now for any 
compact open compact subgroup U of G(Af) we have the Shimura curve 

(5.1.5.1.1) Mu = G(F)\^± x G(Af)/U. 

where Ti^ is the conjugacy class of ho under G(R) which is isomorphic to C - E. 
Write VQ for B as a left jB-module. Then the right multiplication of G on VQ gives 

an identification G = GLB(VO). The embedding ho : § —> GR now defines a Hodge 
structure on VQ R. 
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By the strong approximation theorem, the set of canonical component of Mu is 
identified with 

(5.1.5.1.2) G(F)\{±1} x G(Af)/U ~G(F)+\G(Af)/U 

d~Fx\A;/det(^)=:Zdet^ 

Moduli interpretation of Mu* We want to show that Mu parameterizes the 
pairs of a Hodge structure and an [/-level structure on Vb (see Deligne [9]). More 
precisely, Mu parameterizes the set of the isomorphism classes of the following objects 
(V, h,R) where 

1. V is a free ^-module of rank 1; 
2. h is an embedding from § —> GL^VR) which has trivial component at r* 

for i > 1; 
3. AC is a class in Isom(Vo, V)/U] 

where an isomorphism of two objects (V, ft, R) and (V'jh'jR') is an isomorphism L : 
V —> V of J5-modules satisfying the following conditions: 

• ft' = £ oft o ^_1; 

• R' = i o R. 

Indeed, for any object (V, ft, R) as above we may fix an isomorphism L : V —> VQ 

of jB-modules. Then hc := t o ft o t0 is an embedding of § into G(E) with trivial 
components at 77 for i > 1. Thus hL is conjugate to fto- It follows that hL defines an 
element in 'H±. Also LR defines an element in G(Af)/U. Thus the object (V, ft, R) 
defines an element in Mu- Conversely, for a given point x in Mu represented by (ft, #) 
one may define an object (T^o, ft, R) where R is the class of multiplication by g on VQ. 

Moduli interpretation of ZD- One may also show that for a compact open 
subgroup D of A£, the set 

ZD:=FX\A*/D 

parameterizes the objects (L, €, A) where F* denotes the set of totally positive ele- 
ments in F, and 

1. L is a free F-module of rank 1; 
2. e is an orientation of L: e G F^\Isom(L,F); 

3. A is a D-level structure: A £ Isom(F,L)/D. 
Indeed, the correspondence is given by 

(L,c,A)—►F.*.(eoA(l)).tf€Zz,. 

Moduli interpretation of det : Mu —> Zp. Let D = det(U). For any object 
(V,h,R) parameterized by Mu, one may define an object (Ly,^, A«) as follows: 

1. Lp is the F-vector space det(V) generated by symbols (x,y) modulo rela- 
tions such that the pairing is symmetric, F-bilinear, and J5-hermitian in the 
following sense: 

(bx,y) = (x,by),        beB. 

It can be showed that det(V) is one dimensional. 
2. let t: V —> B — Vb be a 5-linear isomorphism such that 1 o ft o rl is in the 

connected component as fto- Then e^ is the class of 

det(0 : F = det(B) —> det(y), 

where F — det {B) is identified by sending 1 to (1,1). 
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3. A is the class of 

det(«) : det(V) —» det(B) = F. 

Then it can be shown that the map Mu —> Zdet u is given by this correspondence of 
objects. 

Universal objects. When U is sufficiently small, the universal object 
(Vui hut K>U) does exist in the sense that Vu is a local system of invertible B modules 
on Mu with a Hodge structure hu which makes V^ = Vj; 0r E an algebraic vector 
bundle on Mu of rank 2 with one action by B whose trace is the standard one on 
B, and RM is a level structure ttx : VQ —> Vx for each geometric point x € Mu- 
Here for an abelian group M, M denotes M ® Z. Physically, one has the following 
identification: 

(5.1.5.1.3) Vu = G{F)\Vo xK* x G(Af)/U, 

(5.1.5.1.4) V£ = G(F)\Vf x-H^x G(Af)/U 

where VQ = VQ ®ri M such that C/ has trivial action on Vb and such that 7 G G(F) 
acts on VQ by right multiplication by 7-1. It follows that 

(5.1.5.1.5) % = GWXH* x G{Af) x Vo/U 

where the action of G(F) on VQ is trivial and the action of U on Vb is given by right 
multiplication. The map Vu —> Vu is given by 

(v,z,g) —> (z,g,vg) 

and the level structure R is given by the class of the identity map. 
Similarly, Zp has a universal object 

(5.1.5.1.6) LD = F*\F x Fx/D, 

(5.1.5.1.7) LD = F*\FX x F/D. 

Here the action of (a, b) € F+xD sends (x, y) G F x F to (xa-1, yb). The map Lp —> 

LD is given by {x,y) G F x Fx to (y,xy) G Fx x F. The pairing Vu x Vt/ —> LD 

and Vf/ x Vj/ —> LD are given in the obvious manner. 

Galois actions. By Shimura's theory, Mu is defined over F with Galois action 
on the set ZD of connected components given by class field theory 

v:G&\(FIF)—*Fx\kx ID. 

One may show that with this canonical structure, the vector bundle V^ is defined 
over F. Thus for one object x - {V,h,R) G X(F) and a G Gal(F/F), the C-vector 
spaces V* and V^ both have some F-structure V.1 p and V^ p and a induces an a 

-linear isomorphism (which is still denoted as a) from V*p to V^ p. 

Similarly, the local system V is also defined over F. Thus for one object x = 
(V,h,R) and one a G Gal(F/F), there is a morphism which is still denoted as a 
from Vx —> VX<T such that Rxo- = R o a. The determinant of this map induces a 
similar map on the local systems on ZD- More precisely, if x = (L,e, A) is one object 
parameterized by ZD, then x* = (L, e, a • ^(a)) and the morphism a : L —> L is just 
the multiplication by ^(cr). 
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Integral structure. To get an integral structure of local systems, we may take 
a maximal order OB such that U C Og. Let Vb,z be the lattice in Vb corresponding to 
OB- Then the lattice K,X{VO,Z) =' VXiz in K is independent of the choice of K,X € RM- 

Thus Mu also parameterizes integral objects (Vz, ft, K) where Vz is an invertible OB- 

module, h is Hodge structure on VR as before, and R is an [/-class of isomorphism 
ds—*VZ. 

Similarly, for any fixed CV-fractional ideal LQ, ZD parameterizes objects (Lz, e, A) 
where Lz is an invertible CV-module, and e is an orientation of L := Lz 0 Q, and A 
is a D-class of isomorphism A : Lo,z —^ ^z- 

For the morphism M(/ —> ZD, we take I/o,z to be the (!?ir-submodule det(0JB) 
of F generated by (#,i/) for a:,?/ G ^z- Then the image of an object (V^,ft,Ac) will 

be (Lv,z,eh, A*) with Lv,z = det(yz). Thus Vb = VulVu,z and L^ = LDILD,z form 
systems of divisible groups on Mcr and ZD. 

For any fixed positive integral idele n, one has a Weil pairing 

(x,y)n :=n(x,,yf) 

on Vu[n] with values in Lofn], where a:,?/ € Vu represented by x,y G Vu- If U 
contains U(n) := (1 + nB)x, then the level [7 structure can be described as a class of 
isomorphism 

Vufiln] —► Ff/H 

modulo U. 
li B = M2(Q), then Mu parameterizes objects of elliptic curves with level struc- 

ture with a universal object (£,KS). Then Vjj = Lie(£)2 with a natural action by B, 

and Vu = £?or. 

5.2. Homomorphisms and CM-points 

For any two objects x = (V,h,K) and xf = (V^h^R) of Mu, one can define the F- 
module Hom0(#, xf) of homomorphisms a € Hom£(V, V) such that for any z G Cx, 

ft'W 0^K = OfR 0/1(2?). 

Write End0(a:) for Horn0 (a;, x). Then End0(a;) is either F or a totally imaginary 
quadratic extension K of F. In the second case, we call x a CM-point by K. The 
induced action of K on the complex space V1 = V <g>r E is given by a complex 
embedding of K which we still denote as r. 

For two points a^x', the F-vector space Hom0(x,x/) has rank < 2. If this space 
is nonzero, then we say x and x* are isogenous and any nonzero element in this vector 
space is called a quasi-isogeny. It is easy to show that Horn0(a:, a:') has dimension 2 if 
and only if both x and x' has CM by isomorphic imaginary quadratic extensions K 
and Kf. We may further fix an isomorphisms K ~ K' with respect to the embeddings 
into C defined in the previous paragraph. 

For a fixed imaginary quadratic extension K of F and an embedding r : K C C 
extending that of F, the set Cu of CM-points on Mu by K is not empty. Indeed, we 
may fix an embedding a : K —v B which induces a Hodge structure ho on Vo = B 
with trivial component at places T* for 2^1 and equal to a ®Tl M at TI . We now may 
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take XQ to be a point on MJJ corresponding to the object (Vo,ho,R) where K, is the 
identity map B —> V. For the identification 

(5.2.5.2.1) Mu = G(F)\^± x G(Af)/U, 

XQ corresponds to the point represented by (/io, 1) where ho £ X is one of two fixed 
points by Kx C G(F). (The other one is the complex conjugation of ho). All CM- 
points by K with fixed ri are then given by 

(5.2.5.2.2) Cu = G(F)\G(F)ho x G(Af)/U = T(F)\G(Af)/U 

where T = Kx is the torus in G. 
By Shimura's theory, the Galois action of Ga\(F/K) is given by class field theory 

and multiplication of T(A/) from left hand side. More precisely, if a G Gal(F/K), 
x = (V, ft, R), then x0" = (V, ft, i/(a) • R) and the action on local system is given by right 
multiplication by ^(o"), where v is the reciprocity map GB1(K/K) —> Kx\A^j. 

5.3. Canonical models 

Integral model. It is well known that Mu has a canonical integral model Mu 
over OF which is regular if U is sufficiently small. Let Ou be the ring of the abelian 
extension Fu of F corresponding to the class 

F*\Fx/det(U). 

Then Zu has a model Zu over F and is isomorphic to Specify. The map Mu —> Zu 
induces a map 

(5.3.5.3.1) Mu —» Zc; := Specie/. 

The local system V^ and Vf/ can be extended to Mu to a vector bundle and a 
local system of divisible groups such that Lie(Vu) = V^. 

Let F denote the algebraic closure of F in C We want to study the reduction of 
points on Mu 0 F. Notice that Zu 0 F is naturally isomorphic to Zu(F) x SpecF. 
Thus Zu has an integral model 

(5.3.5.3.2) Zu := Zu(F) x Spec0F :=   JJ   SpecOF 

Zu(F) 

Notice that this scheme has a natural map to Zu- Let Mu be the tensor product of 
Zu and Mu over Zu- 

Formal modules. We now fix one prime p of F and let p be an extension of p 
to F. We assume that U is a product U = Up • Up and want to study reduction of 
Mu at p, following the method of Carayol [2] where p was assumed to be unramified 
in B. See also Katz-Mazur [24] for the case of modular curves. Lets write Op for 
OF,?, OP for Op^i Mu,p for Mu ®oF Op, and Mu& for Mu ®oF 

0P' 

Then over Mu.p ? the prime to p-part of (Vc/,/c) can be extended to an etale 
system on Mu,p but p-part 

(VV®Op,«®C7p) 
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can only be extended to a system of special formal OjB?p-module with a Drinfeld level 
structure, 

(V,a). 

Here special modules and Drinfeld level structure are defined as follows: 
• V is special means that Lie(V) is a locally free sheaf over OMU ® OE of rank 

1 where OE is an unramified quadratic extension Op in OB,p. 
• A Drinfeld level structure means an [/-class of morphisms 

a : p-nOB/OB —> V[pn] 

such that cycles of the latter space is generated by the image. 
When Up is sufficiently small, M.u,p is regular and is locally a universal deformation 
of V with its level structure in the special fiber. We write V0 for the isogeny class of 
V. 

Similarly the local system (L, A) will also extend to a divisible group over Z^p = 
Spec(Ou,p) whose prime to p-part is etale, and its p-part is a formal C^-module with 
a level structure 

such that the induced action of Op on C is the usual multiplication of Op inside Ou,?- 
The level structure again is also defined by a det(C/)-class of surjective morphism 

0 : p-nA)/£o —► C[p-n] 

where CQ = det(OB) is the pairing module of OB- For any generator t e OF of order 
1 at p, the level structure is compatible with the pairing: 

(a(x),a(y))t = I3({x,y)t). 

The map Zu,p —> Zu,p then classifies the lifting (£,/?) to the geometric generic 
fiber. 

Homomorphism. Let x and x1 be two geometric points in the special fiber of 
Mu,p- Then we define Horn0(£,£') to be the subgroup in 

Hom((Vx
0,t>),(Vx

0„yx0) 

generated by Hom0(?/, y') for all liftings y, y' o£x,x' to the geometric points of M.u,p> 
We say x and x' are isogenous if Horn0 (x, x') ^ 0 and any nontrivial element in this 
group is called a quasi-isogeny. 

5.4. Reductions 

In this section we want to study the reduction of the integral model of a Shimura 
curve for a fixed prime p of F. More precisely, we will study the set of irreducible 
components in the fiber over p, and the set of three classes of closed geometric points 
in the special fiber: ordinary points, supersingular points, and super special points. 
We will also identify the reduction of CM-points in each fiber. 
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Case of unramified prime. First let's consider the case where p is unramified 
in B. We want to study the smoothness of the special fiber of Mp. Let UQ denote 
Up • OB,p- Then one can show that Muo,p has good reduction when Up is sufficiently 
small, see Carayol [2] when p is unramified in B, and Katz-Mazur [24] when B = 
M2(Q). 

To study the general case, lets fix one isomorphism OB,P = M2{Op). Then every 
OB,P module M can be uniquely written as 

(5.4.5.4.1) M = N®N       N = (J   [jjM 

as OF-modules such that the action of OB,P is given by left multiplication on iV2. One 
symmetric pairing M x M —> P is equivalent to an alternative pairing N x N —> P. 
By this convention, the formal C^p-module V is then given by two copies of one 
formal module £ of dimension 1 with a usual Weil pairing with values in C. The level 
structure is then a usual level structure 

(p-"<V<^)2 -»• £\pn]. 

A geometric point x at the special fiber of Mu,p is called supersingular, if £x is 
connected. Otherwise, it is called ordinary. If it is ordinary, then the level structure 
has a kernel of rank 1 and thus defines an element in A G ^>1(Fp)/Up. One may 
show that for any given A G f>1(Fp)/Up, and a fixed connected component -M^ , the 
points in the special fiber which are either supersingular or ordinary corresponding to A 
actually form an irreducible component I\ of the special fiber. Thus, the supersingular 
points are only singular points in the special fiber. These I\s are called the Igusa 
curves. The nature map Mu,p —> Muo,p induces an isomorphism between each I\ 
and the special fiber of the Mijop. 

Let F be the algebraic closure of the residue field of Fp and let MU,F (resp. MU,F) 

be the geometric special fiber of Mu,p (resp. Mu,p)- Since Ou is totally ramified 
over Ou0, the set of connected component of MU,F is the same as that of MUO,F thus 
the same as Mu0- It follows that the set of irreducible component of MUF is given 
by 

G(F)+\G(Af)/UoxV(Fp)/Up. 

From this one easily obtains the following: 

LEMMA 5.4.1. If p is split in B, then the set of irreducible components of MU,F 

is given by 

G(F)+\G(AfyU x P(Fp)/[/p. 

Ordinary points. Let x be a fixed ordinary point on Mu,F' Then it can be 
shown that K := End0(x) is a totally imaginary quadratic extension of F which is 
split at p. We may fix one splitting Kp = F*, such that the divisible group £x is 
isogenous to a direct sum ££* 0 £® compatible with the action of K, where £% is a 
formal group of dimension 1 and £%* is etale. In this way, one obtains the diagonal 
embedding K —> B such that at p, it is given by the diagonal embedding. Let pe, p0 

denote two induced primes of K. It also can be shown that two ordinary points x and 
x' are isogenous if and only if they have isomorphic endomorphism rings. We may fix 
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such isomorphisms such that they induce the same action on tangent spaces of the 
associated formal groups. 

Let K be a fixed totally imaginary quadratic extension of F with a fixed splitting 
Kp ~ F*. Then the set of geometric ordinary points on Mu,¥ with endomorphisms 
by K and with given splitting can be identified with 

^((o   *)\GL2(Op))xG'(Ap/C/, 

where KQ denotes the subgroup of Kx of elements with order 0 at two places of K 
over p. 

Indeed, let XQ = (So, VQ , RQ) be a fixed ordinary point with CM by K. Using one 
K G R, we may identify £$* with Fp/Opi and V^ with Bp/Og. Then for any ordinary 
point x = (£,Vp,fi,) with CM by K, there is an isogeny a : x —> XQ which induces 
an isomorphism on divisible groups at p. Such an a is unique up to multiplication by 
elements in KQ . Such an isogeny now induces an element 

(*,<;)€ Horn*(0*,CV)xG(Ap 

such that the surjective map a o K = (z,g), where Horn* means the set of surjective 
homomorphisms. In this way we may identify the set of ordinary points with CM by 
K with 

K^\Eom*(Ol,Op)xG(A^/U. 

Our assertion now follows from the identity 

Horn* (Ol, Op) = PT1 ■ GL2(0p) = (J   *) \ GL2(0, ) 

where p^ denote the projection of Op onto the first factor. 
The maps from CM-points by K over Fpi to CM-points by K over F, and to 

irreducible components over F are given by the obvious ones, via the identity 

pl^= (o  *)\GL2^- 

We now want to study the ordinary points on MU,F which are exactly ordinary 
points on Mu with an lifting of determinant level structure to the geometric generic 
fiber. In the above setting, for a given isogeny a : £ —> £o, we will have a triple 
(2, <7,a) with a G Op. The set of ordinary points on MU,F is then identified with 

KZ\Rom*(Ol,Op) xO*x G(Ap
f)/U 

where KQ   and Up acts on Op by determinants.   It is easy to show that the map 
g —> (pr1 • g, detg) induces a bijection: 

Rom*(Ol,Op) xO*= N(Op)\GL2(Op) 

with compatible action by KQ  and Up. Thus we have shown that the set of ordinary 
points on Mu,p is identified with 

tf0
x\ (N(Op)\GL2(Op)) x G{A*)/U. 
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Using the decomposition 

GL2(Fp) = KZ-N(Fp)-GL2(Op) 

we then obtain the following 

LEMMA 5.4.2. The set of ordinary points on M,u,w with CM by K is identified 
with 

K*\(N(FP)\GL2(FP)) x G(Af)/U. 

The reduction maps from the CM-points on MU®FF to ordinary points and irreducible 
components on MU,F 

a're given by the following obvious ones: 

KX\G(Af)/U —»■ tf x\ (N(FP)\GU(FP)) x G(A*)/U 

-^FZ\A*/det(U)xF(Fp)/Up 

where the second map sends the class of (gp,gp) to the class of (det(gpgp),gp). 

Supersingular points. We now want to give a description of the set of super- 
singular points on MU,F which is the same as on MU0,F, where UQ — GIJ2{PP)U

P
. 

It can be shown that all supersingular points are isogenous to each other, and for a 
fixed supersingular point XQ = (Vo,Vo ,«o)j the endomorphism ring B' := End0(a;o) 
is a quaternion algebra which can be obtained from B by changing invariants at r 
and p. In other words, in our notation B =r B and B' =p B with ramification set VT, 
and pE defined at (4.3.2) respectively. Let G' denote the algebraic group (B,)x over 
F. Fix one KQ € RQ. We may embed B into G(A^) and identify VQ* with Bp. Then 

for any supersingular point x = (V, Vp, R), we have an isogeny a : x —> XQ of degree 
prime to p which is unique up to composition with elements of G'(F)o of order 0 at 
p. The level structures now induce one element g G G(A?) such that 

0:=ao/c€ G(A£). 

By this way we may show that the set of supersingular points on MU,F can be identified 
with 

G'(F)0\G(Ap
f)/Up = G'iFWiArf/U' 

where U' = O^,    • Up. The morphism from supersingular points to the set of con- 
nected components 

det:B—»JF£, 

and the map from CM-points by K to the set of supersingular points is given by 

T(F)\G(Af)/U —> G'(F)\G'(Af)/U' 

where g^ e B(p)p is any element with norm det^p.   Similarly, one can show the 
following. 

LEMMA 5.4.3.  The set of supersingular points on MU,F is identified with 

G'(F)o\e>* x G{AP)/U = Gf{F)\F* x G(Ap
f)/U 



260 S. W. ZHANG 

where G'{F) and Up act on F£ by determinant. The maps from CM-points on MU®F 

F to supersingular points and to the set of connected components on Mu,¥ are given 
by the following obvious ones: 

K*\G(Af)/U —► G'(F)\F2 x G(Af)/U 

—> F*\AX I det(C/) 

where the first map sends the class of g to the class of (detgp,gp) and the second map 
sends the class of {x,gp) to the class ofxdetgp. 

Case of ramified primes. It remains to study the reduction of Mu,p in the 
case that B is not split at p. In this case, the group V is a connected formal group. 
It follows that the map 

Mu,p -> MUO,P 

is purely inseparable at the fiber over p. So the set of irreducible components of MU,F 

over p is the same as that of MUO,F- 

In this nonsplit case, one can show that all points in the special fiber are F- 
isogenous, and the F-endomorphism ring is a quaternion algebra B' over F-obtained 
by changing the invariants of B at r and p. Again, we let G' denote the algebraic 
group (^/)x over F- 

To study the irreducible components of Muo,¥ over p we can use the uniformiza- 
tion theorem of Cerednik - Drinfeld [1, 10]. We need some notations to state this 
theorem. Let Aii/o denote the formal completion of Muo along its special fiber over 
p. Fix an isomorphism: 

B,~M2(FP)-B
p 

where the superscript p means that the component at the place p is removed. Let Q 
denote Deligne's formal scheme over Op obtained by blowing-up F1 along its rational 
points in the special fiber over the residue field k of Op successively. So the generic 
fiber ft of ft is a rigid analytic space over Fp whose Fp points are given by P1(Fp) — 
P1(Fp). The group GL2(FP) has a natural action on ft. The theorem of Cerednik- 
Drinfeld gives a natural isomorphism 

(5.4.5.4.2) Muo - G'(F)\n®OlT x B**IUP 

where O™ denote the completion of the maximal unramified extension of Op with an 
action by G'{F) given by 

geB(p)X  -^Yr-o^detg^ 

Since ft is connected, the set of geometric components of MU,F is identified with 

G'(F)\Z x Bp>x/Up = G'{F)Q\B
P

>*IU
P
, 

where G
,
(F)Q means elements of Bf of order 0 at p. Taking det, this set is then 

identified with 

FZ\F*/Uo. 
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To obtain a description of the special fiber of MI/QJ we notice that the irreducible 
components of special fiber of Q correspond one-to-one to the classes modulo Fx of 
Op lattices in F^. Consequently, one has the following. 

LEMMA 5.4.4. The set of geometric irreducible geometric components of Mu0 

over p is indexed by the set 

G,(F)\GL2(Fp)/F*GL2{Op) x Z x Bx^/Up 

~G'(F)e\G'(Af)/GL2(Op)U*, 

where G,(F)e means the set of elements in B1 with even order at p. 

Superspecial points. A point x in the special fiber of Aiuo,p is called super- 
special if the corresponding formal (^p-module VF is a direct sum of two formal 
Op-module of dimension 1 and height 2. Let f^ be a fixed formal Op-module over F 
of dimension 1 and height 2 which is unique up to isomorphism. Let OB,P — Endc>p(ft) 
be a fixed isomorphism which is unique up to conjugation. Then there is an isomor- 
phism 

VF ~ OF © ftp 

which is unique up to conjugation by 01,2(0'#,$,)• The action of OB,p on V is given 
by an embedding 

!> '       OB,P —► Af2(0Bfp). 

It is easy to see that the set of isomorphism classes of superspecial VF is in 1-1 
correspondence with the set of conjugacy classes of L. For a fixed t, let RL denote the 
centralizer of the image of £. 

Fix one superspecial point XQ = (Vo, VQ
3
,^) of conjugacy class [t]. Via KQ, one 

may jdentify Vp with Bp, and B p with Bp. Then for any superspecial point x = 
(Vx,Vp, K,

P
) we may find a quasi-isogeny a : x —> XQ which induces an isomorphism 

between Vx and VQ. Such an t is unique up to multiplication by elements of G'(F)o 
of elements whose components at p is in R*. The level structure K

P
 now induces one 

gp e G'iA*}). Thus we have the following: 

LEMMA 5.4.5.  The set of superspecial points of class [t] is identified with 

G'(F)o\G'(APf)/Ut>, 

where G/(F)o denotes the elements in G^F) with images in R*. 

Now, let K be a totally imaginary quadratic extension embedded in B. We want 
to study the reduction Cu of CM points by K. We will only consider special points in 
Cu, i-e., those points whose endomorphism has maximal component at p. We want 
to show that the special CM-points have superspecial reduction. First, let's construct 
some special formal C^p-module over Op. 

Then OB,P can be written as 

(5.4.5.4.3) e>B,p - OK,P + OK,Pt 
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where e G B* such that xe = ex for any x G Kp, and that e2 G F£ with order 

/r A * A A\ J  / 2N      1 !    if KPIFP 
is unramified, (5.4.5.4.4) ordp(e2) = < p', v ; PK   )      [0   if iiTp/Fp is ramified. 

Let fi be a formal O^^-module of height 1 and dimension 1 over Op. A ifp-special 
module over Op is the following module: 

such that for x,y G n,a G OK,P, 

e(x, y) = (e2y, x),        a(x, y) = (ax, aj/). 

In this case all X^-special points have superspecial reduction with the same con- 
jugacy class and the corresponding ring Rp := i?^ is given by the following 

LEMMA 5.4.6. All Kp-special points have Kp-special module at p. Moreover the 
set of special CM -points by K is given by 

T(F)0\G'(Ap
f)/UV 

where T(F)o denotes the set of elements in T(F) whose components at p has order 0. 
Moreover the map from special CM-points by K to the set of superspecial points and 
to the set of irreducible components are given by the following natural projection: 

T(F)o\G'(Ap/C/p —>• G'(F)o\G'(A*yU'1' 

^G'(F)e\G'(Af)/GL2(Op)U^ 

Proof. For any special CM-point x = (V,h,K), it suffices to show that the Tate 
module Tp :— TP(V) is isomorphic to OB,P with action by OB,P by left multiplication 
and with action by OK,P by right multiplication. 

First, we consider the case where Kp is unramified. As 

any OB,p <8> C^p-module is a direct sum with an action by e. The conclusion follows 
easily. 

We now consider the case where Kp over Fp is ramified. Then any OB,P 0 OK,P 

module is a module M over the discrete valuation ring A := OK,P[^] with an action 

a:     0KlP—>EndoK,p(M), 

such that a(a)e = ea(a) for any a G OK,?- The OB,P ® O^p-module Tp := TP(VP) 
now has rank 1 over A, thus is free of rank 1. Lets fix one isomorphism 



GROSS-ZAGIER FORMULA FOR GL2 263 

and let 77 G End(Tp) be the endomorphism over OK^ given by the conjugation of 
A/OK.P- Then for any a G OK,P which is trace free, a{a)r) commutes with e. Thus it 
must be given by 

a(a) = (j)~l orjax o 0 

where x G Ax. Since a(a2) = a2 we have that xx = 1. Thus, there is an y G i?*, 
x = 1//^. By replacing 0 by y o </>, we may assume that a: = 1. The conclusion follows 
easily. D 

5.5. Local CM-intersections 

In this section we are going to compute the local intersection index of CM-points at 
their reduction. When the level structure is minimal, the formula can be proved using 
Gross' theory of canonical and quasi-canonical lifting. When the level structure is not 
maximal then there are some fundamental obstructions to computing the local index, 
since no explicit semistable model is known. We will prove asymptotic formulas which 
are apparently sufficient for the applications in the next chapter. 

Ordinary case. First lets consider a prime p of F which is split in K. Let TT be 
a fixed local parameter of Fp. Then all CM-points in Cu will have ordinary reduction 
over F. In particular all these reductions are smooth points in the special fiber. If U 
is sufficiently small so that Mu,p is represent able, the geometric intersection index 
(x,y)u,p of two distinct CM points x and y in Mu can be defined to be the maximal 
rational number t such that 

x — y   mod TT* 

where x and y are closures of x and y in Mu- This definition can be extended to 
divsiors with disjoint support in Cu- For general77, we take U' a subgroup of U such 
that Mu',p is represent able and then define 

{x,y)u,p = [U : U']-l{°<*x,a*y)u',p 

where a* denote the pull-back map of divisors induced by the projection Mu',p —> 
Mu,p-   

We have shown that the reduction of ordinary CM-points on Mu is given by the 
following projection: 

(5.5.5.5.1) T(F)\G(Af)/U —► T(F)\ [JV(FP)\G(FP)] x G(kp/U. 

Thus the intersection of CM-points is taken in the set N(FP). More precisely, let x, y 
be two CM-points with the same ordinary reduction. Then x and y can be represented 
by elements g, h G G(Af) such that 

hp = gp,        hp = ngp 

with n G N(FP). Then the intersection of x and y depends only n when Up is 
sufficiently small. In order to describe intersection precisely, lets give a modular 
interpretation of N(FP). 

Let £ be the unique formal C^-module over Op of dimension 1 and height 1 with 
a fixed base £ of TP(C). By a polarization on an (9p-module £ over Op, we mean a 
system of Weil pairings of group schemes 

(v)n       S[p"] x £[p»] —► C[pn) 
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with respect to a uniformizer TT of Op. This pairing thus induces a pairing on Tp(£). 
Let X be the set of isomorphism classes of objects (£,a,P) where 

1. £ is a polarized divisible Op-module over OF of height 2; 
2. a is an isomorphism from £F to Fp/Op 0 Cw] 
3. P is an isomorphism from O^ -> Tp^); 

such that the following two conditions are verified: 
• det P is of determinant 1 in sense that when composing with the Weil pairing, 

det P as a level structure of £ is given by the base £; 
• the morphism 

rp(a)o/J: Ol —► Tp(Fp/Op) 

is given by the first projection and the base £ = limn 7r~n of of Tp(Fp/Op). 
Then A^ may be identified with N(Fp).  Indeed, let So be the divisible group C © 
Fp/Op with a canonical polarization, a canonical deformation ao, and a canonical 
level structure 

Po : F* —> ^(fo),        A(a, 6) - a£ + &£ 

Then for any object (£,a,P) there is a unique isogeny 0 : 5 ->• £o so that 0 respects 
the reduction maps a's. Now (j) and /?'s induce an element g £ N(FP) which acts on 
Fp by right multiplications on row vectors. 

For any x E Fp let (Ex,ax,Px) be the object corresponding to 

-CO 
in the above correspondence. For n a positive integer, let 7n(n,x) be the maximal 
rational number t such that modulo TT*, the (E^aa;) is isomorphic to (J^o,^o) and 
that /? and Po induces the same level structure modulo pn. 

LEMMA 5.5.1. Assume that n > ord(x) + 1. Then 

( 1 
rnKn^X)- qn-ord{x)-l(q_iy 

Proof. Under the quasi-isogeny (j> : Ex —> Eo with respect to the reduction 
morphism a's , the image Tp(Ex) is the following lattice of Tp(Eo) = 02

p: 

with the level structure 

«(a, b) = a(x( + 0 + 6C- 

We first consider the case where x G Op. Then </> is an isomorphism of divisible 
modules. We may take Ex = EQ with the above level structure. Modulo pn this level 
structure gives two generators 

xCpn + spn ?      Cpn • 
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Thus for n > ord(#) + 1, 

m(n,x) = ord(x^pn) = ord(^n-ord(x)) = 
^ord(a:)-n-l^ _ 1)' 

Here we have used the fact that O^^pn) is a totally ramified Galois extension of (9£r 

with group 

«VP")
X

- 

It remains to treat the case where x £ Op. Let x = x'n~s with x' € O*. Let 
u : E0 ->■ EQ be an isogeny inducing the map 

a£ + 6C —>£_1a£ + 6C 

on Vp(Eo) ~ Fp. Then there is an isogeny v : EQ —► E such that </> o v — u. For <f> 

to be an isomorphism over some Oir-scheme S if and only if the isogeny us and vs 
have the same kernel. By construction, 

ker(u) =   ,*1 JZ,  = 0^ 

Op{xi + xO±ppC 
M«) = p^Yrn,    = OpKp.+€p.). 

Thus if (j) is an isomorphism of formal groups over some (9£r-scheme 5, then one must 
have Cps = 0 on 5. Assume now this is the case. Then 0 is an isomorphism which 
transform the level structure K modulo pn on EQ to the level structure 

(a,b) —> a{€pn + x'(pn+s) + b(pn. 

(Notice that Cpn+s ^ Eo(S)[pn] as (ps = 0) The condition 0 = fio modulo pn is 
equivalent to Cpn+s — 0- Thus 

1 

m(n,x) = ord(Cpn+a) = qn+8-i(q_iy 

This completes the proof of the proposition. D 

Super singular case. We now consider a prime p of F which is nonsplit in K 
but split in B =r B. As usual, let B' =p B and let G and G' denote the algebraic 
groups over F associated to Bx and (JB

/
)
X
. Let Fp be an algebraic closure of Kp 

with algebraically closed residue field F. Then all points in Cu have supersingular 
reductions at F and the reduction is given by the following map 

(5.5.5.5.2) T(F)\G(Af)/U —► G,(F)\Fp
x x G(Ap

f)/U. 

If we write CM-points as 

(5.5.5.5.3) G"(F)\ (G(F) xT(F) G(FP)) x G(Ap
f)/U, 

then this reduction map is given by 

(5.5.5.5.4) G'(F) xT{F) G(FP)/UP —> Fp, 

91*92 —> det(pi) • det(#2)- 
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It follows that the local intersection of CM-points is given by a distribution on 

{(91,92) e Gf(Fp) xT{Fp) G(FP) I det(0i)det(</2) e det(^p)  } . 

More precisely, let x and y be two CM-points with the same reduction. Then x and 
y can be represented by g, h G G(Af) such that 

h* = jgv,        det(Ap) = det(7) • det(gp) 

for an 7 G G'^F). The intersection of x and y depends only on (7, </p • ft"1) in the 
above set when Up is sufficiently small. 

To describe the local intersection moreprecisely we need a description of this set 
in terms of formal Op-modules. Let £ be a polarized formal (9p-module of height 2 
over F with an endomorphism given by B'p which is unique up to isomorphism. Let 
Xp denote the set of isomorphism classes of objects (£, a, (3) where 

1. £ is a polarized formal (9p-module of height 2 over Op with endomorphism 
by some order in Kp] 

2. a : £w -> £ is an isomorphism of formal Op-modules with degree 1 (with 
respect to the polarizations); 

3. P : Fp —> VP(£F) is an isomorphism of degree 1. 
Then we have an identification 

Xp = {(91,92) e G'(FP) xT{Fp) G(FP) :     detfo) • det(52) = 1} . 

To see this let £o be the canonical deformation of £ with respect to the embedding 
Kp -» Bp with the canonical rigidification QQ and a fixed C/p-level structure /?o. Then 
for any object (£,a,(3), we have an isogeny (/> : £ —> £o with compatible action by 
elements in K. The isogeny (j) induces element (^1,^2) G G'(Fp) x G(Fp): 

A-i 

gi :     £ —v 6F —> £ 

92 :     Fp —> Vp(£F) —> Vp(fo,F) —> F£. 

It is easy to see that the class of (^1,^2) in G'(Fp) X>T{FP) G(FP) is independent of 
choice of 0. 

Conversely, for any pair [(#1, #2)] as above, there is an isogeny 0 : £ -» £0 and an 
?7-level structure /? such that #2 is given by the above formula. The isogeny 0 induces 
an isogeny </>F : £F —> £- There is a unique isogeny a : £w —>► £ such that ^1 is given 
by the above formula. 

The intersection theory on Xp is difficult to describe because the universal defor- 
mation ring of supersingular points with level structure is singular in general. But 
for the minimal level structure, the intersection theory can be formulated by Gross' 
theory of canonical and quasi-canonical liftings. In the following lets describe the 
intersection for the minimal level structure: Up = GL2(0p). 

Fix one element (^1,^2) of Xp. Modulo GL2((9p), we may assume that #2 = 
1     0 

c . for some c > 0. Indeed, write OK = Op 4- OpS and take an embedding of 

T into GL2 by the obvious isomorphism Op ~ OK- Then by multiplying #2 by some 
element of K£, we may assume that OK C g2{OK) and g2(0K)Ig2{0K) is cyclic and 
is generated by the image of 7r_c. This implies that 

92(OK) = OPP-
C
 + OP8=   ".     "\OK 

7r-c    0\ 
0      l) 
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for some c G N.   Consequently, #2 £ (   n      1 ) GL2(Op).  We call c the conductor 

of (91,92)- Let (fcj^c?^c) be the object of conductor c and let m(gi,g2) denote the 
maximal rational number t such that this object is isomorphic to (£o,ao->l3o) modulo 
TT*. 

Let e be a trace free element in Br
p such that xe = ex for any x € Kp.  Then 

j^ = Kp + If pe. For any # = a + 6e G (BJ,)x define 

(5.5,.5.5) «,) = ^ = w.-^*) 
det^      N(a)-e2N(6) 

LEMMA 5.5.2. If 6 = 0, then 

m(g1,g2) = -ord(7r^(pi)). 

If c> 0, then 

/ N      f 02c-2(02 4.n     if Kp/Fp is unramified, 
m(gi,g2) = < q

1     
w + ;     -tir  in    • n A I 2^7 tf Kp/Fp is ramified. 

Proof By construction, ^1 is integral thus (Z)""1 gives an isogeny -0 : ^o —^ £c 
with kernel generated by a C G £o[pc]. Now gi is given by 

gi=a'il>F. 

The number m(pi,p2) is the maximal rational number t such that a can be extended 
to isomorphism modulo TT*. Thus ra (#1,(72) is also the maximal rational number £ 
such that gi can be extended to an endomorphism of £0 modulo TT*, and such that gi 
kills kernels of I/J, or equivalently, #1 kills £. 

First we assume that c = 0. Then #1 and ip are isomorphisms and Gross' theorem 
shows that m(pi, g2)e(Kp/Fp) is the maximal integer m such that #1 G OK,P + 
TTK^OB- We may choose a decomposition Bp = Kp + Kp€ such that ex = xe for any 
x G Kp, and e2 G F* with order given by 

w 9N      11    if Ka Fa is unramified, 
ord(e2) = < p/   p 

10    if KpjFp is ramified. 

Write pi = a + ^"^c with a G OK, 6 G 0£, then 

^i) = -^-2€262det((y1)-
1. 

We now assume that c > 0. Then over C?^1   , all cyclic submodules .D^ of £o[pc] 
are conjugate to each other. The total intersection is 1. Thus 

{e{KiPIFp)m{g1,g2))-
1 = #(0i,,p/7rc)V(OpAc)x- 

D 
We want to treat now the case where Up is not maximal where Mu need to be 

replaced by some resolution of singularities after a base change. We will only consider 
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so called special CM-points C^ which are represented by g G G(Af) whose component 
at p is in T(FP) • Up. Thus we have identification: 

C& = T{F)o\G(A*)/Ur 

where T(F)o denotes the elements in T(F) whose image in T(FP) is in Up. Let G,(F)o 
denote the elements in G^F) whose image in G'{FP) has determinant in det(?7p). 

LEMMA 5.5.3. Let L be a finite extension of O^ over which all points in C[/ are 
rational. Let M'u be the minimal resolution of singularities of Mu 0 OL- Then the 
reduction of C^ is given by 

T(F)o\G(Ap
f)/Uv —> G'iFWiAfyu' 

where U' = Up'U
p with Up an open compact subgroup ofG^F^o containing T(Fp)o. 

Proof. Then the reduction on Mu,p is given by 

T(F)o\G(APf)/UP —> G'(F)0\G(AP)/UP. 

Let X be the formal neighborhood of a supersingular point in Mu,p structure 
when Up is sufficiently small. Then X is isomorphic to the universal defomation 
scheme of a formal C^-module of height 2 with level C/p-structure. It is wellknown 
that X is regular and has an action by G/(Fp)o. Let X' be the inverse image of X in 
M'u p which is also the minimal resolution of sigularities of X (g> OL- By functoriality, 
X' has an action by G/(Fp)o. It induces an action on the special fiber X^ of X'. 
By continuity, it is factored by an open subgroup U^ of G?/(Fp)o. Thus reduction of 
CM-points which is given locally by 

G'(Fp)o/T(Fp)o —> X^ 

has a finite image Y. The reduction of CM-points in the minimal regular model 
Mu 0 L is given by 

T(F)o\G{Ap
f)/Up —> G'(F)o\Y x G(Ap

f)/Up. 

D 
Since we may rewrite C^- in the form 

C& = G'(F)0\G'(F)o/T(F)o x G'(Ap
f)/U^ 

thus the reduction of CM-points is induced by the map 

G(FP)0/T(FP)0 -» G'(FP)/UP. 

The intersection theory is given by some function m(^) on G,(Fp)o/T(Fp)o in the 
following sense when Up is sufficiently small. Let x, y be two special CM-points in 
Cy represented by #, h G G(A?). Then x and y have the same reduction only if there 
is a 7 G G'{F) such that h = jg. Then the local intersection of x and y is given by 

Mi)' 
LEMMA 5.5.4. The local intersection of CM-points with respect to U-level struc- 

ture is given by a function on Gf(Fp)o/T(Fp)o such that 

m(g) = m0{g) + m'fa),        g £ T{Fp) 
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where mo(g) is supported on U^ and is the restriction of ^ord^(^) and mf(g) is a 
locally constant function on Gf(Fp). 

Proof. Let XQ denote X in the proof of the previous lemma corresponding to 
the maximal group GL2(Op). Let XQ denote the base change XQ 0 OL- Then XQ is 
smooth and the map X' —> XQ is generically etale. Let y be a point in Y. Then the 
local ring of y at Y is isomorphic to OLIP

1
]], SO is the local ring of x in Xf

L. Thus the 
map X' —► X'L is given by a power series f(T) = Y,i o.iT1 G OL[[T]} with ai ^ 0. It 
follows that ord(/(T)/T) is locally constant. D 

Superspecial case. It remains to treat the case where p is a prime of F which 
is not split in'2?. First, let's consider the case where Up is maximal. The reduction 
from the special CM-points to superspecial points takes the form 

(5.5.5.5.6) T(F)o\G(Ap
f)/Uv —> G,(F)o\G,(Ap/?7^, 

where G,(F)o is the subgroup of elements on G'{F) whose components at p are in 
R*, where Rp is constructed in the last section which takes the form 

Rr = OK + e2OKt\        €'= ^   ^ 

Thus the local intersection occurs in Gf(F)o/T(F)o. More precisley if x and y are 
two special CM-points with the same reduction. Then x and y can be represented by 
g,heG(kp

f) such that 

h = 19 

with a 7 € G'{F)Q. When Up is sufficiently small, the intersection of x and y depends 
only on 7. As in previous cases, we need a modular interpretation in the formal 
C^p-module level. 

Let V be a superspecial 0£,p-:module over F. Consider the set Xp of the following 
objects (£,<*) where 

1. V is a formal OB,P 0 C^p-module; 
2. a : V —> VF is an isomorphism. 

It is easy to see that this set is identified with 

More precisely, let (Vo,ao) be a fixed object. We identify V with VO,:F via QQ. Then 
for any object (V,a) there is an isomorphism (/>: V —> VQ of OB,P 0 OK,P -modules 
which is unique up to action by O^^. There is an element g E Rp — Aut(Vo) such 
that </>F 

0 OL = g> 

LEMMA 5.5.5. Let (V,a) be an object corresponding to an object g E it!*. Then 
the maximal rational number t such that (V,a) and (Vo,ao) are isomorphic modulo 
TT

1
 is given by 

( \ _ 1 |or^(^)       tf Kp/Fp ^ unramified 
l|ord7r^(^)    if Kp /Fp is ramified 

Proof Let Vo,m denote VQ (8) 0^p/7r^ and Vm denote V <g> O^Jn'R. Then the 
intersection number times e(Kp/Fp) is the maximal integer m such that a : VO,F —> 
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VF can be extended to an isomorphism from Vo,m to Vm, or the maximal integer m 
such that 

g = fa o a e Rm := End(9BtP(Vo,m). 

By Lemma 5.4.6, we may decompose VQ as a direct sum VQ = 0 0 fi where Vt is 
a (^p-module of dimension 1 and height 1 over O™ with standard action by 

OB,P = OK,P -H OK,pe 

given as follows. For x,y G fi, a € C^p, 

a(a?, 2/) = (as, m/),        c(a;, g/) = (e2y, x). 

Let nm denote the reduction of Vt modulo TT^. NOW Rm is the centralizer of OB,p in 
End(Vo,m) and, therefore, 

.Bm = iipnM2(End(no>m)). 

By Gross' theorem, 

It is easy now to see that 

Fovg = a + c2b>K™-lc' € R* with b G 0^p, then 

ord„(e(p))-ord7rK(N(627r--1)) 

D 
We consider now the general case of Up. The same proof of Lemma 5.5.3, 5.5.4 

gives the following: 

LEMMA 5.5.6. Let CJJ denote the set of special points with level U structure. Let 
L be a finite extension of O™ over which all points in Cy are rational. Let M'JJ^ 

be the minimal resolution of singularities of Mu ® OL- Then the reduction of C^ is 
given by 

T{F)o\G(K*)IU* —^ G,(F)o\G,(A/)/C/, 

where U' = U'p • Up with U'p an open compact subgroup ofGf(Fp) containing T{FP)Q. 

Moreover the local intersection of CM-points with respect to U-level structure is given 
by a distribution on Gt(Fp)o/T(Fp)o such that 

m(g) = mote) + m'fa),        g i T{FP) 

where mo(g) is supported on U'p and is the restriction of |ord£(#) and m'ig) is a 
locally constant function on Gf(Fp). 

2^m-i\\ _ j ^rn ^ Kp/Fp is unramified, 
K        ~ \ 2(m - 1)    if Kp/Fp is ramified. 
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6. Gross-Zagier formula 

In this chapter, we are going to compute the height pairing and finish the proof of the 
Gross-Zagier formula. We will start with a review of Arakelov theory on an arithmetic 
surface, and the arithmetic Hodge index theorem which will express height pairings 
as a sum of Green's functions over places of number fields with respect to a fixed 
arithmetic polarization. Then, we apply this theory to Shimura curves polarized by 
the Hodge class, and compute the Green's functions of distinct CM-points on Shimura 
curves. Strictly speaking, we can only compute the height pairing of CM-points 
modulo (1) the contributions from intersections of CM-points with Eisenstein class, 
(2) self-intersections of CM-points, and (3) the coefficients of some forms on compact 
quaternion algebras. Finally, we will show that all these non-computable contributions 
are negligible. 

6.1. Calculus on arithmetic surfaces 

In this section we will reviewing the Arakelov theory on arithmetic surfaces and 
arithmetic Hodge index theory. The basic references are [12, 13, 28, 32]. The only 
new concept is the Green's function over nonarchimedean places. 

Arithmetic divisors and hermitian line bundles. Let F be a number field. 
By an arithmetic surface over SpecOp, we mean a projective and flat morghism 
A* —> SpecCV such that that X is a regular scheme of dimension 2. Let Div(A') 
denote the group of arithmetic divisors on A\ Recall that an arithmetic divisor on A! 
is a pair D := {D^g) where D is a divisor on A' and g is a function on 

x(c)=n^(c) 
with some logarithmic singularities on \D\ such that for each archimedean place r of 
F, and each point XQ G -XV (C) with local coordinate £, the function 

x —> g{x) + ord^ (£>r) log |*(a;)| 

can be extended to a smooth function in a neighborhood of XQ. The form —^-g on 

X(C) \ \D\ can be extended to a smooth form Ci(D) on X(C) which is called the 
curvature of the divisor D. If / is a nonzero rational function on X then we can 
define the corresponding principal arithmetic divisor by 

(6.1.6.1.1) di^/ = (div/,-log|/|). 

An arithmetic divisor (D,g) is called vertical (resp. horizontal) if D is supported in 
the special fibers (resp. D does not have component supported in the special fiber). 

The group of arithmetic divisors is denoted by Div(A') while the subgroup of 
principal divisor is denoted by Pr(A'). The quotient Cl(A') of these two groups is 
called the arithmetic divisor class group which is actually isomorphic to the group 
Pic(A') of hermitian line bundles on X. Recall that a hermitian line bundle on X is a 
pair C = (£, || • ||), where £ is a line bundle on X and || • || is hermitian metric on C(C) 
over X(C). For a rational section £ of £, we can define the corresponding divisor by 

(6.1.6.1.2) dh^) = (div^-log 
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It is easy to see that the divisor class of div(£) does not depend on the choice of I. 
Thus one has a well defined map from Pic(A') to Q\.{X). This map is an isomorphism 
with converse defined by assigning an arithmetic divisor D = (D,g) to an arithmetic 
line bundle O(D) = (O(D), || • ||) such that the canonical section £ of O(D) has metric 

One may show that the curvature of an arithmetic divisor depends only on its class 
and thus can be defined on Pic(A') such that the curvature of hermitian line bundle 
£ is 

(6.1.6.1.3) c1(Z) = —\ogM\. 
m 

Let Di = (DiiQi) (i=l, 2) be two arithmetic divisors on X with disjoint support 
in the generic fiber: 

\D1F\n\D2F\ = 9. 

Then one can define an arithmetic intersection pairing 

D1'D2 = YJ(Di'D2)v 
V 

where v runs through the set of places of F. To define the intersection we may assume 
that Di are irreducible. Then the local intersection is defined as follows: 

• if Di is vertical, and v is finite place 

(D1 .D2)v = degDl(0(D2))\ogqv, 

where degDl(0(D2)) is the geometric degree. 
• if D2 is horizontal and v is finite, then 

(D1-D2)v=   Y,   log#0W(/i,/2), 
xe\xv\ 

where x runs through the set of closed point of X over v, and fi are defining 
equation of Di near x; 

• if v is infinite, then 

(Dx 'D2)v - gi{D2v)ev■+ /        g2Ci{D1)ev 
Jx„(0 XV(C) 

where €v = 1 if v is real and ev = 2 if v is complex. 
One may show that the principal arithmetic divisor has O-intersection with any other 
divisors. Thus the intersection pairing only depends on the divisor class. On the other 
hand, for any two arithmetic divisor classes, we can always find representatives with 
disjoint support at the generic fiber. It follows that we have a well defined pairing on 
Pic(X): 

(2,:^—>CI(£).CI(:M)GR. 

Let V(X) be the group of vertical metrized line bundles: namely £ G Pic(A') with 
C 2^ Ox • Then we have an exact sequence 

0 —» V(X) —► Pic(A') —> Pic(XF) —> 0. 
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— 0 
Define the group of flat bundles Pic (A*) as the orthogonal complement of V(A'). 
THen we have an exact sequence 

0 —> Pic0
(OF) —> Pic0(A) —+ Pic0(XF) —> 0. 

Recall that the Jacobian Jac(X) has a Neron-Tate hight papring on its algebraic 
points defined by theta functions [12]. The following theorem gives a relation between 
intersection pairing and height pairing: 

THEOREM 6.1.1 (Hodge index theorem [12]). ForZ,M G Pic (X), 

(£F,MF> = -ci(£)-ci(>l) 

where the left hand side denotes the Neron-Tate height pairing on Pic0(X) = 
Jac(X)(F). 

In the following we want to introduce a projection formula for the intersection 
pairing or the height pairing. Let L be a finite extension of F and y —> OL be an 
arithmetic surface over OL- Let / : y —> A* be a morphism over Op which is finite 
at the generic fiber. Then we can define the pull-back map 

/* :     DW(^) —► DfrCV). 

The intersection pairing satisfies the following projection formula: for Di G Div(A') 
(» = 1,2) 

(6.1.6.1.4) /*5i • rD2 = deg / • (5i • D2). 

Moreover, if Di are disjoint at the generic fiber, then projection formula is true for 
local intersection: 

(6.1.6.1.5) E(/*5i • Z*^)™ = deS-f • (^i ' ^a)*- 
w\v 

For X a curve over F, let Pic(X) denote the projective limit of Pic(A') over all 
models over X. Then the intersection pairing can be extended to Pic(X). Let F 
be an algebraic closure of F and let Y\c(Xp) be the direct limit of Pic(Xc) for all 
finite extensions L of F, then the intersection pairing on Pic(-X"i) times [L : F]-1 can 
be extended to an intersection pairing on Pic(Xp). One still has the Hodge index 
theorem to relate the normalized heights pairing on Jac(X)(F) and the intersection 

pairing on the flat bundles of Pic {Xp). 

Adelic Green's functions. Let ^be an arithmetic surface as before and let 
X be the generic fiber of X. Let C G 'P\C{X)Q be a fixed class with degree 1 at the 
generic fiber. Let x G X(F) be a rational point and let x be the corresponding section 
X(PF)> Then x can be extended to a unique element x — (x + D,g) in Div(A')Q such 
that 

• the bundle 0(x) ® £     is flat; 
• for any finite place v of F, the component Dv of D on the special fiber of X 

over v satisfies 

DV'C1(C)=0] 
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• for any infinite place v, 

0Ci(Z)=O. 
/, IXV(Q 

We define now the Green's function gv(%,y) on 

X(F) x X(F) \ diagonal 

by 

(6.1.6.1.6) Qvfay) = (£-2/Wloggv, 

where log^ = 1 or 2 if v is real or complex. It is easy to see that gv(x, y) is symmetric, 
and does not depend on the model X of X in the following sense: if X' is different 
model of X and C is a hermitian line bundle on X', such that over some model X" 
which dominates both X and A", C and £ have the same pull-back, then the Green's 
functions defined by (X,C) and (X\C ) are same. Also, the Green's function gv(x,y) 
is stable under base change. Thus we have a well-defined Green's function on X{F) 
for each place v of F. 

In fact one can define a Green's function gv(x,y) on X(CV) where Cy is the 
completion of F at a place over v.-We don't need this fact in this paper. 

Practically, one may construct gv(x,y) in the following manner. If v is a complex 
place then gv(x,y) is a solution to the equation 

(6.1.6.1.7) 3&0„(s,v) = Sx(y) - dOfo). 

Let v be a finite place. Then it is easy to see that 

(x-jfiv = (x-y)v + (Dv -y). 

Thus we have decomposition 

(6.1.6.1.8) 9v{p,y) =iv{x,y)+jv(x,y) 

where 

(6.1.6.1.9) iv(x,y) = (x-y)v/\ogqv        jv(x,y) = (Dv 'y)/logqv. 

Notice that iv(x,y) is the usual geometric intersection index in the sense of algebraic 
geometry over algebraically closed fields, and jv{x,y) actually depends only on the 
reductions of x and y in the set of irreducible components of the special fiber of X 
over v. 

The decomposition gv = iv + jv depends on the model X. But if we only work on 
semistable model, we can actually get a well-defined function iv and jv over X(F). 
We will not need this fact in this paper. 

6.2e Global heights of CM-points 

Heights and intersection on tower of Shinaura curves. We now want to 
apply the general theory of the previous section to intersections of CM-points to 
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Shimura curves Xu over a totally real field F as defined in §1.3. Recall that Xu has 
the form 

(6.2.6.2.1) Xu = G{F)\K± x G(Af)/U U {cusps} 

which is a smooth and projective curve over F but may not be connected. Let's first 
try to extend the theory in the last section to the projective limit X of XJJ- Let 
Pic(X) denote the direct limit of Pic(Xu) with respect to the pull-back maps. We 
fix one measure on G(A/). Then the intersection pairing can be extended to Pic(X) 
if we modify the pairings on Pic(Xu) by the scale vol(U). Similarly, we can modify 
local intersection pairing and extend the height pairing to Jac(X) = Pic0(X), which 
is the direct limit of Pic0(Xu) where Pic0(Xu) is the subgroup of Pic(Xu) with class 
whose degree is 0 on each connected component. 

Hodge classes and Eisenstein classes. To define Green's function we need to 
define a canonical class in Pic(X)Q. On each Xu, there is a unique adelic metrized 
line bundle £u € Pic(Xc/)Q of degree 1 on each connected component such that 

(6.2.6.2.2) TaZu = (ri (a) • f,        ai (a) := deg Ta = ^ N(6), 
b\a 

for any integral idele a prime to the level of Xu- The uniqueness is clear as the differ- 
ence of two such class will be a class in Pic0(Xu)Q = Jac(Xf/)(F)Q which is cuspidal 
under the action of the Hecke algebra. For existence, we let U' be a sufficiently small 
normal subgroup such that every geometric connected component of Xu1 does not 
have any elliptic fixed point. Then [^x^/] will have the same degree on each compo- 
nent and satisfies the above equation. Certainly some power of this class will descend 
to a class £' in Pic(Xu) with the same positive degree on each geometric connected 
component. We may now define & to be a constant multiple of £' in Pic1(Xf/)Q. We 
call & the Hodge class on Xu. 

It is an interesting question to construct an adelic metric on & such that the 
above equation holds for £u- But in [32], Corollary 4.3.3, we have constructed a 
metric on & such that 

(6.2.6.2.3) Taiu = (7! (a)Cu + 0(a) 

where 0(a) E Pic(F) is a cr-derivation, i.e., for any coprime a', a" 

(j){a'an) = a{a')(i){a") + (j(a")<i)(a'). 

Let Pic(Xc/)Qls be the subgroup of elements whose restriction on each connected 
component is a multiple of the restriction of £. It is easy to show that 

(6.2.6.2.4) Pic(Xc/)Q = Picpfr)^8 0 Pic0(Xc/)Q. 

We define Pic(X[/)Qls to be the class whose restriction on each irreducible component 

is a sum of a constant class and a multiple of the restriction of that of £. Let Pic(X)Qls 

(resp. Pic(X)^is) denote the limit of Pic(Xt/)Qis. 
The action of the G(A/) on Pic(X)Qls is Eisenstein. Indeed, let's define 

du :     Pic(Xc/)Q —► S{Zu) 
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to be the degree map times vol(C/) where Zu — F* \A£ / det(?7) is the set of connected 
components of Xu> It is easy to extend du to a map 

(6.2.6.2.5) d :    Pic(X)Q —+ S(F*\A*). 

It is easy to see that this map is G(A/ )-equivariant and its restriction on Pic(X)Qls 

is injective. Thus the action of G(Af) on Pic(X)Qls is Eisenstein. Similarly, one may 

show that the action of G(A/) on Pic(X)Qls is quasi-Eisenstein. 
We can now define Green's functions gv on divisors on X(F) which are disjoint 

at the generic fiber for each place v of F by multiplying the Green's functions on XJJ 

by vol(C/). 

Height pairing of CM-points. Let r? = r)x be a divisor on Xu defined by an 
anticyclotomic idele class character x of iiT of degree K, where U — ker^A- Notice 
that K is nonzero only if x is trivial. Let z = [rj — K, • £] denote the class of 77 — K • £ 
in Jac(X[/). Notice that this class actually lives in Jac(X)(L) 0 C where L is a finite 
abelian extension fixed by the kernel of x- The linear functional 

a —► \a\(z,Taz) 

is now the Fourier coefficient of a cuspform * of weight 2: 

(6.2.6.2.6) 9(a) = \a\(z,Taz). 

In the following we want to express this height in terms of intersections modulo some 
Eisenstein series and theta series. 

Let 77 be the arithmetic closure of rj with respect to £. Then the Hodge index 
theorem gives 

\a\(z, Taz) = - \a\ (fj - £ Taf} - degT0£) 

= -\a\(f},Tafj)+E(a), 

where E(a) is the Fourier coefficient of certain derivations of Eisenstein series. 
The divisor 77 and Ta77 has some common component. We want to compute its 

contribution in the intersections. Let rx(a) denote the Fourier coefficients of the theta 
series associated to x: 

rx(a) = £*(&)• 
b\a 

The we have the following: 

LEMMA 6.2.1. The divisor 

T0
ari:=Tari-rx(a)Ti' 

is disjoint with 77. 

Proof. The multiplicity of 77 in Tm77 is given by the following integral 

/ Ta(t)(x)$(x)dx = Ta0(l) 
JT(A)\G(Af) 
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where (f)(x) is supported on T(Af)U with character x-  In our terminology in §4.2, 
this is £(m,0) and is computed previously in Lemma 4.2.1. D 

In summary, we have shown that the functional 

a—+|a|(*,Tflz) 

is essentially given by the sum of local intersections 

L     •.     J    «    LeGa\(L/F) 

modulo some derivations of Eisenstein series, and n(x)(8)a1/2, (where L is the subfield 
of F fixed by the kernel of x). The Galois action of Gal(Kah/F) is given by class field 
theory 

1/:     Gal(Kab/F) —+ iVT(F)\iVT(A/), 

and the left multiplication of the group NriAf). It follows that if 7] is defined by a 
function ^(g) on T(F)\G(Af), and rj1 is defined by (l)(v{i)~lg). 

If i/(0 € T(F)\T{kf), then ^(i/W"1^) = X"1^)^^)- Otherwise, 

1/(0 = i/(0-cerCFAnA/K 

then 

0(^WP) = X(i')^9) = T^(CffC). 

Notice that (j>(ege) define the divisor ^ corresponding to the character x- Since Ta is 
self-adjoint and commutes with complex conjugation, 

gv(Tlfj,fj)=gv(fjXafi)=9v(7T^,v)=9v(T0aV,v)- 

Thus, we have proved the following. 

LEMMA 6.2.2. Modulo the derivations of ai and rx, the functional of height 
pairing 

a —> \a\{z,Taz) 

is the sum 

-H^^(^T2r7)loggw. 
V 

Notice that for two CM-divisors A and B on Xu with disjoint support represented 
by two functions 0 and ^ on T(F)\G(A/), the Green's function at a place v depends 
only on (j) and 7/?. Thus we may simply denote it as 

gv{A,B) = gv((t),ip). 

6»3. Green's functions 

In this section we are going to compute the Green's function of CM-points using 
formulas obtained in Chapter 4. 
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Archimedean case. For each archimedean place Ti of F, the Riemann surface 
X ®Ti C is actually defined by the same way as X 0r C with TI replaced by r^. Thus 
it suffice to compute the Green's function over the original place r. 

The complex points of X = Xy are identified with 

(6.3.6.3.1) X{£) = GiF^H* x G(Af)/U 

which is really a disjoint union of curves of the type 

r\H. 

In this case, the 77 has curvature proportional to the hyperbolic metric dxdy/y2 for 
z = x + yieH. The set of CM-points is identified with T(F)\G(Af)/U. 

The Green's gT(x,y) on X is nonzero only if both x and y are in the same 
connected component. In this case, it is given by the constant term as s —> 0 of the 
following convergent series for Re(s) > 0: 

(6.3.6.3.2) £Q   ^ + _!£ZJin 
x       2Ima;Im72/ J 

where 

(6.3.6.3.3) Qs(t) = /     (x + \/t2 -IcoshaA       * dx. 

We refer to Gross [18] and Gross-Zagier [20] for more details. 
Notice that if x = gi,y = hi then 

l*"2'!2  =-2^h), 
21mxlmy 

where ^ is a function on T(M)\GL2(M)/T(E) defined as before. 
Lets define a function ms on T(F)\G(F)/T(F) as follows: 

(6.3.6.3.4) ms(9) = {Q°{1-2M)    '^^^ 
10. otherwise. 

Then 

LEMMA 6.3.1. For two CM-points x,y G X(C), the Green's function at r is 
given by the constant term of a geometric pairing as defined in §^.i with multiplicity 
function ms. 

Proof Extend m to a function on T(F)\G(F)/T(F) x G(Af) with support on 
T(F)\G(F)/T(F) x {e}. Then we need to show that 

gs(x,y)=    ^2   rrisig'1^), 
7eG(F) 

where g, h are two elements in G(A/) representing x and y. Indeed, if the right hand 
side is nonzero then there is a 70 G G(F) such that g~ljh has finite component in 
U and such that 7 has positive determinant. It follows that x and y are in the same 
connected component. It is easy to show that gs(x,y) has the same expression as 
before. □ 
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Ordinary case. We now want to consider the Green's function at a prime p of 
F which is split in K.  For U = UPUP we have shown the following for the model 

1. the set of ordinary points is given by 

K»\(N(Fp)\GL2(Fp))xG(AV)/U; 

2. the special fiber MU,F over p has connected components indexed by 

G(F)+\G(Af)/U; 

3. each component is a union of irreducible components indexed by 

4. every two irreducible components intersects at the set of supersingular points 
indexed by 

G(F)\G(Af)/U', 

where U' = U^ • Up with Up is the maximal compact subgroup of G(FP). 
In the following we want to compute the Green's function gp for CM-divisors A, B 

represented by functions (j) and ^ on T(F)\G(Af)/U. Let L be a finite extension of 
F where every point in A,B is rational and let XU,L be the minimal resolution of 
singularity of M 0 OL • Then we have the decomposition 

gp(A,B)=ip(A,B)+jp(A,B). 

Notice that in general i,j depends on U but when Up is sufficiently small, then 
z(A, B),j(A, B) will not depend on U for fixed 0 and ^. This is because the morphism 

Muup —> Mu2,p 

is smooth at ordinary points when U? are sufficiently small. So we have a well defined 
decomposition 

First let's start to compute the geometric intersection index ip(fj, T^ry) using 
Lemma 5.5.1. Let d^g) be a distribution on G(A/) supported on N(FP) over which 
it is induced by the multiplicative  measure on F*: 

,   /I    x\       ,x 1      dx 
Win    1     = d  x 

0    I) l-q-i\x\' 

Define   a   distribution   dn(x,y)   on   \T{F)\G(h.f)}     such   that   for   any   (f)(x,y) 6 
S{T{F)\G{kf)) 

(6.3.6.3.5) / (j)(xJy)dfi(x,y) = / dx ^(x,gx)dfi(g), 
J JT(F)\G{Af)        JG(Af) 

where dx is a measure on G(Af). 
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LEMMA 6.3.2. The geometric intersection index of CM-divisors is given by the 
following distribution. Let A and B be two CM-divisors on Xu represented by two 
functions (j) and I/J on T(F)\G(Af)/U. Then 

o(A,B)= I ^(x)^(y)dfi(x,y). 

Proof.   It is easy to see that both sides are additive in both B and A and are 
invariant under the action by G(Af). Thus it is sufficient to prove the lemma in the 

case where A = U, B = (J   jW, 

tfp = (l + pnM2(0p)), 

and n > ord(a) + 1. Then Lemma 5.5.1 gives 

iJA,B) = vol(J7) „ ,  w —, 

where q = N(p). On the other hand, its is easy to obtain that 

[<Kx)${y)dn{x9y) = vom f dxx = yol{U)       ^       ■ 
J J\x-a\<\n\» l1"^      )\a\ 

The lemma now follows. D 

LEMMA 6.3.3.   The local intersection index is given by 

ipilXv) = rx(a')   £   ^(ny^jlogNip) =: r£(a) 
i+j=nv 

where a = a! p71? is the primary decomposition. 

Proof. The intersection we want is 

(riXari)p= [ T0
a(f>(x)$(y)dv(x,y) 

J[T(F)\G(Af)]* 

= f X(y)dy [       T0J(gy)dfi(g) 
JT(F)\T{Af) JG(Af) 

=vol(T(F)\T(Af)) f       T^^d^g). 
JGiAf) lG(Af) 

Write a = a'p71 with a' prime to p. Recall that T^0 is simply the part of Ta</> 
restricted to the complement of T(Af)U. Thus, on the support of the distribution of 
m, T^cj) is simply 

Thus the last integral here is a product of two integrals 

/        To.0P(x)d/i(x) = Ta,r(l) = rx(o'), 
JG(A<} ) 
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and 

^ dxx. 
/,**(* 1) 

This integral is zero if n = 0. 
If n > 0, then Up is the maximal 0,2(0p), and this last integral is 

=/ 
./la 

TT
2
     0 \ fl    ytr l + ^TT-

7
  

f 

=   ^   »{*)*-* Y. qotd{x\q-irl 

i+j=nv 

U 
Write r^(a) for the sum of all r£(a), which is a finite sum over p | a. Then it is 

easy to see that r^(a) is one derivative for rx(a)J i.e., for any coprime a, n, 

ri(a6)=rx(o)r;(W+ri(o)rx(6). 

We now compute the Green's function for CM-points. Since the Hecke operator 
Ti for £ 7^ p acts trivially on F1(Fp)/Upi the set of ordinary components. Thus, we 
have the following identity of the pairings 

JivXaV) = degiTDjM. 

In summary, we have shown the following 

LEMMA 6.3.4. For an ordinary place p, the function 

a—y\a\9P(n^aV) 

is a sum of an Eisenstein series and a derivation of the theta series 

n(x)<8>a1/2. 

Supersingular case. We now want to handle the case where p is a finite prime 
of F which is split in B but not split in K. Then all CM-points will have supersingular 
reduction. The reduction takes the following form: 

(6.3.6.3.6) T(F)\G(Af)/U —> G'(F)\F^ x G(Ap
f)/U, 

where Gf = (^/)x with B' a definite quaternion algebra obtained from B by changing 
invariants at p and r.  Notice that this reduction is taken on some base changes of 



282 S. W. ZHANG 

the original models. So the reductions may not be regular points. To do intersection 
theory one must use the minimal regular models. The reduction should then take a 
different form. 

First, let's treat the simplest case where K/F is unramified at p and where Up 

is the maximal compact subgroup GL2(Op). In this case the reduction is given by 

(6.3.6.3.7) T(F)\G(Af)/U —> G'(F)\G'(A,)/[/', 

where U' = U' • Up with U' = (9£, „. Here we have used the identification 

G{FP)IUP ~ G'{FP)/U'p ~ Z/2Z. 

Notice that Mu,p has smooth spacial fiber if Up is sufficiently small. The inter- 
section is given by a distribution on 

*£ := {(x,y) € G'(FP) xT(Fp) G(FP) : jdet^det^lp - 1} 

given in Lemma 5.5.2. More precisely, we have: 

LEMMA 6.3.5. For any #2 £ G(FP), Let ra(#i,#2) be a function on 

G,(F)xG,(Af) 

with support on G^F) given by Lemma 5.5.2. For two disjoint CM divisors repre- 
sented by two functions (j> and ij) on T(F)\G(A^)/U supported on 

T(F)tUp x G(Ap,        T(F)aUp x G(Ap
f) 

respectively, with t G T{FP) and a G G{FP).  Then, the Green's function is given by 

J[T(F)\G'(Kf)Y 76G'(F) 

w/iere <j)' and ip' are functions onT(F)\G'(Af)/U' supported on 

T(F)U'p x G'(Ap, 

Proof It is easy to see that both sides are additive in (p and ip and invariant under 
the action of G(A?). Thus, we may assume that 0 is the characteristic function of 
T(F)tU, and that ^ is the characteristic function of some T(F)yU for some y G G(Af) 
with yp = a. Now gp{(j)^) ^ 0 only if they have the same reduction or equivalently, 
for some 70 G G'(F), y G ^QU'. In this case, the intersection is given by 

vol(C/)m(7j"1x,^) = vol(C/)m(7^1,2/p). 

On the other hand the integral is given by 

vol(lO    Yl    m(^y) =vol(C/)m(70~1,i/p).       D 
7€G'(F) 



GROSS-ZAGIER FORMULA FOR GL2 283 

LEMMA 6.3.6.   Assume that Kp is unramified over Fp.   For n a non-negative 
integer, define a function on Gf(F) by 

< iordpte(7)*r1+n)    if f (7) ^ 0, o^MlW * odd, 
mn(l) = < n/2 if ^(7) = 0, n is even, 

0 otherwise. 

For two disjoint CM divisors represented by two functions (p and ip on 

T(F)\T(FP)UP x G(AFf)/U ~ T(F)\T(Fp)U'p x G(Ap
f)/U' 

which are invariant under the action from left hand side by T{Fp), the local intersec- 
tion index is given by the geometric pairing for the multiplicity function mn: 

9p(<l>,Tpntl)) = (j){x)    V    mn{x-l^y)^{y)dxdy. 
J[T(F)\G>(Af)f 7€G'(F) 

Proof Consider the decomposition 

G(Fp) = f[T(Fp)(^   J)GL2(0P), 
c=0 ^ ^ 

and define constants, 

7c = TpnV>p(;    fj-vol(T(Fp)^    fjGL2(Op)y 

Then by Lemma 6.3.5, 

9P(^^)= / 0(»)    J2    rri (x l-fy)'il)(y)dxdy, 
J[T(F)\G(Af)]Z ye&(F) 

where m'Xg) is a distribution on G'(A/) supported on G^Fp) such that 

71 ^7 j 
c>0 

™'('Y) = Y,m[7[ 0     1) )7c- 

We now want to compute jc. Notice that in our case, (j)p is actually the charac- 
teristic function of PGL2(0p). It follows that 

Tp.*,^ ;)= EB *p((i; !)(o ;•)) 
x    mod TT

1 

=     iL     M    0        rf 
i+j=n x 

x    mod TT
1 

_ J 1    if n — c is even and > 0, 

1 0    otherwise. 
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On the other hand, 

vol (T(FP) (^    J) GLafOp)) =#(e?K,p/7rc)x/((!?p/7rc)x 

It follows that 

7c = < 

[ 1 if c = 0, 

(f-^g + l)   if c>0. 

1 if c = 0, n is even, 

gc_1 (^ 4-1)    if n — c is even, n > c > 0, 

0 otherwise. 

By Lemma 5.5.2, we have 

'|ordp(^(7)7rn+1)    if both n, ordp(det7) are even, and £(7) ^ 0, 

m/(7) 
n/2 if both n, ordp(det7) are even, £ = 0, 

(n + l)/2 if both n, ord(det 7) are odd 
^0 otherwise. 

We want to show that m' = mn. Write 7 — a -f- be with a, b G Oj^p, ex = xe e2 G TT, 

(a, b) = 1. Then 

£(7) = -N(6)7r/det(7),        det7 = N(a) - N(6)7r. 

If a is invertible then ordp(det7) = 0 and £(7) = 0 or ordp(£(7)) is odd. If a is not 
invertible, then ordp(det(7)) = 1, and ordp(£(7)) = 0. D 

We want now to treat the case where Up is not maximal. We will only consider 
so called special CM-points. By blowing up the models we may assume that the 
reduction factors the following map 

(6.3.6.3.8) T(F)\T(FP)UP x G(A*)/U —► G'(FAG'(A,)/[/', 

where U' = U' • U* with 

(6.3.6.3.9) % = (OK,P + c(x)0K,pe)x, 

where e is as before: ex = xe for any x £ K, and e2 € Fp with ord(62) = 0,1. 

LEMMA 6.3.7. The local intersection is given by a certain distribution m on 
Gr(Af). For any two CM-divisor represented by functions (/> andip on T(F)\G(Af)/U 
whose components at p are supported on T(Fp)Up with character %, we have 

0P(0,^) = (^,^)0 4- / (t>(x)k(x,y)^{y)dxdy. 
J[T(F)\G'{Af)]* 

Here (•, •)0 is the geometric pairing defined by the multiplicity function 

m(7)= j>
rdp(f(7))    */0<K(7)l<l, 

10 otherwise, 
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and k(x,y) is a locally constant function on [C(F)\Gr(Af)]2. 

Proof. We will use the minimal resolution of the singularly XU,L of Xu 0 L to 
compute Green's function. Thus we have a decomposition 

By Lemma 5.5.2, 5.5.4, 6.3.6, the intersection index ip(</>, VO can be given by a formula 
with the same property described in the lemma. The function jp((l),ip) is locally 
constant so must be given by a locally constant kernel. □ 

Superspecial case. We now assume that p is not split in B. The reduction of 
CM-points which is secial at p factors the following map 

(6.3.6.3.10) T{FP)\T(FP)UPG(A^/U -> G'{Fp)\G{A?f)/U' 

where U' = U'- Up with 

(6.3.6.3.11) U'p = (OK,P + c(x)OK,Pe)x. 

LEMMA 6.3.8. The local intersection is given by a certain distribution m on 
Gf(Af). For any two CM-divisor represented by functions (j) andxj) on T(F)\G(Af)/U 
whose components at p are supported on T(FP)UP with character x, we have 

9P(<I>, VO =■ <& ^>0 + / (j)(x)k(x, y)i){y)dxdy. 
J[T{F)\G'(Af)]* 

Here (•, -J0 is the geometric local pairing defined by the multiplicity function 

m(7) = (l°rdp(£(7))    */0<K(7)|<l, 
10 otherwise. 

and k(x,y) is a locally constant function on [G/(F)\G/(A/)]2. 

Proof Use Lemma 5.5.5, 5.5.6 and the same argument as in the proof of Lemma 
6.3.7. D 

6.4. Gross-Zagier formula for central derivatives 

In this section we will complete the proof of Gross-Zagier formula (Theorem 1.3.2) for 
the derivatives of Rankin's L-series, by comparing heights of CM-points and Fourier 
coefficients of the kernel function of the Rankin-Selberg convolution. The principle is 
as same as that in Gross-Zagier's original paper [20]. Up to a constant and modulo 
some negligible forms, the new form \I> with Fourier coefficient 

(6.4.6.4.1) §(a):=|a|(77,Ta77) 

is equal to the holomorphic cusp form $ defined in §3.5 which represents the derivative 
of Rankin L-function 1/(1/2,11 0 x). Thus we need to show that the functional 
a —> $(a) is equal to the Fourier coefficient a —Y $(a) for for a G NF(ND), the 
semigroup of integral ideals of OF prime to ND. 
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In §3.5 and §6.2, up to derivations of Eisenstein series and theta series n(x)0o;1/2, 
we have decomposed both 3>(a) and $(a) into a sum of local terms <&v(a) and tyVl 

where 

(6.4.6.4.2) $» := -H^^^^log^. 

Thus, it suffices to compare these local terms for each place v of F and each idele 
class a G NF(ND). We need only consider v which is not split in K: since $v — 0 
and ^y is quasi-Eisenstein. 

Our main tool is the pre-Gross-Zagier formula, Corollary 4.3.3, for quaternion 
algebra VB with ramification set 

(6.46.4.3) .= = (*;?>   *V*l' 

Let VG denote the algebraic group VB
X/Fx. 

Archimedean case. LEMMA 6.4.1. Forv an infinite place, 

$v(a) = 2°+1\c(u;)\1/2§v(a). 

Proof. By Proposition 3.5.5, <&v(a) is the constant term at s = 0 of a sum over 
f £ F such that 0 < f^ < 1 for all infinite place w ^ v and ^ < 0 of the following 
terms: 

s-i    n\\      roo _dx 

(Ziy^s^itviU2 • wv (1/2,^,7;, ^f   J)) . ^C 
^(l + I^U)^* 

By the pre-Gross-Zagier formula, Corollary 4.3.2, $,,(a) is thus equal to the con- 
stant term at s — 0 of 

-2^|cM|1/2|a|(Ta0,0)s, 

for a geometric pairing of CM-points T(F)\vG(Af) with multiplicity function ml on 
T(F)\VG(F)/T(F). Further, mv

s(g) f 0 only if ({g)v < 0; in this case it is given by 

mAg) = L    xd + IM^' 
Now, by Lemma 6.3.1, pv(^5T^) is the constant term of a geometric pairing of 

0 and Ta(j) with multiplicity function ms — QS{1 — 2f) supported on £ < 0. Notice 
that as a function of £, one has 

2Q (i+2id)- r ^ - f00 (a; -i)sdx 
Qs(

  +   l4l) _ ioc   (z + VF3icosht)i+»     A    xi+'(l + \t\xy+' ■ 

It follows that 

y(a)-29+1\c(u;v)\1/2$(a) 

is the constant term of a geometric pairing of 0 and Ta0 with multiplicity function 

ms - 2QS. 

It is not difficult to show that 

ms-2Qs = Om-s-2) 

as |£| —>• oo, and vanishes at s = 0.  Thus if we use the difference to defined the 
intersection pairing, then it vanishes at s = 0. D 
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Unramified case. If v is a finite place, by Proposition 3.5.5 $v{a) is a sum over 
£ G F with 0 < £ < 1 of the following terms: 

wi^2 • wj (W,, (a*/1 ;)).w'v (i/2,(,v, (of ;)), 

We want to write this as the geometric pairing on T(F)\vG(Af) of ^ and TV^ where 
a = ^"a' (p\ a'), and 0 is the standard function on T(F)\G'(Af)/U' with character 
X, and [/' = U'pUe with 

^ = (^,p + c(x)Ojf,pe)x. 

First we consider the unramified case 

LEMMA 6.4.2.   Let v be a place of F where u and x ar^ both unramified and 
ordv(N) = 0.  Then there is a constant c such that 

$„(o) -2«+1|cM|1/2$w(0) = ciogH,, • M^nCxXa). 

Proof. By Lemma 3.4.5, 

^(i/2,^,(af ;))/o, 
only if ordv(r/a) is even and nonnegative, and ordv(£a) is odd and positive; in this 
case it is given by 

e{Vv,il>v)\vt\l/2\a>\vlog\l;a\v. 

Thus, we see that up to a multiple of 

M^fifrXaJloglal,,, 

the functional $(a) is equal to 

for a geometric local pairing on T(F)\vGs(Af) with multiplicity function raa(£) which 
is nonzero only if ovdv(£a) is odd and positive, and OYdv(r)a) is even and nonnegative. 
In this case 

mfl(0=log|£a7r|t;. 

Here (j) is the standard function on G(Af) with maximal support at T(Af)Rx with 
character x, where Rw is as before for w ^ v, and i?^ is the maximal order of the 
definite quaternion algebra VBV. 

As a function of £ = £(7), we claim that 

ma(7) = -2mn(7)loggu, 

if £ ^ 0,1, where mn is given by Lemma 6.3.6. In other words, we want to show that 
mn(7) 7^ 0 only if ord((l — £)7rn) is even and nonnegative, and ord(£7rn) is positive 
and odd, and in this case In this case, 

mn(7) = |ord«7rn+1). 
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We need only check the positivity. Write 

7 = a + be 

whose norm at p is either 0 or 1. In the first case, ord(£) is odd and positive, and in 
the second case, ord(l — £) is odd and positive. D 

Ramified case. We now want to treat the case where v is a ramified place for /, 
X, or u;. In this case we will not be able to prove the identity as in the archimedean 
case, or the unramified case. But we can prove the following: 

LEMMA 6.4.3. Forv a finite place, the difference 

$(a) - 2'+1|c(a;)|1/2*(a) = cM^fiCxXa) +v f 

where c is a constant, and vf is a form on vG(F)\vG(Af).  Moreover, the function 
vf has character x under the right translation by K*. 

Proof We will only consider so called special CM-points. As in the unramified 
case, using Lemma 3.4.6 and 3.4.7, one can show that $ is equal the geometric local 
pairing of 

2S|cM)|1/2|a|((/>)Ta«£> 

for a multiplicity function m(g) on VG(F) with singularity 

log|C|0. 

On other hand, by Lemma 6.3.7, and 6.3.8, we know that 

§(a) =-gv(4>,T0
a<p)\ogqv 

is also a geometric pairing with singularity 

^ log |f |v. 

Thus, 

$(a)-25+1|c(a;)|1/2$(a), 

is a geometric pairing without singularity. In other words, it is given by 

(f)(x)k(x, y)Ta(j){y)dxdy, s 
l[T(F)\vG(Af)]* 

for k(x1y) a locally constant function of (vG(F)\vG(Af))2. The lemma now follows, 
since we decompose 

kfay) = ^Ci(x)fi(y) 
i 

into eigenfunctions fj for Hecke operators on vG(F)\vG(Af) to obtain 

y]Xi(a) <f>(x)ci(x)dx - / ' fi(y)<i>(y)dy, 
i JT(F)\vG(Af) JT(F)\vG(Af) 

where A (a) is the eigenvalue of Ta for fa. Thus we may take 

vf = J2 (t>(x)ci(x)dx - / fi{y)<i>(y)dy. 
'-T JT(F)\vG(Af ) JT(F)\vG(Af ) 

D 
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Conclusion of Proof of Theorem 1.3.2. In summary, at this stage we have 
shown that the quasi-newform 

$-25+1|c(a;)|1/2* 

has Fourier coefficients which are a sum of the following terms: 
• derivations A of Eisenstein series, 
• derivations B of theta series 11 (x) ® a1/2, 
• functions vf appearing in vG(F)\vG(Af) with character x under the right 

translation of K*, where v are places dividing DN. 
By linear independence of Fourier coefficients of derivations of forms [31] Propo- 

sition 4.5.1, we may conclude that A = B = 0. 
Let 11 now be the representation defined by the form / in the introduction and 

let v/n be its projection in 11. If v/n 7^ 0 then both IIJ and (H^)* are nonzero. 
If x is trivial, then this is a contradiction by Theorem 2.3.2. 
If x is nontrivial then 11^ must be special with unramified twist. Thus, (11^) is 

given by an unramified character. Thus x ls unramified and K/F is ramified at v. 
This contradicts Lemma 2.3.4. 

In summary we have shown that # — 25+1|c(u;)|1/2\I> has trivial quasi-newform 
projection. By Proposition 3.1.3, we thus obtain 

1/(1/2,11® *) = 2^\c^)\l/2 • (0^) ' <Mx>. 
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