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1. Introduction. The classical knot concordance group, Ci, was defined in 1961 
by Fox [F]. He proved that it is nontrivial by finding elements of order two; details 
were presented in [FM]. Since then one of the most vexing questions concerning the 
concordance group has been whether it contains elements of finite order other than 
2-torsion. Interest in this question was heightened by Levine's proof [LI, L2] that in 
all higher odd dimensions the knot concordance group contains an infinite summand 
generated by elements of order 4. In our earlier work studying this problem we proved 
the following [LN]: 

THEOREM 1.1. Let K be a knot in S3 with 2-fold branched cover MK- If the 
order of the first homology with integer coefficients satisfies \HI(MK)\ = pm with p 
a prime congruent to 3 mod 4 and gcd(p, m) — 1, then K is of infinite order in the 
classical knot concordance group, Ci. 

An immediate corollary was that all of the prime knots of less than 11 crossings that are 
of order 4 in the algebraic concordance group are of infinite order in the concordance 
group. There are 11 such knots [M]. One simple case of a much deeper corollary states 
that if the Alexander polynomial of a knot satisfies A#(£) = 5t2 — lit -f 5 then K is of 
infinite order in C\. According to Levine [L2], any higher dimensional knot with this 
polynomial is of order 4 in concordance. 

Here our goal is to prove the following enhancement of the theorem stated above: 

THEOREM 1.2. Let K be a knot in S3 with 2-fold branched cover MK- If 
HI(MK) — Zpn 0 G with p a prime congruent to 3 mod 4, n odd, and p not dividing 
the order of G, then K is of infinite order in Ci. 

As we will describe below, the significance of this result goes beyond its apparent tech- 
nical merit; however, even in terms of computations it is an important improvement. 
Let Hp denote the p-primary summand of HI(MK)> 

COROLLARY 1.3. Let n be a positive integer such that some prime p congruent 
to 3 mod 4 has odd exponent in the prime power factorization of An -fl. Then a knot 
K with Alexander polynomial nt2 — (2n + l)t + n and Hp cyclic is of infinite order in 
the concordance group. 

Note that according to Levine [L2], any such knot represents an order 4 class in the 
algebraic concordance group. The n-twisted doubles of knots provide infinitely many 
examples of knots with Alexander polynomial nt2 — (2n + l)t + n and Hi (MK) cyclic. 
Further details and examples will be provided in the last section. 

Casson and Gordon's first examples of algebraically slice knots that are not slice 
[CGI, CG2] were taken from the set of twisted doubles of the unknot. Our analysis 
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extends theirs to a much larger class of knots and is not restricted to doubles of the 
unknot. Notice here the rather remarkable fact that an abelian invariant of a knot is 
being used to obstruct an algebraically slice knot from being slice. 

Theorem 1.2 is relevant to deeper questions concerning the concordance group. 
The underlying conjecture is that the only torsion in the knot concordance group is 
2-torsion, arising from amphicheiral knots (see related questions in [G, Kl, K2]); a 
positive solution to this conjecture seems far beyond the tools now available to study 
concordance, in either the smooth or topological locally flat category. However, two 
weaker conjectures are possible. 

CONJECTURE 1.4. // a knot K represents 4-torsion in the algebraic concordance 
group, then it is of infinite order in concordance. 

A simpler conjecture is: 

CONJECTURE 1.5. There exists a class of order 4 in the algebraic concor- 
dance group that cannot be represented by a knot of order 4- In particular, Levine's 
homomorphism does not split. 

Theorem 1.1 provided candidates for verifying Conjecture 1.5 but there are two 
difficult steps to extending that result from a representative of an algebraic concor- 
dance class to the entire class. It is a consequence of Witt theory (that we won't be 
using elsewhere in this paper) that such an extension will have two parts: one must 
be able to handle the case where Hp = Zpn, with n > 1, and also the case where Hp 

is a direct sum of such factors. 
The results of this paper deal with the first part of the extension problem. A 

number of special cases of direct sums have been successfully addressed by us in 
unpublished work, but the necessary general result for sums has not yet been achieved. 
When it is, that result along with Theorem 1.2 should provide a proof of Conjecture 
1.5 and perhaps 1.4 . 

The work of this paper is largely algebraic. In the next section we will summarize 
the topological results that we will be using. All the work that appears here applies 
in both the topological locally flat and the smooth category. In Section 3 we give a 
proof of Theorem 1.2. The proof is fairly technical and extends the techniques used 
in proving Theorem 1.1 in [LN]. Section 4 discusses examples. 

2.    Background and notation. 

2.1. Knots and the concordance group. We will work in the smooth cate- 
gory, but as just mentioned, all results carry over to the topological locally flat setting. 
Homology groups will always be with Z coefficients unless otherwise mentioned. 

A knot is formally defined to be a smooth oriented pair, (53,K), with K diffeo- 
morphic to S1. We will denote such a pair simply by K. A knot K is called slice if 
(53, K) = 9(J54, D), where D is a smooth 2-disk properly embedded in the 4-ball B4. 
Knots Ki and K2 are called concordant if Ki # -K2 is slice, where -K represents 
the mirror image of iif, formally (-S3,-K). The set of concordance classes of knots 
forms an abelian group under connected sum, denoted Ci. The order of K in the 
knot concordance group is hence the least positive n for which the connected sum of 
n copies of K, nK, is slice. 

Levine defined a homomorphism of Ci onto a group, £, that is isomorphic to the 
infinite direct sum, Q = Z00 © Z™ 0 Zf. For higher dimensions the corresponding 
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homomorphism is an isomorphism, but in dimension 3 there is a nontrivial kernel, 
as first proved by Casson and Gordon [CGI, CG2]. For details concerning Q, the 
algebraic concordance group, see [LI, L2]. 

2.2. Casson-Gordon invariants and linking forms. Let MK denote the 
2-fold branched cover of S3 branched over K, and let x denote a homomorphism from 
HI(MK) to Zpk for some prime p. The Casson-Gordon invariant, a(K,x) is then a 
well defined rational invariant of the pair (K^x)- (In Casson and Gordon's original 
paper, [CGI], this invariant is denoted aiT(K,x)? and a is used for a closely related 
invariant.) 

On any rational homology sphere, such as MK, there is a nonsingular symmetric 
linking form, (3 : HI(MK) -> Q/Z. As before, let Hp be the p-primary summand of 
HI(MK)- The main result in [CGI] concerning Casson-Gordon invariants and slice 
knots that we will be using is the following: 

THEOREM 2.3. If K is slice there is a subgroup (or metabolizer) Lp c Hp with 
\LP\2 — \HP\,   fi(Lp,Lp) = 0, and (T(K,X) — 0 for a^ X vanishing on Lp. 

We will also need the additivity theorem proved by Gilmer [Gi]. 

THEOREM 2.4. If xi and X2 are defined on MKI and MK2, respectively, then 
wehavea{Ki # K2,Xi  © X2) = cr(ifi,xi) + 0-0^2,X2). 

Any homomorphism x from Hp to Zpr is given by linking with some element x £ Hp. 
In this situation we have the following (see Section 4 of [LN]). 

THEOREM 2.5. If x:Hp—>Zpr is a character obtained by linking with the 
element x € Hp, then a(K,x) = P(x,x) modulo Z. 

A simple corollary, using the nonsingularity of ^ is: 

COROLLARY    2.6.      If Hp = Zpn  and x maps onto Zpk with k > n/2 then 

Finally, we will use the result below which is a consequence of the fact that the linking 
form (3 gives a map from Hp onto Hom(Lp, Q/Z) = Lp, with kernel equal to Lp. 

THEOREM   2.7.    With Hp and Lp as in Theorem 2.3, we have Hp/Lp = Lp. 

3. Proof of Theorem 1.2. Let K be a knot in S3 with the 2-fold branched 
cover MK- Suppose that Hi (MK) = Zpn 0 G with p a prime congruent to 3 mod 4, n 
odd, and p not dividing the order of G. We want to show that K is of infinite order in 
Ci. The linking form of HI(MK) represents an element of order 4 in the Witt group 
of Zp linking forms. (See Corollary 23 (c) in [L2].) If K is of concordance order d, 
since Levine's homomorphism maps the concordance class of K to an order 4 class, 
we have d = 4A:, for some positive integer k. Since p does not divide the order of G, a 
metabolizer for Hi(MdK) = ®AkHi(MK) will induce a metabolizer for (Zpn)4k. We 
must analyze the possible metabolizers Lp for (Zpn)4k. 

A vector in Lp can be written as x = (xi)i=i.m.d £ (Zpn)d. Applying the Gauss- 
Jordan algorithm to a generating set for Lp, and perhaps reordering, we can find a 
generating set of a particularly simple form. The next example illustrates a possible 
form for one such set, where the generators appear as the rows of the matrix. 
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EXAMPLE   3.1.    Let Hp = (Zpz) . A generating set for a metabolizer Lp of the 
standard nonsingular Q/Z linking form can be written as follows: 

/l 
0 

* * * * * * *\ 

p 0 0 * * * * 
0 0 p 0 * * * * 
0 0 0 p * * * * 
0 0 0 0 P2 0 0 * 
0 0 0 0 0 P2 0 * 

\o 0 0 0 0 0 P2 *) 

In the above matrix, there is 1 row with leading term p0, and 3 rows each with leading 
terms pl and p2, respectively. 

We will denote the number of rows with leading term p* by ki, the vectors in these 
ki rows by t>i,i,--- ^i,^-, and X^o kj by Si. For notational purposes, let 5_i = 0. 
Then, in general, the generating set consists of {^jji^o,...,/!-!,^!,...,^ where 0 < 
ki < 2k, such that the first Si entries of Vij are 0, except for the ISJ_I + j entry which 
is p\ and each of the remaining entries is divisible by pt. From 2.7 it follows that 
ki = kn-i, for i > 0, and £(n-i)/2 = 2k. 

DEFINITION 3.2. IfaG Hp, let Xa' Hi {MR) -> Q/Z be the character given by 
linking with a. In the case that Hp is cyclic, isomorphic to Zpn., we can fix a generator 
of Hp and write Xa where a is an integer representing an element in Zpn. 

With this notation, we now see that our goal is to show that (T{K,Xp^-^)/^) — 0. 
Since Xp(n-i)/2 maps onto Zp(n+i)/2 this will contradict 2.6 and it will follow that K 
cannot be of finite order. 

As in Example 3.1, arrange the {vfj} as rows of a (4A; — fco) x Ak matrix following 
the dictionary order on {i,j). We multiply the first &o vectors by pn_1, the next ki 
vectors by pn~2, and, so on, to obtain pn~l on the diagonal. Clear the off-diagonal 
entries in the left (4A; — ko) x (4fc — ko) block. Now, adding all the rows gives us a 
vector in Lp with the first Ak — ko entries equal to pn_1. This vector corresponds to a 
character x, given by linking an element with it, to Zp on which the Casson-Gordon 
invariants should vanish. That is, a{(4k)K, x) — 0- By 2.4 this leads to a relation of 
the form (4fc — kQ)(j(K,Xpn-1) + Ea^o ^C^XzJ = 0? where Xi are the remaining A^o 
entries, each of which is divisible by pn~l. 

The set of nonzero characters from Zpn to Zp is isomorphic to the multiplicative 
group of units in Zp, which is a cyclic group of order p — 1. Denoting a generator for 
this group by #, each nonzero Xxi corresponds to g®1 for some a^. The correspondence 
can be given by Xxi—Ygx^pn . As in [LN] we use further shorthand, setting tai = 
<j(K,Xxi)' Each metabolizing vector leads to a relation X^-^o^ = 0- Note that at 
this point the symbol ta does not represent a power of any element "t", it is purely 
symbolic. However it does permit us to view the relations as being elements in the ring 
Z[Zp-i]. Furthermore, since a(K,Xxi) = (T(K,Xpn-xi), we have that P = ^-HP-

1
)/

2
. 

(Recall that g^'1)/2 = —1.) Hence, we can view the relations as sitting in Z[Zq], 
where q = (p — l)/2. 

If a metabolizing vector x corresponds to the relation / = 0, where / is represented 
by an element in Z[Zq], then ax corresponds to the relation taf where ga = a. It 
follows that the relations between Casson-Gordon invariants generated by the element 
x G Lp together with its multiples form an ideal in Z[Zq] generated by the polynomial 
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/• 
With this in mind our relation can be written as / = (4k — ko) 4- X^=i tai =0, 

where kf < ko- (Note that Ak — ko = 5n_i.) We show that the ideal generated by / in 
Z[Zq] contains a nonzero integer. This will follow from the fact that / and tq — 1 are 
relatively prime, which will be the case unless / vanishes at some q-ih root of unity, 
say ur, however, by considering norms and the triangle inequality we see that this will 
be the case only if k' — 2k and ujai = -1 for all i. But since q is odd, no power of u 
can equal -1. 

It follows that na(K, Xpn-1) = 0, for some n £ Z. This implies that (T(K, Xpn-1) — 
0. Similarly we can show that G(K, Xapn-1) = 0, for 0 < a < p. 

Next, let / be a nonnegative integer, and assume that (j(K,Xaps) = 0, for all 
a £ Z, and all s such that / < s < n — 1. We will show that cr(if,Xp0 = 0. 

For 0 < i < Si, we multiply the vectors from the (Si-i + l)st to the 5ith vector by 
pz~2, clear off-diagonal entries in the upper left Si x 5/ square block, and add the first 
Si rows to get a vector in Lp with first 5/ entries equal to pl, and the remaining entries 
divisible by pl. Since we have assumed that a(K,Xaps) — 0, for / < s < n — 1, we can 
ignore the entries which are of the form aps, with s > L Then we have a character 
to the multiplicative group of units in Zpn-i. Since p is odd, this is a cyclic group of 
order pn~l~1(p-\) (see [D]). Again, since (j(K,Xxi) — ^(K,Xpn-xi), we can view the 
relations as sitting in Z[Zq], where q = pn~l~1(p — l)/2. As pn~l~'1(p — l)/2 is odd, 

as above, it follows that the relation / = 5/ 4- ]Ci=i ^ = 0' where 0 < k' < Ak - 5/, 
is relatively prime to tq — 1. It follows that cr(if,Xpl) — 0- Similarly, a(K,Xapl) — 0 
for 0 < a < p. 

Thus, we have <J(K,Xp^-v/*) — 0? which contradicts Corollary 2.6, and proves 
that K cannot be of finite order in the concordance group. 

4. Examples. Basic examples illustrating the applicability of Theorem 1.2 
are easily constructed. For instance, since the 2-fold branched cover of S3 over an 
unknotting number one knot has cyclic homology, to apply Theorem 1.2 we only need 
to check the order of HI(MK) which equals the Alexander polynomial evaluated at 
— 1. We have the following. 

COROLLARY 4.1. Let K be an unknotting number one knot with Alexander 
polynomial A. If a prime p which is congruent to 3 mod 4 appears in the prime 
power factorization of A(—1) with an odd exponent, then K is of infinite order in the 
concordance group. 

More generally, suppose that there is a 3-ball B C Ss intersecting the knot K in two 
arcs so that the pair (JB, B fl K) is trivial and so that removing (B,B fl K) from S3 

and gluing it back in via a homeomorphism of the boundary yields the unknot. Since 
the 2-fold branched cover of the ball over two trivial arcs is a solid torus, the 2-fold 
branched cover of S3 over K is formed from 53 (the 2-fold branched cover of S3 over 
the unknot) by removing a solid torus and sewing it back in via some homeomorphism. 
In particular, the 2-fold branched cover has cyclic homology. Such knots include all 
unknotting number one knots and all 2-bridge knots. In the case of a 2-bridge knot 
K(p>Q)i we have HI(MK) = Zp. 

COROLLARY 4.2. The 2-bridge knot K(p,q) has infinite order in the knot 
concordance group if some prime congruent to 3 mod 4 has odd exponent in p. 
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The following theorem, an immediate consequence of a result of Levine (Corollary 
23 in [L2]), provides us with more examples of knots which represent torsion in the 
algebraic concordance group. 

THEOREM   4.3.   If a knot K has quadratic Alexander polynomial A(t) then: 
(a) K is of finite order in the algebraic concordance group if and only if A(1)A(—1) < 

0, in which case K is of order 1, 2 or 4- 
(b) K is of order 1 if and only if A(t) is reducible. 
(c) if K is finite order, and A(£) is irreducible, then K is of order 4 in the algebraic 
concordance group if and only if for some prime p > 0 withp = 3 mod 4; A(1)A(—1) = 
—paq where a is odd and q > 0 is relatively prime to p. 

Consider the knot Ka, the a-twisted double of some knot K. The Seifert form for this 
knot is 

'a     1 
y=\o  -i 

it has Alexander polynomial A(t) = at2 — (2a+ l)£H-a, and the homology of the 2-fold 
cyclic branched cover is Z|4a+i|- Levine's result, Theorem 4.3, applies to determine 
the algebraic order of all of these knots. (In the case that K is unknotted, Ka can be 
described as the 2-bridge knot K(4a + 1,2a).) 

COROLLARY  4.4.    The a-twisted double of a knot K: 
(a) is of infinite order in the algebraic concordance group, Q, if a < 0. 
(b) is algebraically slice if a > 0 and 4a + 1 is a perfect square. 
(c) is of order 2 in Q if a > 0, 4a+l is not a perfect square, and every prime congruent 

to 3 mod 4 has even exponent in the prime power factorization of Aa + 1. 
(d) is of order 4 if a > 0 and some prime congruent to 3 mod 4 has odd exponent in 

4a + 1. 

Casson and Gordon [CGI, CG2] proved that if K is unknotted, then all knots covered 
by case (b) above are actually of infinite order in concordance, except if a = 2 in which 
case K2 is slice. An immediate consequence of Theorem 1.2 is: 

COROLLARY 4.5. If Ka is of order 4 in G then it is of infinite order in the knot 
concordance group. 

As in Corollary 9.5 of [LN] a simple argument using Corollary 4.5 gives an infinitely 
generated free subgroup of Ci which consists of of algebraic slice knots. (It was first 
shown by Jiang in [J] that the kernel of Levine's homomorphism is infinitely gen- 
erated.) The extensive calculations of [CGI, CG2] are here replaced with a trivial 
homology calculation. Moreover, the results of [CGI, CG2] apply only in the case 
that K is unknotted, a restriction that does not appear in Corollary 4.5. 

Recently, Tamulis [T] has proved that in the case that K is unknotted, if Ka is 
of order 2 in Q and 4a + 1 is prime, then Ka is of infinite order in concordance. 

Counterexamples. Given these previous examples, it is a bit unexpected that 
Theorem 1.2 does not apply in all cases of order 4 knots with quadratic Alexander 
polynomial. The difficulty is that the conditions of Theorem 4.3 do not assure that 
the homology of the 2-fold cover is cyclic. The next example demonstrates this. It is 
the simplest possible example in terms of the coefficients of the Alexander polynomial; 
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its complexity illustrates the strength of Theorem 1.2. The example is obtained by 
letting K be a knot with Seifert form: 

(21    53 
V52    21 

The Alexander polynomial for K is A(£) = 2315 - 4631* + 2315£2. We have that 
A(l) = -1, A(-l) = 9261 = 3373, and hence by Theorem 4.3, K is of order 4 in the 
algebraic concordance group. 

The homology of MK is presented by V + V1: 

f 42     105 
\ 105     42 

A simple manipulation shows that this presents the group Zs 0 ZQ © Z7 0 Z49. Because 
this is not cyclic, Theorem 1.2 does not apply. As mentioned in the introduction, we 
have been able to extend our results to special cases of direct sums of cyclic groups, 
and one of those extensions applies to the group Z3 0 ZQ. Hence it can actually be 
shown that any knot with this Seifert form is not of order 4 in concordance. 
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