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Abstract. The aim of the present paper is the investigation of 5'pm(9)-structures on 16- 
dimensional manifolds from the point of view of topology as well as holonomy theory. First we 
construct several examples. Then we study the necessary topological conditions resulting from 
the existence of a Spin(9)-reduction of the frame bundle of a 16-dimensional compact manifold 
(Stiefel-Whitney and Pontrjagin classes). We compute the homotopy groups 7ri(X84) of the space 
X84 = SO(16)/Spin(9) for i < 14. Next we introduce different geometric types of Spm^-structures 
and derive the corresponding differential equation for the unique self-dual 8-form O8 assigned to any 
type of Spm^j-structure. Finally we construct the twistor space of a 16-dimensional manifold with 
5pm(9)-structure and study the integrability conditions for its universal almost complex structure 
as well as the structure of the holomorphic normal bundle. 

1. Introduction. The aim of this paper is to present a weak holonomy concept 
associated to the Lie group Spin(9). The spin representation of the group Spin(9) 
is real and 16-dimensional. According to Berger's holonomy theorem, Spin(9) can 
occur as the holonomy group of a 16-dimensional Riemannian manifold. However, 
D. Alekseevski (see [2]) and R. Brown/ A. Gray (see [6]) proved that any complete 
16-dimensional Riemannian manifold whose holonomy group is contained in Spin(9) 
is necessarily flat or isometric to the Cayley plane F4/Spin(9) or its non-compact dual 
F*/Spin(9). 

In 1971 A. Gray introduced the concept of weak holonomy. He proved that if a 
manifold has one of the groups 

G = SO(n):    SU(n),    Sp(n) • Sp(l),    Sp(n) • SO(2),    Sp(n),    Spin(7) 

as weak holonomy group, then its holonomy is in fact already contained in G. Con- 
sequently, only 3 groups may admit a weak holonomy concept that is more general 
than the traditional holonomy approach (see [14]): 

G = U(n),    G = G2 in dimension 7,    G = Spin{9) in dimension 16. 

The first two cases yield a rich geometric structure both as weak and as classical 
holonomy groups and have been studied intensively. Manifolds with weak holonomy 
group U(n) are called nearly Kahler (see [13]). A. Gray has investigated them since 
1976 (see [15]) and pointed out that they have special properties in dimension 6. This 
effect is closely related to the fact that, on a 6-dimensional manifold, the existence of 
a nearly Kahler structure is equivalent to the existence of a real Killing spinor (see 
[17]). In 1981 S. Marchiafava (see [21]) characterized 7-dimensional manifolds with 
weak holonomy group G2, and M. Fernandez / A. Gray (see [9]) studied the different 
geometric types of GVstructures systematically. In particular, nearly parallel G2- 
structures correspond again to real Killing spinors (see [12]). Only the case of weak 
holonomy Spin{9) on 16-dimensional manifolds has been neglected until now. 
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We will first define a (topological) 5pin(9)-structure on a 16-dimensional manifold 
as some 9-dimensional subbundle V9 of the bundle of endomorphisms End(T(Af16)). 
Locally, there exist nine endomorphisms Ia E T(V9) (1 < a < 9) satisfying the 
relations 

I2
a = Id    ,    ra=Ia    ,    IaI0 = -I0Ia    fora^/3. 

From this point of view a S'pm(9)-structure is a 16-dimensional analogue of a quater- 
nionic structure. It was already noticed in [6] that there exists a 5pm(9)-invariant 
and self-dual 8-form fi8 on M16. Although it cannot be used to uniquely character- 
ize the structures we are interested in, it will play an important role. We construct 
several examples of 16-dimensional manifolds admitting natural topological Spin(9)- 
structures. Then we derive necessary conditions for the Stiefel-Whitney and the 
Pontrjagin classes of a compact manifold admitting a Spin(9)-reduction of the frame 
bundle. For example, the complete intersection of three quadrics in F11(C) satisfies 
all these conditions. Up to now it seems impossible to formulate a necessary and 
sufficient criterion for the existence of a Spin(9)-structure. This is mainly due to the 
complicated homotopy type of the space A"84 = SO(16)/Spin(9). Using recent results 
on the homotopy groups 7ri(SO(n)) outside the stable range (see [20]) we compute 
TT^A

84
) for i = 1,...,14. 

In Section 8 we start with the investigation of the geometry of Spin(9)-structures. 
For this, we assign to any Spin(9)-reduction a 1-form F with values in the bundle 
A3(T/9), i.e., 

FE A1(M16)(g)A3(y9). 

The space A1(M16) 0 A3(E9) decomposes under the action of Spin(9) into 4 irre- 
ducible summands. Depending on the algebraic type of F there are 16 different 
geometric types of Spin(9)-structures. One of the components in the splitting of 
A^E16) 0 A3(M9) is the representation A^E16) itself. We call the corresponding type 
of Spin(9)-structure nearly parallel, i.e., a topological Spin(9)-structure is nearly par- 
allel if and only if F is a vector field. We prove that S1 x S15 admits a nearly parallel 
Spm(9)-structure, thus showing that such structures do exist. Using the fact that 
the Spin(9)-representation A7(E16) is multiplicity-free (see [1]), we can prove that 
the above introduced 8-form ft8 of a nearly parallel Spin(9)-structure satisfies the 
equations 

£n8 = -504(rjfi8)   ,   dn8=:--504*(rjft8). 

The other geometric types of Spin(9)-structures yield similar differential equations 
for dQ8. 

In the final part of this paper we sketch the twistor theory for nearly parallel 
Spin(9)-structures. For this, we introduce the space 7i of all complex structures in 
A2(E9) 

9 

Ti={J=      Yl     ^plab :     J2 = -Id}, 
l<a</?<9 

which is isomorphic to a complex quadric Q in F8(C) and on which Spin (9) acts 
transitively.   Using 7i as a typical fibre we define a twistor space 71 (M16) for any 
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16-dimensional manifold with a fixed 5pin(9)-structure. It has a canonical almost 
complex structure as well as an anti-holomorphic involution without fixed points. 
From the general theory of twistor spaces (see [4], [22]) we know that the almost 
complex structure on 7i(M16) has to satisfy two integrability conditions. The first 
one concerns the torsion tensor and turns out to be automatically satisfied in case of a 
nearly parallel Spm(9)-structure. Therefore, only the integrability condition involving 
the Riemannian curvature Qz and the derivative DZ(T) has to be fulfilled. As an 
example, we show that the twistor space of the Cayley plane F^/Spin^i) is isomorphic 
to 

Ti(FA/Spin(9)) = FA/(Spin{2) xZ2 Spin(7)). 

Since Spin(2) Xz2 Spin(7) is the centralizer of the subgroup Spin(2) in F4, 
Ti(F4/Spin(9)) is a generalized flag manifold and therefore a complex projective va- 
riety (see [27]). The twistor space Ti(Sl x 515) of S1 x S15 with its invariant nearly 
parallel Spm(9)-structure is a complex subvariety of the twistor space of S'1 x 515 

considered as a conformally flat 16-dimensional Riemannian manifold. Then we de- 
scribe the twistor space of the flat manifold M16 as an 8-dimensional holomorphic 
vector bundle N over the quadric Q, and compute its Chern classes as well as the 
space of all holomorphic sections 7-L0(N) of this bundle. This result allows not only 
the description of 7i(M16), but also of the normal bundle N to any fibre inside an 
arbitrary twistor space 71 (M16). It turns out that iV admits a 16-dimensional family 
of holomorphic sections, i.e., it is possible to reconstruct the given manifold M16 with 
a nearly parallel Spm(9)-structure from its twistor space 7i(M16). 

The author thanks Ilka Agricola for her helpful comments and Heike Pahlisch for 
her competent and efficient WF$i work. 

2.  5pm(9)-structures   on   16-dimensional  manifolds.  Let E9   be the 9- 
dimensional Euclidean space and denote by C9 the real Clifford algebra of the negative 
definite quadratic form. Cg is generated by the vectors of E9, and the relation 

v • w + w ■ v = — 2(v,w)    ,    VjWGR9, 

holds. The spin representation ^9 of the group Spin(9) is a faithful real representation 
in the 16-dimensional space A9 of real spinors and is the unique irreducible represen- 
tation of the group Spin(9) in dimension 16. Moreover, Spin(9) acts transitively 
on the 15-dimensional sphere S(Ag) of all spinors of length one. The representation 
^9 is the isotropy representation of the Cayley plane i<4/5pm(9), the unique excep- 
tional symmetric space of rank one. Denote by Aie : Spm(16) -» 50(16) = 50(A9) 
the universal covering of the orthogonal group 50(16). Spin{9) is a simply con- 

nected group and there exists a lift Spin(9) C 5pm(16) of the group KlQ(Spin(9)). 
Since the subgroup 5pm(9)  C 50(16) contains the element (—Id), the subgroup 

Spin{9) C Spin{lQ) C Cie has to contain one and only one of the two elements 
±ei •... eie of the Clifford algebra Cie of I16. 

PROPOSITION 1. The subgroup Spin{9) c 5pm(16) contains the element ei •... • 
eie, but it does not contain the element —e\ •... • ei6. 

Prooj.   We fix the following curve in Spin(9) joining the two elements ±1 G 
Spin(9): 

7(*) = cos(2£) + sin(2^)^i • ^    ,    0 < t < ^, 
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where vi,..., ^9 is an orthonormal basis in E9. Using the explicit formulas for the spin 
representation ^9 (see [11]) we compute the matrix of the endomorphism ^9(j(t)) : 
A9 -> A9. «9(7(t)) lifts into 5pin(16) via the formula 

^9(7(0) = (cos(t) + sm(t)ei • 62) •... • (cos(t) 4- sin(*)ei5 • eie) 

and at t = ~ we obtain 

■(■'(§)) - ^9  7hr      = ei -62 •... -615 -eie- 

D 

Let us characterize Spin(9) as a subgroup of 50(16). For this purpose we consider 
the complex spin representation A9 and recall that there exists a real structure a : 
A9 -> A9 that anti-commutes with the Clifford multiplication of vectors by spinors 
(see [11]): 

a(v - ifj) = -va(ip)    ,    vGE9,^GA^. 

The space A9 of real spinors is the fixed point set of a: 

A9 = {^ G A^ :     atyO = ^}. 

We introduce a new multiplication of vectors by spinors via the formula 

v-kip :— i(v - ip). 

Since a is a real structure, the ^-multiplication is compatible with a 

a(v*ip) — v*a(il)). 

In particular, the real spinor space A9 is invariant under the •-multiplication by 
vectors. In case we understand the vectors of M9 as operators on A9 acting by the 
•-multiplication, we will denote these vectors by /, J... G M9. Then we have 

(*) /•J + J*r=2<J,J),    /,J,GM9. 

Any vector / G M9 defines a symmetric endomorphism / : A9 -> A9 and, conse- 
quently, M9 is a subspace of the algebra S^Ag) of all symmetric endomorphisms. For 
convenience, we will often omit the * between the vectors /, J,... G M9. 

PROPOSITION 2. The group 5pm(9) consists of all products (-1)^/1/2 .. -hk G 
S'0(16) where /1,12,... ,/2& are vectors of length one in E9 . Moreover, the subgroup 
of SO(Ag) preserving under conjugation the space M9 C SQ^AQ) coincides with the 
group Spin(9), i.e., 

Spin(9) = {ge SO(A9) : g^g'1 - M9}. 

Proof. Consider the subgroup H = {g G 50(A9) : ^M9^-1 = E9}. Then we have 

Spin(9) CHC SO(Ag). 
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On the other hand, Spin(9) is a maximal nontrivial compact subgroup of 50(16) (see 
[6]). Consequently, we conclude Spin(9) = H. D 

Let us consider a 16-dimensional oriented Riemannian manifold M16 and denote 
by jr(M16) its frame bundle with structure group 50(16). 

DEFINITION. A Spin(9)-structure is a reduction 71 c jr(M16) of the 50(16)- 
bundle ^(M16) via the homomorphism KQ : Spin(9) —>• 50(16). 

A 5pm(9)-structure defines certain other geometric structures. In particular, it 
induces a spin structure on M16 as well as a 9-dimensional real, oriented Euclidean 
vector bundle V9 with spinor structure: 

V9 :— TZ xspin(9) R9. 

The tangent bundle T(M16) is isomorphic to the bundle A9(V
9) of real spinors of the 

vector bundle V9 and, therefore, we obtain a ^-multiplication of elements of V9 by 
vectors in T(M16). Conversely, a spin structure of M16, a real vector bundle V9 and 
a •-multiplication define a 5^in(9)-structure on M16 (see Proposition 2). Locally a 
5j9in(9)-structure is a collection of 9 symmetric involutions Ia (1 < a < 9) acting 
on the tangent bundle such that the following relations hold: 

I2
a = ld   ,    ra=Ia    ,    Ial0 = -I3Ia    (a#/?). 

A 5pin(9)-structure in dimension n = 16 is the analogue of a quaternionic structure 
on Riemannian manifolds of dimension n = 4k. The symmetric involutions /i,..., I9 

define 2-forms fta,/3 on ^16 locally by the formula 

nap(X,Y) = g(X,IaI0(Y)) - (IaJ0)g(X,Y),    X,Y e T(M16). 

The matrix ft = (flap) is an antisymmetric (9 x 9)-matrix of 2-forms. Using the 
antisymmetric involutions lalpl-y (a < /? < 7) we can define in a similar way 2-forms 
£a£7. Then 

holds and the 2-forms {Q.a(3, Sa/37} are linearly independent and a local frame in the 
bundle A2(M16). 

The 5pm(9)-representation A8(A9) = A8(M16) contains one and only one 8-form 
fio which is invariant under the 5pm(9)-action. This form defines the unique parallel 
form on the Cayley plane F^/Spini^). Since the signature of the Cayley plane is 
positive, VLQ must be self-dual, •fig = fi§. It induces a canonical 8-form O8 defined 
on a 16-dimensional manifold M16 with fixed 5pm(9)-structure (see [6]). 

3. Large subgroups of 5pm(9). The group Spin(S) admits an outer automor- 
phism of order three (the principle of triality, see [7], [16]). We use this automorphism 
to construct certain subgroups of Spin(9) which are all pairwise not conjugate. In 
general, for any subgroup H C Spin(9) we will denote by 

• A9 (H) the representation of H in the vector space M9; 
• Ag(H) the representation of H in the spinor space A9 = E16. 

Therefore, we assign to any subgroup H of Spin(9) a pair (AQ(H), Ag(H)) of H- 
representations. 
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EXAMPLE 1. In case of the standard inclusion Spin(8) C Spin(9) we have 

Ag(Spin(8)) = AgSE1    ,    A9(Spin(8)) = A£ © A^", 

where As is the standard representation of Spin(8) in M8 and Ag  are the real spin 
representations of Spin(8). 

EXAMPLE 2.    The kernel of the 8-dimensional real spin representation «g"  : 
Spin(8) -> 50(Ag*) is isomorphic to Z2: 

ker^J) = {l,ei -...-es}. 

Consider the diagram 

Spin(8) Spin(8) C        Spin (9) 

5pm(8)/ker(4)  50(A+) C 50(9) 

and lift the homomorphism 

Spin(8) -> 5pzn(8)/ker(«J) -> 50(A+) 

into the universal covering of 50(Ag"). Then we obtain a subgroup Spin+(8) C 
Spin(9) isomorphic to Spin(8). In this case we have 

A9(5pm+(8)) = A+ © E1    ,    A9(5pm+(8)) = Ag" © A^. 

Indeed, the representation A9 splits under the action of the group Spin+(8) into two 
8-dimensional irreducible representations. Moreover, the element ei •... -eg £ Spin(8) 
corresponds to the element (—1) € Spin+(8) C Spin(9) and, consequently, ei ■... • eg 
acts on A9 by multiplication by (-1). Therefore, we conclude that 

A9(5pm+(8)) = A^ © A^". 

EXAMPLE 3. The kernel of the 8-dimensional real spin representation K% : 
Spin(8) -> SO(AQ) is isomorphic to Z2 

ker(^) = {1,-ei -...•eg} 

and a construction similar to example 2 defines a subgroup Spin~(8) C Spin(9) 
isomorphic to Spin(8) such that 

A9(Spin~(8)) = A~ © M1    ,    A9(Spin-{8)) = A % © A+. 

EXAMPLE 4. The group 5pm (7) has a 7-dimensional real irreducible represen- 
tation in E7 and an 8-dimensional real irreducible and faithful representation in the 
space A7 of real spinors. Lifting these two representations into Spin(9) we obtain two 
subgroups Spin{7) and Spinal) of Spm{9) such that 

A9(Spin(7)) = A7 © E1 © E1    ,    A9(Spin(7)) = A7 © A7, 
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A9(SpinA(7)) = A7 © M1    ,    ^g(SpinA(7)) = A7 0 A7 0 M1. 

135 

The subgroup Spin(7) is, in fact, already contained in Spin(8). Consequently, we can 
once again apply the automorphism of the triality principle and obtain a total of 3 
subgroups of Spin(9), which we will denote by Spin+(7),Spin~(7),SpinA(7). 

EXAMPLE 5. We intersect the subgroup Spin(9) c 50(16) with the subgroup 
U(8) C 50(16). It turns out that Spin(9) Pi J7(8) is isomorphic to the group 
Spin(2) Xz2Spin(7) and 

A9(Spin(9) H [7(8)) = R2 0 A7    ,    A9(5pm(9) n U(8)) = M2 0 A7. 

Table 1 summarizes the decomposition of the representations A9 and A9 for all these 
subgroups. 

H MH) A9(if) 

Spin (8) As 0 M1 A+0A8- 

Spin+(8) Aj 0E1 A" 0 A8- 

Spin-{8) A^" 0E1 A+0A+ 

Spin(9) fl 17(8) E2 0A7 E2 (g)A7 

Spin(7) Ay 0 E1 0 E1 A70A7 

Spin A (7) A70E1 A7 0 A7 0 E1 

Spin+(7) A70E1 A70A7 

Spin-{7) A70E1 A70 A7 

G2 A7 0 E1 0 E1 A7 0 A7 0 E1 0 E1. 

Table 1: Large subgroups of Spin(9) and the branching of the standard and spin 
representation of Spin(9). 

Since the subgroup SpinA(7) C Spin(9) is the isotropy group of a spinor in A9, we 
have 
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PROPOSITION 1. Let M16 be an oriented Riemannian manifold admitting a non- 
vanishing vector field. Then M16 admits a Spin(9)-structure if and only if M16 admits 
a S'pin A (7) -structure. In case M16 admits two independent vector fields, the existence 
of a Spin(9)-structure is equivalent to the existence of a G2-structure. 

4. Examples of Spm(9)-structures. A 5pm(9)-structure on a 16-dimensional 
Riemannian manifold occurs in case the frame bundle admits a reduction to a sub- 
group of Spin(9) C 50(16). We describe two cases of a geometric situation of this 
type. First, we will construct examples of homogeneous spaces with invariant Spin(9)- 
structures. Consider a Lie group G, a subgroup H C G and suppose that the homo- 
geneous space G/H is reductive. We decompose the Lie algebra Q of G into 

9 = I) © n, 

where the subspace n is >l<i(i7)-invariant. If H is a subgroup of Spin(9) and the 
iJ-representations AQ(H) and Ad : H -> 50(n) are equivalent, then the space G/H 
admits a homogeneous 5pin(9)-structure. Indeed, the frame bundle Tifi/H) given 
by 

HG/H) = GxAdSO(n) 

admits a iJ-reduction and the subgroup H is contained in Spin(9). This general 
remark yields the following examples of 16-dimensional manifolds with homogeneous 
5pm(9)-structures. 

EXAMPLE 1. Take G = F4 or F4* and H = Spin(9). Then the symmetric spaces 
F4:/Spin(9) and F^/Spin(9) admit homogeneous 5pin(9)-structures. 

EXAMPLE 2. Consider the subgroup H = Spin&{7) C Spin(9). Then we have 

A9(SjpmA(7)) = A7 0 A7 0 M1. 

On the other hand, Spin(9) acts transitively on the sphere 5(A9) = 515 with 
isotropy group Spin/\(7). The isotropy representation of the homogeneous space 
Spin{9)/Spinal) is isomorphic to A7 0 A7. Consequently, the pair of groups 

G = 51 x Spin(9)    ,    H = SpinA(7) 

defines a homogeneous 5pmA (7) C 5pzn(9)-structure on the manifold G/H = 51 x 
515. 

EXAMPLE 3. Consider the pair 

G = 51 x 51 x 50(8)    ,    F = G2, 

where G2 denotes the exceptional Lie group embedded into 50(7) C 50(8). The 
isotropy representation of this homogeneous space is isomorphic to E1 0 M1 0 A7 0 A7 
and coincides with the O2-representation A9(G2). Consequently, the homogeneous 
space 

G/H = 51 x 51 x (50(8)/G2) 

admits a homogeneous G2 C 5pm(9)-structure. 

EXAMPLE 4. The group H = 5/7(3) is the isotropy group of a pair of real 
spinors in A7 and, henceforth, a subgroup of 5pm(7) C Spin(9). Consider the group 
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G = S1 x S1 x 51 x Spin(7). The isotropy representation of the homogeneous space 
G/H is isomorphic to M1 © E1 0 R1 0 M1 © E6 0 E6 and coincides with the H 
representation Ag(SU(3)). Consequently, the homogeneous space 

G/H = S1 x S1 x S1 x (Spin(7)/SU(3)) 

admits a homogeneous SU(3) C 5pin(9)-structure. 

EXAMPLE 5. The pair G = 517(5)' , H = SU(S) defines a homogeneous 
SU(S) C 5pm(9)-structure on 

G/H = SU(5)/SU(3). 

The second situation in which a 5'pin(9)-structure occurs in a natural way is the case 
where the tangent bundle of M16 splits in a suitable way. 

PROPOSITION 1. Let M16 be a 16-dimensional oriented Riemannian manifold 
and suppose that there exist a 4-dimensional complex vector bundle E^ as well as a 
complex line bundle L such that 

1. ci(£4) = 0      in     i72(M16;Z); 
2. the tangent bundle T(M16) is,  as a real vector bundle, isomorphic to the 

Whitney sum L 0 (E* 0 E4). 

Then M16 admits a Spin(9) fl U(S) C Spin(9)-structure. 

Proof. Since 517(4) is isomorphic to Spin(6): the tangent bundle of M16 admits a 
Spin(2) Xz2 Spin(6) C Spin(9) D C/(8)-reduction. The representation A9(5pm(6)) = 
AQ(SU(4)) is then isomorphic to the standard representation of 5C/(4) in C4 0 C4. D 

PROPOSITION 2. Let M16 be a 16-dimensional oriented Riemannian spin mani- 
fold. Suppose that there exists a 8-dimensional real vector bundle Ws with Spin(7)- 
structure such that the tangent bundle T(M16) is isomorphic to W8 0 W8. Then M16 

admits a Spin(7) C 5pm(9)-structure. 

Proof. Consider the subgroup H — Spin(7). Then we know already that Ag(H) = 
Ay 0 Ay holds. D 

Let Nk be an arbitrary manifold and consider the projection TT : T(Nk) —> Nk of 
its tangent bundle. The bundle T(T(Nk)) is isomorphic to the sum of the induced 
bundles 7r*(r(A/'A;)) 0 7r*(T(Nk)). This isomorphism is not a canonical one, but de- 
pends on a fixed linear connection on the manifold Nk. Therefore, we obtain the 
following 

COROLLARY 1. Let N8 be an oriented, 8-dimensional Riemannian manifold with 
a Spin{7)-structure. Then the tangent bundle M16 = T(N8) admits a Spin(7) C 
Spin (9) -structure. 

COROLLARY 2. Let N8 be an 8-dimensional Hermitian manifold with first Chern 
class divisible by 4- Then the tangent bundle M16 = T(N8) admits a Spin(9)r\U(S) C 
Spin(9) -structure. 

5. Topological conditions. A 16-dimensional compact manifold with Spin(9)- 
structure should satisfy certain topological conditions. Some of them have already 
been studied in the paper [16] and we will first summarize these results. 

THEOREM 1 (see [16]). Let M16 be a compact manifold admitting a Spin(9)- 
structure and denote by V9 the associated 9-dimensional bundle. 
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1. The following Stiefel-Whitney classes of M16 vanish 

LJl = LJ2 = ^3 = ^4 — ^5 — ^6 = ^7 = 0? 

^9 = VlO = Mil = ^13 = 0. 

2. The Stief el- Whitney classes of M16 are related to the corresponding classes 
of V9 by the formulas 

UJS(M
16

)=UJI(V
9
)+LJ8(V

9
) 

UJ12(M
1Q

)=U;1(V
9
)+U;4(V

9
)U;8(V

9
) 

uJu(M16)=u2
7(V

9)+uJe(V9)uJs(V9) 

u;15(M
16)=u;7(V

9)u;s(V9). 

3. In case H*(M16]Z) is 2-torsion free, the Pontrjagin classpi(M16) is divisible 
by 4 and the Pontrjagin classes p2(M16), ps(M16) are divisible by 2. 

Since the first seven Stiefel-Whitney classes of M16 vanish, the Wu class of M16 

reduces to the element ^(Af16) G if8(M16;Z2) (see [19]). Consequently, the Stiefel- 
Whitney class ^(M16) is characterized by the condition 

y8 u ys = y8 U u;s(M16)    for any y8 G i^8(M16; Z2). 

COROLLARY 1. Let M16 be a compact manifold admitting a Spin(9)-structure. 
Then the quadratic form over TL 

iJ8(M16;Z)/T0rxJer8(M16;Z)/Tor->iJ16(M16;Z) 

is an even Z-form if and only if (jj$(M16) = 0. 

The aim of this part of the paper is to compute the Pontrjagin classes of M16 explicitly 
in terms of the corresponding classes of the vector bundle V9. Some new integral 
conditions are consequences of these formulas. 

THEOREM 2. Let M16 be a compact manifold admitting a Spin(9)-structure. 
Then the Pontrjagin classes of M16 and of the bundle V9 are related by the following 
formulas: 

l.p1(M
16) = 2p1(V°). 

2.p2(M™) = lpi(V9)-p2(V»). 

3. P3(M16) = |(7p?(79) - nnty*)^) + 16p3(V9)). 

4. PA{M
W

) = ^{zhp\{v^) -i20p?(v9)p2(y
9) + 400p1(y>3(O 

-1664p4(^9))- 

The Euler class e(M16) and the the fourth L-polynomial of M16 can be expressed by 
the Pontrjagin classes of the bundle V9: 

• KM16) = ^-6P1(V9) - ±pl(V9)p2(V
9) + lp!(V9) - iftd*). 

• L4(Ml6) = 18li40o(3551^(y9) " 21208^(y9)^(^9) 

+116048Pi(V9)p3(V
9) - 128(19pi(y9) +4953p4(^9))). 
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The bundle V9 is a real vector bundle with spin structure. The general formula 

Pi(Vg) = LJ%(V
9
) = Q    mod 2 

yields that pi(V9) is divisible by 2. In particular, we obtain the 

COROLLARY 2. Let M16 be a compact manifold admitting a Spin(9)-structure. 
Then, 

1. pi(M16) is divisible by 4- Denote by x the cohomology class pi(M16)/4. 

2. ^(ps(M16) — Sxp2(M16)) is an integral cohomology class. 

3. ^xA- fj?p2(M16) + f xp3(M
16) - P4(A/16) is divisible by 13. 

Proof of Theorem 2. Consider the 9-dimensional spin representation 

«9 : Spm(9) -► SO(A9) 

and fix maximal tori T4,T8 in 50(9) and SC^Ag). We denote by G^ : T4 -+ S1 (1 < 
i < 4) and by /j,a : T8 -> 51 (1 < a < 8) the coordinates of the maximal tori. Then, 
the representation Kg has the following weights: 

/Xl = i(01+e2 + 03 + 04)      , ^2 = ^(01+02 + 03-04) 

^3-^(01 + 02-03 + 04)      , /i4- ^(01 "02 + 03 + 04) 

M5 = ^(-©1 + ©2 + ©3 + ©4)   , ^6 = ^(©1 + ©2 " ©3 " ©4) 

/i7= ^(©l -02 + ©3 -04)      , Ai8 = ^(-©1 +02 + 03 "64) 

The first Pontrj agin class pi(M16) is given by 

a=l z=l 

This calculation proves the first formula of Theorem 2. For the second Pontrjagin 
class we obtain 

1<Q;</3<8 i=l l<i<j<4 

The formulas 3.) - 5.) can be computed in a similar way, however the calculations 
of ps, p4 are much more lengthly. The last formula is a consequence of the first four 
formulas and the formula for the L4-polynomial 

£4 = 34^27(381P4 - 71P3P1 - 19pl + 22P2PI - 3p4), 

(see [18], page 25). D 

EXAMPLE. Let M16 be a smooth complete intersection of three quadrics in 
P11(C). Then the diffeomorphism type is unique and M16 is a simply-connected mani- 
fold (see [24]). Denote by x E jff^P^QjZ) the generator of the second cohomology 
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group. The Stiefel-Whitney, Chern and Pontrjagin classes of M16 are well-known (see 
[18], page 159): 

uji — 0    for i ^ 8,  us = £4 

ci = 6x        ,    C2 = 18x2     ,    cs = 32x3     ,    C4 = 39x4 , 

C5=30x5     ,    C6 = 20x6     ,    cr^O ,    C8 = 15x8, 

p1=0 ,    p2 = 18x4     ,    p3 = 60x6     ,    p4=351x8. 

The inclusion M16 -> P11(C) induces an isomorphism i^(M16;Z) -> iJi(P
11(C);Z) 

for i < 8 (see [23]). In particular, x G H2(M16]Z) is a generator of the second 
homology group of M16 and x4 E if8(M16;Z) is not divisible. A calculation of the 
Euler class as well as the signature yields the equality 

^(M16) _ 5 
<T(M

16
) ~ 3" 

In particular, M16 satisfies all the necessary conditions for the Pontrjagin classes 
formulated in Corollary 1 and Corollary 2. Therefore, complete intersections of 
three quadrics in P11(C) are candidates of compact 16-dimensional manifolds ad- 
mitting 5pin(9)-structures. However, a Spzn(9)-structure compatible with the com- 
plex structure on M16 cannot exist. Indeed, since Spin(9) fl U(8) is isomorphic to 
Spin(2) Xz2 Spin(7) and Spin(7) is contained in the subgroup SU(8) C 50(16), 
such a structure would define a product decomposition of the complex tangent bun- 
dle T(M16) into T(M16) = L <g> F8, where L is an complex line bundle and F8 is 
an 8-dimensional complex vector bundle with vanishing first Chern class, Ci(F8) = 0. 
Then the first Chern class of M16 is divisible by 8, Ci(M16) = 8ci(L), a contradiction. 

These formulas become much simpler in case pi(M16) = 0 vanishes and the scalar 
curvature it! > 0 is positive. 

COROLLARY 3. Let M16 be a compact 16-dimensional Riemannian manifold with 
Spin(9) -structure and suppose that the scalar curvature R > 0 is positive. Moreover, 
letp^M16) = 0 be trivial  Then, 

1. the signature <T(M
16

) is given by the formula 

KM16) = -\ I p4(V
9) = ±J P4(M16). 

M16 M16 

2. in tf*(M16;Q) the formulas ^(M16) = -p2(V9), psiM16) = 2p3(V
9) md 

p4(M
16) = -13p4(y

g) hold. 

3. the equality 13^(M16) = l2pA{M
lQ) holds. 

4. the Euler class is given by e(M16) = ^(pUV9) -4:p4(V
9)) = ±p4(Mie). In 

particular, we obtain e(M16) = 3cr(M16). 

Proof of Corollary 3. M16 does not admit harmonic spinors, and, consequently, 
the ^4-genus vanishes. Since pi(M16) = 0, the ^4-genus is a combination of two 
characteristic classes only: 

A = Apl + Bp4. 
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A and B are universal coefficients. In the case of the Cayley plane M16 = F4/Spin(9), 
we know that 

pi = 36    ,    p4= 39, 

(see [5]). Consequently, the ratio A/B equals —1| and, finally, we obtain the equation 

39^(M16) = 36p4(M16) 

for any manifold M16 under consideration. The signature of M16 is given by 

a(M16)= j U ="14^5 /(19pi(V9) + 4953p4(0) 
M16 M16 

= -^ / (19pi(M16) + 4953Pi{V
Q)) 

M16 

hi (19-|P4(M16)+4953P4(T/9)) 

14175 
M16 M16 

6. The homotopy type of the space S'pin(16)/Spin(9). A necessary and 
sufficient criterion for the existence of a Spin(9)-structure does not seem to be known. 
The classifying space of the group Spin (9) is a fibre bundle over the classifying space 
of Spin(16) with fibre X84 = Spin(16)/Spin(9). Therefore, the homotopy type of 
X84 yields obstructions for the existence of a Spin(9)-structure on a 16-dimensional 
real vector bundle. We compute some of the homotopy groups of this space. 

THEOREM 1. 

1. TT^X
84

)   -   7r2(X
84)   -  7r4(X84)   -  TTS(X84)   -  7r6(X

84)   =  7r7(X
84)   = 

2. 7r3(X84) = Z4    ,  7r12(X
84) = 7ri4(X84) = Z2. 

3. There is an exact sequence 

0 -> 7rio(X84) -> Z2eZ2 -> Z2 -> ^(X84) -> ZsQZs -> Z2 -> ^(X84) -+ 0. 

^.  T/iere is a surjective homomorphism 7rii(X84) —>- Zs- 

Using this result as well as the condition for the first Pontrjagin class discussed 
before we immediately obtain the following 

COROLLARY. Let Y be an 8-dimensional CW-complex. A real, oriented Id- 
dimensional vector bundle over Y admits a Spin(9)-structure if and only if its first 
Pontrjagin class is divisible by 4- 

Proof of the Theorem. We apply the exact sequence of homotopy groups of the 
fibration 

Spin{9) -» Sjpm(16) -> X84. 

Since 7ri2(S'pm(16)) = 7ri3(£pm(16)) = 7ri4(5pm(16)) = 0, we obtain 

7ri4(X84)=7ri3(Spin(9))=Z2, 
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7r13(X
84)=7ri2(Spin(9)) = 0, 

(see [20]). Next we use the fact that 7ri2(Spin(16)) = 7rio(5pm(16)) = 0. Then, we 
obtain the exact sequence 

0 -► 7r12(X
84) -+ 7rii(Spin(9)) -+ 7rii(5pm(16)) -> TTH^

84
) -> 7rio(5pzn(9)) -+ 0. 

But 7rii(5pm(9)) = Z © Z2, 7rio(5pzn(9)) = Zg and 7rii(5pin(16)) = Z (see 
[20]). Consequently, we obtain irwiX84) — Z2 as well as a surjective homomorphism 
7rii(X84) —> Zs- The other statements of the theorem are easy consequences of the 
following two facts, which we are going to prove now: 

a.) The homomorphism induced by the inclusion ^9 : Spin(9) -» Spin(16) 

M# : 7r3{Spin(9)) = Z -> Z = 7r3(5pm(16)) 

is the multiplication by 4; 
b.) The inclusion ^9 induces an isomorphism 

(tt9)# ' 7r7(Spin(9)) ->• 7r7(5pm(16)). 

Indeed, consider the subgroup Spin(S) C Spin(9). The homogeneous space 
Spin(9)/Spin(3) is the Stiefel manifold ^(M9) and its homotopy groups are well- 
known: 

7r3(y3(E9))=7r4(y3(M9))-0. 

Therefore, the inclusion induces an isomorphism 7r3(5pin(3)) -> 7rs(Spin(9)). Since 
A9(Spin(7)) = 2A7, we can calculate AQ(Spin(S)) by restricting the 7-dimensional 
spin representation A7 to Spin(3). But this restriction coincides with 

A7|Spm(3) = C2 ©C2, 

where Spin(S) = SU(2) C'50(4) acts on C2 in the usual way. Finally, we obtain a.). 

The proof of the property b.) is more sophisticated and uses some results of [10]. 
Consider the subgroup 

Spin(7) ^ Spinal) C Spin{9). 

Since Spin(9) acts transitively on 515 with isotropy group Spin&(l), the homomor- 
phism 

7r7(SpinA(7)) -* 7r7(5p2n(9)) 

is an isomorphism. Because of Ag(SpinA(7)) = A7 © A7 © E1 we should study the 
map 

Spin(7) -> SO{A7) © 50(A7). 

Let i : Spin(7) -> Spin(8) be the inclusion and denote by H : Spin(8) -> Spin(8) 
the triality automorphism. The 7-dimensional spin representation ^7 is given by 
«7 = Hoi. Denote by p : Spin(8) —^ 57 the projection and fix a generator 0:7 E 
7r7(Spin(7)) = Z. Moreover, we choose generators 61,62 € 7r7(Spin(8)) = Z © Z such 
that 
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1.) P#(ei) = e is a generator of the group 7r7(57); 
2.) i#(a7) = 62. 

There are elements a,/?,7 € 7r7(Spin(8)) with the following properties (see [10], page 
152-155): 

a.) 7 = a - /?; 
b.) a = ei + xe21    (3 = —ei + 2/62,    7 = 2ei + (x — ?/)e2    where x,y G Z are 

integers; 
c.) The   element   7   maps   into   0 G ^{Spin^))   via   the   homomorphism 

7r7(5pm(8)) -> 7r7(5pm(9)); 
d.) The triality homomorphism acts on 7r7(Spin(8)) via the following formulas: 

H#{a) = -I3    ,    ^(i8)=7    ,    H#(<y) = -a. 

Let 

^#- B    D 

be the matrix of H# : 7T7(Spin(S)) -> 7T7(Spin(S)) with respect to the basis 61,62- 
Then, condition d.) is equivalent to the system of six equations: 

A + xC = l    ,    -A + yC = 2    ,    2A + {x-y)C = -l 

B + xD = -y    ,     -B + yD =x-y    ,     2B + (x-y)D =-x. 

We solve this system: 

1 + A + A2 A AB-B 2B + AB 
O  — zr        ,       U — — 1 

B ' ' 1 + A + A2    '    *        1 + A + A2 

and, in particular, we obtain 

x-y = C-1(l + 2D). 

Consequently, we have 7 = 2ei 4- C_1(l + 2D)e2- On the other hand, 7 = 0 
in 7r7(Spin(9)), and, therefore, we conclude that 2ei = — Cf_1(l + 2D)e2 holds in 
7r7(Spin(9)). This implies H^fa) = Cei 4- Z}e2 = —^62 in ^(^^^(Q)). This equa- 
tion implies that the homomorphism 

M# : ir7(Spin(7)) -> 7r7(50(A7)) -> 7r7(5pm(9)) 

maps the generator a7 G 7r7(Spin(7)) into (—ag), where ag G 7T7(Spin(9)) is the 
generator of 7r7(Spin(9)). The inclusion Spin(7) -> Spin(9) induces the map a7 -> 
20:9. Indeed, the homotopy group 

7r7{Spin(9)/Spin(7)) = ^7(^2,9) = ^2 

is isomorphic to Z2. Finally, we conclude that the map 

Spin(7) -4 SO(A7) © SO(A7) C 50(16) 

induces an isomorphism on TTJ. D 
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7. The decomposition of Spin (^-representations. Let us once again recall 
the notation. An orthonormal basis in E9 is denoted by /i,..., J9. Via the modified 
Clifford multiplication • (see Section 2) the vectors Ia (1 < a < 9) are symmetric 
involutions acting on the space A9 = E16: 

I2
a=ld    ,    ra=Ia    ,    U(3 = -I(3la    (a^0). 

The group Spin(9) acts on the space AA;(E9) 0 A9 of spinor valued fc-forms in E9. 
The decomposition into irreducible components of this space is well-known (see [25]). 
Let us introduce the endomorphisms 

efc: : Afc(R9)®A9-» Afc+1(M9)®A9, 

e^; :Afc(E9)®A9-^ A^i^VAo, 
by the formulas 

efc(a >* ® tp) = 
a=l 

ALJk)®(Ia*(p), 

©^ <
k ® ip) = 

9 
---}](laju,k)®(la*<p) 

a=l 

and denote by Pr the kernel of the map 0*. In particular, PQ is the spinor space 
Po = A9 and Pi is the kernel of the Clifford multiplication A^E9) <g> A9 -> A9. The 
decomposition of the spaces A^E9) 0 A9 is given by the formulas (see [25]) 

A*(E9)®A9= ]r 0fc_1o...o0r(Pr). 
0<r<min(fc,9-A;) 

Moreover, @k-i o ... o 0r : Pr —> ©^-i o ... o 0r(Pr) is an isomorphism of Pr onto 
the image. We apply this decomposition in the cases of k = 1,2,3: 

1. A^E9) 0 A9 splits as a 5pm(9)-representation into 

A1(E9)(g)A9-0o(Po)ePi =Po©Pi = Age Pi] 

2. A2(E9) 0 A9 splits as a Spm(9)-representation into 

A
2
(E

9
) 0 A9 = 0i0oCPo) e 01 (Pi) 0P2 = A9 ePi © P2; 

3. A3(E9)0 A9 splits into 

A
3
(E

9
) 0 A9 = A9 © Pi e P2 e P3- 

The dimensions of the representations Pr are given by: 

dim Po = dim A9 = 16    ,    dim Pi = 128 ,    dim P2 = 432 ,    dim P3 = 768. 

We decompose now the space A2(A9) = A2(E16) = so(16) as well as A3(A9) into 
irreducible 5pin(9)-components. It turns out that only two components occur and 
these decompositions can be obtained in an elementary way. 

PROPOSITION 1.  Under the action of the group Spin(9) the spaces AP(A9) (p = 
2,3) decompose into two irreducible components: 

A2(A9) = A2(E9) 0 A3(E9)    ,    A3(A9) = Pi 0 P2. 
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Proof. We define an equivariant injection 

A2(E9)—+A2(A9) 

by the formula 

l<ai<a2<9 l<ai<a2<9 

Since (/ai/a2)* = I^I^ = Ic^I^ = -la^a^, this map has values in the space 
A2(A9) of all antisymmetric endomorphisms of Ag. In a similar way we can define an 
injection A3(M9) ->- A2(A9) and, consequently, we have decomposed A2(A9). A3(A9) 
is the surjective image of the space 

A9 0 A2(A9) = A9 0 A2(M9) 0 A9 (8) A3(M9) = 2Po 0 2Pi 0 2P2 0 P3. 

Therefore, A3(A9) is a combination 

A3(A9) = A • Po + B • Pi + C • P2 + JD • P3 

where the integers A,B,C < 2 are bounded by two. Inserting the dimensions of 
the representations we immediately obtain that (A,B,C,D) = (0,1,1,0) is the only 
possible solution. D 

The decomposition of the Spin ((^-representations AP(A9) for p > 4 is much more 
complicated and has been computed by I. Agricola (see [1]). We will use this result 
in the next section in an essential way. 

THEOREM 1 (see [1]). The Spin(9) -representations A^Ag) are multiplicity-free. 
In particular, the representation A7(A9) decomposes into 

A7(A9) = A9 © P1 + P2 + P3 + .... 

COROLLARY 1. Let L : Ag -> A7(A9) be a linear Spin(9)-equivariant map. Then 
there exists a constant C such that 

L(x) = c(xjn8
0) 

holds for any X G Ag, where QQ £ A8(A9) is the unique Spin(9)-invariant 8-form on 
A9. 

If the 16-dimensional manifold M16 admits a Spm(9)-structure TZ C ^(M16) 
with associated real vector bundle V9, we will denote by Pr(^9) the associated vector 
bundles 

rr(v9) = nxSpin{9)pr. 

The following bundle isomorphisms are consequences of the decompositions of the 
Spm(9)-representations. 

PROPOSITION 2: Let M16 be a 16-dimensional Riemannian manifold with a fixed 
Spin(9)-structure. The following bundles are isomorphic: 

1. A1(M16)0A1O/9)-A1(M16)eP1(y
9); 
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2. A^M16) 0 A2(y9) = A^M16) 0 PiO/9) 0 V2{VQ); 
3. A1(M16)0A3(y9)=A1(M16)0P1(y

9)eP2(F
9)©^3(^9) ; 

I A2(M16) = A2(y9)eA3(y9); 
5. A3{M16) = V1(V

9)(BV2{V9). 

In a similar way we can study the 16-dimensional spin representations A^ as 

Spm(9)-representations. The element ei • .. .eie belongs to the subgroup Spin(9) C 
5pm(16) and acts on Af6 by multiplication by (±1). Consequently, A^6 is a 50(9)- 
representation, but Aj"6 is a Spin(9)-representation. Both representations do not 
contain non-trivial elements that are invariant under the 5pin(9)-action. Indeed, a 
5pm(9)-invariant element in Af6 would define a parallel spinor on the Cayley plane 
F4/Spin(9). Since the Ricci tensor of this space is not zero, the spinor must vanish. 
Using these properties of the 5pm(9)-representations Af6 it is not hard to check that: 

1. Afg is, as a 5pm(9)-representation, isomorphic to 5o(M9) 0 A3(E9), where 
5o denotes the space of traceless symmetric 2-tensors on E9. 

2. Aj~6 is the unique irreducible 5pm(9)-representation of dimension 128. 

This discussion yields the 

PROPOSITION 3. Let M16 be a 16-dimensional Riemannian manifold with a fixed 
Spin(9)-structure. Then the spinor bundle 5+(M16) of M16 is isomorphic to 

S+(M16) = 52(y9)0A3(V9). 

8. The geometry of 5pm(9)-structures. In this section we introduce the 16 
different types of weak geometric 5pm(9)-structures. For this purpose, we will briefly 
recall how the different geometric classes of weak G2-structures arise (weak geometric 
£/(n)-structures can be treated in a completely similar way). Then we reformulate 
this scheme in a purely bundle theoretic way and use this approach to motivate the 
geometric types of weak 5pm(9)-structures. 

So, consider a 7-dimensional Riemannian manifold (M7,p) and a 3-form u3 of 
general type. This form defines a G2-reduction 71 of its frame bundle ^(M7). Fur- 
thermore, its covariant derivative Vu;3 is a section in the bundle T*(M7) <g) A3(M7) 
with special symmetry properties. Under the GVaction, this space splits into 4 irre- 
ducible components, thus leading to 16 different geometric types of weak GVstructures 
(see [9]). Now we change the point of view. Denote by Z : T(Jr(M7)) -> so(7) the 
Levi-Civita connection of M7. We decompose the Lie algebra into 

00(7) = g20m, 

when m = M7 is the orthogonal complement of ^2 inside 50 (7). The representation 
of G2 on m is just the 7-dimensional standard representation of G2. Given a G2- 
structure defined by a subbundle 71 C ^(M7), we restrict Z onto 71 and decompose 
it: 

Z\n - z* 0 r. 

Thus Z* : T(7Z) -> Q2 'ls a connection in the G2-principal fibre bundle 71 and F is a 
1-form on M7 with values in the associated vector bundle 

71 xG2 m = 11 xG2 M7 = T(M7). 
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Denote by p^ the representation of 50(7) on A3(E7). Then the covariant derivative 
Vo;3 is given by 

Vu,3 = 0,(r)(u;3). 

Consider now the G2-equivariant map 

R7(8)M7 ^M70A3(M3) ,    X®Y ^ X ® {pz{Y)u*). 

The crucial point is that this map is injective. Consequently, the GVtype of Vo;3 is 
uniquely determined by the G2-type of T G A^M7) <g> T(M7). Since E7 (g) E7 splits 
again into 4 summands, we reobtain the previous 16 classes of weak geometric G2- 
structures, and may view this as an alternative, but completely equivalent definition of 
these structures. The advantage of this approach is that the form CJ

3
 does not appear 

any more in the definition and can thus be used, in our situation, for defining weak 
5pm(9)-structures in 16 dimensions. Let (M16,^) be an oriented, 16-dimensional 
Riemannian manifold and fix some 5pin(9)-structure TZ C T(M16). We decompose 
the Lie algebra so(16) into 

so(16) = spin(9) em. 

Using the symmetric operators /a  : E16  —> E16 we know that IaIp and lalpl-y 
{a < (3 < 7) are antisymmetric. The Lie algebra 5pin(9) is spanned by the elements 
lalp € A2(E16) and the operators lalplj form a basis of the orthogonal complement 
m: 

spin(9) = Lm(IaI/3 :     a < 0) 

m = Lm(IaIpI7 :     a < f3 < 7). 

The 5pm(9)-representation Ad in the complement m is equivalent to the representa- 
tion A2(E9). The Levi-Civita connection of the Riemannian manifold is a 1-form on 
^(M16) 

Z : T(JF(M16))-> 50(16) 

with values in 50 (16). We restrict the connection form to the 5pin(9)-structure and 
decompose it with respect to the decomposition of the Lie algebra 50 (16) into 

Z\n = z* © r. 

Then, Z* is a connection in the principal 5pm(9)-fibre bundle TZ, and T is a tensorial 
1-form of type Ad. Therefore, T is a 1-form defined on M16 with values in the 
associated bundle 

ft X 51*1(9) m = n XSpin(9) A3(E9) = A3(F9). 

In case F = 0, the Riemannian manifold has a holonomy group contained in 5pm (9) 
and a classical result of Alekseevski/Brown/Gray (see [2], [6]) states that M16 is either 
flat or isometric to one of the symmetric spaces F^/Spin^) or F£/Spin(9). On the 
other hand, A1 (M16)(g)A3 (V9) splits into 4 subbundles (see Section 7). From this point 
of view we obtain 16 classes of "weak Spm(9)-structures" depending on the algebraic 
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type of F. In this paper we will only study one class of these 5pm(9)-structures. The 
splitting 

A^M16) 0 A3(T/9) - A^M16) 0 VxiV9) 0 TM^9) 0 V3(V
9) 

is the background for the following 

DEFINITION.  A Spin(9)-structure on a 16-dimensional Riemannian manifold is 
called nearly parallel if F is a vector field. 

The inclusion A^M16) C A^M16) <8> A3(V9) C A^M16) <g> A2(M16) is given by 
the formula 

r —»• 6    J2    W°V) ® VaW 
1<Q;</3<7<9 

and, therefore, in case of a nearly parallel 5pm(9)-structure this sum coincides with 
the difference Z — Z* of the two connections. Since the Levi-Civita connection is a 
torsion free connection, we obtain the following formula for the torsion tensor T* of 
the connection Z* 

T*(X, Y) = 6      Y,       {g^JabIi{X))IaIffI^Y) - girjalpI^YVUpI^X)]. 
l<a</?<7<9 

X, Y G T(M16) are vectors tangent to M16. In particular, we have 

g(T*(X,Y),r)=0. 

Fix a local section (ei,...,ei6) in the reduction TZ  C  ^"(M16) and denote by 
a1,..., a-16 the dual frame. Then the 1-form 

l<a</3<7<9 

with values in A2(M16) is given by the (16 x 16)-matrix (F = eie): 
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0 2o-15 -2.14 -2.13 2.12 2.11 -2.10 -2.9 -.8 
-.7 .6 

.5 -.4 -.3 .2 7.1 

-20-1* 0 2.13 -2.14 -2.11 2.12 2.9 -2.10 .7 -.8 
-.5 .6 

.3 -.4 -.1 7.2 

2(r14 -.13 0 -2.15 2.10 -2.9 2.12 -2.11 -.6 
.5 -.8 

.7 -.2 .1 -.4 7.3 

2<T13 2.14 2.15 
0 -2.9 -2.10 -2.11 -2.12 -.5 -.6 — .' -.8 .! .2 0.3 7.4 

-2.12 2.11 -2.1° 2.9 0 -2.15 2.14 -2.13 .4 -.3 
2 -.! -.8 

.7 -.6 7.5 

-2.11 -2.12 2.9 2.10 2.15 0 -2.13 -2.14 .3 .4 -.1 -.2 -.7 -.8 
.5 7.6 

2<71
0 -2.9 -2.12 2.11 -2.14 .13 0 -2.15 -.2 .1 .4 -.3 .6 

-.5 -.8 
7.7 

2.9 2.10 2.11 2.12 2.13 2.14 2.15 0 .1 .2 .3 .4 .5 .6 .7 7.8 

a8 -.7 
a6 .5 

-.4 -.3 
.2 -.1 0 0 0 0 0 0 0 4.9 

a7 .8 -.5 .6 
.3 -.4 -.1 -.2 0 0 0 0 0 0 0 4.10 

-.6 .5 
.8 .7 

-.2 .1 -.4 -.3 0 0 0 0 0 0 0 4.11 

-.5 -.6 -.7 .8 
.1 .2 .3 -.4 0 0 0 0 0 0 0 4.12 

<T4 -.3 ^.2 -.1 0-8 0.7 -.6 
-.5 ■ 0 0 0 0 0 0 0 4.13 

<r3 .4 
-.1 -.2 -.7 .8 

.5 -.6 0 0 0 0 0 0 0 4.14 

-<r2 .! .4 -.3 .6 
-.5 .8 

-.7 0 0 0 0 0 0 0 4.15 

-7.1 -7.2 -7.3 -7.4 -7.5 -7.6 -T.7 -7.8 -4.9 -4.10 -4.11 -4.12 -4.13 -4.14 -4.15 0 

Let us explain the representation of the endomorphisms Ia we used here. Denote 
by Eij £ 50(8) the standard basis of the Lie algebra 50(8) and consider the real 
representation of the 7-dimensional Clifford algebra (see [3]): 

ei =    #18 + E27 — ESQ — £45 

62 = —En + E28 + Ess — E4Q 

63 = — EIQ + E25 — Ess + E47 

64 = — E15 — £^26 — Esr — E48 

65 = —Eis — E24 + ^57 + EQS 

^6 = E14 — E2S — Ess + EQY 

e^ =    .E12 — Es4 — E5Q + £"78 

A representation of the matrices ii,..., J9 in M16 is, for example, given by 

la 
0     -ea 

ea      0 
Ka < 7 

0    E 
E    0 h = E     0 

0    -E 

where E is the identity on R8. A computer calculation immediately yields the formula 
for the (16 x 16)-matrix. 

EXAMPLE. The manifold M16 = 515 x S1 admits a homogeneous, nearly parallel 
Spm(9)-structure such that 0 ^ T £ A1(M16). Indeed, M16 is a homogeneous space 

M16 = (Spin(9)/SpinA(7)) x 51 = (SO(16)/S0(15)) x 51. 
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The frame bundle J*(M16) admits the 50(15)-reduction ^(M16) = 50(16) x 51 C 
^(M16). Denote by 0 the Maurer-Cartan form of the Lie group 50(16). The Levi- 
Civita connection of M16 is given by the 1-form 

Z = prso(i5)(©) : T(50(16) x 51) ^ so(15), 

where we decompose so(16) into 5o(15) and its orthogonal complement 

so(16) =so(15)en 

and project onto so(15). On the other hand, we have the commutative diagram 

Spin{9)  ^ 50(16) 

Spinal)  50(15). 

^"(M16) admits the 5pmA(7)-reduction 1Z = Spin(9) xS1. We restrict the Levi-Civita 
connection to 7Z and decompose it with respect to the orthogonal decomposition 

so(16) =5pin(9) em. 

Finally, let us decompose the Lie algebra 

spin(9) =spinA(7) 0 & 

Using the 5pmA(7)-reduction 7Z the 1-form F is given by the formula 

r:T(ft)^m    ,    r = prmoprS0{15)(G). 

The map prm oprso(i5) : 5pin(9) -> m vanishes on the subspace spinA(7) and, con- 
sequently, it is a 5pmA(7)-equivariant map £ —>• m. We compute the formula for F. 
Consider an element W in the Lie algebra spin(9), 

w=  yt Xafilalp 
l<a<0<9 

let us introduce /x1,..., /i15 given by 

fl1 = 2 X19           ,          n2 = 2 X29 /i3 = -2x39     , »4 = -2X49 

^5=:-2x69      ,            //6=2X59 /i7 = 2x79 »* = -2X895 

/i9 = 2X18+2X27 + 2X35-2X46 , ^ = "2 X17 + 2 X28 + 2 X36 + 2 X45 

/i11 = 2Xi5 + 2X26 - 2X38 + 2X47 , ^12 = -2xi6 + 2 X25 - 2X37 - 2X48 

/i13 = 2X14 - 2X23 - 2X57 - 2x68 , /i14 = 2xi3 + 2X24 + 2 X58 - 2X67 

/i15 = 2Xi2 -2X34 -2X56+2X78- 

Then a direct calculation yields that T(W) is given by the same (16 x 16)-matrix as 
the endomorphism        J2       l-ylplaieis) 0 lalpl-y if we replace the form a1 by /J,

1
. 

l<a</?<7<9 
Consequently, the 5p2n(9)-structure on 51 x 515 is nearly parallel and the vector field 
F = ^- is the unit vector field tangent to 51. D 
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We derive now a differential equation for the canonical 8-form ft8 of a nearly 
parallel 5pm(9)-structure. This equation - in contrast to the case of weak G2- 
structures (see [9]) or weak Spm(7)-structures (see [8]) - does not completely charac- 
terize the nearly parallel 5pin(9)-structures. We will contract the covariant derivative 
Vfl8 e r(A1(M16) 0 A8(M16)) once in order to obtain an equation for 5Q8. 

THEOREM 1. Let 71 C ;F(M16) be a nearly parallel Spin(§)-structure on M16 

with vector field T. Then the canonical form H8 satisfies the equations 

8n8 = -504(1 jft8)    ,    dtt8 = -504 •(F Jfi8). 

Proof. The 8-form ft8 is defined by a 5pin(9)-invariant form in A^Ag) = A8(E16). 
Therefore, Q,8 is parallel with respect to the connection Z*, 

v*n8 = 0. 

The covariant derivative with respect to the Levi-Civita connection is now given by 
the formula 

l<a<y0<7<9 

where ps : so(16) —> 5o(A8(IR16)) is the differential of the representation of the group 
50(16) in A8(M16). Contracting this equation we obtain that 

Stf = _6 £ WaF) J (Ps(lal0l^8) 
l<a</3<7<9 

is defined by a linear, Spm(9)-equivariant map of E16 = Ag into A7(A9) = A7(E16). 
Using Theorem 1 of Section 7 we conclude that there exists a constant C such that 

SQ
8
 = c(rjn8) 

holds. Taking into account the explicit formula for pg we obtain C — —504. □ 

REMARK. A second natural class of 5pzn(9)-structures occurs if T belongs to 
the subbundle Vi(V9) 0 V2(V9) C A^M16) O A3(y9). According to Proposition 2 
of Section 7 T is a pair of 3-forms r = Fi + r2 G Vi(V9) © 7M^9) = A3(M16). A 
5pm(9)-structure of this type is called a nearly 3-parallel Spin(9)-structure. Let us 
derive the corresponding differential equation for dfl8. Remark that there are two 
non-trivial 5pin(9)-equivariant linear maps of A3(A9) into A9(A9): 

16 

*1(r) = ^(eijr)A(eijn8) 
i=l 

16 

*2(r)=*( ^(eijejjr)A(efjeJ-jn
8)). 

*»i=i 

Here • denotes the Hodge operator acting on forms in sixteen variables. Since 
A9(A9) ~ A7(A9) is a multiplicity-free 5pzn(9)-representation and the representa- 
tion A3(A9) = Pi(K9) ©^(R.9) splits into two irreducible components, any Spin(9)- 
equivariant map A3(A9) -> A9(A9) is a linear combination of $1 and $2.   The 
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parameters depend on the fixed isomorphism ^(E9) 0 V2 (M9) = A3(A9) and they 
can be normalized to one. Therefore, we obtain two differential equations depending 
on the algebraic type of the 3-form F: 

16 

2=1 

16 

9. The twistor space of a 5pm(9)-structiire. Let C be the space of all com- 
plex structures J compatible with the metric and acting on E16 = A9: 

J2 = -Id    ,    J J* = Id. 

We consider the intersection of C with the space A2(E9) = spin(9): 

l<Q</?<9 

PROPOSITION 1. The group Spin(9) acts transitively on 7i. The isotropy group 
of the operator I1I2 G 7i is isomorphic to 

Spin(9) H 17(8) = Spin(2) xZ2 Spin(7). 

Proof. The normal form of a 2-form is 

J = ahh + bhh + chh + dl7 J8. 

The condition J"2 = —Id yields the equations 

(a + b + c - d)2 = 1 (a + 6 + c + d)2 = 1 

(a + b - c + d)2 = 1 (a + & - c - d)2 = 1 

(a - b + c + d)2 = 1 (a - 6 + c - d)2 = 1 

(-a + b + c + d)2 = 1        (-a + 6 + c - d)2 = 1. 

The solutions of these equations are the 4-tuples (±1,0,0,0), (0, ±1,0,0), (0,0, ±1,0) 
and (0,0,0, ±1). Therefore, Spin(9) acts transitively on 7i. □ 

COROLLARY. The space 7i is a complex manifold isomorphic to the quadric Q in 
P8(C) defined by the equation ZQ + ... + z% = 0: 

Ti = Spin(9)/Spin(2) xZ2 Spin(7) = Q. 

DEFINITION. Let (M16,#) be an oriented, 16-dimensional Riemannian manifold 
with a fixed Spin(9)-structure TZ C ^(M16). We define the twistor space 7i(M16) as 
the associated bundle 

T1(M
16) = RxSpini9)Ti. 
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The general twistor construction (see [4], [22]) yields a natural almost complex 
structure J on the twistor space 7i(M16). J depends on the restriction Z* of the 
Levi-Civita connection Z. There are two types of integrability conditions for J. The 
first type is an algebraic condition for the torsion tensor T* of the connection Z*. 
The identity 

(*) T* (JX, JY) - JT* (JX, Y) - JT* (X: JY) - T* (X, Y) = 0 

should be satisfied for any operator J G C fl A2(y9) and any pair of vectors X, Y. 

PROPOSITION 2. Let TZ C 7*(M16) be a nearly parallel Spin(9)-structure on 
a 16-dimensional Riemannian manifold. Then the torsion tensor T* satisfies the 
integrability condition (*). 

Proof. A direct calculation using the explicit formula of the torsion tensor T* in 
case F is a vector yields the result. □ 

The second integrability condition is an identity for the curvature R* of the con- 
nection Z*: 

(**)        [R*(JX, JY), J]-J[R*(JX, y), J]- J[R*(X, JX), J]-[R*(X, Y), J} = 0 

for any pair of vectors X,Y and for any operator J G C fl A2(V9). The relation 
Z = Z* + F yields the following formula for the curvature forms Qz* and Qz of the 
connections Z* and Z: 

nz* =nz -Dz{T) + ^[T,r}. 

Here Dz (F) = dT + [Z, F] denotes the derivative of the 1-form F with respect to the 
Levi-Civita connection. 

PROPOSITION 3. Let TZ C ^(M16) be a nearly parallel Spin(9)-structure on a 
16-dimensional Riemannian manifold. Then the 2-form [F, F] satisfies the condition 
{**) for any J e C H A2(V9). 

Proof. A direct calculation yields the result. D 

Let us introduce a 2-form W with values in the bundle of endomorphisms of 
T(M16) 

w = ttz -Dz(r). 

Then we obtain the following 

Theorem 1. The twistor space 71 (M16) of a 16-dimensional Riemannian manifold 
with nearly parallel Spin(9)-structure is a complex manifold if and only if the tensor 
field W — Qz — Dz(T) satisfies the equation 

[W(JX, JY),J) - J[W(JX, Y),J] - J[W(X, JY), J] - [W(X, Y), J] = 0 

for any point J G 7i(M16) of the twistor space. 

We formulated the integrability condition for the almost complex structure of 
71 (M16) viewing the tensor W = ttz - DZ(T) as a (2,0)-tensor with values in the 
bundle of antisymmetric endomorphisms of T(M16). Remark that W does not sat- 
isfy the first and second Bianchi identity in general. We can understand W as an 
endomorphism acting on the bundle of 2-forms, 

TF:A2(M16)->A2(M16). 
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In this case the integrability condition is equivalent to the condition 

CjiWiJ'"2)) - J*(W(CJUJ
2
)) + W{Cjw2) - CjiWiu2)) = 0, 

where we define, for any 2-form u2  G A2(M16) and any complex structure J G 
ri(M16), the 2-forms J*{UJ

2
) and Cj(u2) by the formulas: 

(J*U;
2
)(X,Y)=LJ

2
(JX,JY) 

Since J is an antisymmetric complex structure, we have the following relations on 
2-forms: 

J*(Cju>2) = £j(J*u;2) = -Cjcv2    ,     (J*)2a;2 = a;2. 

The 5pm(9)-structure yields a splitting of the bundle of 2-forms: 

A2(M16) = A2(y9)eA3(y9). 

It turns out that, for J E 7i(M16)7 the operators J* and Cj preserve this splitting. 
Let us thus write the endomorphism W : A2(M16) -> A2(M16) as a (2 x 2)-matrix 

/ W22    W32 

V ^23     W33 

where Wap : Aa(V9) -> A/3(y9)    (a,0 = 2,3) is a bundle morphism.   Then the 
integrability condition splits into 4 conditions, too: 

Cj(Wa0(J*u2)) - riyV^HjJ1)) + W^LjJ1) - /^(W^w2)) = 0. 

We can analyze these conditions in the usual way (see for example [22]) using 
representation theory. However, since W does not satisfy the first Bianchi identity, the 
discussion becomes more complicated. We will not provide this discussion in details, 
but let us investigate the condition for W22 for example. The complex structure 
J G C D A2(E9) = 71 is an element of the Lie algebra 5pin(9) as well as of the group 
Spin(9). In case the two form LJ

2
 belongs to A2(Vr9), we have 

CJ(UJ
2
) = -[J1UJ

2
}    ,    J*(u;2) = Ad(J)(uj2). 

Therefore W22 • spin(9) -> spin(9) is a linear map satisfying the condition 

[J,W22(Ad(J)Lj2)] - Ad(J)(W22([J,uj2})) + W22([J,u;2}) - [J,W22(u;2)} = 0 

for any to2 G A2(y9) and any J G C fl spin(9).   The adjoint action of the complex 
structure J on a 2-form UJ

2
 can be expressed by the commutator 

Ad{J)u2=u>2 + ±[J,[J,u3]]. 

Indeed, we have 

[J, [J, OJ
2
)} = JiJuj2 - u2J) - (Jw2 - U?J)J 

= -2u>2 + 2JUJ
2
J* = -2a;2 + Ad( J)LJ

2
. 
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Using this formula, the integrability condition for W22 becomes much simpler: 

{J,W22{[J,{J^2]])} = [J,[J,W22([J,u;2])]]. 

Fix a complex structure J G 71 and decompose the Lie algebra 5pin(9) into the 
stabilizer of J 

^j = {a;2 G 5pin(9) :     [J^2] = o} 

and its orthogonal complement f)^. This subspace l}j is the tangent space Tj{T\) of 
the quadric 71 at the point J G 7i. Moreover, |ad(Jr) defines the complex structure 
of 7i. In fact, for any 2-form u2 G \)j the formula 

holds. The latter equation defines f)^ as. a subspace of spin(9): 

^ = {a;2 G 5pin(9) :     [J, [J,^2]] = -4a;2}. 

The quadric 71 is a symmetric space. Therefore, in the decomposition 

5pin(9) = \)j 0 \)^ 

the commutator relations 

hold. We remark that for any real number c G M1, any 2-form r)2 G A2(M9) and 
any 5-form /i5 G A5(M9) the endomorphism W22 • A2(M9) -> A2(M9) defined by the 
formula 

W22(u
2) =C-UJ

2
 + [ri2^2] +*(iJb AUJ

2
) 

satisfies the integrability condition. Indeed, the 772-term can be handled using the 
Jacobi identity. Then we obtain (/x5 = 0) 

[j,W22([J,[J,u2}})-[J,W22(lJ,u;2})}\ = [j,[[J,u2UJ,V2}]\- 

The elements [J,UJ
2

] and [J,r)2] belong to hj and, consequently, [[J",^2], [J",^2]] is 
an element of the Lie algebra I) j. The //-term in the formula of W22 satisfies the 
integrability condition, too. This is a consequence of the algebraic relations of the 
endomorphisms Ia (1 < a < 9) and can be checked by a direct calculation. Altogether 
we obtain a family of endomorphisms W22 satisfying the integrability condition and 
depending on 

dimA2(M9) + dimA5(E9) + 1 = 163 

parameters. A representation-theoretic argument shows that we derived the general 
formula for the endomorphism W22' Let us sketch the argument. The tensor product 
A2(E9) 0 A2(E9) decomposes into six irreducible SO(9)-representations: 

A2(E9)®A2(E9)-(1)0 52(A2(E9))©A2(A2(E9)) 

= (1) e {(44) © (126) © (495)} © {(36) © (594)} 
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where, for example, (44) denotes the unique irreducible SO (^-representation of di- 
mension 44. We have already proved that the terms (1) — M1,(36) = A2(]R9) and 
(126) = A5(M9) may occur in the decomposition of W22. Therefore, we have to ex- 
clude the representations (44), (495) and (594). A traceless symmetric endomorphism 
L : E9 -> M9 induces by 

CLu>2{a,P) = u;2(La,/3) +a;2(a,L/?) 

a linear map CL ' A2(M9) -> A2(R9) and this formula realizes the irreducible represen- 
tation (44) = 5o(M9) in A2(M9) 0 A2(M9). Consider, in particular, the endomorphism 
LQ G So(M9) defined by the formulas 

Lo(Ii) = l2    ,    L0(I2) = I1    ,    Lo(/a) = 0 for 3<a<9 

as well as the complex structure Jo — I1I2 and the 2-form UQ = h A I3. A direct 
computation yields the result 

[JoXuiUo, [JO,OJ
2

0]})} = -8hh    ,    [Jo, [Jo,£Lo([J0,u
2

0])]} = 8/1/3. 

Consequently, the endomorphism W22 is orthogonal to the representation (44). Let 
us summarize the previous discussion: 

THEOREM 2. An endomorphism W22 ' A2(1R9) ->• A2(E9) satisfies the integrability 
condition if and only if there exists a constant c £ R1, a 2-form rf £ A2(E9) and a 
5-form [i5 € A5(E9) such that 

W22(UJ
2
) =c-u2 + [r]2^2} + ^(^ A co2) 

holds. 

In a similar way one can discuss the possible type of the endomorphisms W23, W32 
and W33. 

The twistor space 7i(M16) is a fibration over M16 and the fibres are complex 
submanifolds analytically isomorphic to the quadric 7i = Q in P8(C). The group 
Iso(M1Q;1l) of all isometrics of M16 preserving the Spm(9)-structure Tl C ^(M16) 
acts on the twistor space as a group of holomorphic transformations. 

EXAMPLE 1. (The twistor space of the Cayley plane) The Cayley plane 
F4/Spin(9) is a symmetric space and the Riemannian connection reduces to the 
Spin(9)-structure. The twistor space 

Ti(FjSpin(9)) = F4/(Spin(2) xZ2Spin(7)) 

is a 15-dimensional complex manifold. The exceptional group F4 acts transitively 
on the twistor space as a group of holomorphic transformations. Consider the torus 
Ti = Spin(2). Its centralizers in Spin(9) and in F4 coincide: 

Cspin(9)(Ti) = CF4(
T

I) = Spin(2)xz2Spin(7). 

Consequently, the twistor space Ti(F4/Spin(9)) of the Cayley plane is a generalized 
flag manifold and, henceforth, a projective variety (see [27]). 

EXAMPLE 2. (The twistor space of S1 x 515) 5'1 x S'15 admits a nearly parallel 
Spm(9)-structure with the parallel vector field F = -^ tangent to S1. Therefore, the 
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tensor field W coincides with the curvature tensor 1Z of the space form S15. Using 
the well-known formula 

K{X, Y)Z = (y, Z)X - (X, Z)Y 

we immediately see that the integrability condition of Theorem 1 holds, i.e. 
TKS1 x 515) is a complex manifold. Since the first Betti number is odd, 71 (51 x 515) 
does not admit a Kahler metric. In particular, this complex manifold is not algebraic 
projective. 

EXAMPLE 3. (The twistor space of M16) Since M16 is flat, the parallel displace- 
ment along lines through a fixed point 0 E E16 defines a holomorphic projection of 
the twistor space 7i(M16) onto one fibre Q. Consequently, 71 (M16) is analytically 
isomorphic to an 8-dimensional holomorphic vector bundle N over Q. Let us describe 
the bundle N. Consider the trivial real vector bundle 

N = Q x E16 

and introduce a complex structure on N by the formula 

2-(J,x):=(J,Jx) 

for J e Q = 71 and x G E16. The group Spin(9) acts on the bundle N by 

g-(J9x)~(gJg-\gx) 

and, therefore, N is a homogeneous vector bundle over the space 

71 = Spin(9)/Spin(2)xz2Spin(7)    ,    iV = Spm(9)xSpin(2)xE2Spm(7)E16. 

As usual, the bundle N is the associated bundle to the representation of the group 
Spin(2)xz2Spin(7) = Spin(9) fl U(S) in i7(8). We decompose the Lie algebra spin(9) 

Bpin(9) = (spin(2) e5pin(7)) 0 i 

where the linear space i consist of all elements 

9 9 

]n xia/i/a + ]r x2/?/2//3. 
a=3 /?=3 

We can compute the u(8)-valued curvature form fi^ of the bundle N using the canon- 
ical connection of the symmetric space Q. This formula is quite a complicated one. 
However, the trace of QN has a simple form: 

Tr(ttN) = -16z(dxi3 A dx23 + . • • + dx19 A dx29). 

Since the first Chern class ci(N) is represented by the form Ci(N) = —^:Tr(Ql
N), 

we obtain a formula for ci(iV): 

i f\ 
ci(N) = 7r-(dxi3 A dx23 + ... + dx19 A dx29). 

ZTT 

On the other hand, Q is a Kahler-Einstein manifold and therefore the first Chern 
class ci(Q) is proportional to the fundamental form of the Kahler structure. In this 
way we obtain the formula 

14 
Ci(Q) = -^-{dxis A dx23 4-... + dx19 A cfc^g) 

ZTT 
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and, finally, we have the relation 

ci(N) = jc1(Q). 

Let x 6 iJ2(F8(C); Z) be the generator of the second cohomology group of P8(C). The 
Chern classes Ci(Q) of the quadric Q C F8(C) can be described by the powers of the 
element x: 

ci(Q) = 7x      ,     C2(Q) = 22x2    ,    cs(Q)=40x3 

C4(g)=46x4  ,      C5(Q)=34x5    ,    C6(g) = 16x6    ,    c7{Q) = 4x7 

(see [18]). Consequently, we obtain the formula 

ci(JV) = 8x. 

The real vector bundle iV is trivial and its first Pontrjagin class pi(N) vanishes: 

0=Pi(N) = 2c2(N)-c2
1(N). 

Therefore, the second Chern class C2(N) is proportional to cf (N): 

c2(7V) = ^(JV) = 32x2'. 

We describe the space %0(./V) of all holomorphic sections of the bundle N over Q. Any 
fixed vector y 6 K16 = Ag defines a section 5^ 6 r(Q; N) by the map Sj, : Spin(9) -¥ 
E16 = A9, 

Sv(A)=A-1(y). 

Sy is a holomorphic section and the 5pin(9)-action on H0(N) coincides under this 
identification with the S'pin(9)-action on M16. In particular, we have computed the 
dimension of T-^iV): 

dimcfto(A0 = 16, 

and 7i0(N) is the unique irreducible Spin(9)-representation of dimension 16. D 

The previous discussion describes not only the twistor space 71 (M16) of the flat space, 
but also the normal bundle to any fibre inside an arbitrary twistor space 7i(M16). 

THEOREM 3. Let M16 be a 16-dimensional Riemannian manifold with a nearly 
parallel Spin(9)-structure and suppose that the twistor space 7i(M16) is analytic. The 
normal bundle N to any fibre Q C 7i(M16) is an 8-dimensional holomorphic vector 
bundle over the quadric Q with the following properties: 

1. ci(JV) = Ic^Q) = 8x   ,    c2(iV) = \<*{N) = 32x2. 
7    w '       x   '     2 

2. dimc?AA0 = 16. 

D 

The fibre 71 of the twistor space 7i(M16) admits an antiholomorphic involution 
T. Using the different models for T\ we can define r in different ways. The involution 
T : 71 -> 71 is given by 

r( J) = -J. 
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In case we identify 7i with the quadric 

Q = {[zo : ... : z8} G F8(C) : z2
0 + ... + z2

s = o}, 

the involution r is the conjugation, T[ZO ' z\ : ... : 23] = [^o : ^i : • • • : ^s]- Finally, in 
case 71 = Spin(9)/Spin(2)xz2Spin(7) is considered as the GraBmann manifold G2?9 of 
all oriented 2-planes TT

2
 in M9, the involution r reverses the orientation, r(7r2) = —TT

2
. 

Since r commutes with the Spin(9)-action on 7i, it defines an involution 

T:Ti(M16)->ri(M16) 

on any twistor space. The map r is an antiholomorphic involution without fixed 
points. Moreover, r acts on the space H0(N) of all holomorphic sections of the 
normal bundle to a fibre Q C 7i (M16) and the space of real sections can be identified 
with the tangent space at the base point to M16. 

Summarizing, the twistor space 7i(M16) of a 16-dimensional manifold with a 
(nearly parallel) 5pm(9)-structure has the same structure as the twistor space of an 
oriented 4-dimensional Riemannian manifold. The difference is the more complicated 
topology of the fibre. 

REMARK. We defined a twistor space 7i(M16) by using the space TiC D A2(E9) 
of all complex structures that are given by a two-form in A2(E9). There is a second 
possibility. Consider the space 

T2 = C H A3(M9) = {j=       Yl       yoP-r ioWi :   j2 = -Id} 
l<a</3<7<9 

of all complex structures on E16 defined by a 3-form in A3(E9). Then the group 
Spin(9) does not act transitively on Ti- For example, hhh and -^(Iihh + hhh + 
/yls/g) are two elements in T2 with different isotropy groups with respect to the 
Spm(9)-action. The complete orbit structure of T2 is very difficult and related to the 
classification of all normal forms of 3-forms in 9 variables. For the case of the group 
SX(9) acting on M9, the orbit structure of A3(M9) was described in the paper [26]. 
Anyway, consider a 5j9m(9)-orbit O* C Tjj. Then we can introduce the twistor space 

T2
0^M16) = nxSpin{9)0" 

and a given 5pm(9)-invariant geometric structure on O* induces a similar structure 
on the twistor space T® . 
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