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1. Introduction. In [6] K. Janich explained the wavefront propagation mech- 
anism on a manifold which is completely described by a positive and positively ho- 
mogeneous Hamiltonian function on the cotangent bundle and investigated the local 
gradient models given by the ray length function. Wavefronts generated by an initial 
wavefront which is a hypersurface without boundary in the manifold is investigated as 
Legendrian singularities by V.I.Arnold (cf.5 [1]). In [9], LG.Scherbak studied the case 
when the hypersurface has a boundary and she explained the wavefronts generated by 
the hypersurface with a boundary corresponds to a generalized notion of wavefronts 
(i.e., the boundary fronts). 

In this paper we investigate the more general case when the hypersurface has an 
r-corner. In this case each wavefront incident from each edge of the hypersurface 
gives a contact regular r-cubic configuration (cf., Section 5) at a point of the 1-jet 
bundle which is a generalization of the notion of Legendrian submanifolds. In complex 
analytic category, the notion of contact regular r-cubic configurations is introduced 
by Nguyen Huu Due, Nguyen Tien Dai and F.Pham (cf., [2], [5]). But all contact 
regular r-cubic configuration in their category is stable. 

The first topic in this paper is the investigation of the relation between (sym- 
plectic) regular r-cubic configurations which has been developed in [10] and contact 
regular r-cubic configurations. 

The second topic is the investigation of the stability of smooth contact regular r- 
cubic configurations and the classification of stable wavefonts given by stable contact 
regular r-cubic configurations in C^-category. In order to realize this purpose we shall 
define the notion of reticular Legendrian maps in Section 7 which is a generalization of 
the notion of Legendrian maps for our situations. We shall also give the theorem that 
the equivalence relation among reticular Legendrian maps is equivalent to a certain 
equivalence relation of corresponding generating families. In this section we shall 
define the notion of stability, homotopically stability, infinitesimal stability of reticular 
Legendrian maps and give the theorem that these and the stability of corresponding 
generating families are all equivalent. 

By the above results the classification of stable wavefronts is reduced to the clas- 
sifications of function germs. In section 8 we classify function germs with respect to 
reticular K-equivalence with reticular K-codimension lower than 8 . This gives the 
classification of stable wavefonts in manifolds of dimension< 7. 

Here, we draw the figure of the wavefront of one of the reticular Legendrian map- 
germ whose generating family is a reticular versal unfolding of B^^f -singularity in the 
classification list, that is X1—X1X2 —#2+#i#2+#2#2+(73#i +#4- The wavefront given by 
this generating family is a subset in (gi, q2, #3, g4)-space around 0. Hence we draw the 
sections of this wavefront in (#2, qz, g4)-space given by cutting at qi < 0, qi = 0, qi > 0 
respectively. 

2. Preliminaries. Here we shall define several notations and recall basic facts. 
Let Hr = {(#i,- • • ,xr) G Rr|xi > 0, • • ',xr > 0} be an r-corner.   Let £(r;Z) be 
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FIG. 1.1. qi < 0 (left) and qi = 0 (right) 

FIG. 1.2. qi > 0 

the ring of smooth function germ at 0 on Hr x R/ for r,l G N and m(r;l) = {/ E 
£(r5 01 /(0) — 0} be the maximal ideal of £(r; I). Let B(r; I) the set of diffeomorphism 
germs on (Hr x R*, 0) preserving Hr D {xg- = 0} x R* for all a C /r — {1, • • •, r}. We 
remark that a diffeomorphism germ </> on (Hr x Rz, 0) is an element of B(r; I) if and 
only if (j) is written in the following form: 

0(x,2/) = (a:iai(a;,2/),---,a;rar(x,2/),6i(x,2/),---,6/(x,2/)) for (x,y) G (Hr x R',0), 

where ai, • • • ,ar,6i, • • • ,6r G S{r\l) and ai(0) > 0, • • • ,ar(0) > 0. 

A function germ F(xi, -• ,xr,yi,-- - ,yk,Qir - <>Qn)   ^ m2(r; k + n) is called 5- 
non-degenerate if 

^15 * * * ? *£r 
^F aF aF QF 
dxi dxr  dyi oyu 
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are independent on (H* x R^+^O), that is 

/   dPF_     cPF_ \ 

rank      ff    ff        = r +k' 
\ dydy     dydq /0 

We remark that F{x, y, u) G m2(r; k + n) is S-non-degenerate only if r < n. 

A function germ F(xi, • • • ,xr,yi, • • • ,^5 Ai, • • •, An+i) G m(r;fc-hn + 1) is called 
C-non-degenerate if ||(0) = 0, §|(0) = 0 and 

-   dF dF_  dF_ dF_ 

are independent on (H* x R*"1"™4"1,*)), that is 

/    dF        OF    \ 

rank 

9y_        9A_ 
d2F      d2F 

= r + fc + l. 
9x^2/    cteSA 
92F      52F 

V 92/92/     92/9A yo 

We remark that F(x,y,X) G m(r; A: + n + 1) is C-non-degenerate only if r < n. 
Let TT : pj1*Rn+1 ^^ Rn+1 be the projective cotangent bundle equipped with the 

contact structure defined in [1, p.310]. By the trivialization 

[fldAi |A H h^n+l^n+lU] 
Rn+1 x P(Rn+1) 

((Ai,- • •, An+i),[fi;- • -j^n+i])? 

we call (A, [£]) a homogeneous coordinate, where A is coordinates of the base space of 
TT. 

Let TT : ^(R71^) ->- Rn+1((g', ^;p) H-^ (g,^)) be the canonical Legendrian bundle 
equipped with the contact structure defined by the canonical 1-form a = dz — pdq, 
where (qi, • • •, qni z\ pi, • • • ,pn) are canonical coordinates of J1 (Rn, R). 

We fix [£0] G Pr*Rn+1. Choose coordinates (qu--,qn,z) of Rn+1 (the base 
space of ff and TT) such that [£0] = (0, [0; • • •; 0; 1]). Set the affine chart of PT*Rn+1:C/2 

=■ {((qii-',<ln,z), tei;---;£n;f7])|»7^0}. Then 

is a Legendrian equivalence. We define 

Pl:B.»+i^B.n((q,z)*q), 

fr : jHn^R) —> r*R" ( (q,z,p) * (q,p) ). 

Then the following diagram is commutative: 

uz -^ J^R",^ J^ r*R" 
TT 4- TT 4- 4,7r 
Rn+1 J^ 

Rn+1 -^ Rn. 
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We say that function germs F(x,y,u),G(x,y:u) G m(r; fc + Z), where x € Hr, y G 
R^ and ^ G R*, are reticular K-equivalent (as /-dimensional unfoldings) if there exist 
$ G B(r; fc + 0 and a unit a G £(r; fc + I) satisfying the following: 

(1) $ = (0,</O, where 0 : (Hr xRfc+,,0) -> (Hr xRfc,0) and^ : (R',0) ^ (R',0). 
(2) G(a:,3/,u) = a(rc,y,Ti) • F(^(a:,y,ii),^(ti)) for (a:,y,ti) G (Hr x R*+',0). 
LEMMA 2.1.  Let F(x,y,q,z) G m(r; A; + n + 1) 6e a C-non-degenerate function 

germ. Then F is reticular K-equivalent to —z + F(a;, y, g), tyftere F G m2(r; fc + n) «5 
S-non-degenerate. 

Proof. By taking some coordinate change of (q^z), we may assume that ^(0) = 

0, §7(0) 7^ 0. By implicit function theorem, there exists F G m(r;fc -f- n) such that 
F(x,y,q,F(x,y,q)) = O.It is easy to check that F G m2(r; k+n). Since F\{_z+F=0} = 

0, there exists a G £(r; fe + n + 1) such that F = a- (-z + F). Since §§(0) = -a(0), 
a is an unit. By Proposition 5.5, F is S-non-degenerate. □ 

By [1, p.313 Proposition and p.323 Proposition] and [12], we obtain the following 
Lemma. 

LEMMA 2.2. LetCn be the set of Legendrian submanifolds of (J1('Rt
n,'R),0) and 

Sn be the set of Lagrangian submanifolds of (T*Rn,0).T/ien Cn and Sn have the 
following relations: 

(1) pi gives a bijection from Cn to Sn. 
{2)_Let F{y,q,z) = -z + Ffyq) G £(k + n + l){F G m2(A; + n)) and L G Cn. 

Then F is a generating family of L if and only if F is a generating family ofpi(L). 
Indeed let L be a Legendrian submanifold germ of (PT*Rn+1, [£0]) and F(y, q, z) 

— -z + F(y, qi, - - •, qn) G £(k + n 4- 1)(F G m2(fc + n))be a generating family of L. 
Then 

^{(.i,-^n,,,[^;...;^;-l])l^ = F = 0}, 

f      1  /rx      r, - 9F dF^dF     ^ 
^^W = ^—^F,-,.,— )|_ = 0}l 

r      -rf^     /r 5F SF \\dF     nx i = Mi) = {(flir--,«»,^---,^:)l^ = o}. 

Under these fact, we identify (Pr*Rn+1, K0]) and (J^R71^)^) and identify Leg- 
endrian submanifold of (PT*Rn+1, [^0]) and that of (J^R71^)^) respectively. 

3. Propagation mechanism of wavefronts. The propagation mechanism of 
wavefronts incident from a hypersurface germ with an r-corner in a smooth manifold is 
described as follows (cf., [6],[10]): Let M be an n(= r+fc+l)-dimensional differentiable 
manifold and H : T*M\0 —> R be a C^-function, called a Hamiltonian function, 
which we suppose to be everywhere positive and positively homogeneous of degree 
one with respect to the fiber, that is H(\g) = XH(^) for all A > 0 and f G T*M\0. 
Let XH denote the corresponding Hamiltonian vector field on T*M\0, given locally 
by the Hamiltonian equations: 

. _ aff    . dH 
Qi — "^     5  Pi —       ^     j 

dpi dqi 

where {q^p) are local canonical coordinates of T*M. 
We set E — H~l{\) and consider the following canonical projections : TT : T*M —>• 

M, -KE ' R x E -> E, TTR : R x E ->- R. We denote Eq the fiber of the spherical 
cotangent bundle TT^ at q G M. 
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Let go 6 M, ^o > 0, £o € £?go and 770 be the image of the phase flow of XH at 
(£OJ£O)- Since the phase flow of XH preserves values of H, the local phase flow \I> : 
(R x T*M\0, (to, &)) "^ (r*M\0, r/o) of XJJ induces the map $ : (R x B, (to, 6)) —■> 
(Rx E,(t0lrjo)) given by $(t,0 - (*,*(*,0). 

We set exp = TTM O $ : (R x E, (to, Co)) -> (Af, wo), ea:pgo = ea;p|RXJE;go, exp = 
TTM o $-1 : (Rx E,(to,Vo)) -> (M,go), ea:p-0 = earp"^^, 0i = (7rM,ea:p) : 
(R x E,(to,to)) -+ (M x M,(go,wo)), 02 = (exp-^M) : (R x E^to^o)) -> (M x 
Af, (^o, wo)), where 7io = 7r(^o)- 

By [6, 2.2] we have the following Proposition 
PROPOSITION 3.1. Ifexpqo is regular then fa and fa are diffeomorphisms. 
Let expqQ be regular. We can define the function germ 

r = 7rR o (j)-1 = TTR o 0-1 : (M x M, (go^o)) ^ (IMo). 

We call r the ray length function associated with the regular point (to^o) of expqo. 
Then the following diagram is commutative: 

(Rx£,(*o,£o)) A (Rx£,(*o,r?o)) 
y/ (TTR, exp) 0i \   ^02        (TTR, exp-) \ 

O'Uo)) 

Let V0 be the hypersurface germ in (M, go) satisfying ^O|T V
0
 — 0 with an 

r-corner defined as the image of an immersion i : (Hr x R^O) -» (M, go). We 
parameterize V® by ^. For each a C /r — {l,---,r} we define A^ by the set of 
conormal vectors of V® := V0 fl {x^ = 0} in (25, ^o) as the lift of the initial wavefront 
incident from V®. Then we regard the set Z/^- the image of covectors in A^ by $ 
around time ^o, that is 

La = {$(*,0 e (R x E, (to,rjo)mO € (R,*o) x A^}, 

as the set of the lift of the wavefronts incident from V^ around time to. We also 
regard the union of L^ for all a C Ir as the set of the lift of wavefront incident from 
the hypersurface V0 around time to. We define the wavefront incident from V0 by 

|J  (7rR,7rAf)(i<r). 
o-C/r 

The family of submanifolds {L0-}(7C/r. of (R x 25, (to, rjo)) is 'generated' by the ray 
length function r as the following: 

PROPOSITION 3.2. Let V0 be the hypersurface germ in (M, go) satisfying £O|T V
0 

= 0 which is the image of an immersion i : (Hr x R*,0) —> (M,go). Let Lp be the 
set of the lift of the wavefronts incident from V® := V0 fl {xa = 0} around time to 
for a C Ir- Define F(x,y,u,t) := —t + T o (i(x,y),u) £ £(r]k + m+ 1). Then the 
following hold: 

(1) F is C-non-degenerate, that is §f-(0) = 0, ^-(0) = 0 and 

(    dF        dF 

rank 

dy_        du_ 
d2F      d2F 

dxdy    dxdu 
d2F      d2F 

\ dydy     dydu ) 0 

= r+ fe + l. 
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(2) 

La - {(t,duF(x,y,u)) e (R x r*M\0,(to,*fo))| 

Xa = dXlr_(TF{x,y,u) = dyF(x,y,u) = F = 0} 

/or a C ir, wftere w;e identify (M, Z/Q)  «^^ (I^NO) 6i/ coordinates (ui,--- ,un) of 
(M,tio). 

Proof This is immediately followed by [10] Proposition 2.2. 

By Theorem 5.6 (2), Proposition 3.2 means that {-Zvo-jo-c/r is a contact regular r- 
cubic configuration of (R x T*M\0, (to,r]o)) with the contact structure defined by the 
canonical 1-form dt—pdu, where p are the fiber coordinates corresponding to u. Hence 
there exists a contact diffeomorphism C : (J^R^R^O) —> (R x T*M\0, (to.rjo)) 
such that 

£,, = C7(LJ)        for       a C Jr5 

where L°   = {{q,z,p) G  (J^R71^)^)!^  = pIr-.a  = gr+i  = ... = gn  = 2; = 
0,^-0- > 0} (cf., Section 5). 

Small perturbations of the immersion L implies small perturbations of contact 
diffeomorphism C. Therefore we investigate the stabilities of contact regular r-cubic 
configurations with respect to perturbations of corresponding contact diffeomorphisms 
in a more general situation in Section 7. 

4. Results of Reticular Lagrangian singularities. Here we shall recall some 
results given in [10]. Let {q,p) be canonical coordinates of (T*Rn, 0) and TT : (T*Rn, 0) 
-» (Rn, 0) be the cotangent bundle. Let H = {(gi, • • •, qn) G (Rn, (%i > 0, • • •, gr > 
0, qr+i = • • • = qn = 0} be an r-corner and Ha = {((ft, • • •, Qn) £ H\qa — 0} be an 
edge of H for CF C /r. We define L° the conormal bundle of H^, that is 

L0
a = {(g,p) e (r*Rn,o)|^ -^_. = ^+1 =... = qn = 0,^-, > 0}. 

DEFINITION 4.1. Le£ {-^(jjo-c/r be a family of2r Lagrangian submanifold germs 
o/(T*Rn,0) under canonical symplectic structure o/(T*Rn,0). Then {La}aCjr is 
called a symplectic regular r-cubic configuration if there exists a symplectomorphism 
S on (r*Rn,0) such that L^ = S(L°) for all a C Jr. 

Let {I/o-j-o-c/r be a symplectic regular r-cubic configuration and F{x1y^q) G 
m(r; k -j- n)2 be a function germ which is S-non-degenerate. We call F a generat- 
ing family of {-Z^jcrc/r if ^1^=0 is a generating family of L^- for a C /r, that is 

L^{(^^(x'^g))G(T*Rn'0)|a:<7 = ^7; = ^=:0} for {7C/r- 

Let {Lj-jo-c/^ and {L^jo-c/,, be symplectic regular r-cubic configurations. We 
call {L]T}(TCir and {L2 jo-c/r are Lagrangian equivalent if there exists a Lagrangian 
equivalence 0 such that L2 = ©(I/J.) for a C Ir. 

We say that function germs .F(a;, y, u),G(x, y, u) G m(r; ft+ra), where a; G Hr, ?/ G 
R^ and w G Rn, are reticular R+ -equivalent (as n-dimensional unfoldings) if there 
exist $ G i3(r; fc + n) and a G m(n) satisfying the following: 
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(1) $ = (</>,</>), where 0 : (Hr x R*+n,0) -> (Hr x Rfc,0) and ^ : (Rn,0) -> 
(Rn,o). 

(2) G(x,y,u) = F{^{x,y,u)^{u)) + a(ti) for (a:,y,ti) G (Hr x R*+w,0). 
We say ($, a) a reticular R+-isomorphism from G to F and if a = 0 we say that 

F and G are reticular R-equivalent. 
We say that function germs F(x, yi, • • •, y^, w) £ m(r; fei +n) and F(x, yi, — ' iVk 

u) G m(r; fe + ^) are siafeZy reticular R+-equivalent if F and G are reticular R+ 

equivalent after additions of non-degenerate quadratic forms in the variables y. 
THEOREM 4.2. (1) For any symplectic regular r-cubic configuration {^o-}crc/^^ 

there exists a function germ F G m(r; k+n)2 which is a generating family of{La}crCjr. 
(2) For any S-non-degenerate function germ F G m(r;A: + n)2

; there exists a 
symplectic regular r-cubic configuration of which F is a generating family. 

(3) Two symplectic regular r-cubic configuration are Lagrangian equivalent if and 
only if their generating families are stably reticular R+-equivalent. 

We remark that two S-non-degenerate function germ F,G G m(r; k + n)2 are 
generating families of the same symplectic regular r-cubic configuration, then F and 
G are reticular R-equivalent. 

LEMMA 4.3. Let U, V be open sets in Rn such that 0 G U and let fo : U -> V be a 
embedding. Then there exist a neighborhood Ui of 0 in U and an open ball Vi around 
/o(0) in V and a neighborhood Ni of fo in C00(C/, V) such that /l^ is embedding and 
Vi C /(E/i) for all f G Nx. Moreover 

Nl^C00(VuU)    (/^(/krVJ 
is continuous. 

5. Contact regular r-cubic configurations. In this section we shall define 
Contact regular r-cubic configurations and investigate the relations between sym- 
plectic and contact regular r-cubic configurations. 

Let (qir " iVrnZiPi,' " ,Pn) be canonical coordinates of J^R^R). Set Z£ = 
{(q,z,p) £ (^(R^JR-XO)!^ =Pir-(T = Qr+i = ••• = qn = z = 0,qir-a > 0} for each 
a C Ir- 

DEFINITION 5.1. Let {-^o-j-o-c/r be a family of 2r Legendrian submanifold germs 
of (J1(Rn, R),0). Then {-^o-lfrc/r is called a contact regular r-cubic configuration if 
there exists a contact diffeomorphism C on (J1(Rn,R),0) such that La- = C(L£) for 
all a C Ir. 

Two contact regular r-cubic configurations {Ll}(TCjr and {L^}aCjr are said to 
be Legendrian equivalent if there exist Legendrian equivalence 0 of TT( or TT) such that 
LI = 0(1^) for all a C Jr. 

REMARK. The definition of contact regular r-cubic configuration by Nguyen Huu 
Due [5, p. 631] is that there exists a contact diffeomorphism C such that L^- = 
C({qa = Pir-a = Qr+i = ''' = Qn = z = 0}) for all a C Lr. Then {£<,}><:/,. is called 
a contact regular r-cubic configuration. 

DEFINITION 5.2. Let {L(T}(TCir be a contact regular r-cubic configuration in 
(J^R^R^O). Then F(x,y,q,z) G m(r;fc + n + 1) is called a generating family of 
{io-J-cc/r if the following conditions hold: 

(1) F is C-non-degenerate. 
(2) For each a C /r, F|X(T=o is a generating family of Z^, that is 

dF „   dF,,, OF        dF      ~     ^ 
La = {(q,z, —/(-—-))  x* = = — = F = 0}. 

9g        9^ dxIr-a      dy 
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We now consider contact diffeomorphisms and contact difFeomorphism germs on 
J1 (Rn, R) and (J1 (Rn, R), 0) respectively. Let (Q, Z, P) be canonical coordinates on 
the source and (g, z,p) be canonical coordinates of the target. We define the following 
notations: 

i: (J^R^R) n {Z - 0},0) -> (J^R"^)^) be the inclusion map on the domain. 

C(J1(Rn,Ti),0) = {C : (J1(R,,,R),0) -»• (J^R"^)^)^: contact diffeomorphism} 

^"(J^R"^)^) = {C e C(J1(Rn,R),0)|C' preserves the canonical 1-form} 

C2(J1(Rn,R),0) = {CoJ ICGCCJ^^.RJ.O)} 

C|(J1(Rn,R),0) = {Co«|CeCa(J1(Rn,R),0)} 

Let U be an open set in J1 (Rn, R) and V = U D {Z = 0}. Let i : V -> U be the 
inclusion map. 

C{U, J1 (Rn, R)) = {C : U -)• J1 (Rn, RJIC : contact embedding } 

Ca{U, J1(Rn,R)) = {C € C(t/, J^R"^)) | C preserves the canonical 1-form  } 

CZ(V, J^R", R)) = {C o i \C e (17, J^R", R))} 

C7|(V; J^R-.R)) = {Co? |C € Ca(C/, J1(Rn,R))} 

LEMMA 5.3. Let {L^^cir be a contact regular r-cubic configura- 
tion in (J^R'SR^O) defined by C e C7(J1(Rn

)R),0). Then there exists C 6 
Ca(J1(Rn>R-)»0) that also defines {La}aCir. 

Proof. Let C = (qc,zc,Pc)- Define the function a on C(J1(R™,R),0) by the 
relation C*{dz — pdq) = a(dZ — PdQ). Define 

(j): (J1(Rn,R)n{Z = 0},0j ^ (J1(Rn,R)n{Z = 0},0)( (Q,P) ^ {Q,a<n{Q,P)P)), 

C':(J1(Rn,R),0)4 (Jl(B.n,1L),G) 
(Q,Z,P)     ^(qcoio<f>-1(Q,P),Z+zc°to<j>-1(Q,P),Pcoio<p-1(Q,P)). 

Then 

C'*(dz-pdq) = dZ+({Coi)o<j)-1)*(dz-pdq) = dZ-{<l>-1y{aoi(Q,P)PdQ) = dZ-PdQ. 

Therefore^" £ ^(J^R"^)^).   Since C'(Q,0,a(Q,P)P) = C(Q,0,P), C also 
defines {i0-}<rc/r- 

LEMMA 5.4. Let 5(T*Rn,0) be the set of symplectic diffeomorphism germs on 
(T*R™,0).  We define the following maps: 

Cf(J1(R",R);0)    -»• 5(T*Rra,0) 
C = (qc,zc,Pc)     ->        (Sc:(Q,P)^(qc,Pc)(Q,P)) 

5(r*Rn,0) -»■ Cg(J1(Rn,R),0) 
S=(qs,Ps) »    (Cs:(Q,P)^(qs,fS,Ps)(Q,P)), 

where fs(Q, P) is uniquely defined by the relation that S*(pdq) — PdQ = df8, fs(0,0) 
0. Then these maps are well defined and inverse to each other (that is Sc   = 5, Cs c 

= C). 
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Proof. Let C G Cf (J^R",!*.)^) be given. Take C € Cc'(J1(Rn,R),0) such 
that C o i = C. Since Sc = (qc,Pc), we have 

(Sc)*(dpAdq) = C*(dpAdq) = C*(-d(dz - pdq)) = -d((C oi)*{dz -pdq)) 

= -d(i*(dZ - PdQ)) = -d(-PdQ) = dPAdQ 

Hence 5CG5(T*R",0). 
Conversely let 5 = (qs,Ps) € 5(r*Rn, 0) be given . We define the diffeomorphism 

Cs on (J1(Rn,R)>0) by CS(Q,Z,P) = (qs(Q,P),Z + fs(Q,P)..ps(Q,P)). Then 
Cs oi = Cs and 

(Cs)*(dz-pdq) = dZ+dfs-S*{pdq) = dZ + (S* (pdq) - PdQ) - S* (pdq) = dZ-PdQ. 

Hence C5 € CKJ^R^R^O). On the other hand, by definition, we have 

SGS = (qcs,Pcs) = (qs,Ps) , CsC = (qSc,fsC,psc) = (qc,fSC,Pc)- 

Since fs    and zc satisfy the equation of z(Q,P) that dz = pcdqc — PdQ and 
2(0,0) = 0, we have that /sC = zc- □ 

PROPOSITION 5.5. Let C™ be the set of contact regular r-cubic configurations 
in (J1(R™, R),0) and <S™ be the set of symplectic regular r-cubic configurations in 
(r*Rn,0).  We define 

TS : Cr" -> 5r" ( {C(L°)}aClr K4 {Sc(Ll)}vClr ),where C 6 C^J^R^R)^) 

Tc : S? -+ Cr" ( {S(Ll)}cZlr ^ {Cs(Ll)}„cU ), where S 6 5(T*R",0) 

T/ien (1)^5 and Tc are well defined and inverse to each other. 
(2) A function germ F(x)y1q) € m2(r; A: + n) is S-non-degenerate if and only if 

—z + F is C-non-degenerate. 
(3) A function germ F(x,y, q) G m2(r; k + n) zs a generating family of a symplec- 

tic regular r-cubic configuration if and only if — z + F is a generating family of the 
corresponding contact regular r-cubic configuration. 

Proof (I) Let C = (gc^cPc) € Cf (J^B/NR^O) and 5 G S(r*Rn,0) satisfy 
that 5 = Sc (hence C = C5). Since S = faoPc), we have 5(L0) = Pi(C(L0)) for 

all a C Ir. Since S^L^) and C(L£) are uniquely determined by each other under pi 
by Lemma 2.2, we have (1). 

(2) Let F(x1y,q) G m2(r;fc + n). If we define F G m(r; fe + n + 1) by F(x,y,q,z) = 
-z + F(x,y,q). Then f|(0) = |f (0) - 0,f (0) = f (0) = 0 and 

d£ d£ dF_    \ /     dF OF -i 
^« ^^        \ /        dy dq dy_ dq_ dz_ 

d2F        d2F        d2F 
dxdjj       dxdq      dxdz 
d2F        d2F        d2F 

dxdy       dxdq 
                 I      d2F d2F Q 

dydy       dydq       dydz   / 0 \   dydy       dydq 

dJF        d'F 0 

This implies (2). 
(3) By (2),we have 

F — —z + F is a generating family of {Cf(Z^)}0.c/T. 
<^    F is C-non-degenerate and F^^^o generates C(L°) for all a C Ir 
&    F is S-non-degenerate and FU^o generates 5(L°) for all a C Ir 
<£>    F is a generating family of {S(L®)}aCir. D 



(^(B/NRM) {L°hcir    ->     {L,hcir 
ifi 4-                    TstfTc 

(r*R",o) Mhcu    -»•     {Lff}ffC/r 

118 RETICULAR LEGENDRIAN SINGULARITIES 

The relation between contact and symplectic regular r-cubic configurations is 
given in the following diagram: 

(j1(Rn,R)n{z = o},o)   c^s 

Pi\z=oi 

(T*Rn,0) S^C 

We say that function germs F(x, yi, • • •, y^, u) € m(r; hi +m) and F(x, yi, • • •, y&g, 
ix) G m(r; ^2+^) are 5ta6/y reticular K-equivalentif F and G are reticular K-equivalent 
after additions of non-degenerate quadratic forms in the variables y. 

The relations between contact regular r-cubic configurations and their generating 
families are given in the following theorem. 

THEOREM 5.6. (1) For any contact regular r-cubic configuration {La}aCjr in 
(J^R^R), 0), there exists a function germ F G m(r; fc + n + l) which is a generating 
family of{La}aClr. 

(2) For any C-non-degenerate function F G m(r;fc -f n + 1), there exists a con- 
tact regular r-cubic configuration in (PT*Rn+1, (0, [ff (0)])) (or in (J1(Rn,R),0); 
of which F is a generating family. 

(3) Two contact regular r-cubic configurations are Legendrian equivalent if and 
only if their generating families are stably reticular K-equivalent. 

Proof. (1) Let a contact regular r-cubic configuration {I/^jo-c/r m (^rl(Rn? R)? 0) 
be given. Set {Z^jvc/r = Ts({La}acir) 

and let F G m2(r; k -f n) be a generating 
family of {L(T}(TCir. Then — z + F G m(r; fc + n + 1) is a generating family of {L(T}(TCir 

by Proposition 5.5 (3). 
(2) Let a C-non-degenerate function F G m(r; k + n + 1) be given. By Lemma 

2.1 and (3)a, we may assume that F has the form F(x, y, q, z) = — z + F(x, y, q)(F G 
m2(r; k + n)). Then F is a generating family of a symplectic regular r-cubic configu- 
ration {Z^jo-c/. in (T*Rn,0) by Proposition 5.5 (2) and Theorem 4.2 (2). Hence F 
is a generating family of Tc7({L0-}0-c/T.) by Proposition 5.5 (3). 

(3) This is proved by analogous methods of that of Theorem 3.2 (3) in [10] and 
details are given in [11]. 

6. Stability of function germs. In order to investigate the stabilities of smooth 
contact regular r-cubic configurations, we shall prepare the results of the singularity 
theory of function germs with respect to reticular K-equivalence. Basic techniques 
for the characterization of the stabilities we use in this paper depend heavily on the 
results in this section, however the all arguments are almost parallel along the ordinary 
theory of the right-equivalence (cf., [14]), so that we omit the detail. 

We denote Jl (r+k, 1) the set of /-jets at 0 of germs in m(r; k) and let 717 : m(r; k) -t 
Jl(r + &, 1) be the natural projection. We denote jlf(0) the Z-jet of / G m(r; k). 

We say f,g G m(r;Z) are reticular K-equivalent if there exists </> G B(k;l) and 
a G £(k] Z)such that g = a • / o </> and a(0) 7^ 0. 

LEMMA 6.1. Let f e m(r; k) and Ol
K(jlf(0)) be the submanifold of Jl(r + k, 1) 

consist of the image by 717 of the orbit of reticular K-equivalence of f. Put z = jlf(0). 
Then 

r.(0'PiCW)=*»«/^^,-,«r^>5M,+m(r;fc)<^,...>^». 

We say that a function germ / G m(r; k) is reticular K-l-determined if all function 
germ which has same /-jet of / is reticular K-equivalent to /. 
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LEMMA 6.2. Let f e m(r; k) and let 

m(r;AO/+1 Cm(r; &)((/, z^^ 

then f is reticular K-l-determined.    Conversely let f G  m(r; k)  be reticular K-l- 
determined, then 

Let F G m(r;fc + ni), G G m(r; k + 712) be unfoldings of / G m(r;A;). We 
say that F Z5 reticular K-f-induced from G if there exist smooth map germs 0 : 
(Hr x Rfc+^O) -> (Hr x R/SO), ^ : (Rn2,0) ^ (Rni,0) and a G <f(0;n2) satisfying 
the following conditions: 

(1) (j)({W H {xa = 0}) x R*+na) C (Hr H {^ = 0}) x R^ for a C Jr. 
(2) G{x,y,v) = a(v) • F(<l)(x,y,v),il)(v)) for z G Hr, y G R* and v G Rn2. 
DEFINITION 6.3. Here we give several definitions of the stabilities of unfoldings. 

Let / G m(r; k) and F G m(r; k + n) be an unfolding of /. 
We define a smooth map germ 

jiF : (Rr+k+n,0) —^ (J'(r + k, l),//(0)) 

as follow: Let F : U -> R be a representative of F. For each (x,y,u) G C/, We define 
F(x,y,u) € m(r;fc) by i^^Or',?/') = F(ar + rr', y + 2//,w) - F(x,y,u). Now define 
jl1F(x,y,u) =the /-jet of i7^,^). ^F depends only on the germ at 0 of F. We say 
that F is reticular K-l -trans versal if jl

1F\x=o is transversal to Ol
K(jlf(0)). It is easy 

to check that F is reticular K-/-transversal if and only if 

f(r;*) = .(/,a?1^ ,-,xr^ .^-^ >«r;*) + WF + m(r;fc)+, 

where WF = < J^U=o, • • •, ^-|«=O>R. 
We say that F is reticular K-stable if the following condition holds: For any 

neighborhood U of 0 in Rr+^+n and any representative F 6 C00([/,R) of F, there 
exists a neighborhood iVp of F such that for any element G G iV^, the germ G|H^ xRfc+n 

at (0,2/05^0) ^s reticular K-equivalent to F for some (0,2/o?wo) ^ ^• 
We say that F is reticular K-versal if F is reticular K-/-induced from all unfolding 

of/. 
We say that F is reticular K-infinitesimal versal if 

f-l -P £$ f       s^ -F /-) -F 

dxi dxr   dyi dyk    
K    ) 

We say that F is reticular K-infinitesimal stable if 

£(r; k + n) 

3F SF   dF dF dF dF 

We say that F is reticular K-homotopically stable if for any smooth path-germ 
(R, 0) ->• <f (r; fe + n), t H-)- Ft with FQ = F, there exists a smooth path-germ (R, 0) -» 
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B(r]k + n) x S(n),t i-» ($t,OLt) with ($0,^0) = (^31) such that each ($^,a^) is a 
reticular K-isomorphism and FQ = at • Ft o $t. 

THEOREM 6.4 (Transversality lemma). Let U be a neighborhood of 0 m 0 € 
pr+fc+n ^^ ^e coordinates (xi, • • •, xr, 2/1, • • •, i/k, ui, • • •, un) and A be a submani- 
fold of Jl(r + fe, 1). Then the set 

TA = {F e C00^,!*.) I iiFl^o is transversal to A} 

is dense in C00(i7, R) with respect to C00-topology, where jI
lF(x,y,u) is the l-jet of 

the map {x'^y') \-^ F(x 4- x',y + y'^u) at 0. 
The transversality we used is a slightly different for the ordinary one [14], however 

we can also prove this theorem by the method along the ordinary method. 
THEOREM 6.5. Let F e m(r; k + n) be an unfolding of f G m(r; k). Then the 

following are equivalent. 
(1) F is reticular K-stable. 
(2) F is reticular K-versal. 
(3) F is reticular K-infinitesimal versal 
(4) F is reticular K-infinitesimal stable. 
(5) F is reticular K-homotopically stable. 
For / € m(r; k) we define the reticular K-codimension of f by the R-dimension 

of the vector space 

Sir-^Kf^—,---^ — ,—,...,— )£{r,k). 

By the above theorem if ai, • • •, an G £(r;k) is a representative of a basis of the vector 
space, then f + aiVi + • • • anvn G m(r; k + n) is a reticular K-stable unfolding of /. 

7. Reticular Legendrian maps. Our purpose in this section is to investigate 
the stabilities of smooth contact regular r-cubic configurations. At first, we define the 
reticular Legendrian maps and their equivalence relation. 

Let L0 = {(q,z,p) G J^R^RJIgipi = ••• = QrPr -Qr+i = ••• = Qn = z = 

QjQir > 0} be a representative of the union of L® for all a C Ir- We call the map 
germ 

(Lo,0) -i* (^(R71^)^) A (Rn x R,0) 

a reticular Legendrian map if there exists a contact diffeomorphism C on (J1(Rn, R), 
0) such that i = C\^0. C is called an extension of i. We call {i(I/^)}0-c/r the 
contact regular r-cubic configuration associated with ft o i. We call F a generating 
family of TT O i if F is a generating family of {i(L^)}(TCir. A homeomorphism germ </>: 
(L0,0) —> (L0,0) is called a reticular diffeomorphism if there exists a diffeomorphism 
$ on (J^R^RJjO) such that (/> = $|L-o and </>(!£) = Lg. for all or c /r. Two reticular 

Legendrian maps TT O ii,jr o 12 : (Lo,0) -> (J^R71^)^) ->» (Rn x R,0) are called 
Legendrian equivalent if there exists a reticular diffeomorphism 0 and a Legendrian 
equivalence 0 on TT such that the following diagram is commutative: 

(Lo,0)    -^>    (J^R71^)^)    A    (Rn x R,0) 
(t>i ©I gl 

(Lo,0)    A    (J^R^,^^)    A    (RnxR,0) 



T. TSUKADA 121 

where g is the difFeomorphism of the base of TT induced from 0. 
Under this equivalence relation, we have the following theorem as a corollary of 

Theorem 5.6. 
THEOREM 7.1. (1) For any reticular Legendrian map iroi, there exists a function 

germ F £ m(r; k + n + 1) which is a generating family of TT O i. 
(2) For any C-non-degenerate function germ F G m(r; k + n + 1), there exists a 

reticular Legendrian map of which F is a generating family. 
(3) Two reticular Legendrian maps are Legendrian equivalent if and only if their 

generating families are stably reticular K-equivalent. 
Here we give several definitions of the stabilities of reticular Legendrian maps. 

Stability. Let TT O i : (Lo
50) -» (J^R^R^O) -» (Rn x R,0) be a reticular 

Legendrian map. iroi is called stable if the following condition holds: For any extension 
Co e C(J1(Rn, R), 0) of i and any representative Co G C(U, J^R71, R)), there exists 
a neighborhood NQ of Co in C^-topology such that for all C G N^ TT O C\J,O at Xo 

and TT o i are Legendrian equivalent for some xo = (0; 0; 0, • • •, 0, P°+1, • • •, P^) G U. 

Let TT o i is a reticular Legendrian map. By Lemma 5.3, we may assume that 
there exists an extension C G Ca(J1(Rn,R),0) of ZQ. Therefore we may consider 
the following other definitions of stabilities of reticular Legendrian maps: (1) The 
definition given by replacing C(J1 (Rn, R), 0) and C'(U, J1 (Rn, R)) to Ca(J1 (Rn, R), 
0) and Ca(U,J1(Iln,Il)) of the original definition respectively. (2) The definition 
given by replacing to C^J^R71^),!)) and Cz(V, J^R/SR)) respectively. (3) The 
definition given by replacing to Cf (J^R^R^O) and Cf (V, J^R"^)) respectively. 

LEMMA 7.2. The original definition and these definitions of stabilities of reticular 
Legendrian maps are all equivalent. 

Proof, (original) =>(1). Let Co G Cfa(J1(Rn,R),0) be an extension of io and 
Co £ Ca(U, J1(Rn,R)) be a representative of Co- Take a neighborhood iV^ of 
Co in C(U, J1(Rn,R)) for which the hypothesis of the original definition holds. Set 
N'g = Nco fl Ca(U, J1(Rn,R)). Then the hypothesis of the definition of (1) holds 
forV' 

Co 

(1)=»(3). Let Co G C^i^CR12^)^) be an extension of io and CQ G 
Cg(V, J1(Rn,R)) be a representative of Co- We construct the continuous map 
C^lv,J1(Rn,B.)) -+ Ca(V x R, Ji(Rn

JR)) (C »-> &) by the following: Let C = 
(zc'QciPc) € Cf(V, JHW1,*))' Then C' is defined by C'(Q,Z,P) = (qd(Q,P),Z + 
Zc(Q,P),Pc(Q,P))> Then C'*(dz-pdq) = dZ + C*(dz-pdq) = dZ - PdQ. Hence 
this map is well defined. Take a neighborhood iV^ / of Co in (7^ x R, J1(Rn,R)) 
for which the hypothesis of the definition of (1) holds. Let Nf~ be the inverse image 
of iV^ / by the preceding map. Then the hypothesis of the definition of (3) holds for 

"do"0 

(3)=>(2). Let Co € Cz(J1(R",R),0) be an extension of i0 and Co e 
Cz(V, J1(R™, R)) be a representative of Co- Define 

Cz(V, J'CR^R)) ->■ C00^, ^(^.R) n {Z = 0})((5 H> ^ : (Q,P) ^ (Q,fdP) ), 

where Z*5 € C^V.R) is defined by C*(dz - pdq) = -fdPdQ. Then this map 
is continuous because f^Pi = (^(PdQ))^) = -(dz - pdq)(C^) = -g£ + 

PCTHDI (i = 1>" ''n)- We may assume 0^ is embedding by shrinking V if necessary. 
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By Lemma 4.3 there exists a neighborhood iV^ of Co and a neighborhood Vi of 0 in 
V and a neighborhood W of 0 in J^R/1, R) n {Z = 0} such that 

Nco -> Emb(W,V) (C H> ttcWT'lw ) 

is well defined and continuous. Therefore we may define the following continuous 
map: 

^co ->CfWJ1(Rn,R)) (C^Co^l^J-V )• 

Take a neighborhood N of Co o (^ | vi )~11 w for which the hypothesis of the definition 
of (3) holds. Let iV^ be the inverse image of N by the preceding map. Then the 

hypothesis of the definition of (2) holds for N'^ . 

(2) =>(original). Let Co € C(J1(Rn,R),0) be an extension of io and Co E 

C(U, J^R/SR)) be a representative of Co- Let V = f/ H {Z = 0} and Co' = Colz^o- 
Take a neighborhood N^ > of Co in Cz{V, J1 (Rn, R)) for which the hypothesis of the 

definition of (2) holds. Because C(17, J1(Rn,R)) -> Cz(V, J^R"^)) (C ^ C|z=o) 
is continuous, if we set Nf^ the inverse image of iV^ / by the preceding map then the 
hypothesis of the original definition holds for N^ . D 

Homotopical Stability. Let TTQZ : (Lo,0) -* (J^R71^)^) -> (RnxR,0)bea 

reticular Legendrian map. A map germ i : (L0 x R, 0) ->• (J1(Rn,R),0)((Q,P,t) ^ 
^(Q, -P))(^o — i) is called a reticular Legendrian deformation of i if there exists a one- 
parameter family of contact diffeomorphisms C : (J1 (Rn, R) x R, 0) —)■ (J1 (Rn, R), 0) 
((Q,Z,P,t) H-> Ct(Q,Z,P)) such that i^ — C^lj-o for t near 0. We call C an exten- 

sion of z. Let 0 : (Lo,0) —>• (Lo,0) be a reticular diffeomorphism. A map germ 
4>: (L0 x R,0) ->• (Lo,0)((Q,P,t) M- 0t(Q,-P))(0o = 0) is called a one-parameter de- 
formation of reticular diffeomorphisms of (j) if there exists a one-parameter family of 
diffeomorphisms * : (J1(Rn,R)'xR,0) -► (J1(Rn,R),0)((0,Z,P^) ^ ^(Q5Z,F)) 
such that (/>£ = ^^ILO for ^ near 0 and each ^ is a reticular diffeomorphism. We call 
§ an extension of <£. A reticular Legendrian map TT o i : (Lo,0) —> (J1(Rn,R),0) ^ 
(Rn x R, 0) is called homotopically stable if for any reticular Legendrian deformation 
i = {it} of i there exist a one-parameter deformation of reticular diffeomorphisms 
0 = {0^} of icLL~0 0) and a one-parameter family of Legendrian equivalences 0 = {0^} 

with 0o = «d(ji(Rn,R),o) such that it = Qt 0 i 0 0t for £ near 0. 

Infinitesimal Stability. A vector field v on (J^R^R^O) is called tangent to 

(Lo,0) if v\£0 is tangent to L° for all cr C /r. A function germ iJ on (J^R^R^O) 
is called fiber preserving if there exists function germs ho,- - ,hn on the base of TT 

such that H(q,z,p) = YA=I hi(qiz)Pi + ho(q>z). A reticular Legendrian map TT O 

i : (Lo,0) ->► (J^R"^)^) -)■ (Rn x R,0) is called infinitesimal stable if for any 
function germ / on (J1(Rn,R)70) there exists a fiber preserving function germ H on 
(J1 (Rn, R), 0) and a vector field v on (J1 (Rn, R), 0) such that v is tangent to (L0,0) 
and Xf o i — XH 

0 i 4- i*v, where Xf and XH are the contact hamiltonian vector 
field of / and H respectively and i*v is defined by z*v — (C*v) o i for an extension 
CGC(J1(Rn,R),0)ofz. 

LEMMA 7.3. For any one-parameter family of Legendrian equivalences 
0 : (J^R^R) x R, 0) -)• (J^R^R^O) with ©o = id, there exists a fiber preserving 
function germ H on (J^R^R),!)) such that XH = ^|*=o- Conversely for any fiber 
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preserving function germ H on (J1(Rn,R),0), the flow 0 of XH with the initial 
condition ©o = id is a one-parameter family of Legendrian equivalences. 

THEOREM 7.4. Let noi: (L0,0) -> (J1(Rn,R),0) -> (Rn x R,0) be a reticular 
Legendrian map with the generating family F(x,y,q,z) G m(r;k + n + 1). Let f = 
F\{q=z=0y. Then the following are equivalent. 

(1) F is a reticular K-stable unfolding of f. 

(2) TT o i is homotopically stable. 

(3) TT o i is infinitesimal stable. 

(4) For any function germ f on (J1(Rn,R),0), there exists a fiber preserving 
function germ H on  (J^R™, R), 0) such that f o i = H o i. 

(5) TT o i is stable. 

This theorem is proved by analogous methods of that of Theorem 5.5 in [10] and 
details are given in [11]. 

8. Classification of function germs. In [10], we classified simple or unimodal 
function germs with respect to reticular R-equivalence. This classification includes 
the classification with reticular i2-codimension lower than 7. This means that we 
classified all stable caustic in manifolds of dimension lower than 7. 

On the other hand, by Proposition 5.5 the dimension of a manifold includes a 
wavefront exceeds unity than the dimension of a manifold includes the corresponding 
caustic. Therefore it is natural to classify stable wavefronts in manifolds of dimension 
lower than 8. In order to realize this, we classify function germs with reticular K- 
codimension lower than 8 with respect to reticular K-equivalence. 

By Lemma 7.1 and Lemma 7.2 in [10], we have only to classify residual singu- 
larities, that is function germs in m(r; k)2 whose restriction to x = 0 is an element 
of m(0; A:)3. .^^/(O) « g denotes quasihomogeneous equivalence of jets and / « g 
means / is reticular K-equivalent to g and => means 'see' or 'implies'. 

Let / G m(r; k)2 be a residual singularity with the reticular Zf-codimension lower 
than 8. We set 4>(y) = f(0,y) G m(0;/c)3. 

The case r = l,fc = 0. / « xn (n = 2, • • •, 7). 

The case r = 1, k — 1. One of the five: 

j2/(0) w xy + x2 or xy =» f^xy + eyn(sn+1 = l,n = 3,---, 
jy3,x2f(0)«y3+x2 ^> fnv ̂ a:2, 
3y3,xzf(0) « X2 => (1), 
V,*»/(0)» y3 => (3), 
v,*»/(o)«o => (5). 

(1) Jy3,x2f{Q) — x2 =>■ one of the five: 

V,x2/(0) « y4 + axy2 ± x2(a2 #4) =>• /fts^+oafj/^a:2^2^^, 
jy^m^(y2±x)2 

=» /w^ + d^iar^ory^O 
jxy*,x*f(0) &xy2±x2 

=*■ /«|,5+XJ,2±X2, 
V,*»/(0)«I/6+a;2 =^ / wy0±x2/3+x2, 
V,x2/(0) « x2 or 0 => (2). 

(2) jy6,x2f(fy is adjacent to T/
6
 + axy3 ± x2(a2 ^ ±4) and hence 

the codimension of / >dim£(l; l)/((rc|^, U,l/if )R + (^3^22/,^4,2/7)^(i;i)) > 12 
3 = 9. 
(3) jy3,x2f(fy = 2/3 => one of the five: 
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jsf(0) « y3 + ax2y + 2^3(a ^ -3) => / « y3 + aa;2y + 2x3(a 7^ -3), 
j3f(0) « 2/3 + X2/2 => f ~ y3 + xy2 ± x4 or 2/3 + :n/2 ± x5, 
i3/(0) tty3 + x2y =*> / « 2/3 + a:2?/, 
Vfa54/(0)wy3+a:4 ^ / w 2/3 ± a;3?/ + a;4, 
jyz^fifyny3 =»   (4). 

(4) / is adjacent to 2/3 it x4?/ 4- x5 and this has codimension 9. 
(5) jys,x2f(fy = 0 =^ one of the four: 

j3/(0) « a;2/2 ± a;3     =>►     f & y4 ± xy2 ± x3 or 2/5 ± xy2 db a:3, 
j3/(0) « xy2 =>     / « y4 ± ary2 d= x4, 
j3/(0) w x2?/ =>     / « y4 + xy3 ± x2y, 
i3/(0)«x3or0       =>     (6). 

(6) j3/(0) = x3 or 0 => / is adjacent to y4 4- xy3 ± x3 and this has codimension 8. 
The case r = 1, k = 2 One of the two: 

j3<^0 =* (7), 
i30-O => (22). 

(7). j3(/) ^ 0 => on of the four: 
<t>eD4 => (8), 
0 € £5 => (12), 
0 e D6   =>    (16), 
(/> G ^e     =>     (19). 

(8). 0 = 2/22/2 ± 2/1 ^ orie 0^ ^^e four: 

Jy^ivl^fi0)     «    2/i2/2 ± 2/2 + ^2/1 + ^2/2, 
a2 ±1^0     =>     f tty2y2±y3+xy1+axy2, 

hfaMZwfi0)     «     2/i2/2 ± 2/1 ± ^2/2 =>     (9), 
itf?y2,yi^2/(0)      w     2/12/2 =b 2/1 + x2 =>     (10), 
^2/12/2,2/2^ 

3yiy2,yl,xy2 

/(0)      «     2/?2/2±2/23 ^     (11)- 

(9) iy?y2,2/i^2/2/(0) = 2/i2/2±2/3±^2/2 =^ / « yly2±yl±xy2+xyl oryjy2±y2±xy2+xyl. 
(10). iy2y2??/3?a;2/(0) = 2/1^2 ± 2/2 + ^2 => / « 2/12/2 ± 2/2 + z2 ± ^2/2' 
(11)/ em3(l;2). Therefore the codimension of / > £(1;2)/((J^, |^)R+m3(l; 2)) > 
10-2 = 8. 
(12). (j> = y\y2 + 2/1 ^ one 0f ^^ ^ree: 

h?V2,vtxy2f(0)      ^      2/12/2+2/2=^2/2      =^      (13), 

hfatviixytfify      «      2/12/2+2/2+^2/1      =>      (14), 
"'2/12/2,2/2^2/2^ 

f(0)     »     3 
i2/?2/2,^,^i/(0)       «       2/12/2+2/2 =>       (15). 

(13). jyly2,ylxy2f(0) = 2/i2/2 + 2/1 =*= ^2/2 => / « 2/?2/2 + 2/1 ± ^2/2 + a;^ or y2y2 + 2/| ± 
X2/2+X2/?. 

(14) jyty^yixyjify = ViV^ + 2/1 + ^2/1 => / ~ 2/i2/2 + 2/1 + xyi ^ ^2/2- 
(15) jyfa^xyJiO) = 2/i2/2 + 2/2-  Then / is adjacent to yfa + 2/2 + ^2 + ^2/2(0 + 
Sy2) (a2 / 4e) and this has codimension 9. 
(16) (p = 2/^2/2 + 2/2 ^ one 0f th6 tw0: 

3vlv2,vi,xy2f(0)    «    yjy2±xy2    =>    (17), 
iv^yiMfiP)     ~     2/i22/2 ^     (18). 
-'2/12/2,2/2 ^ 2/2 

^2/? 2/2,2/|^2/2 

(17). Jy*y2,y*,xy2f(0) = 2/i2/2 +^2/2   =»  / « 2/i2/2 + 2/1 ± ^2/2 + arj/i- 
(18) Jyfaiyiwft0) = 2/i2/2. Then / is adjacent to 2/?2/2+£2/2+^2/1+£2/2(0+^/2) (a2 7^ 
—e) and this has codimension 10 
(19). (j) = 2/? + 2/2- =^ one ^ the two: 
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hlvhxyMo)   »   = vi + vt± xy*   =>   (20), 

iyf,yJ^2/(0)     «     =01+2/2 ^     (21)- 
(20). iyl^xyj^) = 01 + 2/2+^2/2   =^   / w 2/1 + 2/2 + ^2/1 + ^2 
(21). Jyi^xyJQ) = 2/i+2/2- Then / is adjacent to yf + y^xyx ±xy% and this has 
codimension 8. 
(22) Since 0 G m4(0;2), we have the codimension of 0 > £(0;2)/((|^, ||)R + 

m4(0; 2)) > 10 - 2 = 8. Therefore / has codimension > 9. 
The case r = l,fc > 3. We need only to prove that the codimension of / > 8 

in the case r = 1, k = 3.  Since the codimension of 0 > £(0;3)/((^-, Q^-, ^■)R + 

m3(0; 3)) > 10 - 3 = 7. Therefore the codimension of / > 7 + 1 = 8. 
The case r = 2, fc = 0. One of the five: 

i2/(0) « xf 4- aa;iX2 + ^2(a2 7^ +4)     ^     / « z? + aa;i^2 ± ^(a2 7^ ±4), 
i2/(0) « (xi ± X2)2 ^    f « (^1 ± ^2)2 ± ^(n = 3, • - -, 6), 
i2/(0) « xf ±XiX2 =»       / ~ Xj* ±X1X2 ±X2l 

or ±0:1X2 + x2 or ^1X2 (n, m > 2, 5 < n + m < 8), 
i2/(0) * x2 or xi =>     (23), 
i2/(0)«0 =>     (26). 

(23) We investigate only the case j2/(0) = xf. But the case j2/(0) = x^ is calculated 
analogously. 

One of the two: 
^2^3/(0) &xl±xl    ^    f&xl± xixl ± xl or x\ ± xl, 
^,x3/(0)«xf =>     (24). 

(24) One of the three: 
Jx?,x|/(0) « xf + oarf X2 ±x\     =>     f « xf 4- axf X2 ± x| ± a:ix|, 
ixf ,x|/(0) « x? it x?^ ^>     / « x? ± xfX2 ± x|, 
i,?^/(0)«x? =>     (25). 

(25) jx2lX4f(0) = x2 => / is adjacent to xf i xi^l ± x^ and this has codimension 8. 

(26) i2/(0) = 0 =» Since / e m3(2,0), the codimension of f>£(2,0)/((x1^,x2^)R 

+m4(2;0)) > 10-2 = 8. 
The case r = 2, ft = 1. One of the five: 

i2/(0) « xij/ ± X2y ± x2 or xit/ ± X2y      =>    f & yn ± xiy ± X2y + x| 
(n > 3,m > 2,m + n < 8), 

i2/(0) w X12/ + x2 or X22/ + ar? =>     (27), 
i2/(0) « xi?/ or xs?/ =»     (29), 
ja.2 3.2 y3f(0) « x2+axiX2±X2(a27^±4)    =^    / « y3+ex2y+xl + axiX2+Sx% 

(a2 ? 4(5), 
others =>     (30). 

(27) We investigate only the case j2f(0) = xiy + x2. But the case j2/(0) = X2i/ + x2 

is calculated analogously. 
One of the four: 

V^iy^/fO)/ « 2/3 ± X12/ 4- x| =>     f ^y3 ± xiy ± X2y2 + x|, 
V^uf^l/CO) « 2/4 + ax22/2 + x1y±xl    ^    f ^y4 + ax2y2 ± xiy + xiy ± xi, 
jy^xxyrfffi) « ^22/2 ± XiJ/ ± x| =>      T/5 ± X27/2 it X^ + X^, 

V.x^.xg/W » +^12/ + 4 =>     (28). 
r.2 (28) 3y4,Xly,xif{G) — ±xiy + x2 => / is adjacent to y5 ± X22/3 ± xi?/ + x2 and this has 

codimension 8. 
(29) i2/(0) = xiy => / is adjacent to i/3 + ax^t/ -f- 2^2 ± x^2 ± Xiy(a ^ -3) and this 
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has codimension 8. 
j2f(0) = X2y => f is adjacent to y3 + ax^y + 2x1 ^ xi2/2 ^ ^22/(0 7^ -3) and this has 
codimension 8. 
(30) j2/(0) is adjacent to /o = (#1 ±X2)2 or xj ±xiX2 or ±xiX2 +x\ =^ / is adjacent 
to /o + 2/3 4- arr22/ i 2x2 (a 7^ —3) and this has codimension 8. 

The classification list of singularities with reticular K-codimension lower than 8 
r = 1 

k Normal form codim Conditions Notation 
0 xn n n = 2,...,7 5„ 

xy + etf1 n sn+1 = l,n = 3,---,7    C^ 
..3 + ^2 4 

■"•4,2 

1,1 

y4 + ax?/2 ± x2 6 a2 7^ ±4 
^5 + (2/2±x)2 6 

y6+e(y2 + 5x)2- 7 K*^5 

y5 ± xy3 +x2 7 K}^ 
y3 + ax2y + 2x3 6 a ^ -3 
y3 + x^/2 ± x4 6 
y3 + xy2 ±x5 7 
y3±x2y 6 F^ 

y3 ± x3y + x4 7 F^ 
y4 + exy2 + 5x3 6 ir| ;| 
y5 + x?/2 ± x2 6 
y5 + x?/2 ± x3 7 
y4 + exy2 + fe4 7 X454 

y4 + x?/3 ± x2^/ 7 X4 ' 

5,3 

ft 
'  ± 

^2 

■e,d 

2,± 
2 

^4,1 

^4,2 

7 D2/'5 

± 
5,1 

5,2 
1,± 

yjy2 ±y3+ xyi 4- axy2 6 a2 db 1 ^ 0 

2/?2/2 + ^2/2 + fe2/2 + arj/J 6 
2/i 2/2 + ^2/1 + ^2/2 + x?/3 7 
2/i2/2 + £2/1 + ^2/1 + x2 7 
2/i 2/2 + 2/2 + ^2/1 i ^2/2 6 D: 
2/i 2/2 + 2/2 + £x2/i + ^2/2     7 D] 

2/i2/2 + 2/2 + ^2/i ± #2/2 7 ^J i/1^2 T (/2 T^yi -"-^^ ' ^5 

2/i2/2 + ^2/2 + ^2/i + ^2/2     7 JD^' 

y3 + y4 ± xyx + X2/2 7  ^ 
where e = ±1,6 = ±1. 

6,1 

^6,0 
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r = 2 
k    Normal form codim Conditions Notation 

0    xl+axiX2±X2 4 a2 ^ ±4 ^2,2 
(a:i + sx2)

2 + 8x% n + 1 n = 3,-- -,6 
JD£,S 
^2,2,n 

Xi + exiX2 + Sx™ n+m-1 n,m>2, 5<n+m<8 

x\ + exix\ +8x2 5 
r>£,5 
B2,3> 

x2 + ^^1^2 + Sxf 5 
r>£,6 
^3,2' 

x\ ±X2 6 ^2,3,0 
X2 ^t X-^ 6 ■^3,2,0 

x\ + ax\x2 + ex\ + 5xix\ 7 ^2,4' 

X2 + axixl + ex 1 + 5x^X2 7 ^4,2' 

x\ + ex\x2 + 5x% 7 
TD£,5 
B2V 

xl + exixl + 5x1 7 
r>£,5 

1    y? + exty + 5x2y + x^1 n+m—1 n>3,m[ >25 m+n<8 

y3 + exiy + 5x2y2 + xl 5 
S7£,5 03,2,1 

y3 + ex2y + 5xiy2 + x\ 5 03,2,2 
yA + ax2y2+ex\y+xiy+5x\ 7 /^t£:S, a 04,2,1 
yA + axiy2+ex\y+X2y+5x\ 7 04,2,2 
y5 + ex^y2 +5xiy + x2 7 /~i£,5 

05,2,1 
y5 + exiy2 + 5x2y + x2 7 05,2,2 
y3+ex2y+xl + axiX2+5x2 7 a2 #4<J 

s~i£,d,a 
03,2' 

where e — ±1,5 = ±1. 
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