RETICULAR LEGENDRIAN SINGULARITIES*
TAKAHARU TSUKADA'

Dedicated to Professor Takuo Fukuda on his siztieth birthday

1. Introduction. In [6] K. Janich explained the wavefront propagation mech-
anism on a manifold which is completely described by a positive and positively ho-
mogeneous Hamiltonian function on the cotangent bundle and investigated the local
gradient models given by the ray length function. Wavefronts generated by an initial
wavefront which is a hypersurface without boundary in the manifold is investigated as
Legendrian singularities by V.I.Arnold (cf., [1]). In [9], I.G.Scherbak studied the case
when the hypersurface has a boundary and she explained the wavefronts generated by
the hypersurface with a boundary corresponds to a generalized notion of wavefronts
(i-e., the boundary fronts).

In this paper we investigate the more general case when the hypersurface has an
r-corner. In this case each wavefront incident from each edge of the hypersurface
gives a contact regular r-cubic configuration (cf., Section 5) at a point of the 1-jet
bundle which is a generalization of the notion of Legendrian submanifolds. In complex
analytic category, the notion of contact regular r-cubic configurations is introduced
by Nguyen Huu Duc, Nguyen Tien Dai and F.Pham (cf., [2], [5]). But all contact
regular r-cubic configuration in their category is stable.

The first topic in this paper is the investigation of the relation between (sym-
plectic) regular r-cubic configurations which has been developed in [10] and contact
regular r-cubic configurations.

The second topic is the investigation of the stability of smooth contact regular r-
cubic configurations and the classification of stable wavefonts given by stable contact
regular r-cubic configurations in C°*°-category. In order to realize this purpose we shall
define the notion of reticular Legendrian maps in Section 7 which is a generalization of
the notion of Legendrian maps for our situations. We shall also give the theorem that
the equivalence relation among reticular Legendrian maps is equivalent to a certain
equivalence relation of corresponding generating families. In this section we shall
define the notion of stability, homotopically stability, infinitesimal stability of reticular
Legendrian maps and give the theorem that these and the stability of corresponding
generating families are all equivalent.

By the above results the classification of stable wavefronts is reduced to the clas-
sifications of function germs. In section 8 we classify function germs with respect to
reticular K-equivalence with reticular K-codimension lower than 8 . This gives the
classification of stable wavefonts in manifolds of dimension< 7.

Here, we draw the figure of the wavefront of one of the reticular Legendrian map-
germ whose generating family is a reticular versal unfolding of B, 3 -singularity in the
classification list, that is 22 —z; 2o — 73 +¢1 73 +g222 +q371 +q4. The wavefront given by
this generating family is a subset in (g1, g2, g3, ¢4)-space around 0. Hence we draw the
sections of this wavefront in (go, 3, g4)-space given by cutting at ¢; < 0,¢g1 = 0,¢; >0
respectively.

2. Preliminaries. Here we shall define several notations and recall basic facts.
Let H" = {(z1,---,2,) € R"|zy > 0,---,z, > 0} be an r-corner. Let £(r;l) be
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F1G. 1.1. g1 < 0 (left) and g1 = 0 (right)

e can.
~eae.

Fi16. 1.2. g1 >0

the ring of smooth function germ at 0 on H" x R! for 7,1 € N and m(r;l) = {f €
E(r,1)| £(0) = 0} be the maximal ideal of £(r;1). Let B(r;1) the set of diffeomorphism
germs on (H" x R!,0) preserving H"N{z, =0} xRl forallo C I, = {1,---,7}. We
remark that a diffeomorphism germ ¢ on (H" x R',0) is an element of B(r;1) if and
only if ¢ is written in the following form:

¢($ay) = (mlal(m7y)7' o 7$Tar(may)ab1(m7y)7" '7bl(m7y)) for (m,y) € (HT X Rl70)7
where a1, -, ap, b1, -+, b, € E(r;1) and a;(0) > 0,---,a,.(0) > 0.

A function germ F(x1, -, Tr, Y1, ", Yksq1," ", qn) € m2(r;k +n) is called S-

non-degenerate if

oy g OF | OF OF  OF
1, ) T:amla 7a$raay17 ,3yk
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are independent on (H* x R**+", 0), that is

0’F  O*F
rank %‘3‘}? %aé‘z;] =r+k.

dydy 0Oydq /4

We remark that F(x,y,u) € m?(r; k + n) is S-non-degenerate only if 7 < n.

A function germ F'_(:vl, T Y1, Yk ALyt A1) € M(r5 Kk +n + 1) is called
C-non-degenerate if %(O) =0, %—I;(O) =0 and

o1 g OF OF OF  OF
1, sy ’65171, ,6$r,8y1’ ’ayk

are independent on (H* x RFt"+1 (), that is

oF  oF
Jy. oA
rank 62—F 82_F =r+k+1
Ozdy  OzOA B ’
0*F  O9’F

Oydy Oyox /,

We remark that F(z,y,\) € m(r;k +n + 1) is C-non-degenerate only if r < n.
Let 7 : PT*R™*t!l s Rt be the projective cotangent bundle equipped with the
contact structure defined in [1, p.310]. By the trivialization

PT*R"! x~ Rt x P(R™*1)
[E1dAi|x + -+ + &nr1dAnta]a] (A5 Anga)s [+ 5 &t ])s
we call (A, [€]) a homogeneous coordinate, where A is coordinates of the base space of

.

Let 7 : JH(R™,R) — R"*1((q, z; p) = (g, 2)) be the canonical Legendrian bundle
equipped with the contact structure defined by the canonical 1-form a = dz — pdgq,
where (g1, -+, qn,2; P1,** ,Pn) are canonical coordinates of J!(R" , R).

We fix [¢°] € PT*R™"!. Choose coordinates (g1, -+ ,qn,2) of R (the base
space of 7 and 7) such that [¢°] = (0, [0;- - -; 0; 1]). Set the affine chart of PT*R"™+1:U,
={((q1," "+ qn,2), [€1;- - -5&nsm))In # 0}. Then

e Us 5 TR R)((q,2), [6) (q,z,—%—,'-- Siny

is a Legendrian equivalence. We define

pr:R™ — R" ((g,2) = q),

p1: Jl(Rn’R) — T*R" ( (Q=Zzp) = (Qap) )
Then the following diagram is commutative:
v, ¥ J'RY,R) 2 TRT
7l Tl iy

id
R+ L, Rrt1 Py Re,
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We say that function germs F'(z,y,u),G(z,y,u) € m(r;k+1), wherex € H", y €
R* and u € R!, are reticular K-equivalent (as I-dimensional unfoldings) if there exist
b cB(r;k+1) and aunit a € £ (r; k + 1) satisfying the following:

(1) @ = (¢,%), where ¢ : (H” x R¥+ 0 ) (H” xRF¥,0) and ¢ : (R},0) — (R}, 0).

(2) G(z,y,v) = a(z,y,u) - F(p(z,y, 1), () for (z,y,u) € (H" x R¥*,0).

LEMMA 2.1. Let F(z,y,q,2) € m(r;k +n + 1) be a C-non-degenerate function
germ. Then F is reticular K -equivalent to —z + F(z,vy,q), where F € m?(r; k +n) is
S-non-degenerate. )

Proof. By taking some coordinate change of (g, z), we may assume that %:—(0) =

0, gf (0) # 0. By implicit function theorem, there exists F' € m(r;k + n) such that
F(z,y,9, F(z,y,q)) = 0.1t is easy to check that F' € m*(r; k+n). Since Fl(_,4r=) =
0, there exists a € £(r;k +n + 1) such that F = a - (-2 + F). Since 8F( ) = —a(0),
a is an unit. By Proposition 5.5, F' is S-non-degenerate. O
By [1, p.313 Proposition and p.323 Proposition] and [12], we obtain the following
Lemma.
LEMMA 2.2. Let C" be the set of Legendrian submanifolds of (J*(R"™,R),0) and
S™ be the set of Lagrangian submanifolds of (T*R"™,0).Then C™ and S™ have the
following relations:
(1) p1 gives a bijection from C™ to S™.
(2) Let F(y,q,2) = —2+ F(y,q) € E(k +n+ 1)(F € m*(k +n)) and L € cr.
Then F is a generating family of L if and only if F is a generating family of p1(L )
Indeed let L be a Legendrian submanifold germ of (PT*R™1,[¢°]) and F(y,q,z)
= -2+ F(y,q1, - ,qn) € E(k+n+ 1)(F € m?(k + n))be a generating family of L.
Then
- OF oF OF
L {(qu 7Qn727[8q1’ ' Ogn’ 1])|3y F 0}7

- - OF OF _ OF
L= zL = PR naFa_'_7" P Oa
¥z(L) ={(q1, -, q 9 9a. 25 o9 }

- OF OF OF
L=p1(L)={(q1a7Qn75’q_ly 7aqn)|ay }

Under these fact, we identify (PT*R™*1,[¢°]) and (J'(R™,R),0) and identify Leg-
endrian submanifold of (PT*R"™*1,[¢°]) and that of (Jl(R",R),O) respectively.

3. Propagation mechanism of wavefronts. The propagation mechanism of
wavefronts incident from a hypersurface germ with an r-corner in a smooth manifold is
described as follows (cf., [6],[10]): Let M be an n(= r+k+1)-dimensional differentiable
manifold and H : T*M\0 — R be a C®-function, called a Hamiltonian function,
which we suppose to be everywhere positive and positively homogeneous of degree
one with respect to the fiber, that is H(A) = AH (&) for all A > 0 and £ € T*M\0.
Let Xp denote the corresponding Hamiltonian vector field on T*M\0, given locally
by the Hamiltonian equations:

0H | OH

Qi=51;, Pi——aqi,

where (g, p) are local canonical coordinates of T*M

We set £ = H~!(1) and consider the following canonical projections : 7 : T*M —
M, g : RxE = E, mr : Rx E - R. We denote E, the fiber of the spherical
cotangent bundle 7|g at ¢ € M.
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Let go € M, to > 0, & € Ey, and 1o be the image of the phase flow of Xy at
(to,&). Since the phase flow of Xy preserves values of H, the local phase flow ¥ :
(RxT*M\O0, (to,&0)) = (T*M\0,m0) of Xpr induces the map ® : (Rx E, (to, &)) —
(R x E, (to,m0)) given by ®(¢,€) = (¢, ¥(t,)).

We set exp =mp 0@ : (R x E, (to, %)) = (M, u0), expg, = explrxE,,, TP~ =
0 @71 1 (R x E, (to,m0)) = (M, q), exp,, = exp” |RxE.,, $1 = (Tm,ezp) :
(R x E, (to, %)) = (M x M,(qgo,u0)), 2 = (exp~,mn) : (R X E, (to,7m0)) = (M X
M, (go,uo)), where ug = w(np)-

By [6, 2.2] we have the following Proposition
PROPOSITION 3.1. If expy, is regular then ¢ and ¢2 are diffeomorphisms.
Let expg, be regular. We can define the function germ

7'=7rRo¢1_1 =7rRo¢2_1 : (M x M,(qo,u0)) = (R, o).

We call 7 the ray length function associated with the regular point (to,&o) of ezpq,.
Then the following diagram is commutative:

(R x E, (to, &0)) 2 (R x E, (to,m0))

v (TR, exp) $1 N\ b2 (TR, exzp™) N\
) (M x M, (qo,u0)) @)

(RX M, (to.Uo)) (RX M’ (thQO))

Let VO be the hypersurface germ in (M, qo) satisfying éolr,,vo = 0 with an
r-corner defined as the image of an immersion ¢ : (H” x R*,0) — (M,q). We
parameterize V° by 1. For each ¢ C I, = {1,---,r} we define A by the set of
conormal vectors of V2 := VOn{z, = 0} in (E, &) as the lift of the initial wavefront
incident from V?. Then we regard the set L, the image of covectors in A by &
around time ty, that is

L, = {®(t,£) € (R x E, (to,n0))|(t, &) € (R,t0) x A2},

as the set of the lift of the wavefronts incident from V;) around time to. We also
regard the union of L, for all ¢ C I, as the set of the lift of wavefront incident from
the hypersurface VV° around time ¢y. We define the wavefront incident from V° by

U (rr,ma) (o).

oClI,

The family of submanifolds {L,}sc1, of (R X E, (to,70)) is ‘generated’ by the ray
length function 7 as the following:

PROPOSITION 3.2. Let VO be the hypersurface germ in (M, qo) satisfying éolr,,vo
= 0 which is the image of an immersion 1 : (H" x R¥,0) = (M, q). Let L, be the
set of the lift of the wavefronts incident from V2 := VO N {z, = 0} around time t,
for o C I,.. Define F(z,y,u,t) := —t + 70 (1(z,y),u) € E(r;k +m +1). Then the
following hold: B B

(1) F is C-non-degenerate, that is %5(0) =0,25(0) =0 and

’ By
oF  oF
F F
k R = k+1.
ran 520y Badu r+kKk+
0*°F  9°F

Oyoy 0Oyou /



114 RETICULAR LEGENDRIAN SINGULARITIES

(2)
L, = {(t,duF (2,3, 1)) € (R x T*M\0, (to,0))|
Ty = ZI,--UF(zﬂy’u) = dyF_'(z,y,u) =F= 0}

for o C I., where we identify (M,up) and (R™,0) by coordinates (uq,---,u,) of
(M7 ’LL())-
Proof. This is immediately followed by [10] Proposition 2.2.

By Theorem 5.6 (2), Proposition 3.2 means that {L, },c1, is a contact regular r-
cubic configuration of (R x T*M\0, (to,m0)) with the contact structure defined by the
canonical 1-form dt —pdu, where p are the fiber coordinates corresponding to u. Hence
there exists a contact diffeomorphism C : (J}(R™,R),0) — (R x T*M\0, (to,m0))
such that

L,=C(L3) for ocClI,

where I:g = {(qazap) € (Jl(Rn)R)’O)qu = Pl,—c = Qr4+1 = = = (4np = 2 =
0,qr,—s > 0} (cf., Section 5).

Small perturbations of the immersion ¢ implies small perturbations of contact
diffeomorphism C. Therefore we investigate the stabilities of contact regular r-cubic
configurations with respect to perturbations of corresponding contact diffeomorphisms
in a more general situation in Section 7.

- 4. Results of Reticular Lagrangian singularities. Here we shall recall some
results given in [10]. Let (g, p) be canonical coordinates of (T*R"™,0) and 7 : (T*R™,0)
— (R™,0) be the cotangent bundle. Let H = {(¢q1,---,qn) € (R™,0)|g1 >0,---,¢, >
0,4r41 = --+ = g = 0} be an r-corner and H, = {(¢1,-*-,qn) € H|g, = 0} be an
edge of H for o C I.. We define L? the conormal bundle of H,, that is

L2 = {(g,p) € (T"R™,0)|gs =PI, = gr41 =+ = gn = 0,41, > 0}.

DEFINITION 4.1. Let {L,},c1,. be a family of 2" Lagrangian submanifold germs
of (T*R™,0) under canonical symplectic structure of (I*R",0). Then {Ly}sc1, is
called o symplectic reqular r-cubic configuration if there exists a symplectomorphism
S on (T*R",0) such that L, = S(LY) for all o C I,.

Let {L,}sc1. be a symplectic regular r-cubic configuration and F(z,y,q) €
m(r;k + n)? be a function germ which is S-non-degenerate. We call F' a generat-
ing family of {L,}sc1, if F|z,=0 is a generating family of L, for o C I, that is

oF N _ OF _OF _ ,
LU_{(qaa_q(xayaQ)) € (T R ,0)'.’13,7 = m = 8y —0} for O'CIT.

Let {L:}scr, and {L2},cr, be symplectic regular r-cubic configurations. We
call {Ll}scr, and {L2},cy, are Lagrangian equivalent if there exists a Lagrangian
equivalence O such that L2 = ©(L.) for o C I,.

We say that function germs F(z,y,u),G(z,y,u) € m(r;k+n), wherez € H", y €
R* and u € R™, are reticular Rt -equivalent (as n-dimensional unfoldings) if there
exist ® € B(r;k + n) and a € m(n) satisfying the following:
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(1) @ = (¢,v), where ¢ : (H" x R¥™ 0) — (H" x R*,0) and % : (R",0) —
(R",0).

(2) G(z,y,u) = F(¢(z,y,u), ¥ (u)) + a(u) for (z,y,u) € (H" x R¥",0).

We say (®,a) a reticular R*-isomorphism from G to F and if @ = 0 we say that
F and G are reticular R-equivalent.

We say that function germs F'(z,y1, -, Yr,,u) € m(r; ky+n) and F(z,y1, - -, Yks»
u) € m(r;ks + n) are stably reticular R*-equivalent if F' and G are reticular R*-
equivalent after additions of non-degenerate quadratic forms in the variables y.

THEOREM 4.2. (1) For any symplectic regular r-cubic configuration {L,},c1,,
there ezists a function germ F € m(r; k+n)? which is a generating family of {Ls }oc1, -

(2) For any S-non-degenerate function germ F € m(r;k + n)?, there erists a
symplectic regular r-cubic configuration of which F is a generating family.

(3) Two symplectic regular r-cubic configuration are Lagrangian equivalent if and
only if their generating families are stably reticular RT-equivalent.

We remark that two S-non-degenerate function germ F,G € m(r;k + n)? are
generating families of the same symplectic regular r-cubic configuration, then F' and
G are reticular R-equivalent.

LEMMA 4.3. Let U,V be open sets in R™ such that0 € U and let fo : U = V be a
embedding. Then there ezist a neighborhood Uy of 0 in U and an open ball Vi around
fo(0) in V and a neighborhood N1 of fo in C*®°(U,V) such that f|y, is embedding and
Vi C f(Uy) for all f € N1. Moreover

Ny — C®(V,U) (f = (flv)) ')

1S continuous.

5. Contact regular r-cubic configurations. In this section we shall define
Contact regular r-cubic configurations and investigate the relations between sym-
plectic and contact regular r-cubic configurations. _

Let (q1,-**,Qn,2,P1,-**,Pn) be canonical coordinates of J'(R™, R). Set LQ =
{(g,2,p) € (J'R™,R),0)|¢ = PI,—0 = ry1 =""" = = 2 = 0,q1,— > 0} for each
oClI,.

DEFINITION 5.1. Let {~I:a},,c 1. be a family of 2" Legendrian submanifold germs
of (J1(R", R),0). Then {L,}scr, is called a contact regular r-cubic configuration if
there exists a contact diffeomorphism C on (J'(R",R),0) such that L, = C (Eg) for
allo C I,. _ ~

Two contact regular r-cubic configurations {Ll},cy, and {L2},cy, are said to
be Legendrian equivalent if there exist Legendrian equivalence © of #( or #) such that
L2 =Q(LL) for all 0 C I,.

REMARK. The definition of contact regular r-cubic configuration by Nguyen Huu
Duc [5, p. 631] is that there exists a contact diffeomorphism C such that L, =
C{¢o = P16 =@r41 = -+ =¢qn = 2 =0}) for all ¢ C I,. Then {L,},cr, is called
a contact regular r-cubic configuration.

DEFINITION 5.2. Let {L,},c1, be a contact regular r-cubic configuration in
(J}(R™,R),0). Then F(z,y,q,2z) € m(r;k +n + 1) is called a generating family of
{Ls}ocr, if the following conditions hold:

(1) Fis C-non-degenerate. )

(2) For each o C I, F|;,=0 is a generating family of L,, that is
OF ,, OF OF =B—F:F=0}.

LU = {(qaz7 %/(_'a_z))l Ty = m ay
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We now consider contact diffeomorphisms and contact diffeomorphism germs on
JY(R™,R) and (J*(R", R),0) respectively. Let (@, Z, P) be canonical coordinates on
the source and (g, z, p) be canonical coordinates of the target. We define the following
notations:

v (JEHR™,R)N{Z = 0},0) = (J*(R™,R),0) be the inclusion map on the domain.
C(J*(R™ R),0)={C : (J}(R™,R),0) = (J'(R",R),0)|C: contact diffeomorphism}
C*(J*(R™,R),0) = {C € C(J'(R",R),0)|C preserves the canonical 1-form}
C2(JH(R™,R),0) = {C 01 |C € C(J'(R",R),0)}

C%(J*(R™ R),0) = {C o+ |C € C*(J*(R",R),0)}

Let U be an open set in J'(R?,R) and V =UN{Z =0}. Let i: V — U be the
inclusion map.

CU,JY(R™R)) ={C :U = J*(R™,R)|C : contact embedding }
ce(U,JYR™,R)) = {C € C(U,J'(R",R)) | C preserves the canonical 1-form }
Cz(V, JH(R™,R)) = {C 07 |C € (U, J*(R",R))}

C3(V,J'(R™,R)) = {C 07 |C € C*(U,J'(R",R))}
LEMMA 5.3. Let {L,}sc1. be a contact regular r-cubic configura-
tion in (J'(R",R),0) defined by C € C(J'(R™ R),0). Then there exists C' €
C*(J1(R™,R),0) that also defines {L,}ocI, -

Proof. Let C = (q¢,2c,pc)- Define the function a on C(J*(R",R),0) by the
relation C*(dz — pdq) = a(dZ — PdQ). Define

¢: (J'R",R)N{Z =0},0) = (J'(R", R)N{Z = 0},0)((Q, P) = (Q, a0x(Q, P)P)),

~

C' (MR, R),05 . (®R"R)0) ]
(Q: ZaP) H(QC OZO¢_1(Q,P),Z+ZC010¢_1(Q,P),p0010¢_1(Q,P)).

Then
C'*(dz—pdq) =dZ+((Coz)0¢‘1)*(dz—pdq) =dZ—(¢1)*(aor(Q, P)PdQ) =dZ - PdQ.

Therefore C' € C*(J'(R",R),0). Since C'(Q,0,a(Q,P)P) = C(Q,0,P), C' also
defines {Ls}ocr,.-

LEMMA 5.4. Let S(T*R"™,0) be the set of symplectic diffeomorphism germs on
(T*R™,0). We define the following maps:

C2(J'(R™,R),0) — S(T*R™,0)

CZ(QC,207PC) = (SC(Q,P)H((]C,])C)(Q,P) )
S(I*R",0) - Cg(J'(R*,R),0)
S=(QS7PS) = (CS:(Q:P)H(qS;fS7pS)(Q7P) )’

where f5(Q, P) is uniquely defined by the relation that S*(pdg) — PdQ = df°, £5(0,0)
= 0. Then these maps are well defined and inverse to each other(that is SC° = S, cs°®
=C).
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Proof. Let C € Cg(J'(R™ R),0) be given. Take C € C*(J*(R™,R),0) such
that C o1 = C. Since S¢ = (g¢,pc), we have

(59)*(dp A dq) = C*(dp A dq) = C*(—d(dz — pdg)) = —d((C 02)*(dz — pdq))
= —d(:*(dZ — PdQ)) = —d(—PdQ) = dP A dQ

Hence S¢ € S(T*R",0).

Conversely let S = (¢s,ps) € S(T*R™,0) be given . We define the diffeomorphism
C% on (J'(R™,R),0) by C%(Q,Z,P) = (¢s(Q,P),Z + f3(Q, P),ps(Q, P)). Then
CSo01=C% and

(C9)*(dz—pdq) = dZ +df S — S*(pdq) = dZ+ (S* (pdq) — PdQ) — S*(pdq) = dZ — PdQ.

Hence C* € C%(J(R™,R),0). On the other hand, by definition, we have

59 = (gos,pes) = (as,ps) » C5° = (ase, £5°,pse) = (aos £5° 1 pc)-

Since fSC and zc satisfy the equation of z(Q,P) that dz = pedge — PdQ and
2(0,0) = 0, we have that ¢ =z0. 0

PROPOSITION 5.5. Let C* be the set of contact regular r-cubic configurations
in (JL(R™, R),0) and SP be the set of symplectic regular r-cubic configurations in
(T*R"™,0). We define

Ts:CP = S ({C(LYYocr, = {SY(LY)}oct, ), where C € CH(J'(R™,R),0)
To: 87 = CF ({S(E)}ocr, = {C%(L)}oct, ), where S € S(T*R",0)

Then (1) Ts and T¢ are well defined and inverse to each other.

(2) A function germ F(z,y,q) € m*(r;k + n) is S-non-degenerate if and only if
—2z + F is C-non-degenerate.

(3) A function germ F(z,y,q) € m%(r;k +n) is a generating family of a symplec-
tic regular r-cubic configuration if and only if —z + F is a generating family of the
corresponding contact regular r-cubic configuration.

Proof.(1) Let C = (gc,2¢,pc) € CZ(J*(R™,R),0) and S € S(T*R",0) satisfy
that S = S¢ (hence C = C9). Since S = (qc,pc), we have S(LY) = p1(C(LL)) for
all ¢ C I,.. Since S(L2) and C(L?) are uniquely determined by each other under g
by Lemma 2.2, we have (1).

(2) Let F(z,y,q) € m*(r;k+n). If we define F' € m(r; k+n+1) by F(z,y,q,2) =
—z+ F(2,y,q). Then §£(0) = 3£(0) = 0,55(0) = £(0) = 0 and

b By
8F aF oF OF aF 4
oy dq 0z Oy dq
8°F  9°F  8%F _ 8°F  8’F 0
dzdy  Oxdg Ozdz - dzdy  Oxz0Oq
8°F  9°F  8°F - 8%F 8%F 0
Oydy Oydq Oydz 0 dydy  Oydq 0

This implies (2).
(3) By (2),we have
F = —z + F is a generating family of {C(L2)}sc1,
& Fis C-non-degenerate and F'|,,—o generates C(L2) for all o C I,
& F is S-non-degenerate and F|,, —o generates S(L%) for all o C I
& F is a generating family of {S(L%)},cr.. 0
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The relation between contact and symplectic regular r-cubic configurations is
given in the following diagram:

(J'®R)N{Z=0},00 °=F° (ARMR),0)  {E0ecr = {Lo}oct
Dilz=o0 1n 1 Ts It Tc
(T*R",0) S (7*Rn,0) {LY}ocr. = A{Lo}ocr,

We say that function germs F'(z,y1, -+, Yk, , u) €m(r; k1 +m) and F(z,y1, -, Yk,
u) € m(r; ka+m) are stably reticular K-equivalent if F' and G are reticular K-equivalent
after additions of non-degenerate quadratic forms in the variables y.

The relations between contact regular r-cubic configurations and their generating
families are given in the following theorem.

THEOREM 5.6. (1) For any contact regular r-cubic configuration {Ly}sc1, in
(J*(R™,R), 0), there exzists a function germ F € m(r;k+n+1) which is a generating
family of {Ly}act,. )

(2) For any C-non-degenerate function F' € m(r;k +n + 1), there exists a con-
tact regular T-cubic configuration in (PT*R™1,(0,[%5(0)])) (or in (J'(R",R),0))
of which F is a generating family.

(3) Two contact regular r-cubic configurations are Legendrian equivalent if and
only if their generating families are stably reticular K -equivalent.

Proof. (1) Let a contact regular r-cubic configuration {Ls}ocr, in (JL(R™,R),0)
be given. Set {L,}scr. = Ts({Ls}ocr.) and let F € m%(r;k + n) be a generating
family of {Ly}scr,. Then —z+F € m(r; k+n+1) is a generating family of {L, }ocr,
by Proposition 5.5 (3).

(2) Let a C-non-degenerate function F' € m(r;k + n + 1) be given. By Lemma
2.1 and (3)a, we may assume that F has the form F(z,y,q,2) = —z + F(z,y,q)(F €
m?(r;k +n)). Then F is a generating family of a symplectic regular r-cubic configu-
ration {L,}scr, in (T*R™,0) by Proposition 5.5 (2) and Theorem 4.2 (2). Hence F'
is a generating family of T¢({Ls}sc1.) by Proposition 5.5 (3).

(3) This is proved by analogous methods of that of Theorem 3.2 (3) in [10] and
details are given in [11].

6. Stability of function germs. In order to investigate the stabilities of smooth
contact regular r-cubic configurations, we shall prepare the results of the singularity
theory of function germs with respect to reticular K-equivalence. Basic techniques
for the characterization of the stabilities we use in this paper depend heavily on the
results in this section, however the all arguments are almost parallel along the ordinary
theory of the right-equivalence (cf., [14]), so that we omit the detail.

We denote J!(r+k, 1) the set of I-jets at 0 of germs in m(r; k) and let 7, : m(r; k) —
J'(r + k, 1) be the natural projection. We denote j!f(0) the I-jet of f € m(r; k).

We say f,g € m(r;l) are reticular K-equivalent if there exists ¢ € B(k;l) and
a € E(k;l)such that g =a- f o ¢ and a(0) # 0.

LEMMA 6.1. Let f € m(r;k) and O%(5'f(0)) be the submanifold of J'(r + k,1)
consist of the image by m; of the orbit of reticular K-equivalence of f. Put z = 5' £(0).
Then

T.(O(2) = Ml gy ety + (i )L, 2L

We say that a function germ f € m(r; k) is reticular K-I-determined if all function

germ which has same [-jet of f is reticular K-equivalent to f.

)
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LEMMA 6.2. Let f € m(r; k) and let

Wk C RS, g 3 ) B (g oy ) + i B,

then f is reticular K-l-determined. Conversely let f € m(r;k) be reticular K-I-
determined, then

of of

e R

) Tk)+m(rk)al 7a_yk"

Let F € m(r;k + n1), G € m(r;k + n2) be unfoldings of f € m(r;k). We
say that F is reticular K-f-induced from G if there exist smooth map germs ¢ :
(H" x R¥tm2 0) - (H" x R,0), ¢ : (R"2,0) — (R™,0) and « € £(0;n2) satisfying
the following conditions:

(1) ¢((H" N {z, = 0}) x R¥+m2) c (H" N {z, = 0}) x R* for o C I,.

(2) G(z,y,v) = a(v) - F(é(z,y,v),%(v)) for z € H", y € RF and v € R"2.

DEFINITION 6.3. Here we give several definitions of the stabilities of unfoldings.
Let f € m(r; k) and F € m(r;k + n) be an unfolding of f.

We define a smooth map germ

JAF (R 0) — (J'(r + k,1),5'£(0))

as follow: Let F': U — R be a representative of F. For each (z,y,u) € U, We define
Foyu € m(r;k) by Fippyu(@,y') = Flz +2',y +y',u) — F(z,y,u). Now define
jiF(z,y,u) =the I-jet of F(, ). jiF depends only on the germ at 0 of F. We say
that F is reticular K-l-transversal if ji F|,—o is transversal to O% (4! f(0)). It is easy
to check that F' is reticular K-I-transversal if and only if

P ST Y A
g(r,k)_(f,wla{lfl, " raxr 3y1 aay

)5(7‘ &) + Wr +m(r; k),
Whel‘e WF = <8aTF1|u:O, Tty %lu:())R_

We say that F is reticular K-stable if the following condition holds: For any
neighborhood U of 0 in R™™*+" and any representative F' € C°(U,R) of F, there
exists a neighborhood N of F' such that for any element G € N the germ G|gr xgi+n
at (0,yp,up) is reticular K-equivalent to F for some (0,y,ug) € U.

We say that F is reticular K-versal if F' is reticular K- f-induced from all unfolding
of f.

We say that F' is reticular K-infinitesimal versal if

By = (fg Of . OF Of | of
g(r’k)—<fa$18zla axrawryayly 7ay )E(rk)+WF

We say that F' is reticular K-infinitesimal stable if

E(r;k +n)
OF OF OF OF OF  OF

= (F a1, Tpe— ) —— e (rk e .
(g = n g e ayp ikt T (50 Ba. 16

We say that F' is reticular K-homotopically stable if for any smooth path-germ
(R,0) = &(r;k +n),t — F; with Fy = F, there exists a smooth path-germ (R,0) —
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B(r;k +n) x E(n),t — (P, ) with (®o,a9) = (id, 1) such that each (P4, ;) is a
reticular K-isomorphism and Fy = a4 - F} o ®;.

THEOREM 6.4 (Transversality lemma). Let U be a neighborhood of 0 in 0 €
R7HR+™ with the coordinates (Ty,- -+, Tr, Y1, Yk, UL, -, Un) and A be a submani-
fold of J{(r + k,1). Then the set

Ta={F € C®(U,R) | 5. F|s=o is transversal to A}

is dense in C°(U,R) with respect to C*°-topology, where jLF(x,y,u) is the l-jet of
the map (z',y") = F(z +2',y +y',u) at 0.

The transversality we used is a slightly different for the ordinary one [14], however
we can also prove this theorem by the method along the ordinary method.

THEOREM 6.5. Let F € m(r;k + n) be an unfolding of f € m(r;k). Then the
following are equivalent.

(1) F is reticular K-stable.

(2) F is reticular K-versal.

(3) F is reticular K-infinitesimal versal.

(4) F is reticular K-infinitesimal stable.

(5) F is reticular K-homotopically stable.

For f € m(r;k) we define the reticular K-codimension of f by the R-dimension
of the vector space

: of ., 0of of  Of
g(r: k)/<f7371 81131, ) raxr 31/1 7ayk)£(r;k)'

By the above theorem if a1, - - -,a, € £(r; k) is a representative of a basis of the vector
space, then f + ajv; + - - a,v, € m(r; k + n) is a reticular K-stable unfolding of f.

7. Reticular Legendrian maps. Our purpose in this section is to investigate
the stabilities of smooth contact regular r-cubic configurations. At first, we define the
reticular Legendrian maps and their equivalence relation.

Let L0 = {(q,2,p) € J'RYLR)|pr = -+ = @pr = Grp1 =+ = g = 2 =
0,q1, > 0} be a representative of the union of LY for all ¢ C I,. We call the map
germ

(L°,0) - (J'(R™,R),0) = (R" x R, 0)

a reticular Legendrian map if there exists a contact diffeomorphism C on (J*(R™®,R),
0) such that i = C|p,. C is called an extension of i. We call {i(L2)}scy, the
contact regular r-cubic configuration associated with # o 4. We call F' a generating
family of 7 o if F' is a generating family of {i( (L9)Yocr,. A homeomorphism germ ¢ :
(L°,0) —s (L2,0) is called a reticular diffeomorphism if there exists a diffeomorphism
@ on (J!(R",R),0) such that ¢ = &| -, and ¢(L2) = LY for all o C I,. Two reticular
Legendrian maps 7 o i1, % 0 iz : (L0,0) - (J1(R™,R),0) - (R" x R,0) are called
Legendrian equivalent if there exists a reticular diffeomorphism ¢ and a Legendrian
equivalence © on 7 such that the following diagram is commutative:

(L°,0) 2% (JY(R™R),0) - (R"xR,0)
oL 0l gl
(L°,0) % (J'(R™,R),00 = (R"xR,0)
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where g is the diffeomorphism of the base of # induced from ©.

Under this equivalence relation, we have the following theorem as a corollary of
Theorem 5.6.

THEOREM 7.1. (1) For any reticular Legendrian map 7 ot, there exists a function
germ F € m(r; b+ n + 1) which is a generating family of 7 o 1.

(2) For any C-non-degenerate function germ F' € m(r;k +n + 1), there exists a
reticular Legendrian map of which F' is a generating famaily.

(3) Two reticular Legendrian maps are Legendrian equivalent if and only if their
generating families are stably reticular K-equivalent.

Here we give several definitions of the stabilities of reticular Legendrian maps.

Stability. Let 7 o : (I°,0) = (J'(R",R),0) = (R™ x R,0) be a reticular
Legendrian map. 7oi is called stable if the following condition holds: For any extension
Cp € C(JY(R™, R),0) of i and any representative Cy € C(U, J'(R",R)), there exists
a neighborhood N, of Cy in C*-topology such that for all C € Ng, To C'|Lo at zo
and 7 o i are Legendrian equivalent for some o = (0;0;0,---,0,P2,,---,P?) € U.

Let 7 o7 is a reticular Legendrian map. By Lemma 5.3, we may assume that
there exists an extension C € C*(J'(R™,R),0) of ig. Therefore we may consider
the following other definitions of stabilities of reticular Legendrian maps: (1) The
definition given by replacing C(J'(R",R),0) and C(U, J}(R",R)) to C*(J'(R",R),
0) and C*(U, J*(R™,R)) of the original definition respectively. (2) The definition
given by replacing to Cz(J'(R",R),0) and Cz(V, J*(R™, R)) respectively. (3) The
definition given by replacing to CZ(J!(R",R),0) and CZ(V, J}(R"™, R)) respectively.

LEMMA 7.2. The original definition and these definitions of stabilities of reticular
Legendrian maps are all equivalent.

Proof. (original)=>(1). Let Co € C*(J!(R™,R),0) be an extension of 75 and
Co € C*(U, J*(R",R)) be a representative of Cy. Take a neighborhood Ng, of
Cyp in C(U, J*(R™,R)) for which the hypothesis of the original definition holds. Set
N/ = Ng, NnC*(U,J' (R",R)). Then the hypothesis of the definition of (1) holds

0 0
for N éo.

(1)=(3). Let Cp € C%(J'(R*,R),0) be an extension of i; and C, €
Cg(V,J*(R™,R)) be a representative of Co. We construct the continuous map
cg(v,J*(R™,R)) » C*(V x R, J'(R",R)) (C C’) by the following: Let C =
(2¢,96,pa) € C4(V, JH(R™, R)) Then €' is defined by C'(Q, Z, P) = (¢6(Q,P), Z+
25(Q, P),ps(Q, P)). Then C'*(dz — pdq) = dZ + C*(dz — pdq) = dZ — PdQ. Hence
this map is well defined. Take a neighborhood N/ of C’}’ in C(V xR, J}(R",R))
for which the hypothesis of the definition of (1) holds. Let N 80 be the inverse image
of N, by the preceding map. Then the hypothesis of the definition of (3) holds for
NI

Go'

(3)=(2). Let Co € Cz(J'(R™R),0) be an extension of iq and Cp €
Cz(V,J*(R™,R)) be a representative of Cy. Define
Cz(V,J'(R",R)) = C=(V, J'(R",R)N{Z = 0})(C = ¢ : (Q,P) = (Q, fzP) ),

where fC € C*(V,R) is defined by C*(dz — pdq) = —-féPdQ. Then this map
is continuous because f¢P; = (fC(PdQ))(BiQi) = —(dz —pdq)(é'*%) = —g—Qii +
po 8Q, (¢ =1,---,n). We may assume ¢, is embedding by shrinking V" if necessary.
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By Lemma 4.3 there exists a neighborhood N, of Co and a neighborhood V; of 0 in
V and a neighborhood W of 0 in J'*(R™,R) N {Z = 0} such that

Ng, = Emb(W,V) (C — (dalv) " w )

is well defined and continuous. Therefore we may define the following continuous
map:

Ng, = C5(W,J'(R™,R)) (C = Co (d5lvi) ' lw )-

Take a neighborhood N of Cyo (¢¢,1va) " w for which the hypothesis of the definition
of (3) holds. Let N ('50 be the inverse image of N by the preceding map. Then the

hypothesis of the definition of (2) holds for V. éo.

(2)=(original). Let Coy € C(J'(R™ R),0) be an extension of ig and Cy €
C(U,J*(R™,R)) be a representative of Cy. Let V = U N{Z = 0} and Co = Colz=o-
Take a neighborhood N+ of C~'0I in Cz(V,J*(R",R)) for which the hypothesis of the
definition of (2) holds. Because C'(U, J'(R™, R)) = Cz(V,J'(R"*,R)) (C — C|z-0)
is continuous, if we set N/ ', the inverse image of N ./ by the preceding map then the

hypothesis of the orlgmal deﬁmtlon holds for N !

Homotopical Stability. Let #oi : (L0, 0) — (J1 (R*,R),0) - (R*xR,0) bea
reticular Legendrian map. A map germ i : (L° x R,0) = (J'(R",R),0)((Q, P,t) —
it(Q, P))(io = 1) is called a reticular Legendrian deformation of i if there exists a one-
parameter family of contact diffeomorphisms C': (J*(R",R) xR, 0) = (J'(R",R),0)
((Q, Z,P,t) = Ci(Q, Z, P)) such that iy = C|y;, for ¢t near 0. We call C an exten-
sion of i. Let ¢ : (L°,0) — (L°,0) be a reticular diffeomorphism. A map germ
é:(L°x R,0) = (L°,0)((Q, P,t) = ¢:(Q, P))(do = ¢) is called a one-parameter de-
formation of reticular diffeomorphisms of ¢ if there exists a one-parameter family of
diffeomorphisms & : (J*(R", R)xR,0) = (J*(R™,R),0)((Q, Z, P,t) = ®4(Q, Z, P))
such that ¢; = |, for ¢ near 0 and each ¢; is a reticular diffeomorphism. We call
& an extension of ¢. A reticular Legendrian map 7 o : (L0,0) — (J* R™,R),0) =
(R" x R, 0) is called homotopically stable if for any reticular Legendrian deformation
Z_ = {i¢} of 7 there exist a one-parameter deformation of reticular diffeomorphisms
¢ = {¢¢} of id 1 ) and a one-parameter family of Legendrian equivalences © = {0}

with ©g = id(j1(rn R),0) Such that i; = ©; 0 o ¢ for ¢ near 0.

Infinitesimal Stability. A vector field v on (J!(R™,R),0) is called tangent to
(L°,0) if v| o is tangent to L0 for all ¢ C I,. A function germ H on (J!(R™,R),0)
is called fiber preserving if there exists function germs hg,:--,h, on the base of 7
such that H(q,z,p) = Y i, hi(g,2)pi + ho(g,2). A reticular Legendrian map 7 o
i: (L0,0) = (JY(R",R),0) = (R™ x R,0) is called infinitesimal stable if for any
function germ f on (J'(R™,R),0) there exists a fiber preserving function germ H on
(JY(R™,R),0) and a vector field v on (J!(R",R),0) such that v is tangent to (°,0)
and Xyoi = Xg oi+ 4,0, where X; and Xy are the contact hamiltonian vector
field of f and H respectively and 4,v is defined by i,v = (Cy,v) o i for an extension
C € C(JY(R™ R),0) of i.

LEMMA 7.3. For any one-parameter family of Legendrian equivalences
0: (J'®R™R) x R,0) = (J1(R",R),0) with O = id, there ezists a fiber preserving
function germ H on (J1(R",R),0) such that Xy = %h:o. Conversely for any fiber
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preserving function germ H on (J 1(R™,R),0), the flow © of Xy with the initial
condition ©¢ = id is a one-parameter family of Legendrian equivalences.

THEOREM 7.4. Let 7o : (L2,0) = (J*(R",R),0) = (R" x R,0) be a reticular
Legendrian map with the generating family F(z,y,q,2) € m(r;k +n+1). Let f =
F|{q=z2=0}- Then the following are equivalent.

(1) F is a reticular K-stable unfolding of f.

(2) 7 o is homotopically stable.

(3) 7 o1 is infinitesimal stable.

(4) For any function germ f on (J*(R™,R),0), there ezists a fiber preserving
function germ H on (J*(R™,R),0) such that foi=Hoi.

(5) 7 o1 is stable.

This theorem is proved by analogous methods of that of Theorem 5.5 in [10] and
details are given in [11].

8. Classification of function germs. In [10], we classified simple or unimodal
function germs with respect to reticular R-equivalence. This classification includes
the classification with reticular R-codimension lower than 7. This means that we
classified all stable caustic in manifolds of dimension lower than 7.

On the other hand, by Proposition 5.5 the dimension of a manifold includes a
wavefront exceeds unity than the dimension of a manifold includes the corresponding
caustic. Therefore it is natural to classify stable wavefronts in manifolds of dimension
lower than 8. In order to realize this, we classify function germs with reticular K-
codimension lower than 8 with respect to reticular K-equivalence.

By Lemma 7.1 and Lemma 7.2 in [10], we have only to classify residual singu-
larities, that is function germs in m(r;k)? whose restriction to = 0 is an element
of m(0;k)%. jya .0 f(0) = g denotes quasihomogeneous equivalence of jets and f ~ g
means f is reticular K-equivalent to g and = means ‘see’ or ‘implies’.

Let f € m(r; k)? be a residual singularity with the reticular K-codimension lower
than 8. We set ¢(y) = f(0,y) € m(0; k)3.

The case r=1,k=0. f=z" (n=2,---,7).

The case r = 1,k = 1. One of the five:

P2fO) ~ay+z2orzy = fmay+ey® (" =1,n=3,---,7),
Jy3,22f(0) = y3 + 22 = fryd+2?,

jy3,22f(0) ~ z? = (1)7
jy3,z2f(0) ~ y3 = (3)a
jys,:c2f(0) ~0 = (5)

(1) jy222f(0) = 22 = one of the five:
jy4,a:2f(0) ~ y4 + a$y2 + 3:2((12 #4)
jy4,m2f(0) ~ (y2 + :L.)2
Jay2 22 f(0) = zy? & 22
Jys 22 F(0) = y° + 22 fry® £z + 22,
jyswzf(()) ~z?or0 (2)

(2) jy6.22f(0) is adjacent to y® + azy® £ 22(a? # +4) and hence

y kA

the codimension of f >dim&(1;1)/((z 2L, %,y%)R + (@3, 2%y, eyt y Ve ) > 12 -

3=09.

(3) jy2,22f(0) = y* = one of the five:

f~yt +azy® £ 22(a® £ 4),
fry’+ @ +2)? ory® + (y* £2)%,
fry +ay’£a?

L4y
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PBf0) =y +ax’y +223(a £ -3) = fxy®+az?y+223(a# -3),

P2f0) =~ y® + zy? = fxyP+ay? Lzt ory® +zy® £2°,
73 £(0) = y® + 2%y = [~y +22y,

Jye,za fO) ey + 2t = fryd+aly+ 2t

jy3,w4f(0) ~ yg = (4)

(4) f is adjacent to y® & z*y + z° and this has codimension 9.
(5) jy3,22f(0) = 0 = one of the four:
PO~z +23 = fry*Lay?La®ory® £ay? L3,
73 £(0) = zy? = fryttzy?+ad
7°£(0) ~ 2y => [yt +ay’ a2ty
P2fO)=z30or0 = (6).
(6) 72f(0) = 2% or 0 = f is adjacent to y* + zy® £ 2° and this has codimension 8.
The case r = 1,k = 2 One of the two:
Pe#£0 = (1),
PBe=0 = (22).
(7). 53¢ # 0 = on of the four:

peDy = (8),

peDs = (12),
¢ € Dg = (16),
o€ Ry = (19)

(8). ¢ = y?y> £ 43 = one of the four:

jyfyg,yg,mygf(o) y%y2 + yg + zy1 + azys,
a?+1#0 = f=ylys 95+ 3y +azys,

Q

Jutyedenf(0) = yiys Tys L xys = (9),
Jygen2a2f(0) &~ yiys £y3 +a = (10),
Jpanpe2f(0)  ~  yiy2 £y3 = (11).

(9) dy2yn 42,09 F(0) = 43 yQiyziwyz =>f Yy yz:*:yziwyz+wy1 oryy Y2y LTy +yi.
(10). jy'izyg,yg,zzf(O) =iy tyi+2? = faylyp Lyl +2% zy2
(11) f € 133(1;2). Therefore the codimension of f > 8(1;2)/((ay1, B 21 \g+m3(1;2)) >
10-2=8.
(12). ¢ = y?y> +y5 = one of the three:

Jyantaref(0) = ylyat+ystazy = (13),

Jyeten fO) = iy +ys+ay = (14),

jyfyg,yg,zyl f(O) ~ y%y2 + yg = (15)
(13). jyfyg,yg,a:ygf(g) =yiye +ys Tay: = f Yy +ys Loy + oy or Yy +ys
zys + zyi.
(14) Gy2yo 48,09, F0) = ¥iy2 + 45 +ay1 = f R yfys +ys + W + wyz
(15) jyly2’y27$y1 f(0) = y?y, + y4. Then f is adjacent to yfys + y3 + ez + zy3(a +
dy2) (a? # 4¢) and this has codimension 9.
(16) ¢ = y?y2 +y3 = one of the two:

jyfyz,yg,myzf(g) ~ y%y2 tzy: = (17)7
jyfyg,yg,mygf(o) ~ y%y2 .= (18)

(17): Jy2yspt e f(0) = ¥iv2 £2y2 = fmylys 5 £ays +ayn.
(18) y2ys 8,2y, £ (0) = yiy2. Then f is adjacent to yfys+ey3 +zy1 +y3(a+dys) (a® #
—¢) and this has codimension 10
(19). ¢ = y3 +y3. = one of the two:
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Jpytanf0) = =yityitayp = (20),
jy?,yg,zyzf(o) = = y? + yg = (21)

(20). jyf,yg,zygf(o) = y213 +yg tzy, = f= y:1; + yg +zy1 + zy2
(21). Gy 48,29, f(0) = ¥3 +y5. Then f is adjacent to y7 +y5 £ 2y £ay3 and this has
codimension 8.
(22) Since ¢ € m*(0;2), we have the codimension of ¢ > £(0;2)/({ g;;, o D9 )\p +
m*(0;2)) > 10 — 2 = 8. Therefore f has codimension > 9.

The case r = 1,k > 3. We need only to prove that the codimension of f > 8

in the case r = 1,k = 3. Since the codimension of ¢ > £(0;3)/( (a—y‘%, 3—%, g;;) +

m®(0;3)) > 10 — 3 = 7. Therefore the codimension of f > 7+ 1=38.
The case r = 2,k = 0. One of the five:

J2f(0) ~ 22 + az1zo £ 23(a® # £4) = [ = a? +aziz + 2i(a® # £4),
7*£(0) ~ (xl + 22)? = fm(zitz)’£2f(n=3,---,6),
72f(0) = 2?3 £ 2122 = frottziz,tal
or +z125 + 22 or 7,75 (n,m>2, 5<n+m<8),
72f(0) ~ 21 or 23 = (23),
7*f(0) =0 = (26).

(23) We investigate only the case j2f(0) = z2. But the case j2f(0) = 23 is calculated
analogously.
One of the two:
Ja2,23£(0) le +t13 = fra?tozitadora?tald,
zl,x2f(0) ~ "El = (24)
(24) One of the three:
Ja2 23 f(0) = 22 +arize t 1y = f~zltaziz,taltaad,
.72:2,1:4f(0)"’x1 :{::1:11,'2 = fN.’lI%:l:iB%.’L‘Qﬂ:wg,
Ja2,23f(0 )~~’U1 = (25).
(25) ]m2’x4f(0) =z? = f is adjacent to z? + 23 + 23 and this has codlrnensmn 8.
(26) j2f(0)=0 = Since f € m3(2,0), the codimension of f >&(2,0)/({z1 2L B 2 3z2 2hye
m*(2;0)) > 10-2=38.
The case 7 = 2,k = 1. One of the five:

PO~ zytasytalor iyt ay = fRy"EnyE ey + 22
(n>3,m>2m+n<8),
72f(0) = 1y + z? or 2y + 2? = (27),
72f(0) = 1y or zay = (29),
Jo2,02,43f(0) ® i +amzata3(a®£+4) = f~yP+ely+altazizs+oad
(a® # 49),
others = (30).

(27) We investigate only the case j2f(0) = 21y + z2. But the case 52 f(0) = zoy + 3
is calculated analogously.
One of the four:

Jy3 19,03 (0)f & y iw1y+wz = [fry’ oy Loy’ +ad,
Jytery3 F(0) Ryt +am2y +m1yﬂ:m2 = [yt +azy® £aly + oy a3,
Tyt ory02 f(0) = w2y® + @1y £ 23 = Pk ay? oy + a2,

jy“,wly,z f( )~ Ty + -T% = (28)

(28) Jyt 019,02 f(0) = 21y + 73 = f is adjacent to y® £ zoy® + 1y + 22 and this has
codimension 8.

(29) j2f(0) = z1y = f is adjacent to y® + azy + 223 + 23y £ z1y(a # —3) and this
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has codimension 8.
§2f(0) = zoy = f is adjacent to y® + az?y + 223 + 22y + zoy(a # —3) and this has
codimension 8.
(30) j2£(0) is adjacent to fo = (z1 £x2)? or 22 £ 122 or £3175 + 2% = f is adjacent
to fo + y° + ax3y £ 2z3(a # —3) and this has codimension 8.

The classification list of singularities with reticular K-codimension lower than 8

r=1

k  Normal form codim Conditions Notation

0 z" n n=2---,7 B,

1 zy+ey™ n etl=1n=3,--,7 C¢
Y3+ 2? 4 F,
y* + azy? £ 2? 6 a? # +4 K fé”
y® + (y? £ )2 6 Kf’fl’i
Y8 +e(y? + 6z)? 7 Kff"s
Yoty + 2? 7 Ky
v + az’y + 223 6 a# -3 Fe,
y® +zy? + 2t 6 Fsi
y® +zy? £ a5 7 FE
y3 + 2’y 6 Flla_L
v+ 2dy + 2t 7 F7I’
y* + exy® + 028 6 KZ:?‘f
y® + zy® £ 22 6 Kgf2
v’ +xy? £2° 7 K,
y* +exy® + ozt 7 Ko
y* +ay’ £2%y 7 Ky

2 Yy £ys +xy +azy, 6 a?+1#0 Dy
Y2y +eys + dzys + 3y 6 D§;§
yiye +eys +ozys +xy; 7 Dy3
ylys +eys + dxys +a® 7 De°
Vi +ys + oy £ays 6 Dy,
yiys +y3 +eayi + oy T Dgy
Yiye +ys +ay tays 7 Dy*
Yiys +eyS + xy1 + 0zys 7 DZ:‘;
yi +ys oy + 3y 7 Eso

where e = 1,0 = 1.
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r=2

k  Normal form ' codim Conditions Notation

0 2?+aziz2 +a3 4 a® # +4 B3y
(z1 + ex2)? + 0¥ n+1 n=3,---,6 B;’g,n
TP +exyTo + 6T n+m—-1 n,m>2, 5<n+m<8 B,
22 +ex 23 + 073 5 Bg:g,
T3 + exizy + 6 5 ngg,
z? £ a3 6 B¥y,
T3+ a3 6 ;2’0
22 + axizy +exh + oz 73 7 B;:Z}a
23 + az123 + ez} + 6zl 7 Bi’g;a
z? + ex?zy + 6235 7 B;’g,
T3 + ez 23 + 62 7 B;:g,

1yl +exy+dzoy + 25 n+m—-1 n>3,m>2, m+n<8 C9,
y® +exy + dzoy? + 23 5 Csan
Y3 + exoy + dz1y® + 22 5 C?f,’g’.z
yi+azoy?texdy+riy+oal 7 cot
yt+aziy? +exiy+aoy+ad 7 C’Z:g:g
y® +exsvy® + dzy + 73 7 Coar
y® +emy? + dxoy + 7 7 055372
v +exdy+aitarize+0zi T a® # 46 cese

where € = £1,0 = £1.
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