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Abstract. Let M be a connected, orientable surface. An immersion x : M —> CPn is called 
homogeneous, if for any two points p, q G M there exists a holomorphic isometry T of CPn and a 
diffeomorphism a : M —> M such that a(p) = q and x o a = T o x. All such T form a subgroup G 
of the holomorphic isometry group U(n + l)/^1 and a;(M) is an orbit surface of G. Such surfaces 
in CPn have constant curvature, constant Kaehler angle, and in general are non-minimal. In this 
paper we show that any homogeneous surface in CPn generates a sequence of homogeneous surfaces 
in CPn. In the case of a homogeneous sphere x : S2 —> CPn the sequence has to stop in the both 
directions, and any two different homogeneous spheres in the sequence are complex orthogonal. We 
give a construction of homogeneous 2-spheres in CPn by using Veronese sequences in CPm with 
m < n as foundation stones, and prove that any homogeneous 2-sphere in CPn can be obtained (up 
to a holomorphic isometry) by this construction. 

1. Introduction. A surface in CPn is said to be homogeneous, if it is a 2- 
dimensional orbit of a subgroup in the holomorphic isometry group U(n + ty/S1 

of CPn. Standard examples of homogeneous 2-spheres are the so-called Veronese 
sequence in CPn, which are also minimal in CPn (see, for examples, [B-J-R-W], [B-O] 
and [B-W]). 

As is well-known, any surface in CPn sits in a sequence of surfaces in CPn, 
which can be constructed by using derivatives with respect to its complex coordinate 
z and z. Surfaces in the sequence may contain singularities. If x : M -> CPn is 
minimal (harmonic), then all surfaces in the sequence are minimal (harmonic), and 
the sequence is called the harmonic sequence of x. In this paper we show that any 
homogeneous surface in CPn generates a sequence of homogeneous surfaces. In case 
of homogeneous 2-sphere we show that any two different homogeneous spheres in its 
homogeneous sequence are complex orthogonal, thus its homogeneous sequence has to 
stop in both directions. 

Using the Veronese sequence in CPk, k = 0,1, • • • , we can give a complete con- 
struction of homogeneous 2-spheres in CPn. For each integer n > 0 we denote by 

the Veronese sequence in CPn (see §4). We make the convention that [(/>[]] = [1] and 
the sequence [0j], [<f>\] : CP1 -» CP1 are defined by [</>£] = id and [<#]([*, w]) = [-w, z]. 
Let {711,712, * * * >nr} be nonnegative integers. We take from each Veronese sequence 
in CPna a surface [^] such that 

(1.2) ni - 2ji = 712 - 2J2 = • • • = nr - 2jr . 
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Then for nonzero constants ca G C we construct a new homogeneous sphere [(/)] : S2 -» 
CPn with n = ni H h nr + r — 1 by joining them together: 

(1-3) [4>} = [c1(fi\,c2^2,---,cr^r}. 

These homogeneous 2-spheres in CPn are in general non-minimal. Our main theorem 
in this paper is the following 

Classification Theorem. Let x : S2 —> CPn be a homogeneous sphere. Then 
there exist integers {na,ja} satisfying (1.2) and nonzero constants {ca} G C such that 
x = T o [(j)}7 where [(j)} is defined by (1.3) and T G U(n + 1). 

To prove the classification theorem we use operators d and d which are non-linear 
analogues to the linear operators introduced by [Ca] and used in [B]. With the help of 
these operators we show that any homogeneous surface in CPn generates a sequence 
of homogeneous surfaces in CPn. Using homogeneous sequence we show that if a 
homogeneous sphere x : S2 -4 CPn is non-minimal, then x can split into a minimal 
homogeneous sphere xi : S2 -> CPni and a homogeneous sphere X2 : S2 -> CPn2 

with ni + 77,2 + 1 = n, and x is holomorphically isometric to the join of xi and X2. 
This leads to a proof of the classification theorem. 

We organize this paper as follows. In §2 we give structure equations we need for 
x : M —>• CPn. In §3 we study the properties of homogeneous sequence. Then we give 
the construction of homogeneous 2-spheres in CPn in §4, and prove the classification 
theorem in §5. 

2. Structure equations for submanifolds in CPn. In this section we recall 
the theory of submanifolds in CPn briefly and give a characterization theorem for 
minimal submanifolds in CPn which we will need in §3. 

Let TT : S'2n+1 —y CPn be the standard projection. For any local section Z : 
M2n _> g2n+i 0f n defined on an open ball M2n of CP71 we define 

(2.1) ho = (dZ - (dZ • Z)Z) <g> (dZ - (dZ • Z)Z). 

It is easy to check that ho is independent of the choice of local section Z and thus a 
globally defined Hermitian metric on CPn, called Fubini-Study metric. We write 

(2.2) ho = h- ifl, 

where h = Re(ho) — ^(ho + ho) is standard Riemannian metric h on CPn, and 
ft = i(ho - h) is the Kaehler form on CPn. It is well-known that TT : S2n+1 -> CPn 

is a submersion. The horizontal space Mz at Z is given by 

Mz = {W | W • Z = 0} = {V - (V • Z)Z | V G Cn+1}. 

If we denote by < , > the real inner product < v, w >= l/2(v • w + v • w) on Cn+1, 
then dirz : (IHI^,<, >) -> (T[z]CPn,h) is an isometry. Since for any smooth curve 
c(t) on CPn we have 7r(Z(c(t))) = c(t), we get for any X G TCP71 the formula 

d7rz(X(Z))=X, 

where X(Z) is the partial derivative of Z with respect to X. Since for any A G C*, 
t\Z is a curve in Cn+1 with 7r(tXZ) = 7r(Z), we have dirz(\Z) = 0. It is clear that 

TzCn+1 =CZ©Hfe, 



HOMOGENEOUS 2-SPHERES IN CPn 95 

and dirz : (Hz,i) -^ (CPn,J) is a complex isomorphism. Here the complex structure 
J of CPn is then given by the simple formula 

(2.3) J(X) = diTz(iX(Z)), X e T[z]CPn. 

By (2.1) and (2.2) we get 

(2.4) h=l{(dZ-(dZ'Z)Z)^(dZ-(dZ-Z)Z) + (dZ-(dZ'Z)Z)^(dZ-(dZ'Z)Z)}; 

(2.5) ft = UdZ - (dZ - Z)Z) A {dZ - (dZ • Z)Z) = ^dZ A dZ. 

Using (2.4) one can verify the following formula for the Levi-Civita connection V of 
(CPn,/i): 

(2.6) VxY = d7rz{XY{Z) - (X(Z) • Z)Y(Z) - (Y(Z) • Z)X(Z)}. 

Let x : M -> CPn be a m-dimensional submanifold. Then x induces a metric 
g :— x*h on M. For any local section Z of TT : §2n+1 -)> CPn we can define a local lift 
y :— Z o x of the immersion x : M —> CPn. Such a local lift y of x exists around each 
point of M. Let {ej, 1 < j < ^i} be an orthonormal basis for g with dual basis {CC;J}. 

We define 

(2.7) Cj = ejiy) - (e^y) • 2/)j/, 1 < j < m, 

then from (2.4) we obtain 

m 

g = X*h=   Y^    <€3i£k>Uj®Vk. 
j,k=l 

Thus {y,iy,€ir" ?^m} is an orthonormal subbasis in Cn+1 with respect to <, >. 
We add {^a,m + 1 < a < n} to the subbasis such that {y,iy,€j,€a} forms an or- 
thonormal basis of Cn+1 with respect to < , >. Then we have an orthonormal basis 
{diTytej^dirytea)} for {Tx£Pn,h). Since 

(2.8) d-Ky (€j) = d-Ky (ej(y)) = divz(ej(Z o x)) = d7r(dx(ej)(Z)) — dir o dZ(dx(ej))dx(ej), 

we know that {dTr^'^a}} is an orthonormal basis for the normal bundle of a: : M —> 
CPn. Thus the mean curvature vector H of x is given by 

.<     ra n 

(2.9) iJ = — ^   ^   MVda.(ej)da;(eJ-),d7r2/(^a))d7ry(^a). 
j = l Q:=m+1 

It follows from (2.6) that 

(2.10) H = 1 ^ < ^-(e^j/)) - 2(^(2/) • yje^j/),fa > d7ry(f0). 

Since {2/,22/,^,^a} forms an orthonormal basis of Cn+1 with respect to < , >, we 
obtain immediately from (2.10) that H = 0 if and only if we can find locally smooth 
complex function /i :U —> C and real functions fij : U —► E such that 

(2.ii) E^-fe) - fofo) • f )^)==: ^ + E^i- 
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It follows that 

A* 
= £ eife') * y = ~ £ & - ei(2/)= -m- 

i i 

Furthermore, if we denote by {Tjk} the Christoffel symbols of g with respect to {ej}, 
then by (2.11) and (2.6) we get 

(2.12) fik = J] < ej(^)-(ej(2/)^)0,6 >= ^MV^(Ci)da:(ci),efe(eib)) = $]ri ii* 

Since we have 

(2.13) m = J2 fol2 = Ed^^l2 - lci(tf) • ^l2)' ei(v) -y + V eM = 0> 
3 3 

we know from (2.11), (2.12) that x : M -> CPn is minimal if and only if 

(2.14) Ay - 2 ][>,•(</) • J7)e,-(j/) - {(Ay - 2 ^(^(y) • j/Je^y)) • y}y = 0. 

Thus we get the following charaterization theorem for minimal submanifolds in CPn: 

THEOREM 2.1. A submanifold x : Mm —>> CPn is minimal if and only if around 
each point of M there exists a local lift y : U —> Cn+1 and local function X : U —>• C 
such that 

(2-15) Ay-2j2(eJ(y)-y)ej(y) = Xy, 
3 

where {ej} is an orthonormal basis with respect to the induced metric of x. 

We note that the left hand side of (2.15) is independent of the choice of or- 
thonormal basis {ej}, and changes conformally (mody) if we take other local lift of x. 
Theorem 2.1 is an analogue of the Takahashi theorem of minimal submanifolds in 5n 

for minimal submanifolds in CPn (see [Ta]). 

3. Homogeneous sequence for a homogeneous surface in CPn. In this 
section we define the homogeneous sequence of a given homogeneous surface in CPn. 

Let x : M -» CPn be an immersion of oriented surface. The induced metric 
g = x*h defines a complex structure on M. Let U be a open set of M such that there 
exist a complex coordinate z on U and a local lift y : U —^ S2n+1 of x. Such open set 
exists around each point of M. We call such an open set U an adapted coordinate 
of x. For each integer k > 1 we denote by rk(U) the space of Cn+1-valued complex 
k-form of (1,0) type, by T~k(U) the space of Cn+1 -valued complex k-form of (0,1) 
type, and by r0(C7) the space of all smooth complex functions from U to Cn+1. 

For any nowhere-vanishing £ G Tk(U) we can write £ = fdzk for some complex 
coordinate z on U and complex function f : U -t Cn+1. We use the convention that 
dz0 = 1 and dz~k = dzk for k > 1 and write 

(3.1) g = e2w\dz\2. 

Then we can define an operator d : Tk(U) -> rk+1(U) by 

dZ = df-dzk+\ 



HOMOGENEOUS 2-SPHERES IN CPn 97 

where 

(3.2) df := fz - %M/^ if & > 0, 9/ := e-^{fz - ^fjfifh * k < "l- 

Similarly we can define an operator d : Tk(U) -4 rfe~1([/) by d^ — df- dzk~1, where 

(3.3) S/ := e-2-{/2- - ^yp/}, if * > 1, 5/ := /2 - ^j^/, if * < 0. 

We make a convention that <9£ = 0 and <9£ = 0 in case that £ = 0. Using (3.1) we can 
easily check that <9£ is independent of the choice of complex coordiante z on [/, and 
we have   

ae = dl 
Moreover, for any smooth map p : U —> C\{0} and any ^ G rk(U) we have 

(3.4) d(pO = pdZ, dipf) = pdf; 

(3.5) d(pO = pdz, d(pf) = pdf. 

It is clear that for any T G U(n + 1) and £ G F^LQ we have 

(3.6) d(ZT) = (sor, a(£r) = (5£)r. 
The operators 9 and d are nonlinear analogues to the linear operators used by Calabi 
[Ca] and Bryant [B] for surfaces in Sn. We note that if £,77 G Tk(U) is linearly 
dependent, i.e., £ = A77 for some function A : U -> C, then we still have 

<9(£ + 77) = dZ + dri, d(Z + ri) = d^dr]. 

Now let y : U -> 52n+1 be a local lift of x : M -> CPn. By (2.1) we have 

^*/i0 = (Si/dz + dydz) 0 (dydz + dydz). 

It follows that 

g = dy- dydz ®dz + dy- dydz ® dz + (\dy\2 + \dy\2)\dz\2. 

Thus we get from (3.1) that 

(3.7) dylhj = 0,dyy = dyy = 0; 

(3.8) \dy\2 + \dy\2 = e2«. 

Since the Kaehler angle 0 : M ->■ [0, TT] is given by the formula x*0, — cos9dM, where 
dM is the volume form of x, we get from (2.5) that 

(3.9) cos6 = e-2u,(\dy\2-\dy\2). 

We define Adz 6 P-^f/) and Bdz € T^f/) by 

It is easy to check that A := Adz and B := Bdz are independent of the choice of y 
and complex coordinate z, thus globally defined invariants of x (see (3.6)). 

PROPOSITION 3.1. For any surface in CPn we have the following formula 

(3.11) (dd - dd){y) = -e-2ujAdy + e'^Bdy - cos6y. 
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Proof. Since yz = dy + (yz • y)y and 2/f = dy + (ys • 2/)2/, using the identity 
2/^^ = 2/s*we get 

(^2/)^ + (^ • 27)2/* = (^)z + (yz ' y)yz, mod{y}. 

By the definition (3.2), (3.3) and (3.10) we get 

e2u;(ddy - ddy) = -Ady + JBSy + e2a;A2/ 

for some function A : U ->• C. Using (3.7) we get 

A - (501, - flSy) • y = e-2-{(a2/)2- • ff - ($,), • y} 

--e-2u;{|^|2-|52/|2} = -cose. 

D 
PROPOSITION 3.2. ^4 surface x : M -> CPn is minimal if and only if around each 

point of M there exists a local lift y such that ddy + e~2uj Ady — Xy (or equivalently 
ddy + e~2u;Bdy = /iy) for some function A or ji. 

Proof. We define an orthonormal basis for g by 

Then by Theorem 2.1 we know that x : M —>- CPn is minimal if and only if 

4e-2a,{j/z2 - (yz • y)yz - {yz • ^)2/2} = Ay - 2^(ej(2/) • gje^y) - A*2/ 
j 

for some function A*. Since 

Vzz - {yz - y)yz - (yz • y)yz = (9?/)^ - (ys • 2/)92/, modly}, 

by definition (3.3) and (3.10) we get 

(3.13) ddy + e-2uJAdy = Xy 

for some function A.  The equation ddy + e~2uJBdy = /xy follows immediately from 
I 
2 (3.11) and (3.13).   In fact we get from (3.8) and (3.9) that A = -cos2 § and p = 

-sin2 §. D 

Now we explain how any surface in CPn generates a sequence of surfaces in CPn. 
Let y : U -> 52n+1 be a lift of a surface x : M -> CPn. If dry / 0 and d'y ^ 0, we can 
define by (3.2) and (3.3) the maps dr+1y,d     y : U —> Cn+1. Thus we get a sequence 

of maps {diy^d y,j,k = 0,1,2, •••}.  Since dJydzJ and d ydzk are independent of 
 ^ 

the choice of complex coordinate 2, the maps [d3y\, [d y] : U —>- CPn are independent 
of the choice of complex coordinate. By (3.4) and (3.5) we know also that d^x :== [d^y] 

 ^  ^ 
and d x \—[d y] are independent of the choice of local lift y of x. Thus any surface 

 & 
a: : M -* CPn induces a sequence of surfaces {d3x,d x : M -+ CPn}, possibly 
with singularities on M. The following diagram indicates the embedding of a surface 
x : M -> CPn in its sequence: 

(3.14)   ...<rJ_tfx<_J. fo <_!_ x _L+dx L+fa-L^... 

Now let x : M -» CPn be a homogeneous surface. We assume that M is connected 
and orient able. Let G be the set of all diffeomorphism a : M —> M such that there 
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exists a holomorphic isometry T of CPn satisfying x o a = T o x. Then G is a 
transformation group acting transitively on M. We denote by Go the subgroup of G, 
consisting of all orientation preserving diffeomorphism in G. 

LEMMA 3.3. Go acts transitively on M. 

Proof. Fix a point p E M we denote by H the isotropic subgroup of G at p. Thus 
we have the standard projection TT : G -> GjH = M. For any q E M we can find 
a smooth curve c{t) on M such that c(0) = p and c(l) = q. Let cr(^) C G be the 
smooth lift of TT : G -^ G/H = M with a(0) = id E G. Then we have (7(1)(p) = g. 
Since cr(0) = 2<i is orientation preserving and <j(t) is smooth, we know that cr(l) is 
orientation preserving. Thus Go acts transitively on M. 

With the help of Lemma 3.3, now we can prove that 

THEOREM 3.4. Every homogeneous surface in CPn generates a sequence of ho- 
mogeneous surfaces. 

Proof. Let x : M —> CPn be a homogeneous surface. Let U be an adapted open 
set, i.e., an open set of M such that there exists complex coordinate z of (M,g) and 
a lift y : U —)» g271"1"1 of x. Since drydzr and <9 ydzs are independent of the choice 
of complex coordinate z, we know that the functions e~2ruJ\dry\2 and e~2suj\d y\2 are 
independent of the choice of complex coordinate z. Moreover, we know from (3.4) 
and (3.5) that they are also independent of the choice of local lift y of x. Thus 
they are globally defined functions on M, which by (3.6) are invariants of x. By the 
homogeneity of x we know that 

(3.15) e-2ruj\dry\2 = constant, e-2su;\dsy\2 = constant. 

If these constants are nonzero, we can define dr+1y and d y via (3.2) and (3.3). 
If one or both of them are zero, then the sequence stops in one or both direction. 
Thus all surfaces in the sequence (3.14) have not singularity. Now we show that 
drx = [dry\ : M ->• CPn is also homogeneous. Let p and q are two point on M. First 
we assume that they lie in the same adapted open set U. By Lemma 3.3 there exists 
an orientation-preserving diffeomorphism a : M —> M and T E U(n + 1) such that 
xoa = Tox and a(p) — q. From the fact that cr*g = g and a is orientation-preserving, 
we know that a : M -> M is holomorphic. In U we write a = a(z). Thus by (3.6) we 
have 

(dry)T = dr(yT) = dr(y o a) = (p'(z)y(dry) o a, 

which implies that 

(3.16) To[dry] = [dry}oG,   a(p) = q. 

Now if p and q do not lie in the same adapted open set, we can find finite number 
of adapted open sets {Uj, 0 < j < m} such that (i) p E UQ, q E f/m; Uj fl Uj+i ^ <j). 
Thus we can also find a : M -)- M and T E 17(n + 1) such that (3.16) holds. Thus 
drx := [9r?/] : M -> CPn is homogeneous. Similarly we can show that d x : M -> CPn 

is also homogeneous. We complete the proof of Theorem 3.4. D 

4. Construction of homogeneous 2-spheres in CPn. The construction of 
minimal homogeneous 2-spheres in CPn is given by 0. Bando and Y. Ohnita in [B- 
0]. In this section we generalize their construction to give examples of non-minimal 
homogeneous 2-spheres in CPn. We will show in §5 that up to holomorphic isometries 
these examples exhaust all homogeneous 2-spheres in CPn. 
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Let Vn+1 be the representation space of SU(2), consisting of all complex ho- 
mogeneous polynomials of degree n in two variable A and /i. We assign to P = 
V-ajA^V € Vn+1 an operator 

Egn-j   gj 

J d\n-3 dW 
3 

Then the standard Hermitian inner product < > in Vn+1 is given by 

(4.2) (P, Q) := T(P)(Q) = ^i!(n - j)!^, 
3=0 

where Q = £,,. bjX
n-^^ € Vn+1. It is easy to check that {Pk(\,n)} defined by 

(4.3) Pk (A, /x) = l     ,    A"-y, 0 < fc < n, 
y/k\{n — k)l 

is a unitary basis for Vn+1.   For any (z,w) G C2\{0} := H* we have M*-action on 
Vn+1 defined by 

(z       U) \ 
_^     _ J • Ffc(A,/i) := Ffc(zA + w/i,-tDA + zfj). 

Since Pk(zX 4- w/i, —tDA + ^/i) G Vn+1 we can write 
n 

(4.5) Pfc(2;A-i-^^,-ti;A4-^) = X^ci (z'>w)Pj(X^)^ 0<j,k<n, 
j=o 

where {cKz^w)} are polynomials of degree n in {z,z,w^w}. We define 

(4.6) 0* = (cg.cf,--- ,c*) : C2\{0} -»• C"+1. 

By (4.2) and (4.3) we have 

(Pk(zX + wp, —wX + z/j,), Pj(zX + W/J,, — w)A + zfj,)) 

= pk(ZQl + W-Q=' -w-gl + ZQ=)(
P

J(Z* + wfr -^A + «A»)) = (|^|2 + |«;|2)n«*i. 

Thus we get from (4.5) and (4.6) that 

(4.7) 4>k
n{z,w) ■ cl&(z,w) =J2dK^) ■ 4(z,™) = (M2 + kl2)n4i 

i=0 

Now we consider the restriction map </>£ : 53 ->• 52n+1 of (4.6). Taking transfor- 
mations (A,/i) -» (el9\, e10fj) in (4.5) and (4.3) we obtain 

(4.8) 0*(e"*,e"tf/) = C*«»-
2
«^(Z,TI;). 

Thus we know that [0]?] : 52 = 53/51 -> CPn is a well-defined map. The sequence 

{[0n]> [^nlj * *' > [^n]} is known as Veronese sequence in CPn. It follows from (4.7) and 
(4.4) that 

pn(z9w) := (4(^^)) = (tltl- AD e U(n + 1) 

and that pn : 53 = 517(2) -> 17(n +1) is a group homomorphism. Thus any surface in 
the Veronese sequence {[</>°], [<^], ■ • • , [$£]} ^s an orbit of the subgroup Pn(53) of the 
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holomorphic isometry group U(n + l)/51 in CPn, and thus a homogeneous 2-sphere 
inCPn. 

Now we construct new homogeneous 2-spheres by using Veronese sequences. We 
make a convention that the Veronese sequence in CP0 is the constant map [0o] = [1]? 
and the Veronese sequence in CP1 is {[0i],[0i]} with [0?] = id and [0i]([£,w]) = 
[—w,z]. Let {711,722,-•• ,nr} be nonnegative integers. We take from each Veronese 
sequence in CPnQ a surface [^a

Q ] such that 

(4.9) ni - 2ji = 712 - 2J2 = • • • = nr - 2jr := k. 

Then for nonzero constants {ca} G C we can construct a join-map 0 : S3 -> Cn+l 

with n = ni H h nr + r — 1 by 

(4.10) ^=(ci^,C2^2
2,---,cr0Jrr). 

Using (4.8) and (4.9) we get 

(4.11) 0(e^z, ei9w) = eiek(j)(z, w). 

Thus we have a well-defined map [0] : 52 -> CPn. It is clear that [0] is an orbit of 
the subgroup 

diagonal{pni(S
3), • • • ,pnr(S

3)} C diagonal{U(ni + !),••• :U(nr + 1)} C £/(n 4-1). 

Thus [0] : 52 -> CPn is also homogeneous. 

We say surfaces {[^£]> 1 < ce < T*} joinable if the nonnegative integers {na,^} 
satisfy equation (4.9). We can use the following V-diagram to determine joinable 
surfaces: 

m, m, m, m, m, m 
m], itii m, mi [<&] 

mi m, mi m) 
mi mi m] 

mi mi 
m] 

Surfaces {[<^], 1 < a < r} are joinable if and only if they lie on the same vertical 
line of the diagram. An easy example is the join surface of [0o] and [^2] in CP3. Since 
[^KtaH) — [—VZzw, \z\2 — \w\2, y/2zw], we get the join surface 

(t)([z,w]) = [-dV^zw^^dzl2 - \w\2),c1y/2zw7C2], ci,C2 € C*. 

Another example is the join surface of [^J] and [(pi] in CP5: 

(f)([z,w]) = [-\/Sciz2w,ciz(\z\2 -2\w\2),ciw(2\z\2 - \w\2),VSciw2z1C2Z,C2w]. 

These surfaces are of constant curvature, constant Kaehler angle and non-minimal. 

We note that if na = np in (4.10), then by (4.9) we get ja = jp, thus there is a 
nonzero vector 1/ G Cn+1 such that (j) • P = 0. Thus [0] : S2 -> CPn is not full. If [(f)] 
is full in CPn, we can arrange na such that ni > 712 > • • • nr > 0. 
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In the rest of this section we give the following propositions which we need in §5. 

PROPOSITION 4.1 (cf.   Theorem 5.2 of [B-J-R-W]). The sequence of Veronese 
surfaces in CPn reads 

o^- [<] ^ •••[^-1] ^^ m —^ te1]—^ m —*-> o. 
Moreover, the Gauss curvature K and the Kaehler angle 6 of the Veronese surface 

[^n] : S2 ~^ ^P™ are given by 

(4.12) K= -i -, cos0=       n~2k 

n + 2k(n - k)' n + 2k(n - k)' 

PROPOSITION 4.2.    Let y : CP1 -> 52n+1 be a local lift of [<#[] : CP1 -> CPn 

defined by 

y-       |^(Z,1)| (M2 + l)«/2' 

Then z is a complex coordinate of [</>£] and 

(4.i3) yfy. = {n-2k)-i   ~z 

|y|2       v ^(l + lzH* 

Proo/. It is known (cf. [B-J-R-W]) that z is a complex coordinate of [$*] : 52 -^ 
CP™. By taking derivative in (4.5) we get 
(4.14) 

""fc      ACzA + ^r-^C-tDA + zAi)* = 2(C*(z,«;))z-=L==An-Vj, 
Vfc!(n-fc)! ej Vj!(n-j)! 

using (4.2) and (4.5) we get 

(4.15) (0*)z • ^ - ^(^(z,^)),^^,^) = (n - kYz(\z\2 + l^l2)-1. 
j=o 

Thus (4.13) follows immediately from (4.7) and (4.15). 

5. The classification of homogeneous 2-spheres in CPn. In this section we 
use the sequence of homogeneous 2-spheres to show that all of homogeneous 2-spheres 
can be obtained by the construction in §4. 

Let x : M -» CPn be a homogeneous surface. A function or form I{x) on M 
induced by the immersion x is called invariant of re, if for any holomorphic isometry 
T € U(n + l)/^1 of CPn we have I(T ox) — x. The basic invariants of x are known 
as the first and the second fundamental form. Using the operators defined by (3.2) 
and (3.3) we can obtain more invariant complex forms or invariant functions of x. 

Let (7 be an open set of M such that there exists a complex coordinate z on U 
and a local lift y : U -» 52n+1 of x. We write g = e2uJ\dz\2. Then we can define 
Cn+1-valued forms {drydzr} and {d ydzs} on {/ which are independent of the choice 
of complex coordinate z. It follows from (3.15) that each of these forms is either 
identically zero or nowhere zero. Thus we can define the following complex forms (or 
functions) 

(5.1) av) := e-2^dky • d^dzk^, k > j; 
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(5.2) r]{y) := dky • Wydzk+j. 

It is easy to see that £(2/) and 77(2/) are independent of the choice of z. Now let V be 
another open set of M such that there exists a complex coordinate on V and a lift 
y : V -» 52n+1 of x. Then on [/n V we have y — py for some function p : J/fl V -^ 51. 
Since by (3.4) and (3.5) we have 

dry z=z pdry, dSy = p9S2/, 

which imply that £(?/) = £(2/) and rf(y) = rj(y) at each point of UDV. Thus all complex 
forms in (5.1) and (5.2) are independent of the choice of complex coordinate z and 
local lift y. they are globally defined on M. Moreover, it follows from (3.6) that for 
any holomorphic isometry T G U(n + l)/51 we have £(yT) = £(?/) and r)(yT) = r}(y), 
we know that all these complex forms of (l,0)-type on M are invariants of x. 

LEMMA 5.1. Let x : M -> CPn be a surface. Let $ be a m-form (m > 1) of (1,0)- 
type on M which is an invariant of x. Then the (m-l)-form d$ and the (m-f-l)-form 
d$ defined by 

(5.3) 5$ := e-2u;<f)zdzm-\ d$ := (^ - 2ujz(t))dz7Tl+1 

are gobally defined invariant of x, where z is a complex coordinate of M and we write 
locally $ = (/Wzm

7 g = e2uJ\dz\2. 

Proof. It is easy to check that 9$ and d<& defined by (5.3) is independent of 
the choice of z and thus globally defined on M. Since for any holomorphic isometry 
T E U(n + l)/^1 of CPn we have g{T o x) = g{x) — g, we can take the same 
complex coordinate z and thus the same function u> for both x and T o x. Since 
$(r o x) = $(x), we have 0(T o x) = ^(a:), then by (5.3) we get 5$(T o x) = d$(x) 
8Lndd$(Tox) = d$(x). D 

LEMMA 5.2. Lei x : 52 —> CPn 6e a homogeneous sphere. Then any complex 
form on S2 which is an invariant of x vanishes. 

Proof First we consider the case of 1-form. Let $ be a 1-form on M which is an 
invariant of x. We write locally $ = fidz. If $ ^ 0, then by the homogeneity of x we 
know $ 7^ 0. Since 9$, d<&/<f>2 and ||$||2 are invariant function of x, by homogeneity 
of x they are constants. Thus we can find constants ci, C2 and C3 such that 

(5.4) e-2"fc = ci, ^ - 2LJZ<I> = c2(/>2, e-2^|0|2 = c3. 

From the identity ^^ = (frzz we get 4|ci|2 + Kcs = 0, where if is the Gaussian 
curvature of x. Since if > 0 on 52, we get a contradiction. Thus $ = 0. Now let $ be 
any invariant (m+l)-form. Then d $ is a invariant 1-form. We get d $ = 0. Since 
any holomorphic form on S2 vanishes, we get $ = 0. D 

LEMMA 5.3. Let x : S2 —> CPn be a homogeneous sphere. . Then the homoge- 
neous sequence of x stops in both directions, and any two homogeneous spheres in the 
sequence are complex-orthogonal. 

Proof. By Lemma 5.2 we know that all complex forms defined by (5.1) and (5.2) 
 k 

vanish. Thus {dJy,d y, j 7^ k} are complex orthogonal in Cn+1. It follows that the 

exists integers r and s such that dry ^ 0 and d y ^ 0, but drJrly = 0 and d     y = 0. 
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Let f e Tk(U) and 77 e Tj(U) with k > j. We write f = /dz*, ry = M^' and 
define 

(5.5) C^:=e-2J"W/-Mz*-M|^||2 = e-?. 
Then the (k-j)-form ^ • rj is independent of the choice of complex coordinate. 

LEMMA 5.4. Let £ e rfc([7) and 77 G P(i7) wttA k > j. We assume that £ -rj = 0, 

(5.6) dt'rj + Z-d;n = 0,   d£-rj + £-drj = 0- 

Proof. We denote £ = fdzk, TJ = hdz^. Then (5.6) follows immediately from the 
equations (e'2^ f 'h)x = 0 and (e"2^/ • fc)z = 0. D 

LEMMA 5.5. A homogeneous surface x : 52 —1 CPn is minimal if and only if 
around each point of M there exists a lift y of x and a constant A such that ddy+Xy = 0 
holds (or equivalently ddy + fiy — 0 holds for some constant fi). 

Proof It follows immediately from Proposition 3.2 and the fact that Adz and 
Bdz defined by (3.10) are globally defined invariant of x, which by Lemma 5.2 vanish. 
□ 

LEMMA 5.6. Let x : S2 --» CPn be a homogeneous minimal surface with the 
homogeneous sequence 

0 <—— dsx ^— ■■■dx ±-2— x —2-> dx--- —d-^ drx —d—^ o- 

Let y : U —> S2n+1 be any lift of x.  Then we have 

(5.8) (yz • y)-z + (yz ^)z = -(r- s)Ke2«. 

Proof. We get from (2.5) and the formulas {\y\2)z — 0, ;z*fi = cos MM that 

(vz' y)z + (yz - y)2 = (yz - y)z - (yz • y)z 

— —     J      J , 9    d , = yz'yz-yz-yz=dyA dy{-^, gz) 

= -2icos6dM( — , —) = cos9e2uJ. 
oz  oz 

Since x is equivalent to the Veronese surface [<^+s] : ^ -^ CP77,, we get from Propo- 
sition 4.2 that cos0 = ^(r - s)K. □ 

LEMMA 5.7. Let x : S2 —> CPn be a homogeneous sphere with the homoge- 
neous sequence (5.7). Then d dry / 0 and x\ = [d dry] : S2 -> CPn is a minimal 
homogeneous sphere. 

Proof. Since for any 0 < j < r — 1 the globally defined 1-form e~2^d dry • 
diydz is an invariant of x and thus vanishes on S2, we get from Lemma 5.4 that 

drdry y = {-l)re-2ruJ\dry\2 / 0. 

Therefore y1 := drdry ± 0. The induced metric Q\ of x\ — [y1] : S2 ->- CPn is given 
by =_        _ 

^1 = iTTm {(^ld;8r + ^ldf) ^ ^ldz + ^ldf) 2lrr 
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+0yidz + dy^dz) ® {dy1dz + Wdz)} 

1 

\y 112 
e-2'W|2 + l<V|2)s:=c<?. 

Here we have used the vanishing of the global form dy1 • dy1dz2 on S2. Since c is 
independent of the choice of local lift y and complex coordinate z, and is an invariant 
of x under the holomorphic isometry in CPn, by the homogeneity of x we know that 
c is a constant. Let di and di be the operator with respect to gi = eg, then we have 

d! = d : T0(U) -* r"1^), d1=d: T0(U) -> T1^); 

d1 = -d : T^U) -> r0(C/)3 d1 = -d : T^iU) -» r0(i7). 
c c 

It follows that didi =  ^99 and <?i<9i  = ^99.   Thus to show that xi = [9r9r2/] 
is minimal we need only to show that dd(d dry) = \d dry for some constant A. 
Since dd(dry) = 0, thus by Lemma 5.5 we know that [dry] is minimal. This implies 
also by Lemma 5.5 that dd(dry) = Xidry for some constant Ai.   It follows that 
dd(ddry) — Xiddry. Thus by Lemma 5.5 [ddry] is also minimal. Therefore we have 

dd(ddry) = \2{ddry) for some constant A2.  It follows that dd{d dry) = Md dry. 
 2  7  7 

Thus [d dry\ is minimal. By this way we know that if d dry ^ 0, then {[d dry]} is 
minimal. In particular, xi = [d dry\ : S2 -> CPn is minimal. It follows from Theorem 
3.4 that [dry] and [d dry] are homogeneous. D 

COROLLARY 5.8.    The induced metric gi — eg of xi — [d dry\ has constant 
curvature. Moreover, xi and x have the same complex coordinate. 

Now let 

{O.V) Q      i       Q     ^       i       .   .   .      <       Xl        y      .   .   .       y      ga^        y      Q 

be the homogeneous sequence of xi = [y1], where y1 = d dry. Then xi is holomor- 
phically isometric to the Veronese surface f^+^j. By making a holomorphic isometry 
in CPn if necessary we may assume that 

{aVr--,^1^1,^1,..-,^1} 
is a complex orthogonal basis for Cm+1 C Cn+1. Let TTI : Cn+1 -+ Cm+1 be the 
standard projection. Then we can find functions ci and {/?, hk} such that 

0 a 
(5.10) TTI {y) = c.y1 + ^ ffly1 + ^ fo&y1. 

j=l k=l 

From the fact that 

Mv) ' d3y1dzj - y • flV<fe', d^1 • 7ri(y)dz^ = d^1 - ydzk 

are globally defined invariants of x which must vanish on S2, we get from (5.10) that 
fj — hk=^. Moreover, by Lemma 5.4 we have 

cAy1? = Ki{y)-yl=y dr^y = (-iye-2™\dry\ 
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Thus by homogeneity we know that ci is a nonzero constant. We define 

(5.11) 77 = y - dy1 = (id - c^O^y : U -> (Cm+1 )-L = C71"™ C Cn+1. 

Since 71-1(77) = 7ri(y) — ciy1 = 0, we can write y = (ciy1,^). If 77 = 0, we know that 
x = [y] = [y1] — x\ is a Veronese surface . Now if 77 7^ 0, we know from the proof of 
Theorem 3.4 and (5.11) that [77] : S2 -> cpn~m-i c Cpn is also homogeneous. We 
write the homogeneous sequence of [77] as 

(5.12) 0 ^— [d\] <-* «-*- [n\ -L+ »_, [ffrr,] -JL^ Q. 

Now we define 
y2 = Wd1^ = Werny - ciar9ry). 

By the same argument of Lemma 5.7 we know that X2 = [y2] : 52 —> CPn_m_1 is a 
homogeneous minimal sphere (cf. Theorem 3.4). We write the homogeneous sequence 
of X2 by 

0 ^— [3%] ^— ... <-?— [77] —^ ^ [^77] ^^ 0, 

then a;2 is holomorphically isometric to the Veronese surface [<^+ai]- Similarly we 
can show that 77 = (C22/2,772) for some constant C2 ^ 0. By continuing this procedure 
we finally get that 

(5.13) y = (ciy\c2y
2,---,cry

r) : U -> 52"+1, 

where [yk] : S2 —>• CPnfc is a minimal homogeneous sphere which is equivalent to [^ ]. 

LEMMA 5.9. We /ia^e a — 0 = ai — fc. That is, if we write [yk] = [0£fcJ, ^en 
we have rii — 2ji = 77-2 — 2^2 = • • • nr — 2jr. 

Proo/. Let Kx and K2 be the Gauss curvature of the induced metric gi and ^2 of 
b1]) b2]- As m ^e proof of Lemma 5.7 we can easily prove that 

9 = ciPi = c2#2 = • * • = c*rgr 

for some positive constants c£, where ^ is the induced metric of [yk] : 52 —>• CPnk. 
Let if j be the curvature of gj, then we have 

(5.14) Kg - K1g1 = ^2^2 = • ■ • i^^r- 

Since both [2/1] and [2/2] are minimal homogeneous sphere and {y1], \y2\ are constants, 
by taking the same complex coordinate we get from Lemma 5.6 and (5.14) we have 

(5.15) ("-pfh + i^^^-me^, 

(5.16) (££), + (y-pf)z = (a, - MKf. 

Since the l-form 

is independent of the choice of y and z, thus a globally invarant of x. By Lemma 5.2 
it vanishes. Thus we get from (5.15) and (5.16) that a — (3 = ai — /?i. D 
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Now we come to the proof of the classification theorem of homogeneous 2- spheres in 
CPn. Since [yk] is equivalent to [^J, we can find !& G U(nk + 1) and locally defined 
nonzero functions pk such that 

(5.18) / = p&n, ^ := ^l^')}. k = 1,2, • • • , r. 

Since |?/fc| = dft is a constant we can write pk = due1® for some real function 9k, k = 
1, • • • ,r. It follows from (5.18) and (4.13) that 

(5-19) l|V = .(^ + (BA_2.4)_^_. 

Thus we get from Lemma 5.9 that 

(5.20) (^-^)^ = ^-*1M- 

Since the left hand side of (5.20) is a globally defined invariant of x, by Lemma 5.2 it 
vanishes identically. Thus we have constant 0* such that 

0* =01+0*, Jfe = 2,--- ,r. 

Thus up to a holomorphic transformation T = diag(Ti,- • • ,Tr) we get 

y = cwl(cirfifi,C2d2ei^27... ,crdre
ie°£r) 

= c^Mx^^cfce*^,... tCrdreWfa) or, 

where r(z) = (  / ^   0,   , 1
l    ) is a local section of Hopf-fibration 53 ->> 52.   It 

follows that 
x = [cidi0^,02(^6^0^,:.. ,crc/re^0^J 

for some constants {c^}, {dj}, {0^} and integers {n^,^} with ni—2ji = -— = nr—2jr. 
Thus we complete the proof of the classification theorem. 
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