
ON HESSIAN RIEMANNIAN STRUCTURES* 

J. J. DUISTERMAATt 

Abstract.   In Proposition 4.1 a characterization is given of Hessian Riemannian structures in 
terms of a natural connection in the general linear group GL(n, R)+, which is viewed as a principal 
SO(n)-bundle over the space of positive definite symmetric n x n-matrices. For n = 2, Proposition 

5.3 contains an interpretation of the curvature of a Hessian Riemannian structure at a given point, 
in terms of an umbilic point of a related surface in R3. 

0. Introduction. In convex programming, one makes use of a so-called self- 
-concordant barrier function / on an open convex subset Q of Rn, cf. the book [7] 
of Nesterov and Nemirovskii, and one is interested in the behaviour of the geodesies 
of the Riemannian structure defined by the Hessian of /. I got acquainted with the 
subject when I was asked to give an introduction to Riemannian geometry at the 
conference HPOPT'99 at the Erasmus University Rotterdam, in June 1999. 

The formula for the curvature tensor of a Hessian Riemannian structure, cf. (1.7) 
below, involves only second and third order derivatives of the function /, and no fourth 
order ones as one would a priori expect. In my attempt to understand this, I arrived 
at the characterization of Hessian Riemannian structures in Proposition 4.1. In the 
case n — 2 there is also an interpretation of the curvature of a Hessian Riemannian 
structure in terms of umbilic points of surfaces, see Section 5. 

The study of Hessian Riemannian structures on convex domains goes back at least 
to Koszul [6] and Vinberg [11], who were inspired by the theory of bounded domains 
in Cn with its Bergmann metric. Closely related to our subject is Shima's theory of 
Hessian manifolds, cf. [10]. Ruuska [8] characterized Hessian Riemannian structures 
as those which admit an abelian Lie algebra of gradient vector fields, where the local 
action is simply transitive. Hit chin [4] characterized Hessian Riemannian structures 
in term of a Lagrangean submanifolds of the cotangent bundle. I am grateful to Nigel 
Hitchin and Lieven Vanhecke for getting me started with the literature on Hessian 
Riemannian structures. 

As a general reference on differential geometry one may use [5]. 

1. Hessian Riemannian Structures. Suppose that / is a smooth strongly 
convex function, defined on an open subset Q of Rn. The strong convexity of / 
means that for every x e Q the Hessian didjf(x) is positive definite, which implies 
that gij(x) := didjf(x) defines a Riemannian structure. Here, and in the sequel, we 
use the abbreviation di(j)(x) for the partial derivative d({)(x)/dx1 of any function 0 
with respect to the i-th coordinate. 

For a general Riemannian structure gij(x) the inverse matrix is denoted by gkl(x). 
The Christoffel symbols then are defined by 

in which 

(1.2) Tiij(x) := g [di9ji(x) " di9ij(x) 4- djguix)]. 
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A straightforward computation yields that for a Hessian Riemannian structure the 
Christoffel symbols are given by 

(1.3) Tkijix) = -dkdidjfix), 

These symbols are used to define the covariant derivative of a vector field Y, at 
the point x and in the direction of the tangent vector X, by 

(1.4) {YxY(x))i:=YiXk 
k=l 

0kY
i{x) + Ytnj(x)Yj(x) 

3=1 

The horizontal space H(Xi y) at (x, Y) is defined as the linear subspace of the tangent 
bundle of Q which is equal to graph of the linear mapping 

n 

k,j=l 

In view of (1.4) this means that VY(x) = 0 if and only if the tangent space at (x, Y(x)) 
to the graph of Y is equal to the horizontal space i^y^))- The distribution of 
horizontal spaces H(XIY)> for (^j Y) in the tangent bundle of U, is called the Levi- 
Civita connection defined by the Riemannian structure g. 

More generally, any ar-dependent symbols rj,-(x) define in the above way what 
is called a linear connection in the tangent bundle. The corresponding covariant 
dervative VxY of a vector field Y in the direction of the vector field X then is linear 
in X and Y. The linear connection is called torsion-free when r^(x) = Tljk(x), which 
is the case for the Levi-Civita connection of a Riemannian structure. 

If X, Y, U are smooth vector fields on Q then, for any x G Q, the expression in 
the right hand side of 

(1.5)        R(x)(X(x), Y(x))(U(x)) - (VxVyC/ - VyV^C/ - V[x,Y]U) (x) 

depends only on X(x), Y(x), U(x), and not on higher order derivatives of X, Y and 
U at x, as one would a priori expect. Therefore (1.5) defines a T^ Q-valued trilinear 
form (X, y, U) i-)- R(x)(X, Y)(U) on T^ Q, antisymmetric with respect to the first 
two variables, which is called the Riemannian curvature tensor of the connection. If 
the ^-coordinate of R(x)(X, Y)(U) is written as 

J2   RhjWU'X'Y*, 

then the coordinates of the curvature tensor are given by 
n 

(1.6)   nfax) = diTfjix) - d^ix) + Y, (rU*) r^(x) - r*ro(x) mix)) 
771=1 

in terms of the Christoffel symbols. 
A straightforward computation yields that for a Hessian Riemannian structure 

the Riemannian curvature tensor is given by 
n ^        n 

(1.7) Rmiix) := £ gumix)^^) = --  £  g"{x) 
m=l PJ9=1 

[dkdidpf(x) - dqdjdifix) - dkdjdpfix) • dqdidtf(x)], 
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in which gpq{x) is the inverse of the matrix gij(x) = didjf(x). It is a bit surprising 
that this formula involves only the derivatives of / of order two and three, and no 
derivatives of order four as one would expect a priori. 

When n = 2, then the (Gaussian) curvature K(x) at the point # of a Riemannian 
structure g is defined as the number 

(1-8) K(x) := g(x) (R(x) (fu ft) U2), h), 

in which /i, /2 denotes an orthonormal basis of tangent vectors at x with respect to 
the inner product g(x). (Such a basis can be obtained from the standard basis ei, 62 
by means of Gram-Schmidt's orthogonalization procedure.   The right hand side of 
(1.8) is the same for every g(x)-orthonormal basis /1, /2.) For a Hessian Riemannian 
structure we obtain, using (1.7), that 

(1.9) K(X) = -c(«7-^.+ 6(a^-/?7)-a^-7a)t 

4(ac- b2) 

in which 

a := di2f(x), b := difofix), c := d22f(x), 

a := tffix), (3 := d1
2d2f(x), 7 := htffix), 5 = tffix). 

2. A Connection in a Lie Group with Involution. Let G be a Lie group 
with Lie algebra g and let a be an involutory automorphism of G, which means that 
cr : G —> G is an automorphism of Lie groups and a o a is equal to the identity. We 
denote the tangent map of a at the identity element 1 G G by ar. Then a' : & —> g is 
an automorphism of Lie algebras and (a')2 = 1. The set 

(2.1) H := {h e G I a{h) = h} 

of fixed points of a in G is a closed Lie subgroup of G, with Lie algebra equal to 

(2.2) (> := {X e 9 I <7'(X) = X}, 

the eigenspace of a' : g -» g for the eigenvalue 1. If 

(2.3) s:={Xeg\ v'tf) = -X} 

denotes the eigenspace of a* : g ->• g for the eigenvalue —1, then 9 is equal to the 
direct sum of I) and 5, in formula: 

(2.4) 9 = 1)00. 

With respect to the Lie brackets, this splitting has the following behaviour: 

(2.5) X,Y€i)=>[X,Y]€ t), 

(2.6) Xet),Ye8=>[x,Y]e s, 

(2.7) X, Y G s => [X, Y] G {j. 

The property (2.5) expresses the fact that I) is a Lie subalgebra of g. The properties 
(2.5) and (2.6) follow from the slightly stronger fact that the splitting (2.4) is invariant 
under the adjoint action of H on g: 

(2.8) h€H, X e f)=» Adh(X)ei), 

(2.9) heH, X es=^Adh(X)&s. 
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The right action of H on G, where h G H acts on G by sending g e G to g h, is 
free and proper, and therefore the orbit space 

(2.10) G/H~{gH\geG} 

has a unique structure of an analytic manifold, such that the projection 

(2.11) iTG/H:g^gH:G^G/H 

exhibits G as an iiT-principal fiber bundle over G/H. The manifold G/H is called the 
symmetric space associated to G and a. 

On G we also have the left action of G, where 7 £ G acts on G by sending 
g £ G to L7(g) := 7p. Because the left G-action commutes with the right i7-action, 
this action passes to an action of G on G/H, where 7 £ G acts on G/H by sending 
gH £ G/iJ to jgH. The bundle projection TT^/^ intertwines the left action of G 
on G with the action of G on G/iJ. The action of G on G/H is transitive, with 
stabilizer group at the point 1H equal to H. If we identify the tangent space of G/H 
at 1H with 5, then the infinitesimal action of H on TIH(G/H) is given by the adjoint 
representation of H on 5, cf. (2.9). 

It is natural to use the left G-action to extend the linear subspace 5 of Ti G to a 
left G-invariant vector subbundle of T(G), by defining 

(2.12) 6p:=TiL,(5),     <7£G, 

where Lg denotes the multiplication x *-> g x by g from the left and Ti L^ : Ti G —)- 
TgG is its tangent mapping. Noting that Ti L^f)) is equal to the tangent space at 

g of the orbit g H of the right if-action, we obtain that $g is a complementary linear 
subspace in T^ G of Tg(gH). Therefore the Sg, g £ G, can be taken as the horizontal 
spaces of an infinitesimal connection in the bundle TTQ/H 

: G -> G/H. Because of 
(2.9), this connection is also invariant under the right if-action on G, and therefore 
it is a so-called H-principal bundle connection in the bundle TTQ/H : G —>• G/H. 

A G-invariant connection of the iiT-principal fiber bundle G —> G/H arises as soon 
as we have an AdiJ-invariant linear complement 5 oil) in g. However, the additional 
property (2.7), which is typical for symmetric spaces, leads to a particularly simple 
formula for the curvature of the connection. 

PROPOSITION 2.1. The curvature form ft of the connection in G, which is left 
G-invariant, is determined by 

(2.13) fliCX", y)=0    when    X £ J), Y £ g, 

(2.14) fti(X, y) = - [X, Y]     when    X, Y £ s. 

Proof. The connection form of the connection is defined as the ()-valued one-form 
0 on the bundle which is equal to zero on the horizontal spaces and, for any X £ I), 
takes the value X on the tangent vector Ti Lg(X) £ Tg(gH). The curvature form is 
defined as the f)-valued two-form Q, on the bundle defined by E. Cartan's structural 
equation 

(2.15) n(v, w) = (d0)(v, w) + [6(y), 0(w)], 

for any pair of vector fields v, w on the bundle. The term with the Lie brackets is 
added in order to make ft equivariant with respect to the right iif-action. 
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Because 9 and 0 are clearly invariant under the left G-action, it suffices to com- 
pute ft at the identity element 1 G G. The equation (2.13) holds for any principal 
bundle connection, therefore we only need to verify (2.14). 

It follows from (2.15) and the general formula 

(d0)(v, w) = v6(w) -w0(v) -8([v, w]) 

for the exterior deriviative of any one-form 9 evaluated at any pair of vector fields v 
and w, that 

(2.16) ii(v, w) =—9([v, w])    when    v    and    w    are horizontal. 

Now let X, Y G 5 and denote by X^ and YL their respective extensions to left 
invariant vector fields on G. Because the connection is left G-invariant, the vector 
fields XL and Y^ are horizontal. Because XL and >L 

are teft invariant, we have that 
[XL, YL] = [X, Y]L. Because of (2.7) we have that [X, Y] G I), and therefore (2.14) 
follows from (2.16). D 

REMARKS. 

i) E. Cartan introduced a connection in the tangent bundle bundle of the 
symmetric space G/H, of which the covariant derivative of the curvature 
is equal to zero, cf. [5, Vol. 2, Ch. XI, §3]. Our connection in the 
bundle TTG/H 

: ^ ~* G/H is quite different from Cartan's connection in 
T(G/H). For instance, the curvature of Cartan's connection at 1H is given 

byR(XJY)Z = -{[X,Y},Z]. 
ii) When / is an Ad if-invariant polynomial on I), homogeneous of degree m, 

then substitution of the curvature form in it yields a differential form of de- 
gree 2p, which is equal to the pull-back under TTQ/H of a unique G-invariant 
2p-form Uf on the symmetric space G/H. The form cjf is called the charac- 
teristic form defined by /. The vector space spanned by the forms of even 
degree form a commutative ring with respect to the exterior product, of which 
the characteristic forms constitute an interesting subring. For example, the 
Killing form of I) leads to a characteristic form of degree four. In Section 5 we 
will meet the rather exceptional case that ^ ~ R and the adjoint representa- 
tion of H on f) is trivial, in which case ft = TTQ/H* W for a unique G-invariant 
two-form LJ on G/H, which automatically is G-invariant. 

3. The General Linear Group. The case to which we will apply the above 
theory is when G = GL (n, R)+ is the group of all n x n-matrices A with det A > 0, the 
orientation-preserving linear transformations of Rn, with the involution a (A) =t A-1, 
the inverse of the the transposed of A. Then the fixed point subgroup H of G is equal 
to the group SO(n) of all the rotations. The condition det A > 0 has been imposed 
in order to arrange that the groups G and H are connected. 

The Lie algebra g is equal to the space of all n x n-matrices, with Lie bracket equal 
to the commutator: [X, Y] = XY - Y X. We have that a'(A) = — ^A, and therefore 
the Lie algebra f) of H is equal to the Lie subalgebra of all the anti-symmetric nxn- 
matrices. The complementary subspace 5 is equal to the space of all symmetric nxn- 
-matrices, and (2.7) reflects the familiar fact that the commutator of two symmetric 
matrices is anti-symmetric. 

The role of the "abstract" symmetric space G/H in this case will be played by 
the space V of all positive definite symmetric n x n-matrices. The mapping TT : A \-^ 
a(A)oA~1 is surjective and in fact exhibits G as an analytic fiber bundle over P, where 
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the fiber TT
-1

 (7r(A)) over P = n (A), the set of all B G G such that 7r(B) = IT (A), is 
equal to the set of all A C with C € SO(n), the right SO(n)-orbit of A in GL(n, R)+. 
Therefore the mapping TT induces a diffeomorphism from G/H onto V. If A, B G G 
then 

(3.1) 7r(^ B) =(7(A) K(B) A'1. 

If we define the action of A G G on 7? by sending P G P to t7(A) F A""1, then (3.1) 
implies that TT intertwines the left action of G on G with the just defined transitive 
action of GonV. 

We denote by e* the standard basis in Rn. Let P G V. Then 7r(A) = P means that 
^AP A = 1, or the vectors A (e^), 1 < i < n, form a positively oriented orthonormal 
basis (= orthonormal frame) with respect to the inner product (u, v) !->• (Pu, v). 
Therefore TT may also be viewed as the mapping which assigns to a frame A (e*) the 
inner product with respect to which A (ei) is an orthonormal frame. 

When X is a symmetrix matrix, then the symmetric matrix which is mapped by 
Ti TT to X is equal to —\X. Therefore, if X is viewed as an element of TpV and 

7r(A) = P, then the horizontal vector which is mapped to X is equal to 

(3.2) XhartA = -±A^AXA)=-\p-lXA. 

For the (left G-invariant) curvature form the formula (2.14) leads to 

(3.3) SIA (Xhor, A, Yh0I< A) = -±[tAXA,tAYA], 

where the brackets in the right hand side denote the commutator of the symmetric 
n x n-matrices in question, which is an anti-symmetric n x n-matrix. 

4.  A Characterization of Hessian Riemannian Structures.  Let g be a 
Riemannian structure on an open subset Q of Rn. This means that g is a smooth 
mapping from Q to the space V of positive definite symmetric matrices. Loosely 
speaking, the pull-back of the SO(n)-principal bundle GL(n, R)+ over V by means of 
the mapping g : Q -> V is the SO(n)-principal bundle over Q, such that the fiber over 
x G Q is equal to the fiber over g(x) G V. Because the latter fiber has been identified 
in Section 3 as the set of orthonormal frames with respect to the inner product g(x), 
this pulled back bundle is equal to the orthonormal frame bundle OF(Q) of the tangent 
bundle T(Q) of Q, with respect to the Riemannian structure g on Q. 

In general, when TT : B —> iV is a smooth fiber bundle and 0 : M —>• N is a smooth 
mapping from a manifold M to the base manifold N of the fiber bundle B, then the 
pull-back (/>*P of B by means of (p is formally defined as the set of (x, b) G M x B such 
that ^(a;) = 7r(b). It follows immediately from the assumptions that (f)*B is a smooth 
submanifold of M x B of codimension equal to the dimension of iV. The projection 
(x, b) i-t x induces a mapping TTI : </>*.£? -» X, which exhibits </>*£? as a smooth fiber 
bundle over X, where the fiber (<j)*B)x over the point x G M is identified with the 
fiber B^x) of B over the image point (j)(x) G iV. If H^ is the horizontal linear subspace 
of T& B of an infinitesimal connection for TT : J5 -»• iV, then we define H^Xi^ as the 
set of (fe, Sb) G T^a) (0*B), such that 8b G #&. Because (5x, 6b) G T(a.56j (0*P) if 
and only if Tx^>(Sx) = T&7r(5&), we obtain that the horizontal vector ^hor, (a;,6) a^ 
(x, 6) E 0*i?, which is mapped by T^^) TTI to ?; G Tx M, is given by 

(4.1) ^hor,(z,&) = (*>, (T* 0(v))hor,&) ' 
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where Whor, b denotes the horizontal vector which by T& TT is mapped to w G T7r(&) N. 
In this way, the orthonormal frame bundle OF(Q) is provided with an SO(n)-principal 
connection, which is obtained by pulling back the connection in TT : GL(n, R)+ —> V 
by means of the mapping g : Q -> V. 

In order to obtain the associated affine connection in the tangent bundle T(<3) 
of the Riemannian manifold Q, we observe that T(Q) is equal to the vector bundle 
which is associated to OF(Q) by means of the standard representation of SO(n) in 
Rn. This means concretely that to the tangent vector v G TXQ we associate the 
mapping v : OFx Q —> Rn, defined by 

v{A)k:=g(x)(A(ek),v),    l<k<n. 

Here A G GL(n, R)+ is identified with the oriented g(x)-orthonormal frame A (e^) in 
TXQ C Rn. Using that g(x) — A"1 .A-1, this formula can also be written as 

(4.2) v(A) = A'1 v. 

The mapping v is SO(n)-equivariant in the sense that v(AC) = C~1v(A) for 
every C G SO(n), and every SO(n)-equivariant mapping from OF^ Q to Rn is of the 
form v for a unique v G T^ Q. 

In this way a vector field v on Q is associated to an SO(n)-equivariant mapping 
v : OF(Q) -> Rn, and the covariant derivative Vvw of a vector field w with respect 
to a vector field w can now be defined by 

(4.3) WVW ^VfrorW. 

Here the right hand side denotes the "ordinary" derivative of the Rn-valued function 
w on OF(Q) in the direction of the horizontal lift v^or m OF(Q) of the vector field v. 

When v is constantly equal to e^, then the A;-th component of the right hand side 
in (4.3) is, in view of (3.2) and (4.1), equal to 

Q^J9(Z) (A (ek), w(x)) - - g(x) {g(x)-1 dig(x) A (ek), w(x)) 

= g(x) (A (ek), diw(x)) 4- - (dig(x)) (A (ek), w(x)) 

= g(x) (A (ek), diw(x) + - g(x)  1 dig(x)w(x) j 

In view of (1.4) this means that the covariant derivative is defined by the Christoffel 
symbols 

(4-4) r*j(x) = ±jrig
M(x)diglj(x)9 

or, in view of (1.1), by 

(4.5) T^j^) = 2di9kj(x). 

This connection leaves the Riemannian structure g invariant in the sense that 
Vg = 0. In general it is not torsion-free. 

It is also not coordinate-invariant, because the torsion is a linear combination of 
the first order derivatives of g, and the first theorem of Christoffel states that one can 
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always find local coordinates such that all the first order derivatives of the Riemannian 
structure vanish at the given point. This is to be contrasted with the characterization 
of the Levi-Civita connection of g as the unique one which is torsion-free and leaves 
g invariant, cf. [5, Vol. 1, Ch. IV, Thm. 2.2]. 

Of course, the connection is invariant under arbitrary afBne substitutions of vari- 
ables. These can be used to bring, at any given point ar, the Riemannian structure 
gij(x) into the standard form Sij. 

The equivalence between a) in Proposition 4.1 below and c), where V is taken as 
the connection with Christoffel symbols (4.5), has been observed before by Shima [9]. 

PROPOSITION 4.1. Let Q be a connected open subset o/Rn such that H1((5, R) = 
0, and let g be a Riemannian structure on Q. Let V be the space of all positive 
definite symmetric n x n-matrices. Let TT : GL(n, R)+ -t V be the SO(n)-bundle 
with connection as defined in Section 3. Let V be the connection in T(Q) which is 
associated to the pull-back under g : Q —Y V of the connection of the SO(n)-bundle 
TT : GL(n, R)+ -» V. 

Then the Christoffel symbols of V are given by (4.5). Moreover, the following 
conditions a), b), c) are equivalent. 

a) There exists a real-valued smooth function f on Q (uniquely determined mod- 
ulo a polynomial of degree < 1) such that, for every x 6 Q and 1 < z, j < n, 
we have that gij(x) — didjf(x). 

b) The Levi-Civita connection of g is equal to V. 
c) V is torsion-free. 

Proof a) => b) follows from (1.3) and (4.5). We have b) => c), because the 
Levi-Civita connection of any Riemannian structure is torsion-free. 

For c) => a) we begin by observing that the condition that V is torsion-free 
means that the Christoffel symbols in (4.5) satisfy the symmetry condition that 
^kij(x) = Tkjiix). This means that digkj(x) = djgkj(x), which in combination with 
the assumption that H (Q, R) = 0 is equivalent to the existence of a smooth function 
gk on Q, such that gki(x) — digk(x). From the symmetry gki(x) = gikix) we now 
obtain, again using that H1((5, R) = 0, the existence of a smooth function / on Q, 
such that gk{x) = dkf(x), which in turn implies that gki(x) = digk{x) — didkf(x). 
This proves c) => a). D 

The implication a) ==> b), for which the condition H1((5, R) = 0 is not needed, 
can be used in order to give an "explanation" of the formula (1.7) for the curvature 
of a Hessian Riemannian structure. For this purpose we use (1.5), and several times 
(4.3), in order to obtain that 

i?(f>) U = ([Xhm, Yhor} - [X, F]hor) U. 

Because of (4.2), we have that, for any C G f) = o(n), 

±U(AetC)\t=o = -CA-lU. 

Therefore, also using (2.16), we obtain that 

(4.6) R(x, Y) = AnA (xhor,A, rhoriA) A-1 . 

The curvature form in OF(Q) is equal to the pull-back under g of the curvature form 
in GL(n, R)+. This means that if in the left hand side we take X = e* and Y = ej, 
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then we can take in the right hand side for Ct the curvature form in GL(n, R)+, but 
with X = dig and Y = djg. In view of (3.3), the right hand side of (4.6), with ft 
equal to the curvature form in GL(n, R)+, is equal to 

— A^ (xAtAY-YAtAXy\ 

= -\g(x)-1 {Xg(xr1Y-Y9(xr1X), 

where we have used that g(x) = 7r(A) —^A'1 A"1. Because in these formulas Xpq = 
digpq = didpdqf and Ypq = djgpq = djdvdqf, this exhibits (1.7) as a consequence 
of the formula (3.3) for the curvature of the connection of the SO(n)-bundle TT : 
GL(n, R)+ -> V. 

In particular this explains why in (1.7) no fourth order derivatives of / occur: the 
pull-back under the mapping g : Q —>• V involves only first order derivatives of #, or 
third order derivatives of /, and the curvature in GL(n, R)+ is given algebraically, 
by just taking the commutator of two matrices. 

5. Curvature and Umbilic Points. In this section we assume that n = 2. 
We begin with a description of the (scalar) curvature K(x) of a Hessian Riemannian 
structure in terms of a universal two-form u on the space V of all positive definite 
symmetric 2 x 2-matrices. 

When n = 2, the rotation group SO(n) = SO(2) is commutative, and its Lie 

algebra consists of the scalar multiples of J — (   1      n     I. As observed in Remark 

ii) at the end of Section 2, it follows that the curvature form Q on G = GL(2, R)+ is 
equal to 7r*a; for a unique G-invariant two-form uo on the three-dimensional space V 
of all positive definite symmetric 2 x 2-matrices. 

If a two-form // on V is G-invariant, then the two-form JJLI on Ti V — 5, the space 
of all symmetric 2 x 2-matrices, is SO(2)-invariant, where the actions of C G SO(2) on 
5 is given by 5 i-» C S'G-1. Conversely, any SO(2)-invariant two-form on Ti V = 5 
has a unique extension to a G-invariant two-form on V. 

The three-dimensional space $ has an SO(n)-invariant splitting 

(5.1) s = So + R/, 

in which SQ — {S G 5 | tr S — 0} denotes the two-dimensional linear subspace of all 
traceless symmetric 2 x 2-matrices and R / denotes the one-dimensional subspace of 
all multiples of the identity matrix. The action of SO(2) on So is nontrivial, whereas 
the action on the one-dimensional component R/ is trivial. If the two-form //i on s is 
nonzero and SO(2)-invariant, then its kernel is one-dimensional and SO(2)-invariant, 
and therefore has to be equal to R /. But then //i is determined by its restriction to 
5o. Because dimso = 2, it follows that //i, and therefore //, is uniquely determined up 
to a multiplicative constant. 

A natural candidate for an SO(2)-invariant two-form UJI on 5 is given by the 
equation 

(5.2) -l[x,r] = Wl(x,r) (J   Q
1
 ),   x,yes, 

or, more explicitly, by 

(5.3) 4^ (Y*11    X*   ),(   *"    *"   \\={Xn-X22)Y12-Xl2{Yn-Yz2). Xn    X12 \    I Yn    Y12 
X12      X22   J '   V   ^12      ^22 
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In view of (3.3), we arrive at the following conclusion. 

PROPOSITION 5.1. Assume that LU is the GL(2, R)+-invariant two-form on V 
which is determined by (5.3). Then the curvature form Q, on the SO(2)-bundle IT : 
GL(2, R)+ -> V is given by Q = 7r*uj. 

Assume that g : Q -¥ V is a Hessian Riemannian structure, gij{x) = didjf(x), 
and x G Q is a point where gij(x) = Sij. If we combine (1.8) with (4.6) where .4 = 1, 
and the fact that the curvature in OF(Q) is equal to the pull-back under g of the 
curvature in GL(2, R)+, we obtain that the scalar curvature K(x) is given by 

(5.4) K(x) = ui (d2g(x), d1g(x)),    when   ^(x) = Sy. 

In order to evaluate the right hand side of (5.4), we have to substitute Xn = 
dl

2d2f{x), X12 = d^fix), X22 = d2
3f(x), and Yn = d^f{x), Y12 = 9i252/(x), 

Y22 = did2
2f(x) in (5.1). The resulting quantity is equal to the right hand side (1.9), 

with a = 1, b = 0, c = 1. 

In order to explain the relation between the curvature K(x) and umbilic points 
of certain surfaces in R3, we start by recalling what umbilic points are. Let S be an 
oriented smooth surface in R3. For any p € S one can describe S in a neighborhood 
of p as the set of p + v + ip(v) n(p), where v varies in a neighborhood U of the origin 
in the tangent plane Tp S C R3 of S at p, n(p) is the normal of S at p defined by the 
orientation, and <p is a smooth real-valued function on U. We have d(p(0) = 0, and 
the Hessian of ip at 0 is a well-defined symmetric bilinear form h(p) on Tp 5, which 
is called the second fundamental form of S at the point p. The restriction to Tp 5 of 
the standard inner product of R3 defines a positive definite symmetric bilinear form 
g(p) on Tp 5, which is called the first fundamental form of S at the point p. Viewing 
a bilinear form on Tp S as a linear mapping from Tp S to its dual space T* 5, we 
have h(p) — g(p) o H(p) for a uniquely defined linear mapping H(p) : TpS —> Tp 5, 
which moreover is symmetric with respect to g(p). It follows that H(p) has two real 
eigenvalues Ki(p) and K2(p), which are called the principal curvatures of S at the point 
p. One can always arrange, as we will, that Ki(p) > K2(p). 

Gauss defined the curvature Ks(p) of a surface S at the point p by -K'Gauss(p) — 
detiir(p) = fti(p) K>2(p)> His Theorema Egregium states that this curvature, which is 

defined in terms of the immersion of the surface 5 into R3, can be expressed entirely in 
terms of the first fundamental form. More precisely, if Gauss is equal to the curvature 
K, defined in (1.8), if we take the first fundamental form as the Riemannian structure 
on 5. 

When Ki(p) > K2(p), then we have the eigenspaces Li(p) of H(p), which are 
one-dimensional linear subspaces of Tp 5, orthogonal to each other with respect to 
g(p). The Li(p) are called the lines of principal curvature of S at the point p. When 
Ki(p) = K2(p), which happens if and only if h(p) is a scalar multiple of #(p), then the 
lines of principal curvature are not well-defined. In this case p is called an umbilic 
point of the surfaces S. The set U of umbilic points is a closed subset of 5. In its 
complement the principal curvatures Ki(x) and the corresponding lines of principal 
curvature Li(x) depend smoothly on x G S \ U. 

If p is an isolated umbilic point of 5, then the index of the umbilic point pis defined 
as ^ times the increase of the angle of Li(x) or ^(x), when x runs once around p, 
along a small loop and in the positive direction with respect to the orientation of 
S.  See Blaschke [1, III p.   287]; the original definition of Hamburger [3] is slightly 
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different. Hamburger [3] proved that if S is a compact oriented surface, immersed in 
R3 with only isolated umbilic points, then the sum of the indices of the umbilic points 
is equal to 2% = 2 (2 — 2g), where x and g denote the Euler characteristic and the 
genus of 5, respectively. 

For our purpose, of relating the curvature of a Hessian Riemannian structure 
to umbilic points, let us discuss the slightly more general situation that M is a two- 
dimensional oriented smooth manifold with a Riemannian structure g, provided with a 
second symmetric bilinear form h(p) on every tangent space T^ M, where we assume 
that g(p) and h(p) depend smoothly on p. For each p G M, let S2 Tp M denote 
the three-dimensional vector space of all symmetric bilinear forms on Tp M. These 
spaces constitute a three-dimensional vector bundle S2 T(M) over M, of which g and 
h are smooth sections. The multiples of g(p) form a one-dimensional linear subspace 
of S2TpM, and we denote the two-dimensional quotient space S2TpM/'Rg(p) by 

SQ Tp M. This space can also be identified with the space of linear mappings H : 
TpM -> Tp M which are symmetric with respect to g(p) and have trace equal to 

zero, whence the subscript 0. The section h of S2 T(M) leads to a smooth section 
ho of SQ T(M). The zeros of ho are the points p where h(p) is equal to a multiple of 
g(p). Note that ho(M) and the zero section of SQ T(M) are two-dimensional oriented 
submanifolds of SQ T(M), and the zeros of ho correspond to the intersection points of 
ho(M) with the zero section. 

In order to provide SoT(M) with an orientation, we use the two-form UJP on 
SQ Tp M which in analogy to (5.2) is defined by 

(5.5) ~[X,Y]=up(X,Y)Jp. 

Here X and Y are two traceless g(p)-symmetric linear mappings from Tp M to itself, 
and Jp is the ^(p)-rotation over § in Tp M, where the direction is determined by the 
given orientation of Tp M. At a zero p of fto, one has a well-defined tangent mapping 
of ho, which is a linear mapping Tp ho from Tp M to S5 Tp M. The pull-back of UJP 

under Tp ho is a two-form on Tp M, and we have a real number A(p) such that 

(5.6) (Tp ho)* UJP = A(p) ap, 

where ap denotes the area form on Tp M defined by the inner product g(p) and the 
given orientation of TpM. The number A(p) can be viewed as a sort of Jacobi- 
determinant of ho at the point p. 

The zero p of ho is called simple if the intersection of ho(M) and the zero section at 
p is transversal. This condition is equivalent to the condition that the linear mapping 
Tp ho from Tp M to SQ Tp M is invertible, which in turn is equivalent to the condition 

that A(p) ^ 0. When h is the second fundamental form of a surface 5 in R3, then p 
is called a simple umbilic point of S if ho has a simple zero at p. 

If M is compact then, with the orientation of SQ T(iV/) introduced above, we have 
a well-defined topological inetrsection number of ho(M) and the zero section. (This 
number changes sign if we change the orientation of the fibers of SQ T(M).) I learned 
the following version of Hamburger's theorem from the Ph.D. thesis of Carlos Valero 
in Oxford. 

PROPOSITION 5.2. Whenp is a simple zero of ho, then the index of p is equal to 
+1 and —1 if A(p) > 0 and A(p) < 0, respectively.  For compact M, the topological 
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intersection number of ho(M) with the zero section ofSlT(M) equals twice the Euler 
characteristic of M. 

Proof We start with a computation where M = R2 and g is equal to the standard 

(Euclidean) Riemannian structure. If A = (   n       1   j and C is the rotation over the 

angle 9, then CAC-1, which has C(ei) and C(62) as eigenvectors, is equal to 

cos 29 sin 261 
sm2d -cos 26 

(   X1 x2   \ 
\ x* -x1 

CAC'1 = 

Therefore the mapping 

/io : x \-¥ 

has index equal to +1 at x — 0. On the other hand A(0) = \. An interchange of x1 

and x2 leads to a change of sign both in the index and in A(0). Because both the 
index and the sign of A(0) are invariant under homotopy within the class of sections 
HQ with a simple zero, this leads to a proof of the first statement in the proposition. 

The above computation of C AC-1 exhibits S2 T(M), when viewed as a complex 
line bundle over M, as the square of T(M), and therefore its Chern class is equal to 
2x(M), because the Chern class of T(M) is equal to the Euler characteristic of M. On 
the other hand, the Chern class of a complex line bundle is equal to the topological 
intersection number of any continuous section of it with the zero section, cf. [2, Thm. 
11.17 and (20.10.6)]. D 

PROPOSITION 5.3. Let f be a strongly convex smooth function on an open neigh- 
borhood Q of the point x in R2 and let K(x) denote the scalar curvature at the point x 
of the Riemannian structure which is defined by the Hessian of f. After substracting 
a polynomial of degree < 1 from f (which does not change the Hessian Riemannian 
structure) and after a suitable affine substitution of variables (which does not change 
K{x)) we can arrange that df(x) = 0 and didjf(x) = dij. 

In this situation, the graph of f, viewed as a surface S in R3, has an umbilic point 
at p = (x, f(x)), and the claim is that K(x) = —A(p). This implies that K(x) ^ 0 if 
and only if the umbilic point p of S is simple. Furthermore, it follows from Proposition 
5.2 that if K(x) < 0 and K(x) > 0, then the index of the umbilic point p of S is equal 
to +1 and —1, respectively. 

Proof We may assume that x = 0, /(0) = 0, d/(0) = 0 and didjf(0) =.8ij. In 
order to compute Tp ho, where h denotes the second fundamental form of the surface 
5, we write y — eek with small |€|, and use a rotation Re in R3 which turns the tangent 
space at (?/, f{y)) of 5 horizontal. This can be done with a family of rotations Re 

such that Re = / + ei?' + O (e2), for some anti-symmetric 3 x 3-matrix R'. Then 
Re (S) is equal to the graph of a function fe, which plays the role of the function ip in 
the definition of the second fundamental form. If 

ReiV, f(y)) = O&ci fe(Xe)), 

then fe has a critical point at xe. 
The function fe is determined by the equation 

Re(x, f(x))3 = ft {R((x, fix))1, Re(x, f(x))2), 
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where the superscripts denote the coordinate indices. Differentiating this equation 
twice with respect to x and collecting the linear terms in e, one arrives at the conclusion 
that 

fedidjfe {x*) le=o = dkdidjfiO). 

It follows therefore now from (5.6) that 

A(O)=wo(0iS(O),&0(O)), 

if g(x) denotes the Hessian of the function / at the point x. Because (5.4) implies 
that 

K(0) = UJO (920(0), 8x9(0)) = -A(0), 

the proof of the proposition is complete. □ 

REMARK. Let G(f) be the graph of /, viewed as a convex hypersurface in Rn+1. 
The affine transformations applied to G(f) in Proposition 5.3, in order to bring the 
second order Taylor expansion of / at the given point into a standard form, make it 
natural to ask whether there is a description of the curvature of the Hessian Rieman- 
nian straucture in terms of the affine invariants of G(f). 

Parametrizing the point (x, f(x)) G G(f) by means of x, the Berwald-Blaschke 
Riemannian structure b of G(/), cf. [1, II §65], is given by the conformal factor (j> 
times the Hessian Riemannian structure, in which 

«M*) = (detD2/(a:)r1/("+2). 

The curvature of b at x depends on the fourth order derivatives of / at x. For 
instance, if n = 2 then, for given third order Taylor expansion of / at x, the scalar 
curvature at x of b can attain any value by choosing the fourth order derivatives of / 
at x appropriately. Therefore the curvature of the Hessian Riemannian structure at x 
can not be expressed in terms of the curvature of the Berwald-Blaschke Riemannian 
structure of G(f). 
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