THE EQUIVALENCE OF HILBERT AND MUMFORD STABILITY
FOR VECTOR BUNDLES*

ALEXANDER SCHMITT?

Abstract. We prove the equivalence of the notions of Hilbert (semi)stability and Mumford
(semi)stability for vector bundles on smooth curves for arbitrary rank.

Introduction. Let d, g, and r be fixed positive integers, W a complex vector
space of dimension p := d + r(1 — g), and & = G(W,r) the Grassmannian of 7-
dimensional quotients of W. On &, there is the universal quotient

WR0s — Eg

which induces a surjection A" W ® Os — A" Es, defining the Pluecker embedding
® < P(\" W). Now, let C < & be a smooth curve of genus g such that Ec := Eg|c
has degree d. Then, C gets embedded into P(A\" W) as a curve with Hilbert polynomial
P(m) = x((\" Ec)®™) = dm + (1 — g). From the restriction W ® Oc — E¢ of the
universal quotient to C' we derive homomorphisms A" W ® Oc — A" Ec¢, and for
allm >1

Yo S™ ;\W — HO((/\ Ec)®™).

If ¥ is surjective (as will be the case for large m) and h°((A\" E¢)®™) = P(m), this
yields

P(m) P(m) r

g = N\ v&: \ (" A\W)—C

We call C or, abusively, Ec m-Hilbert (semi/poly)stable, if ¥Z is surjec-
tive, R°((\" E¢)®™) = P(m), and the point [¢%] in P(AF™ (sm A"W))
is (semi/poly)stable w.r.t. the natural action of SL(W) on that space, and Hilbert
(semi/poly)stable, if it is m-Hilbert (semi/poly)stable for all m sufficiently large. This
is now a new stability concept for the vector bundle E¢ entering in competition to
classical Mumford stability. It goes back to Gieseker and Morrison ([4], [5]). Its main
motivation is to obtain an alternative compactification, called Hilbert stable compact-
ification by Teixidor [11], of the universal moduli space of semistable vector bundles
of rank r and degree d over M,, the moduli space of smooth curves of genus g, by
letting C vary and degenerate in &. In contrast to the slope stable compactification
of Pandharipande [9] which involves torsion free sheaves on singular curves, this com-
pactification would take place entirely in the realm of vector bundles. Its potential
usefulness is illustrated by the paper [5] where Hilbert stable vector bundles on a
nodal curve are used to prove a conjecture of Newstead and Ramanan on the moduli
space of stable rank two bundles over a smooth curve. In order to make such a theory
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work, the objects one starts with, namely Hilbert and Mumford stable vector bundles
on smooth curves, have to be same. Thus, one must show (1) that every stable vector
bundle of rank r over a smooth curve C of sufficiently high degree d gives rise to an
embedding of C into & and (2) that for C < & Hilbert and Mumford stability for
the bundle E¢ coincide. The first point follows from a recent theorem of Butler [2]
(see 1.1.1 below), and (2) has been established in the rank two case by Gieseker and
Morrison [4]. It is the aim of the present note to settle the general case, i.e., prove

THEOREM. Fiz g and r, then there is a constant dy such that for every d > dy and
every complex vector space W of dimension p = d + r(1 — g) there exists a constant
mo = mo(d, g,7) such that for all m > my the following holds true: Let C — G(W,r)
be a smooth curve of genus g and W @ Oc — E¢ the restriction of the universal
quotient to C. Assume W — HC(E¢) is an isomorphism and deg(Ec) = d. Then C
is m-Hilbert (semi/poly)stable, if and only if Ec is a (semi/poly)stable vector bundle.

Note that both the condition of Mumford and Hilbert stability can be formulated
as stability requirements on the quotient W ® Oc — E¢. Therefore, it is a natural
idea to look at the SL(W)-action on (some open part of) the quot scheme of quotients
of W®O¢. Asit turns out both stability conditions give rise to the same linearized line
bundle on this open part of the quot scheme. If the parameter space were projective,
this would settle the problem. Since this is not the case, we have to see how the curve
C with E¢ semistable and Hilbert semistable might degenerate in the set of Hilbert
semistable points. In turns out that the degeneration is roughly C with some rational
components attached, a case which can be excluded by an adaptation of an argument
from [11]. In other words, the locus of smooth curves C' which are isomorphic to
C such that E¢o is semistable is closed in the locus of Hilbert semistable points.
This is now as good as the projectivity of the parameter space and one can conclude
by standard methods in Geometric Invariant Theory. Our proof therefore avoids
completely any non-trivial computation.

1. Preliminaries.

1.1. Review of some aspects of the theory of semistable vector bundles.
A vector bundle over a smooth curve C is called (semi)stable, if it satisfies
u(F)(L)p(E) for all non-trivial proper subbundles F' C E, and polystable, if E is
isomorphic to a direct sum of stable bundles all of which have the same slope.

The following is a recent generalization to semistable vector bundles of a result
of Mumford on line bundles.

THEOREM 1.1.1 (Butler [2]). Let E and E' be semistable vector bundles on
the smooth curve C of genus g. Assume u(E) > 2g and u(E') > 2g. Then the
homomorphism

HY(E)® HY(E'"Y — HY(EQ®E
s surjective.

From this, one infers (see [12])

COROLLARY 1.1.2. Let E be a semistable vector bundle of rank r on the smooth
curve C of genus g with p(E) > 2g. Then, the homomorphism

T

/T\HO(E) —  H°(\E)
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s surjective.

Note that under the assumptions of 1.1.2, H*(E) = 0. So, Corollary 1.1.2 shows
that the quotient H°(E) ® O¢ —» E defines an embedding of C into G(W,r) where
W is a complex vector space of dimension deg(E) + (1 — g).

PRroOPOSITION 1.1.3. Fiz g and r. Then there is a constant d; > 2g, such that
for every curve C of genus g and every vector bundle E of rank r and degree d > d;
the following conditions are equivalent

1. E is a (semi)stable vector bundle.
2. RO(F)/tk F (L) x(E)/r for all non-trivial proper subbundles F of E.
3. x(B)/r (L) h%(Q)/ 1k Q for all non-trivial proper quotient bundles Q of E.

Proof. This is standard. See [8] or [7]. From the proof one can easily determine
an explicit value for d;. O

1.2. Properties of semistable points. Let X be a quasi projective scheme on
which the reductive group G acts. Suppose this action comes with a linearization in
an ample line bundle A. Then, the open sets X*° and X° of semistable and stable
points are defined. Furthermore, a semistable point z is called polystable, if its orbit
is closed in X*°. The set of polystable points will be denoted by X?°. Now, assume
that X is projective. For any point z € X and any one parameter subgroup A of G,
we define p4(z, A) as minus the weight of the C*-action induced by A on the fibre of A
over the point lim,_,o A(2) - . The Hilbert-Mumford criterion then says that a point
x is (semi)stable if and only if p4(z, A)(>)0 holds for every one parameter subgroup
A of G. Moreover, z is polystable if and only if it is semistable and a fix point for
every C*-action coming from a one parameter subgroup A with pa(z,A) = 0.

Next, suppose we are given two representations p;: G — GL(V;) and p3: G —>
GL(V2) of the reductive group G on the finite dimensional C-vector spaces V; and V5.
This yields an action of G on P(V;) x P(V;) together with natural linearizations in
O(t1,t2) for all t1,t2 > 0. The corresponding set of (semi/poly)stable points depends

only on the parameter 9 := ¢, /t2 € (0,00) and will be denoted by Qf;/ P)* We also

define Q{/P® and Q'Y)° as the preimage of the (semi/poly)stable points under the
projection onto P(V;) and P(V3), respectively. Then, the following properties are well
known and easy to see ([13], [10]): There exists a finite number of critical values
1, ...,9s € (0,00) such that, settting ¥99 = 0 and 9541 = o0, for ¢ = 1,...,s + 1 and
given 19, 9 in (19,'_1,’[91')

(1.1) QS;/P)S - QS;I/P)S
v C QL
Qf? 2 Q’ls9i—1.i'

Now, let X be a G-invariant closed subscheme of P(V;) x P(V%), and set Xl(f/ P =
QY nx, 9 €000

LEMMA 1.2.1. Suppose that there is an n > 0, such that for every point © € X§*
and every one parameter subgroup \ of G

n-po. A T(E) > Bo 1) (A T2(2)).
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Then, for 9 € (0,91), also

Xés)s - X1(9s)s‘

Proof. The stated condition clearly implies X§ C Xg§, and thus, by (1.3), Xj =
X3.

There is a surjective morphism X3° /G £ X§° /G which is by our assumption
an isomorphism over X§ = X3. Thus, X3° /G \ X} /G maps onto X§&*//G \ X§//G
which means that for every point x € X§° \ X§ there exists a point ' € X3° \ X
with ¢([z']) = [z]. Choose z' € XJ°. We claim that 2’ also lies in X3°. Indeed, let
A be a one parameter subgroup with /‘Om(vl)(l)()"”l (z')) = 0. By the assumption
and the fact that 2’ € X3°, we must also have quV?)(l)()\,wg (z")) = 0, and hence
BO(ty t2) (M, ') = Ofor all ¢ /t2 € (0,99;). Since z'is a fixed point for the corresponding
C*-action, our claim is settled.

Thus we have shown that for every x € X§°, the unique closed orbit in G -z is
contained in X§°, whence also G - * C X§° which is what we claimed. O

This argumentation also yields

COROLLARY 1.2.2. If, for ¥ € (9;-1,%;), one has X3° C X§° , or X3° C X7,
then Xl(f)s = Xf?s)s or Xl(f)s = XI(;:)S, respectively.

i-1’

1.3. Some lemmas about Hilbert semistable curves. In the rest of this
paper, we will freely make use of the fact that, if C is a curve without embedded
components, then the restriction map £ — @;_, £¢; is injective for every locally
free (or more generally depth 1) sheaf £ on C, where the C;, ¢ = 1,..., s, are the
components of C.

Based on ideas of the papers [5] and [11], we will now draw some consequences
from the Hilbert semistability of curves. For this, fix d, g, and r as before, and let
$d,q be the Hilbert scheme of all closed subschemes of & with Hilbert polynomial
P(m) = md+1—g. The notation C € $)q4,4, means that C is a closed subscheme of &
with Hilbert polynomial P(m). For any such C, the objects E¢ and % are defined as
in the introduction. First, since $)4,, is projective, and ¥& (A" W) € HO(A" E¢) is a
very ample linear system, we can find an my, such that the map @ is surjective for all
m > my and for all C € §q,4. Hence, for m > mg and C € §q,4, the homomorphism
¢ is also defined, and we may investigate the concept of m-Hilbert semistability for

C. We set Vym := AP™ (5m A™W).

LeMMA 1.3.1. There is an mg > mg, such that for every m > my and every
C € Ha,g the following holds: A subspace Wy C ker(W — H°(E¢c,.,)) gives rise to
a one parameter subgroup A of SL(W) with I’Lou:‘(vg")(l)()" [pZ]) < 0. Here, Creq stands
for the reduced subscheme of C'.

Proof. Choose a basis vy, ..., v;, for Wy, complete it to a basis vy, ..., v, of W, and
define A w.r.t. this basis by the weight vector (io — p, ..., %0 — D, %0, ---, o) Where ig — p
occurs do-times. Set Wi := (vj;+1,-..,Vp ). We obtain a splitting A\"W = A" W1 @ A.
The image of A in H°(A\" Ec) lies in the kernel of the reduction HO(A\" Ec) —
H°(A\" Eg|c,.,), in particular, the image of SmA in HO((A\" E¢)®™) is zero for all m
greater than some constant m. For those m, the minimum weight of an eigenvector
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in S™ A" W with non-zero image in H°((A\" Ec)®™) is m(io — p) + (m — m)ip =
mig — Mmp > m — mp, i.e., for m > mp we will definitely have 1O vz (1) (A [w&]) <.
By the projectivity of $)4 4, we can choose my such that mg > m + 1 for every curve

Ce d,q- 1]

__ The rest of this section will be devoted to prove a technical key result. A curve
C will be called a tree-like curve, if it satisfies the following conditions

o Cis reduced, every irreducible component is smooth, and all intersections are
ordinary double points.

e The graph I's is a tree. Here, I's is the graph with vertices { Cy, ..., Cs }, the
irreducible components of C, and C; and C; are connected by an edge if and
only if they meet.

We will call a vertex C; an end, if there is only one edge at C;. We will assume
from now on that all irreducible components of C except Cp are rational and that
the genus of C' is g. Suppose we are given a quotient W ® Oz — E where E is
a vector bundle of rank r and degree d and dimW = d + r(1 — g). We label the
vertex C; by d; :=deg Ej¢;, i =0, ..., s, and set d’ := d — dy. Observe that, for i > 1,
Eic; = Op,(a1) ® - ® Op,(a;) with a; > -+ > a, > 0 and ) a; = d;. Suppose the
induced homomorphism W — H°(E) is injective. Let H*(E) C @;-, H°(E|c;) be
the canonical injection. Let C;, ¢ > 1, be an end (this exists), and set W; := ker(W —
@, H(Ec;), e, Wi = WNH(E¢,) C H°(E|c;(—ci)), ci the point of intersection
of C; with the rest of the curve. Then, dim W; < d;, i.e., dim(W/W;) > d — d;. By
removing C; we obtain a new tree like curve C' whose graph I'z, is I's with the
vertex C; and the edge at C; removed. We can therefore iterate this procedure. Set
W' :=ker(W - @2, H*(Ec,))-

We will assume dim(W/W') =d —d' +r(1 —g). Then we must have had equality
at each step, whence W := ker(W — H°(E|c,)) identifies with H®(Ez(—py —...—p¢))

where C is the closure of C \ Cp in 5, and pi,...,p: are the points of intersection of
CO and C.

Next, consider the induced morphism f’:é — G(W,r). This morphism con-
tracts all curves C; with d; = 0, in particular, all ends labelled by 0. For this reason,
we can assume that no such ends are present. Under the above assumptions, the
rational curves of positive degree are embedded by f’, so that we can fix an end Cj,
which is embedded by f’. The main result we will need later is

PROPOSITION 1.3.2. There is an mo > my, such that, for every m > myg, the
following conclusion is valid: In the above situation, assume there is a curve C' € g4
such that

1. C maps onto Cleq, the reduction of C'.

2. C' is generically reduced along the image of C;,.

3. The induced map W — HO(EC/|C:=d) is injective.
Let Cy be the component f'(Cy,) of Clyq, and R the union of the remaining components
of Cleq- Then we find a subspace Wy C ker(W — H°(Ecig)), such that, for a
one parameter subgroup A\ of SL(W) associated to this subspace as in the proof of
Lemma 1.3.1, one gets 'U’OE'(V;')U)()\’ [pZ]) < 0.

Proof. There are canonical injective maps Ocy C f.Oc,, and Or C f,Ou,; c:-

ig?
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For this reason and because of the third assumption, the maps

W — HO(ECU|C;«|)
— H%E¢c1) ® H'(Eci|r)
— HO(Ci07 ElCio) 53] HO(U;’#;‘O Ci7 ElU,‘#,‘oCi)

are injective, whence ker(W — H°(Ecy|r)) naturally identifies with H°(E|c, (—ci))-
Recall that Ejg,) = Op,(a1) ®---®Op,(ar) witha; > --- > a, > 0and 3 a; = d;, >
0, whence a; > 1. We take Wy = H°(Op,(a; — 1)) under these identifications.

Let C} be the scheme theoretic closure of the open subset C' \ R in C’. Define
7 := dim ker(HO(Oaé) — HO((’)C('))). Let £ be an invertible sheaf on C’ and £’ C £

a subsheaf of £ with support in 5(), then
(1.4) H°(Ljcy) > HL) -

Now, we can apply the arguments used by Teixidor in [11], Proof of 2.4. Let
v1, ..., Vj, be a basis for Wy, complete it to a basis vy, ...,v, of W, and let A be given
w.r.t. basis by (jo —p, ..., Jo — P, Jo, .-, jo ). We also define Wy := (vjy+1,...,vp ). The
statement p1o, (V?)(l)(A, [¢&]) < 0 can be translated into the statement (cf. [5], [11])

rmP(m
(15) LI ) < 0, (¥ B,
Here, X' is the one parameter subgroup of GL(W) given w.r.t. the fixed basis by the

weight vector (0,...,0,1,...,1), 0 appearing jo-times. Moreover,

rm—1

_NOF(V?)(I)(A,7[‘PZL’]) =rmP(m) — z b
k=0

rm—1 -
> rmP(m) — Z by, — rmT.
k=m(r—1)

Here, by and by are the dimensions of the subspaces of H OUA" Ecr)®™)
and H°((A\" Egr|c;)®™) generated by the eigenspace of weight k in S™ (A" W). Note
that only the space S™(Wo® A" Wi ® \"W;) yields non-zero sections in
H°((A" Egiicy)®™), so that the asserted inequality follows from (1.4). Next, by
definition, for m(r — 1) < k < mr, the image of the eigenspace of weight & lies in
HO(Py, Op,(md;, — (mn — k))), ie., by < md;, + kK — mn + 1. The left hand side
of (1.5) is m? - rd(1 — a1 /p) + l1(m), l1(m) a linear polynomial, and the right hand
side is bounded from below by m?(rd — d;, + 1/2) + la(m) — rmr, ls(m) also a linear
polynomial. Negating (1.5) for large m yields

P 1 di,
< —_— P— —
M= g (dl° 2) < r’

Now, the polynomials {; (m) and l2(m) depend only on d, g, and d;, which leaves
only finitely many possibilities after fixing d, g, and r, because 0 < d;, < d. Moreover,
7 is bounded by h°(O¢r) — 1, so it can take only finitely many values for C’ varying
in $4,4. This means that we can indeed find mg as asserted. O

a contradiction.
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2. Proof of the Theorem. Choose d > d; according to Proposition 1.1.3, fix
a complex vector space W of dimension d + (1 — g), and let C — & = G(W,r) be a
smooth curve of genus g. This provides us, on C, with a quotient W ® O¢c — E¢.
Write L = L¢ for the line bundle det E¢. Let g be the quasi projective quot scheme
parametrizing all quotients ¢: W @ O¢c — E, such that
e F is a vector bundle on C of rank r with determinant L

e HO(g) is an isomorphism
e N"W — HO(L) is surjective.

2.1. Review of Gieseker’s construction of the moduli space of stable
bundles. On 9y x C, there is the universal quotient W ® Ogq,xc — €gq, which
provides us with A" W ® Og,xc — A" €qa,- Note that \" €q, = 75 L @ 75 A for
some SL(W)-linearized line bundle A on g, so that projecting the latter homomor-
phism to g yields

AW ®0gq, — H(L)® A.

This homomorphism induces an injective and SL(W )-equivariant morphism ¢: Qo —
P(V}) with Vi := Hom(A\" W, H°(L))". Using Corollary 1.1.2 and Proposition 1.1.3,
it follows that the preimage under ¢ of the (semi/poly)stable points is exactly the set
of quotients ¢: W ® Oc — E for which F is a (semi/poly)stable vector bundle. Write
0(/P)s for the respective sets. The induced map t: 9% — P(V})%° is proper, from
which one infers that My, := Q%% J/ SL(W) exists.

2.2. Proof of the theorem. Set Vy™ := AP™ (5™ A" W), so that, for every
m > 1, we have a natural morphism

Jm: Qo — P(V1) x P(V3™).

REMARK 2.2.1. We remark in passing that the pullback of O(1) under the
morphism Q¢ — P(VJ") is just A®™F(™) ie. the morphisms from Qg to P(V}) and
P(V3™) both give rise to the same SL(W)-linearized line bundle on 9.

Let X™ be the closure of j,, (o). We will now use the notation of Section 1.2.
Note that for every point z = ([21], [22]) = jm([¢: W ® Oc — E]) and every one
parameter subgroup A of SL(W), we have

(2.1) mP(m) - po, v, M [21]) 2 Bo. g, @) (A [22]),
so that in view of Prop. 1.1.3, one immediately infers

COROLLARY 2.2.2. If the curve C is m-Hilbert (semi)stable, then the vector
bundle E¢ is (semi)stable.

REMARK 2.2.3. Note that this conclusion holds for every m > 1.

By Lemma 1.2.1, j»(Q°%°) = (X™)§° C (X™)3’. Suppose now we could prove the
following
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PROPOSITION 2.2.4. Let mg be as in Prop. 1.8.2. Then for all m > mygy, the
following holds true: Let [¢: W ® Oc — E| € 0Q°%%, such that E is a polystable vector
bundle. Suppose jm([q]) € (X™)§ for some ¥ € (0,00). Then, also

im(d) € (XM

In this case, by Corollary 1.2.2, j,(Q(®)s) = (Xm)gfl)s. Using (2.1) and Lemma
1.2.1 again, we also get (Xm)ff)s = (Xm)f;l)s for all ¥ € (¥1,92). Now, iterating this
argumentation, yields the conclusion

(X™ME* = jm(QP?)
which is just a reformulation of the assertion of the theorem. 0O

2.3. Proof of Proposition 2.2.4. Let A\ be a one parameter subgroup of
SL(W), such that zo := lim,_,0 jm([q]) - A(2) exists in (X™)5%, but such that j,,,([g]) is
not a fixed point for the corresponding C*-action. We must describe z¢ = ([z1], [z2])
more explicitly to derive a contradiction. First, by assumption, we have a morphism
C* — 0%, This corresponds to a family W ® O¢- x¢ — Ec- . This family can be
extended to a family of quotients W ® Ocxc — &c where E¢ is a C-flat family of
coherent sheaves of rank r with determinant L on C. Note that the flatness over C
implies that & is torsion free as Ocxc-module. Set Ec := £YY. This is a reflexive
sheaf on the smooth surface C* x C, whence it is locally free and thus flat over C.
This gives a family

W ® Ocxc — Ec.

REMARK 2.3.1. Let us remind the reader of some features of this construction.

1. The kernel of the homomorphism E¢joyxc — Egj{oxc is exactly the torsion
T of g(Cl{O}xC .

2. Since W ®O¢ generically generates Egj{o}xc, we see dimg (7) < dim W —r =
d —rg < d, thus deg(&gjqoyxc/T) > 0 has positive degree, and since there is
a surjection W ® Oc — &gjqoyxc /T, the rational map C --» & induced by
W ® C — Egj{o}xc is not constant.

3. Set W := W/ ker(W — H°(Egjg0yxc))- Then, dimIm(W — H®(Ego}xc))
=dim(W) — d', by 1.

From this discussion, we deduce that the homomorphism

/\W®O(C><C —>/\E«:

is surjective outside a finite set of points pi, ..., p; located on {0} x C where t < d'.
In particular, there is a rational map

h:CxC--+ &

defined outside {pi,...,p¢ }. By blowing up the points p;,...,p; and possibly some
infinitely near ones (see [1], II.7), we arrive at a smooth surface S together with a
morphism

ﬁ:§—>®.
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REMARK 2.3.2. The map \" W®O o1 xc — H®(L) = H°(det Egj{o}xc) defines
the point [z1] € P(V1). As in the proof of 1.3.1, every subspace Wy C ker(W —
(EC|{0}><C)) yields a one parameter subgroup A of SL(W) with pe, @A [z1]) <

The composite morphism S —» C s still flat, and an easy inductive argument
shows that the fibre C' over {0} is a tree-like curve with C as its only non-rational
component.

Next, observe that by Butler’s results 1.1.2, the morphism C* x ¢ — C* x
® < C* x P(\" W) is an embedding and consequently corresponds to a morphism
C* — $4,9. By extending this morphism to a morphism C — §q4,4, we get another
surface S’ equipped with a flat morphism to C. Observe that the flatness over C
together with the fact that S’ x¢ C* is integral implies that S’ is also integral ([6],
111, Prop.9.7). Moreover, by our construction, there a morphsim f: S — S’ which
factorizes over § —» ', §' the normalization of S'. The latter morphism just being
the contraction of some rational curves with negative self-intersection, the morphism
f:8 — §' is proper.

Now, write C = SpecC[T], and denote by T also the induced element in the
function field K(S) = K(S'). Let C' be the fibre of S’ over {0}. We will have to
compare C and C'. For this let [C] and [C"] be the Weil divisor classes of those curves.
By definition € and C’ are the Cartier divisors div(T), taken on S and S, respectively.
Proposition 1.4 in [3] thus shows that f.[C] = [C'] on the cycle level. The upshot
of this discussion is that, if we can show that every rational curve in C which is not
contracted is mapped injectively to &, the only component of C’' which is possibly
not generically reduced is f(C), the ultimate goal being to apply Proposition 1.3.2.

Anyway, at this stage we know that the curve C' € $)4,4 supplies [z2] in P(VJ™).
Therefore, we can look at some destabilizing one parameter subgroups.

LEMMA 2.3.3. For m > mg, the homomorphism W — HO(EC;ed) must be
injective.

Proof. Observe that a subspace Wy of ker(W — H O(Eo;ed)) gives by Lemma 1.3.1
and Remark 2.3.2 rise to a one parameter subgroup A with both HO: (v, (1) M\ zi]) <0
and po, (vgr)(l)()\’ [z2]) <0, in contradiction to the semistability of zg. O

The induced morphism f': C — Cl.q is surjective, so that there are injections
Océcd C ina, and E’C"C;ed - Ecqc:ed ® f*O'* = f*f,*EC'|C;ed' The composite
W — H(Ecicr ) C HO(f*Ecrcr_,) is thus injective by Lemma 2.3.3. Therefore,
in Remark 2.3.1, 3., the space W equals W/H°(T) and, thus, has dimension d —
d' 4+ r(1 — g). Now, one immediately checks that we are exactly in the position to
apply Proposition 1.3.2. Since the subspace Wy used to destabilize [z,] lies in the
kernel of W — H°(Egj{o}xc ), We find again a one parameter subgroup A of SL(W)
with “Oyv(vl)(l)()" [z1]) < 0 and HOp v (A, [z2]) < 0, contradicting the assumptions
made on zo. 0O
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