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Abstract. We prove the existence of a unique standard fc-bubble in Mn, k < n +1, that encloses 
fixed volumes. 

1. Introduction. A conjecture of much recent interest [SM, Prob. 2] says that 
a standard soap bubble cluster consisting of spherical surfaces meeting in threes at 
120 degrees provides the least-perimeter way to enclose and separate k regions of 
prescribed volume in Rn for k < n + 1. Here we provide proofs of the existence and 
uniqueness of such a standard soap bubble. 

FIG. 1. Standard 3-bubble in ] 

Progress on the conjecture. As for the conjecture itself, the case k = 1 is the 
classical theorem that the round sphere provides the least-perimeter way to enclose 
given volumes in Mn. The case k = 2 is the Double Bubble Conjecture, proved in M2 

in 1990 by a group of undergraduates [F2] and in M3 in 1995 for the case of equal 
volumes with the help of a computer by Hass, Hutchings, and Schlafly [HHS]. See 
[Ml]. 

The case k = 3, the Triple Bubble Conjecture, was proved for connected regions 
in E2 in 1992 by another group of undergraduates (including Hutchings) [C]. 

General results on the existence and regularity of minimizers are due to Almgren 
and Taylor ([A], [T], [AT]), Morgan [M2], and Hutchings [H, 2.6, 2.9, 5.1]. 
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Earlier results on the existence and uniqueness of the standard bubble. 
Existence and uniqueness of the standard bubble has appeared for double bubbles in 
E2 and M3 [F2, Thm. 2.3], [Fl, Thm. 3.2], and for the equal-area triple bubble in 
E2 [Fl, Thm. 4.6]. Also Hutchings [H, p. 286], sketches a simple proof for double 
bubbles in En due to Morgan. 

In 1995 K. Brakke and also Hutchings proved the existence of standard /^-bubbles 
in En (k < n + 1). They used an idea of J. Sullivan's: obtaining a standard bubble 
as a stereographic projection of a regular simplex in the sphere. 

This paper. Theorem 2.1 provides Brakke's beautiful proof of the existence of 
standard bubbles for given volumes. To prove uniqueness, it is more convenient to 
use radii than volumes as parameters. Proposition 3.2 proves existence (and unique- 
ness) for prescribed radii, using induction and an inversion which maps the spherical 
surfaces to hyperplanes, making it easy to insert an additional bubble at a vertex. 
Finally Theorem 4.2 deduces uniqueness for given volumes, using Lemma 4.1, which 
says that as one radius increases, the other volumes decrease. 

Acknowledgments. I want to thank Frank Morgan for his helpful comments 
and for insisting that I write down these ideas. Also, to the referee that helped me a 
lot updating the status of the matter and suggested several improvements. 

2. Existence of standard bubbles with prescribed volumes. For defining 
the standard bubble with more than one region we need to fix the angle at which two 
of its faces meet; thus, the dimension of these faces must be at least 1 and the bubble 
should live in En with n > 2. This will be assumed throughout the paper. 

A standard (n + 1)-bubble in En is a subset of En that is homeomorphic to the 
barycentric subdivision of an n-simplex; each of its faces (I mean always the (n — 1)- 
dimensional ones) must be part of a sphere or a hyperplane and where two faces meet, 
they do at 120° angles. The bubble divides En into n + 2 regions. An inner interface 
separates two of the compact regions, and an outer face separates a compact region 
from the non compact one. We call center of the bubble the center of the barycentric 
subdivision, that is the point where all of the inner interfaces meet. A standard k- 
bubble in En, k < n, is a subset homeomorphic to the result of removing an outer face 
from a (k + 1)-bubble, and which satisfies the same conditions on faces and incidence 
angles as the (n + 1)-bubble. We call outer or inner radii to the radii of the outer or 
inner faces. 

Consider in En+1 a regular (n + l)-simplex, X, and let S be the sphere that 
passes through its vertices. From the center of 5, project X on 5, and let Y be 
that projection. By symmetry, where three of the projected (n — 1)-dimensional faces 
meet, they must do at equal angles, that is at 120° angles. Hence, the stereographic 
projection of Y upon En gives a standard (n + l)-bubble. This is Sullivan's idea. 

THEOREM 2.1. (Brakke[B]) Letl<k<n + 1 and let Vi,..., Vk > 0. Then there 
is a standard k-bubble in En that encloses and separates compact regions of volumes 

Proof. Look at a standard fc-bubble in En as the stereographic projection from 
5n of the appropriate net dividing Sn into k + 1 regions, with the projection point 
in region k + 1 that we denote D (if k < n, intersect D with the appropriate Sk~1). 
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Note that D is a simplex. Consider the map / : D -> T, where T is the simplex in 
E^ that is the hyperplane xi -t- h Xk — 1 in the positive orthant, defined by 

■Kp) = x+... + i> 

where Vi is the volume of region i as projected from the point P. Then each m- 
dimensional face of simplex D maps into a corresponding face of T, and by induction 
is a degree 1 map onto.D 

3.  Existence of the standard bubble with prescribed outer radii. The 
standard 1-bubble in W1 is a sphere. The standard 2-bubble in En is built from two 
spheres that meet at 120° angles and define the outer faces of the bubble, and a third 
sphere or hyperplane that meets them also at 120° angles, as shown in Figure 2. The 
region enclosed by the outer faces is divided by the third hypersurface and in this 
manner we have the inner interface. 

FIG. 2. 

The following result will be useful. 

PROPOSITION 3.1. Let 0,V be two spheres in En with respective radii ri, r2 > 0. 
They meet at 120° angles iff their centers are at a distance \Jr\ + r^ — r^. There is 
a unique standard 2-bubble in En whose outer faces have radii ri and r2. 

Proof. Figure 2 represents the intersection of the spheres with any 2-plane that 
passes through their centers. We see that the circles centered in O and P with 
respective radii ri and r2 meet at 120° angles iff the angle OAP is 60°. That is iff 
cos(OAP) = 1/2, that is iff OP2 = r? + ri - 2rir2 cos(a4P) = rj + r| - n^, as 
claimed. Assume now that, for instance, ri > r2, and that both circles meet at 120° 
angles. It is easy to see then that a circle that passes through A and Af and therefore 
is centered (say, at Q) in the line OP meets the other two circles at 120° angles iff its 
radius is r — rir2/(ri — r2) and P belongs to the segment OQ. D 

PROPOSITION 3.2. Let I < k < n + I and ri,...,rfc > 0. Then there is a 
unique (up to isometrics ofW1) standard k-bubble in W1 whose outer faces have radii 
ri,...,rk. 
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Proof. The uniqueness is obvious since, by 3.1, the distances among the centers 
of the outer faces are fixed so that these centers form a unique {k — l)-simplex, up 
to isometries; then, the positions of the centers of the inner interfaces, and their 
radii, are also fixed. However, for k > 2 it is not obvious that we can always form a 

(k — l)-simplex with distances among vertices given by wrf + r| — r^-. 

First, assume that 2 < k < n + 1, that P is a (k - l)-plane in Rn and that Bk 
is a standard fc-bubble in P; the centers of the inner and outer faces of Bk are at 
the appropriate distances according to their radii, so that we can define a standard 
fc-bubble in Mn by 'blowing' Bk, that is the bubble built from the (n — 1)-dimensional 
spheres with same centers and radii as the faces of Bk. 

Now, we proceed by induction. Let H be any hyperplane of En, and Bn a standard 
n-bubble in H with outer radii ri,... ,rn. Let Bn be the n-bubble in En obtained 
as before by blowing Bn. The intersection of all of the inner interfaces of Bn is a 
point, so that the intersection of all of the inner interfaces of Bn is an arc of circle (or 
line segment). Any of the ends, A and A', of that arc or line segment belongs to all 

FIG. 3. Standard 3-bubble in R2 blown to R3 

of the faces, inner and outer (see figure 3). Thus, a central inversion $ with center 
A, for instance the one that leaves the other end, A', fixed, changes all faces of Bn 

into parts of hyperplanes that meet at Af at equal angles. There are n +1 half-lines 
starting from A', lying as the ones connecting the center of a regular n-simplex with 
its vertices, such that each subset of n — 1 of them determines the image of a face of 
Bn under <£. Let us choose a point on each of these half-lines, all equidistant from 
A'. With each of these points as center we consider the piece of sphere that passes 
through the other n points and is contained inside the convex hull of the half-lines 
passing through those n points (see figure 4); one of these convex hulls contains A 
in its interior; let us call it RA- Any pair of these spheres intersect at 120° angles; 
also if 5 is one of those spheres with center c and P is the image by $ of a face of 
Bn such that c £ P, then 5 and P intersect also at 120° angles. All this can easily 
be proved. All those spherical pieces enclose a region diffeomorphic to an n-simplex 
and we will assume that the choice of the centers of those spheres leaves A outside 
that curved n-simplex. Its exterior is divided by the images of the faces of Bn into 
another n -I-1 regions, and the image of these n + 2 regions under $ is thus a standard 
(n + l)-bubble. The image by $ of the spherical piece that did lie in RA is the new 
outer face, and it is evident by continuity that we can give it any positive radius, for 
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A= §( Infinity) 

FIG. 4. 

instance rn+i. □ 

4.  Uniqueness of the standard bubble with prescribed volumes. Let 
V : (R"*")* —> (R+)k be the function that to each set ri,...,rk of positive numbers 
assigns the volumes of the respective regions of the standard A;-bubble in W1, 1 < 
k < n + 1, whose outer faces have radii ri,... ,rfc. In order to prove the uniqueness 
of the standard fc-bubble that encloses given volumes we need only to prove that V 
is injective. Let Vi,..., V& be the components of V. 

A= ^(Infinity) 
A= ^(Infinity) 

FIG. 5. Increasing the spherical caps in R3 and in E2 

LEMMA 4.1. Let i e {1,.. .,fc} and ri,... ,7^ e E4". Assume that r^ > r^. Then 

Vj(ri,..., u,..., rk) > Vj(n,..., r■,..., r^), 

/or ; / 2. 

Proof. Let I?& be a standard fc-bubble in M^-1 with outer radii ri,... ,rk. Ac- 
cording to the proof of 3.2 there is a point A such that a central inversion $ with 
center A converts Bk into a subdivision C* of M^-1 as described there (see figure 4). 
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Since <I>2 = id and by $ the point A goes to infinity, the outer faces of Bk are the 
images by $ of the faces of Ck that bound the region RA containing A. We can also 
assume that the 2th outer face of Bk is mapped into the spherical cap that forms part 
of the boundary of RA- Let us increase the radius of all of these spherical pieces of 
Ck (figure 5). 

From the fact that the center of any of those spherical pieces is the opposite 
vertex we see that each of the complete spheres defining the new spherical caps of Ck 
enclose completely the old corresponding complete spheres. The same must occur after 
mapping them by $. Therefore, the new ith outer face of Bk has greater radius that 
the former, and it is clear that this process can produce any previously specified radius 
r'i. Also, the remaining outer faces, being the images of the plane pieces bounding RA, 

will have same radius as initially. The net result is, thus, a standard /.-bubble with 
same outer radii except for the 2th one, that has increased. But all of the regions of 
Ck, except the image of the 2th region, have been reduced. The same will occur after 
inversion and this proves our claim, because obviously these inequalities are conserved 
after blowing Bk to a standard A;-bubble in Mn. D 

THEOREM 4.2. The map V is injective. Thus, given k positive volumes, there is 
(up to isometries ofW1) a unique standard k-bubble in W1 that encloses those volumes. 

Proof. It is clear that if a G M+, then V(ari,..., ark) = anV(ri,..., r*). Now, 
suppose that V(ri,..., r^) — V(ri,..., rf

k). Then, let 

m = max ,...,     ,     ,...,   .   i . 
ri n   ri r!

kJ 

Clearly m > 1 and the equality sign implies (ri,... ,rk) = (rj,... ,rj.). Without loss 
of generality we can assume that 

m = —. 

Then, we have 

mnVi(r;,... yk) = mnVi(ri,... ,7-*) = Vi(mri,.. .,mrk) 

= Vi (^, mr2,..., mr*) < Vi(ri, r^, rars,..., rar*), 

by the Lemma, because 

rf 

mr2 > —r2 = riy. 

By iteration, we have 

mnV1(ri,...)rjfe)<V1(ri,...,^), 

Hence, m < 1 and V is injective, as claimed. D 
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