GENERIC MODULES FOR EXTENSION ALGEBRAS*

XIANNENG DU[†]

Abstract. Let A be a tame hereditary algebra (finite-dimensional over an algebraically closed field), $R_A^m \ (m \geq 1)$ the extension algebra of A. A generic R-module M over an arbitrary ring R is by definition an indecomposable R-module of infinite length, such that M considered as an $\operatorname{End}(M)$ -module, is of finite length (its endolength). In this paper we investigate the generic modules of \widehat{A} (the repetitive algebra of A) and R_A^m . It is proved that R_A^m has at least 2m generic modules.

Introduction. The notion of generic module was introduced in [1] by Crawley-Boevey. The concept seems to be quite natural and important. The generic modules even have a dominating position in the category of modules. In [2], it was shown that whether a finite-dimensional algebra over an algebraically closed field is tame or wild is determined completely by the behaviour of the generic modules for that algebra.

In [3], Aronszajn and Fixman gave the concept of a divisible module for the Kronecker algebra and showed that for the Kronecker algebra there exists a unique indecomposable torsion-free divisile module. In [4], Ringel generalized the work of Aronszajn and Fixman and proved the same result for a tame hereditary algebra. Ringel's work, in fact, showed that for a tame hereditary algebra, there exists a unique generic module. In [6], we solved the existence and uniqueness of generic module for the tilted algebra determined by a tame hereditary algebra.

Following [1], A generic R-module M over an arbitrary ring R is by definition an indecomposable R-module of infinite length, such that M considered as an $\operatorname{End}(M)$ -module, is of finite length (its endolength). Of course, the generic modules with endomorphism ring a division ring just, form the vertices of the (Cohn) spectrum of R. By [1], the endomorphism ring of a generic module always is a local ring.

Our purpose here is to investigate the generic module of the extension algebra R_A^m (defined below) for a tame hereditary algebra A. In section 1, we investigate the ν -orbits of generic modules for a repetitive algebra. we shall prove that $\operatorname{Mod} \widehat{A}$ has at least two ν -orbits of generic \widehat{A} -modules (Theorem 1.2). In section 2, we shall prove our main result on generic modules of R_A^m : R_A^m has at least 2m generic modules (Theorem 2.4 and Corollary 2.5).

Throughout this paper, we denote by k an algebraically closed field. An algebra means basic, connected and finite-dimensional k-algebra. For an algebra A we denote by Mod A the category of all right A-modules, by mod A the full subcategory of Mod A consisting of all finitely generated right A-modules and by $\operatorname{mod} A$ the corresponding stable category. We shall use freely properties of the Auslander-Reiten sequences, irreducible maps, Auslander-Reiten translation $\tau = D\operatorname{Tr}$ and $\tau^{-1} = \operatorname{Tr} D$, and the Auslander-Reiten quiver Γ_A of an algebra B, for which we refer to [5].

1. ν -orbits of Generic Modules of Repetitive Algebras. Let $A = k\vec{\Delta}$ be a tame hereditary algebra over an k. We denote by $D^b(A)$ the derived category $D^b(\text{mod }A)$ of bounded complexes over mod A. For the definition of derived category we refer to [7]. By DA we denote the minimal injective cogenerator of A, where $D = \text{Hom}_k(-, k)$ is the usual dual functor. Consider the repetitive algebra [7]:

^{*} Received January 21, 1999; accepted for publication May 23, 1999.

[†] Department of Mathematics, Anhui University, Hefei, 230039, P. R. China (xndu@mars.ahu. edu.cn). Reserch was supported by the National Science Foundation of China.

$$\widehat{A} = \begin{bmatrix} \ddots & \ddots & & & & \\ & A_{i-1} & DA_{i-1} & & & \\ & & A_{i} & DA_{i} & & \\ & & & A_{i+1} & \ddots \\ & & & & \ddots \end{bmatrix}$$

with $A_i = A$ on the main diagonal, $DA_i = DA$, and zeros elsewhere. The elements are all matrices with only a finite number of nonzero entries, and multiplication is given by the canonical bimodule structure of DA and the zero map $DA \otimes_A DA \to 0$. It is a Frobenius algebra and always infinite-dimendional. We know that the identity maps $A_i \to A_{i+1}$ and $DA_i \to DA_{i+1}$ induce an automorphism ν (Nakayama automorphism) of \widehat{A} , and also an automorphism of mod A. Since A is of finite global dimension, we have $\underline{\text{mod }}\widehat{A} \cong D^b(A)$ [7]. We may identity $\underline{\text{mod }}\widehat{A}$ with $D^b(A)$. By [7], $\Gamma_{D^b(A)}$ is the union:

$$\cdots \vee \mathcal{T}[i] \vee \mathcal{Q}[i] \vee \mathcal{P}[i] \vee \mathcal{T}[i+1] \vee \mathcal{Q}[i+1] \vee \mathcal{P}[i+1] \vee \mathcal{T}[i+2] \vee \ldots$$

Set $C_i = \mathcal{Q}[i] \vee \mathcal{P}[i+1], i \in \mathbb{Z}$. Let Δ_0 and Δ_1 be the complete sections of C_0 and C_1 respectively. Let $S_i = \operatorname{add}_{\widehat{A}} \Delta_i$, that is, S_i are the module classes in $\operatorname{mod} \widehat{A}$ generated by $\Delta_i (i=0,1)$. $S_{j+2m} = \nu^m S_j, m \in \mathbb{Z}, j=0,1$. The support of S_i , denote by $\operatorname{Supp} S_i$ is the set:

 $\{P(x)|P(x)\text{ is indecomposable projective }\widehat{A}-\text{module with }\operatorname{Hom}(P(x),\mathcal{S}_i)\neq 0\}.$

Let, for each $i \in \mathbb{Z}$, A_i be the support algebra of S_i , i.e.,

$$A_i = \operatorname{End}(\underset{P(x) \in \operatorname{Supp} \mathcal{S}_i}{\oplus} P(x)).$$

Then

$$A_i = \widehat{A}/\langle P(x) \notin \operatorname{Supp} \mathcal{S}_i \rangle$$

and A_i are tilted algebras of Euclidean type. Since the main purpose of the paper is to investigate the generic modules of R_A^m , we may assume that each A_i is representation-infinite. By [6], for each $i \in \mathbb{Z}$, there exists a unique generic A_i -module M_i . Of course, all M_i are also the generic \widehat{A} -modules.

LEMMA 1.1. For each $i \in \mathbb{Z}$ we have

$$Supp(\nu S_i) = \nu Supp(S_i).$$

Proof. Let $P(x) \in \operatorname{Supp}(\nu S_i)$. Then there exists an \widehat{A} -module $S \in S_i$ such that $\operatorname{Hom}_{\widehat{A}}(P(x), \nu S) \neq 0$. Hence we get that $\operatorname{Hom}_{\widehat{A}}(\nu^- P(x), S) \neq 0$. This means $\nu^- P(x) \in \operatorname{Supp}(\nu S_i)$ and hence $P(x) \in \nu \operatorname{Supp}(S_i)$. So, $\operatorname{Supp}(\nu S_i) \sqsubseteq \nu \operatorname{Supp}(S_i)$. Similarly, we have $\nu \operatorname{Supp}(S_i) \sqsubseteq \operatorname{Supp}(\nu S_i)$.

The main result of this section is the follow

THEOREM 1.2. Let A be a tame hereditary algebra, then $Mod \widehat{A}$ has at least two ν -orbits of generic \widehat{A} -modules.

Proof. Suppose A_i and M_i ($i \in \mathbb{Z}$) are as before. Then for each $i \in \mathbb{Z}$, M_i is also a generic \widehat{A} -module.

For each $P(x) \notin \operatorname{Supp}(S_{i+2})$, we show $\operatorname{Hom}_{\widehat{A}}(P(x), \nu M_i) = 0$. If not, we have $\operatorname{Hom}_{\widehat{A}}(\nu^- P(x), M_i) \neq 0$. This gives $\nu^- P(x) \in \operatorname{Supp}(M_i) \sqsubseteq \operatorname{Supp}(S_i)$. By Lemma 1.1,

 $P(x) \in \nu \operatorname{Supp}(\mathcal{S}_i) = \operatorname{Supp}(\nu \mathcal{S}_i) = \operatorname{Supp}(\mathcal{S}_{i+2})$. This is a contradiction. Thus νM_i is a A_{i+2} -module. Since νM_i is a generic A_{i+2} -module and A_{i+2} has a unique generic module, we get $\nu M_i = M_{i+2}$. In general, we have $\nu^m M_i = M_{i+2m}$, $i \in \mathbb{Z}$, $m \in \mathbb{Z}$. By the structure of $\operatorname{Mod} \widehat{A}$ we know that $M_i \neq M_j$ ($i \neq j$) as \widehat{A} -modules. We get two distinct ν -orbits \mathcal{O}_1 and \mathcal{O}_2 of generic \widehat{A} -modules:

$$\mathcal{O}_0 = \{ \nu^m M_0 | m \in \mathbb{Z} \}, \mathcal{O}_1 = \{ \nu^n M_1 | n \in \mathbb{Z} \}.$$

2. Generic Modules for Extension Algebra $R_A{}^m$. Let $A=k\vec{\Delta}$ be a tame hereditary algebra over k. \widehat{A} the repetitive algebra of A. We consider, for each $m \geq 1$, the algebra R_A^m :

$$R_A^m = \left\{ \begin{pmatrix} \lambda_1 & x_1 & & & \\ & \lambda_2 & x_2 & & \\ & & \ddots & \ddots & \\ & & & \lambda_m & x_m \\ & & & & \lambda_1 \end{pmatrix} \middle| \lambda_i \in A, \ x_i \in DA \right\}.$$

As above, the multiplication is given by the bimodule structure of DA and zero map $DA \otimes_A DA \to 0$. In particular, R_A^1 is the trivial extension $A \ltimes DA$. The category R_A^m is just the quotient category $\widehat{A}/(\nu^m)$.

For a fixed $m \geq 1$, we consider the canonical Galois covering functor $F^m: \widehat{A} \to \widehat{A}/(\nu^m) = R_A^m$, and the associated pushdown functor $F_\lambda^m: \operatorname{Mod} \widehat{A} \to \operatorname{Mod} R_A^m$ and the pull-up functor $F_{\cdot}^m: \operatorname{Mod} R_A^m \to \operatorname{Mod} \widehat{A}$ [8].

the pull-up functor $F^m: \operatorname{Mod} R^m_A \to \operatorname{Mod} \widehat{A}$ [8]. From now on we fix some m. In this section we show that R^m_A has at least 2m generic modules.

We first prove some lemmas

LEMMA 2.1 [8]. For each $N \in Mod \widehat{A}$ and each $r \in \mathbb{Z}$, we have

$$F_{\lambda}^{m}((\nu^{m})^{r}N) \cong F_{\lambda}^{m}(N).$$

LEMMA 2.2. Let M be a generic \widehat{A} -module, N an indecomposable \widehat{A} -module. If $F_{\lambda}^{m}N\cong F_{\lambda}^{m}M$, then $N\cong \nu^{mr}M$ for some $r\in\mathbb{Z}$.

Proof. Assume that $F_{\lambda}^{m}N \cong F_{\lambda}^{m}M$. Then by [8], we have

$$\underset{r \in \mathbb{Z}}{\oplus} \nu^{mr} N \cong F.^m F_{\lambda}^m N \cong F.^m F_{\lambda}^m M \cong \underset{l \in \mathbb{Z}}{\oplus} \nu^{ml} M.$$

Since M is a generic \widehat{A} -module, $\nu^{ms}M$ ($s \in \mathbb{Z}$) are also generic \widehat{A} -modules, it follows from [1] that every ring $\operatorname{End}(\nu^{mt}M)$ is local, we infer that $N = \nu^{mr}M$ for some $r \in \mathbb{Z}$.

Lemma 2.3. Suppose that M is a generic \widehat{A} -modole. Then $F_{\lambda}^{m}M$, as a left $End_{\widehat{A}}(M)$ -module, is of finite length.

Proof. Since we have an imbeding map $\operatorname{End}_{\widehat{A}}(M) \to \operatorname{End}_{R_A^m}(F_{\lambda}^m M)$, we infer that $F_{\lambda}^m M$ is also a left $\operatorname{End}_{\widehat{A}}(M)$ -module. Suppose that

$$(*) 0 = N_0 < N_1 < N_2 < \dots < N_i < \dots$$

be a composition series for left $\operatorname{End}_{\widehat{A}}(M)$ -module $F_{\lambda}^{m}M$. Since $F_{\lambda}^{m}M=M$ as a k vector space, every N_{i} in (*) is a subspace of M. For each $f\in\operatorname{End}_{\widehat{A}}(M)$, we have $fN_{i}\sqsubseteq N_{i}$ and hence each N_{i} is a left $\operatorname{End}_{\widehat{A}}(M)$ -submodule of M. Hence we

may regard (*) as a composition series for left $\operatorname{End}_{\widehat{A}}(M)$ -module M. Since M is a generic \widehat{A} -module, it follows that (*) has only finite terms. Therefore $F_{\lambda}^{m}M$, as a left $\operatorname{End}_{\widehat{A}}(M)$ -module, is of finite length.

We can now prove our main result

Theorem 2.4. Let M be a generic \widehat{A} -module. Then $F_{\lambda}^{m}M$ is a generic R_{A}^{m} -module.

Proof. Since F_{λ}^{m} is left adjoint to F_{\cdot}^{m} , it follows from [8] that

$$\operatorname{End}_{R_{A}^{m}}(F_{\lambda}^{m}M) = \operatorname{Hom}_{R_{A}^{m}}(F_{\lambda}^{m}M, F_{\lambda}^{m}M)$$

$$\cong \operatorname{Hom}_{\widehat{A}}(M, F^{m}F_{\lambda}^{m}M)$$

$$\cong \operatorname{Hom}_{\widehat{A}}(M, \bigoplus_{l \in \mathbb{Z}} \nu^{ml}M).$$

If m=1, then, for $s\neq 0,1$, we have $\operatorname{Hom}_{\widehat{A}}(M,\,\nu^sM)=0$, and hence

$$\operatorname{End}_{R^1_A}(F^1_\lambda M) \cong \operatorname{Hom}_{\widehat{A}}(M, M \oplus \nu M) = \operatorname{End}_{\widehat{A}}(M) \oplus \operatorname{Hom}_{\widehat{A}}(M, \nu M).$$

Since $\operatorname{Hom}_{\widehat{A}}(M, \nu M)$ is an $\operatorname{End}_{\widehat{A}}(M)$ -bimodule: $g \circ f = gf$ is the ordinary composition and $(f \circ g)(x) = \nu f(g(x))$ for $f \in \operatorname{End}_{\widehat{A}}(M), g \in \operatorname{Hom}_{\widehat{A}}(M, \nu M)$ and $x \in M$. It follows from [9] that we have the following ring isomorphism

$$\operatorname{End}_{R^1_{\mathbb{A}}}(F^1_{\lambda}M) \cong \operatorname{End}_{\widehat{A}}(M) \ltimes \operatorname{Hom}_{\widehat{A}}(M, \nu M).$$

From the definition of trivial extension of algebra we know

$$\operatorname{End}_{R_A^1}(F_\lambda^1 M)/\operatorname{rad}\operatorname{End}_{R_A^1}(F_\lambda^1 M) \cong \operatorname{End}_{\widehat{A}}(M)/\operatorname{rad}\operatorname{End}_{\widehat{A}}(M).$$

Suppose that $m \geq 2$. By the structure of $\operatorname{Mod} \widehat{A}$ we have that $\operatorname{Hom}_{\widehat{A}}(M, \nu^{ms}M) = 0$ for $s \neq 0$. Hence

$$\operatorname{End}_{R_A^m}(F_\lambda^m M)/\operatorname{rad}\operatorname{End}_{R_A^m}(F_\lambda^m M) \cong \operatorname{End}_{\widehat{A}}(M)/\operatorname{rad}\operatorname{End}_{\widehat{A}}(M).$$

Since M is a generic \widehat{A} -module, we infer that $\operatorname{End}_{\widehat{A}}(M)/\operatorname{rad}\operatorname{End}_{\widehat{A}}(M)$ is a division ring and hence $\operatorname{End}_{R_A^m}(F_\lambda^m M)$ is local for $m \geq 1$. Therefore, $F_\lambda^m M$ is an indecomposable R_A^m -module.

Write $C = \operatorname{End}_{\widehat{A}}(M)$, $D = \operatorname{End}_{R_A^m}(F_{\lambda}^m M)$, $\overline{C} = C/\operatorname{rad}C$, $\overline{D} = D/\operatorname{rad}D$. Let $l_A(M)$ denote the length of A-module M. We have

$$l_D(F_{\lambda}^m M) = l_D(F_{\lambda}^m M / (\operatorname{rad} D) F_{\lambda}^m M) + l_D((\operatorname{rad} D) F_{\lambda}^m M / (\operatorname{rad}^2 D) F_{\lambda}^m M) + \dots + l_D((\operatorname{rad}^i D) F_{\lambda}^m M / (\operatorname{rad}^{i+1} D) F_{\lambda}^m M) + \dots$$

Since each $(\operatorname{rad}^i D) F_{\lambda}^m M / (\operatorname{rad}^{i+1} D) F_{\lambda}^m M$ is a \overline{D} -module and

$$l_D((\operatorname{rad}^i D) F_{\lambda}^m M / (\operatorname{rad}^{i+1} D) F_{\lambda}^m M) = l_{\overline{D}}((\operatorname{rad}^i D) F_{\lambda}^m M / (\operatorname{rad}^{i+1} D) F_{\lambda}^m M).$$

We have

$$l_{D}(F_{\lambda}^{m}M) = l_{\overline{D}}(F_{\lambda}^{m}M/(\operatorname{rad}D)F_{\lambda}^{m}M) + l_{\overline{D}}((\operatorname{rad}D)F_{\lambda}^{m}M/(\operatorname{rad}^{2}D)F_{\lambda}^{m}M) + \cdots + l_{\overline{D}}((\operatorname{rad}^{i}D)F_{\lambda}^{m}M/(\operatorname{rad}^{i+1}D)F_{\lambda}^{m}M) + \cdots$$

$$\stackrel{\overline{C} \cong \overline{D}}{=} l_{\overline{C}}(F_{\lambda}^{m}M/(\operatorname{rad}D)F_{\lambda}^{m}M) + l_{\overline{C}}((\operatorname{rad}D)F_{\lambda}^{m}M/(\operatorname{rad}^{2}D)F_{\lambda}^{m}M) + \cdots + l_{\overline{C}}((\operatorname{rad}^{i}D)F_{\lambda}^{m}M/(\operatorname{rad}^{i+1}D)F_{\lambda}^{m}M) + \cdots$$

$$= l_{C}(F_{\lambda}^{m}M/(\operatorname{rad}D)F_{\lambda}^{m}M/(\operatorname{rad}^{i+1}D)F_{\lambda}^{m}M/(\operatorname{rad}^{2}D)F_{\lambda}^{m}M) + \cdots + l_{C}((\operatorname{rad}^{i}D)F_{\lambda}^{m}M/(\operatorname{rad}^{i+1}D)F_{\lambda}^{m}M) + \cdots$$

$$= l_{C}(F_{\lambda}^{m}M).$$

By lemma 2.3, we have $l_C(F_{\lambda}^m M) \leq \infty$ and hence $l_D(F_{\lambda}^m M) \leq \infty$. $F_{\lambda}^m M$ is clearly of infinite -dimension since M is so.

Therefore $F_{\lambda}^{m}M$ is a generic R_{A}^{m} -module.

COROLLARY 2.5. R_A^m has at least 2m generic modules.

Proof. By Theorem 1.2, Mod \widehat{A} has two ν -orbits \mathcal{O}_0 and \mathcal{O}_1 of generic \widehat{A} -modules.

$$\mathcal{O}_0 = \{ \nu^m M_0 | m \in \mathbb{Z} \}, \, \mathcal{O}_1 = \{ \nu^n M_1 | n \in \mathbb{Z} \}.$$

From Lemma 2.1 and 2.2, it is easy to know that $F_{\lambda}^{m}(\nu^{l}N)$, $F_{\lambda}^{m}(\nu^{t}N)$ (l, t = 0, 1, 2, ..., m-1) are different generic R_{A}^{m} -modules.

REFERENCES

- [1] W. W. CRAWLEY-BOEVEY, Tame algebras and generic modules, Proc. London Math. Soc., 63 (1991), pp. 241-265.
- [2] W. W. CRAWLEY-BOEVEY, Modules of finite length over their endomorphism rings, in London Math. Soc. Lecture Notes Series 168, 1992, pp. 127-184.
- [3] N. Aronszajn and U. Fixman, Algebraic spectral problems, Studia Math., 30 (1968), pp. 273–338.
- [4] C. M. RINGEL, Infinite dimensional representations of finite dimensional hereditary algebras, Symp. Math., 23 (1979), pp. 321-412.
- [5] C. M. RINGEL, Tame Algebras and Integral Quadratic Forms, LNM 1099, Springer, 1984.
- [6] DU XIANNENG, Generic modules for tilted algebras, Chinese Science Bulletin, 42:3 (1997), pp. 177-180.
- [7] D. HAPPEL, Triangulated Categories in the Representation Theory of Finite Dimensional Algebra, LNS 119, Cambridge Univ. Press, 1988.
- [8] P. Gabriel, The universal cover of a representation-finite algebra, in LNM 903, Springer, 1981, pp. 68-105.
- [9] R. M. FOSSUM, P. A. GRIFFITH, AND I. REITEN, Trivial Extensions of Abelian Categories, LNM 456, Springer, 1975.