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0. Introduction. The present work is concerned with the geometry of embedded 
real hypersurfaces in a Kahler manifold, where isomorphisms are both holomorphic 
and isometric in the underlying Riemannian structure. Here we introduce their local 
invariants and compatibility relations, solve the local realization problem, and give a 
characterization of the metric sphere in Cn via a maximum principle for an adapted 
Laplace operator. A more detailed description follows. 

a) In 1.3 we define a doubly covariant tensor £ on the complexified tangent bundle 
of the hypersurface TV. It describes the curvature of the maximal complex subbundle 
HN of TN in the ambient manifold with regard to the Kahler metric . One part of € is 
the well-known Levi form of the hypersurface with respect to a one-form of norm one 
that annihilates the "horizontal" tangent bundle HN. The form £ may be expressed 
in terms of the second fundamental form of the hypersurface in an appropriate frame 
of the underlying Riemannian manifold, see 1.4. 

b) In 2 we derive differential compatibility conditions of covariant derivatives of 
I. In 2.3, 2.4 and 2.5 we employ a connection on the horizontal bundle that is the 
projection of the Levi-Civita connection of the ambient manifold. It is a one-form on 
the hypersurface with values in the Lie algebra of the unitary group of the horizontal 
subbundle and we give its structure equations. 

c) In 3.2 we solve the local existence problem as follows. The data are a CR- 
manifold U with a metric on TU that is hermitian on HU and a real function r that 
prescribes the ambient curvature of the curves in TV that are orthogonal to HN. We 
require that the composition of the defining form for HN with the complex struc- 
ture is closed, the complex structure on the horizontal bundle is parallel with respect 
to the associated Levi-Civita connection, and that an associated unitary connection 
has vanishing curvature. The latter corresponds to Gauss and Codazzi compatibility 
conditions. The conclusion is that there exists a local isometric Ci^-embedding of U 
into Cn. In 3.4 we embed nondegenerate CR manifolds U together with a prescribed 
hermitian metric on HU rather than on TU as in 3.2. In exchange we prescribe 
additional data, namely mixed horizontal and vertical coefficients of I. In this case, 
there is an embedding under analogous requirements as before. This result has fea- 
tures of both the classical hypersurface existence theorem in Riemannian geometry 
and of Kuranishi's CR embedding [Ku]. Namely we require compatibility conditions 
involving metric and complex structure, and the non-degeneracy of the Levi-form. 

d) In 4 we give commutator identities for the operation of the Laplace operator 
of HN on L In the Riemannian case these are referred to as Simons identity, see [S] 
and [CdCK]. 

e) As an application we give in 5 the following 

THEOREM 5.2. Let N be a compact strictly pseudoconvex hypersurface of Cn. 
Assume that the horizontal mean curvature of N is constant, and Hli0N is parallel 
in T1,0Cn.  Then N is a metric sphere. 
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The first assumption relates only to the CR structure, the other assumptions are 
that the trace of the second fundamental form on HN is constant, that the curves on 
N orthogonal to HN are geodesies of A/", and that the symmetric part off vanishes on 
the horizontal bundle. This result is an analogue of Alexandrov's theorem on compact 
convex hypersurfaces in Mn: if such have constant mean curvature, then they must 
be metric spheres. Our result does not follow from this since we do not make any 
assumption on the purely vertical coefficient of L This coefficient describes the curva- 
ture in the ambient manifold of the vertical integral curves. Therefore our assumption 
neither implies that the full mean curvature of the hypersurface is constant nor that it 
convex. Of course we use the ambient complex strucure, therefore our result does not 
imply the one in W1. Also, by the existence result of 3.2, our assumptions locally ad- 
mit other surfaces than subsets of metric spheres. In this sense, this is a global result. 
It is an application of our first Simons-type identity in 4.2 and the strong maximum 
principle for the horizontal Laplace operator on strictly pseudoconvex hypersurfaces. 
The remaining identities of 4.2 are recorded here for completeness and application 
in [HK]. The maximum principle along horizontal curves for the horizontal Laplace 
operator was used in [A] to study a heat flow for contact structures. 

The paper [CM] gives a local normal form for real analytic hypersurfaces in com- 
plex manifolds and [B] and [YK] present some material on real submanifolds of any 
codimension of Kahler manifolds. In [O], geometric properties of real hypersurfaces 
of complex projective space are studied. In [Jl] and [J2] one finds an introduction 
to Ci^-structures. The lectures of Fefferman, [BFG], give an extensive review of the 
relation of function theory of a domain to CR geometry of the boundary and the 
analogy with Riemannian geometry. Webster defines in [W] a connection on non- 
degenerate CR manifolds with a distinguished one form that defines the horizontal 
bundle. It is characterized by the requirement that the Levi form is parallel. The 
resulting intrinsic curvature is different from the curvature that we have, as we use 
the Levi-Civita connection of the induced Kahler metric. 

ACKNOWLEDGEMENTS. The results presented here are part of the author's Ha- 
bilitationsschrift at the Universitat Tubingen, [K]. The author is grateful to Professor 
G. Huisken for advice, to Professors S.S. Chern and J.K. Moser for introducing him to 
this subject, and to Mrs. S. Schmidt for her scrupulous typesetting of the manuscript. 

1.1. Structure Equations. On a Kahler manifold M with complex structure 
M J and metric Mh we denote by T^M and T^lM the subbundle of C 0 TM whose 
fibres consist of the eigenspaces for -B' and — i of the C-linear extension of M J 
to C O TM. By the Kahler property, the Levi-Civita connection MV of C 0 TM 
preserves T1,0M and T^M. On the principal [/(n,C)-bundle of unitary frames of 
r1'0M, n — dime M, we have the Cn-valued canonical form M6, and the u(n)-valued 
connection and curvature forms Ma;, MVt. For a unitary frame {efc}^ of T1'0M 
one has for 0* - M^, cjj - Muj

k G A(C 0 TM), nj = MQ?k G A2(C 0 TM), 
j, k = 1,..., n, the structure equations 

d9j = -u;J
k A ek 

and analogous equations in T0'1M for the conjugates e^, 03, UJ^7 Q|.   Recall that 

c4(er) = 9j(MVerek) for r = 1, ..,n, 1, ..,n. By unitarity, 

k j 
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Let now 

F:N^M 

be an immersion of a real hypersurface. The above structure equations hold for the 
pull-back frames {F*ek}l=11{F*ek}^=::l9 connection (JP*MV)(.)(.) : r(C 0 TN) x 
r(C (8) F*rM) ^ r(C 0 F*TM), F*

M
UJ, and curvature F*Mn of F+T^M, and 

exterior differentiation d on N. In the sequel we will denote these pull-back objects 
by {ek}k=zii {Ok}k=ii M^75 McJ5 M^ respectively, and we write u = Mu for economy 
of notation. 

1.2. Adapted Frames. Since N is odd dimensional, TiV does not inherit a 
complex structure from F*TM. We denote by HN <-» TJV the maximal M J-invariant 
subbundle of iN : TN <-+ F*TM: 

HN :=TNn MJTN, 

called the holomorphic or horizontal tangent bundle of iV. Let H1,0N, H0,1N be the 
(diz)-eigenspaces of (C ® ffiV,^ J =M J|^Ar)7 then iJ1'0^ = FT1'0*/ n C ® TAT. 
For an analysis of the curvature of N with regard to the Kahler metric we consider a 
unitary frame {ek}^=1 of F*T1'0M which is adapted to TiV in the following way: 

span KJ^I1! - H^N 
1 
2( span {eQ, eg, -(e„ + en)}"=} = C ® TiV. 

Then {£fc = ^(^H-e5),^-1-* = ^(«*-^)}J=1 is the dual frame of {Xfc,X„+ft} and 

ker^2n _ TiV; ker^n _ ^-jy 0 ]Rx2n. Finally we introduce a frame {/a} of C O TN 
by setting /$ = e^,fn = \{en + efl) with its dual frame {<£>"}, <^ = ^, y™ = (#n + 
^n). Here and later we adopt the following convention for the ranges of the indices: 
j,k,p,q 6 {1,. ..,n} for frames of F*T1,0M a,b,c € {1,...,ra — 1,1,...,n — l,n} on 
C®TN, Z,rie {l,...,n-l,l,...,n^T} onCtgiiTAr, and a,P,i,5 € {l,...,n-l} 
on H^N. 

1.3. Second Fundamental Form in Kahler Geometry. Let e^ be adapted to 
iN : TN -> F*TM as above. Since C<g>TJV=ker(0n -6ln) is involutive in C® F*TM, 

i*Nd{6n - en) = 0. 

On the other hand, we compute, recalling 1.1, 

i*Nd(6n - en) = i*N(-uj2 A oa + wg A ea - wjj A en + w? A «n) 
= a;2(/€)V

0 A ^ + ^(fnWa A ^ - ^(/^^ A ^ - wJK/n)^ A ip» 
+^AK(/c)/+<(/n)y") 

= K(^) + J^pO)^0 A / + ^(//J)^ A v" - mUrfv* A / 

+«(/«) + a;S(/a))¥>a A ^ - (W2(/n) + <(/a) Va A ^. 

This implies 

(1) ^(/g)-^(/a)=0 

(2) <(/0)+^(7S)=0 

(3) <(/«)- <(/«)= 0 
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This gives, also using i*N6
n = |yn, 

i*Nd0n = i*N(6kAwZ) 

We define the coefficients of a doubly covariant tensor I on C 0 TiV as follows. 

This gives 

dtp" - »V^a^
0 A / + fytn^ - Inrf) A ^n. 

The restriction of d<pn to H1,0N 0 iif0,1A^ is the Levi-form of the real hypersurface 
F(N) for the choice ^n of a defining one-form for HN. By (1), (2), (3) we have 

^a/? = ^/3a 

/       — f   - 

^nn ~ ^nrt' 

We summarize: To a real hypersurface we associate a quadratic form £={£ja} on 
C&TN which decomposes into a hermitian form (the Levi form) {£ap} on H1,0N ^ 
H0,1N and a symmetric form {lap} on H1,0N ® H1,0N and a real form {£na = £an} 
onC®TN. Namely {£na} is real on TN M- C&TN. Recall that A^ is called strictly 
pseudoconvex if {£a^} is positive definite. 

1.4.   Relation of £ to the Riemannian second fundamental form.   We 
will express the Kahlerian second fundamental form £ as defined above relative to 
the adapted C/(n, C)-frame {e^} of F*T1,0M in terms of the Riemannian second 
fundamental form -k with respect to the 0(2n)-frame {Xk,Xn+k} of F*TM. The 
latter is defined by 

fc.t:=£2n(MVx.*t),     M=l,...,2n-1. 

Using Z2n{[Xs,Xt]) = 0 and €n(Xa) = -^n(JXs), one computes 
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2.1. Gauss Equations for (TN,N V) <-> (TM,M V). Associated to the orthog- 
onal projection 

TTiv : C 0 F*TM -4 C <8> TN, 

ITN(V) = cpt(v)e£> + ^(8n + On)(v)(en + en), we have the connection ^V = 7rAroMV(.)(.) 
: r(C (8) TN) x r(C (8) TA^) -^ r(C (8) 2W) with connection form ^o;. Relative to 
the frame {/a}, its coefficients are given by N

UJ^ = Mcc;^, ^^2(0 = ^pn(N^(-)fa) = 
^(MV(.)/a)= r+^rVf.,/.) - ^(^(0/^= MOJ^N^= ^a;*, ^O = 
^(^Vfo/n) = i <(MV(.)e„ + en) = i M

OJ-(-), 
Nu% = I M<, "utf = 0. The 

structure equations of C (8) TiV then read 

V + ^wj A ^ = 0 

Comparing these with the structure equations of F*TM with connection u = Mu 
from 1.1 gives the Gauss equations for TiV -> F*TM: 

(Mn - Nnr0 = d{u<$ - Nw$) + w" A wg - N< A w^ 

= <A^- ^A ^ 

= —£&at-fib<Pa A^6 

(M0 - ^fi)^ = d(^ - ^w^) + u£ A ^ - w< A ^^ 

2.2. Codazzi Equations for (TiV,  ^V).   The coefficients of the covariant 
derivative of I with respect to ^V, namely t^ah =  (^W)^, satisfy 

Note that NV£ is a triply covariant tensor on C (8) TiV. Then we compute 

du? = -^(deja A <pa + £ia^
a) 

_ _}_pN   ,„b A /r,a _j *    ^      Ar/ ,6  A  ,„a 

This gives for j — a and j = n 

d^a = ^a^ A Va + |wS A < + ^ A ^ 

^"=Ca6¥>6A</+^Ac4. 

Now by the structure equations of F*TM from 1.1, 

i 
^abV* A <p6 = pTJ^o^V' A / + ^ M^. 
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These are Codazzi equations for F : N -> M. 

2.3. Gauss Equations for (HN, ffV) <->■ (TM,MV). The orthogonal pro- 
jection ITH • C ® F*TM -> C ® iliV, 7rH(f) = 0?(t;)e£, gives rise to the connection 
HX7 = nHo MV: r(C®TAr) x T(C®HN) ->■ r(C®HN) with connection form Hu. 
Relative to the frame {efc}, Hu}^ = Mw^, Hu)^ = HuJn = 0. The structure equations 
oiC®HN read 

c^* + Hu;£ A / = ("w? - V) A / 

d Hcv% + Hu« A ^^ = uSl%. 

Prom the first equation we read off that H V has torsion.  As above, we derive the 
Gauss equations for B.N -)■ F*TM: 

(Mn - Ha)% = d(a;| - H^) + w» A wjg - ff^ A "wg 
= <A^ 

= -^46^ A/. 

2.4. Codazzi Equations for (HN, HV). The coefficients of the covariant 
derivative efab = {HVe.)jab of € on (tfiV, ^V) satisfy 

d«i« = ZfabV
b + Zra H^ + Zjb V- 

Here {^q} is a triply covariant tensor on C <g> HN, and {^^}, {^f„^}, etc. are of 
corresponding lower covariance on C ® HN. We define 

and compute as in 2.2: 

d^" = ^=^a A Va + ^IjaW 

= ± (efab<pb + £pa "^ + lih *u;J) A ^a 

+ -L^7(/ Aw? + \pn AO + -1^(/ A^ + ^n A^) 

+ -^=^n(z^7j^ A ^ + 4?(W7 - ^7^) A ¥>") 

= Tf^fa^6 A V0 + ^^ A < + I(^ - 4)^ A ^ 

-tfrltfip1 A / + ^^(f^^ - 47^) A yp". 

This, again using the structure equations of F*TM, gives 

i 
tfabV* A <pb = i^ A (^ - wp + ^ (^ - ^ A ^ 

P,..((...ml - P.^m + ^=£jn(£n7ipr' - tni<pi) A tpn + iV2ejn£7S(p'Y A <pd + iV2^. 
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We evaluate the first expression on the right-hand side for j = a and j = n: 

iV2co; A (H^n - ^) = ^=e2
ba<pa A <pb. 

2.5. Commutator relations for the second covariant derivatives of (. on 
(HN,HV).   The coefficients of the second covariant derivative of £ on (HN^V), 
namely (^V2£)ja6c = tfahc satisfy 

aijab — tjabcV   ^ lpab     ^j "+" ljcb     ua ^ Zjac     ub- 

Then we compute 

+$>* A ^ + Iv," A ^) + £fa,(^ A Jl + ^" A ^) 

+£fa„(i^7^ A ^ +-^(47^ - 4^) A V") 

+ (^6^ + ^» "^ + ^ Hwa) A *w? - (.Pa Hup
q A Ha;? + lPa "n? 

+ (ifc^b + tpc "^ + 46 ^^c) A HuJcb - ejc 
Hujt A HUJb

a + lic 
HWa 

= t?abc<PC A V" + ^(Wfa-r - ^"ayW A ^ 

+ ^"an(tny^ ' InlV*) A <pn + iy/2efaneyS^ A ^ 

+i6a(
Hns

j - 
Mn5

j) + ij^ni - Mo|) + 4a 
Mfi^ + ^ Mft«. 

Note that dd£ja = 0.  This gives for (ja) = (a,^), (a,/?), (n,/3), (n,n) the following 
commutator relations. 

^6y A <PC = ^{Lr&fr - k^M A ^ + -^Cn(£n^ - tnrf) A <pn 

+i^laBn1^ A' + J(^46 + eaalhfi)<pa A ^ 

+4aMni+£0,-M^ 

+^Cn^^7 A / + ^L4^a A ^ + ^ Mn| 

+*V/2Cn^7A^. 
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3.1. A model bundle for the embedding problem. Let (HU, H J) be a CR 
structure on an oriented manifold U of real dimension 2n — 1, and uh a metric on TU 
which is hermitian on {HU,H J). In this section we construct an associated bundle 
EU over U with fibre M2n and endowed with a complex structure E J and metric Eh. 
For this purpose let the real line bundle RU -* TU be the orthogonal complement of 
HU->(TU,uh). 

We define 

EU := TUeRU^HUeRUe RU 

•'="'*(! "o1) 
Eh\TU := uh, Eh   is hermitian on    (EU, EJ). 

Now choose dual unitary frames {e^}^, {9k}^ of E^U, (E1,0U)* which are adapted 
to 

iu-.TU-^EU, 

namely such that fa := i\jea G H1,0U, fn := ^^(en + en) G TU are compatible with 
the orientation of TU. Let {(pa} be the dual frama of {/a}. 

3.2. Fundamental Existence Theorem for Real Hypersurfaces in Kahler 
Manifolds. We require the following data. 

a) (HUy 
H J) is a CR structure on a real oriented (2n — l)-manifold U 

b) uh is a metric on TU which is hermitian on (iff/, H J) 
c) r : U -» E a function, i; G U(n). 

Using the notation of 3.1 and letting ^V denote the Levi-Civita connection of 
(TU,U h), we now define a ^(n)-valued connection ELJ on C <8> EU: 

E.  a Up 

E.   n 
LUp 

E. .n 

= <(t/v(.)//3) 

for s, t — 1,..., n, 1,..., n;p, q = 1,..., n. We also define the differential dn by 

dug := (e^ • g)0t 

for a function g on U and in a compatible way for forms on C ® iff/. Note that in 
general d^ ^ 0. 

THEOREM 3.2. Le£ (^C^5 ^J, uh,r:v) be given as above and assume 

dniv71 0 HJ) = 0 

Tften /or e^er?/ u£U thre exists a neighborhood Uu of u and a unique 

F'.Uu-^C1 
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with 

F*Tl,0Cn      =     E1VUU 

F^h        =    Eh 

F^u        =    Eu 

{F*v)(u)      =    id. 

REMARKS, a) Since iu : TU -> EU is involutive, we have i^dtf71 - 6n) = 0, and 
by (9n — 6n) = — i(6n + 6n) o ^ J, the first assumption is an intrinsic version of the 
involutivity. 

b) The second condition is equivalent to Hu;| = 0, HLOp — 0. 

c) By the first conclusion and since C 0 TU n E^^U = iJ1'0^, F is a CE- 
embedding. In addition by the second, F* preserves adapted unitary frames. There- 
fore by the third and the definition of Eu, we have 

U = ^ E^(h) = -iV2vn{UVhfa) 

£n7 = ^ ^(/7) = iy/2<pn(uVfnfy) 

inn = ^^(/n) = V^r. 
z 

3.3. Proof of the Existence Theorem. We prove Theorem 3.1 in two steps. 
First we establish the existence of functions ej : U -> T1,0Cn, j = 1,... ,n, with the 
property 

dej — UJ
V

- - ep = 0 

where UP := ^it^ is defined as in 3.2. The functions {e?} are represented by their 

graph G C U x Cn . Let 7ri,7r2 denote the projections to the first and second factors 
of the product U x Cn and ^ G Cn, A; = 1,..., n be coordinate vectors of Cn . Then 
TG C TU 0 TCn2 is characterized by 

n 

d{^ib 0 ^2) - ^2 Zp 0 ^2 ' TTl^fe = 0 
p=l 

2 

for fc = 1,..., rc. Let / be the ideal of differential forms on U x Cn generated by the 
left hand sides above and their exterior derivatives. We drop the TTJ and differentiate: 

dizk - ZpUj^) = dzp A CJ£ + zp • duj^ 

= {dzp - zpujqp) A ujpk 

= 0 mod J. 

Threfore, ker(zk — Zp^D is an integrable distribution by Frobenius' Theorem, and 
there exists 

e : Uu -> Cn2, e(p) = v 
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on a neighborhood Uu C U of u. 
We claim that the image of e is contained in U(n) C Cn ; let (•, •) denote the 

standard hermitian product of Cn: 

d(ej,ek) = (dej,ek) + (ej.dek) 

= (c^e^e^ + Ce^o^ep) 

= a;?(ep,eib)+a;?(ei,ep) 

= Uj(ep,ek) -ufajiep). 

Define ejk(t) := (ej^e^i^it)) for a real curve in U through u : 7(0) = u.   then 
ejk (0) = JjA; and ejk — Sjk solves the ODE 

ejk =^epk -Upejp. 

Therefore ejk = 6jk which proves the claim. 
The second part of the proof consists of constructing F : Uu -> Cn with 

dF(fz) = ec,    dF(fn) = -(en + en). 

Again this map is represented by its graph in U x Cn, and its tangent distribution 
satisfies 

d(z o ^2) - (e^ o TTI) • TTJ O ^ - -(en + en) 0 TTI • 7rjyn = 0. 

Here, z is the coordinate vector of Cn. The exterior derivative is computed as follows. 
We set V = ^V, v = E

UJ. 

d(e^ + i(en + en)tpn) = ^ A ^et - e^(Vfafb)<fa A <ph + i^e^ + wjej) A ipn 

-^(en + 6n)^n(V/a/6)^A/ 

= ^ A ^ - en + <4 A ^ • en - ^(V/a/n)^a A ^e€ 

-^A^n(en-en)--~ +    -^A^(en-en)--Ke,+a;^)A^ 

-    ^(6n + en)^n(V/a/6)^A^. 

Note that <^(V/a/n) = —\^Pn{^fafi)^ here we set n = n.   Then by definition of 
a; = ^u; in 3.2 we continue 

d(e^ + i(en + en)?*) = [v»n(V/a/7)^ A ^ + ^(^(V/n/7)^ 

+^n(V/aA)va A^ - i(^(V/n/7)^ 

-WfJlW) A yB - ^n(V/a/6)^ A ^Jen 

= -^n(V/,/7 + V/,/,)^ A ^(c„ - e„) 

= ^"(^^(V/jA - V/,/,))^ A <p*(en - en) 

= 0. 
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The last equation follows from the first assumption of the Fundamental Existence 
Theorem 3.2. We therefore conclude again by Frobenius' Theorem that F : Uu -» C

n 

exists as above and satisfies the conclusions of the Theorem by construction. 

3.4. Existence Theorem for nondegenerate CR manifolds. Here we pre- 
scribe a different set of data from 3.2. Namely we assume, using the notation of 
3.1: 

a) (HU,H J) is a nondegenerate oriented CR-manifold. 
bl) r is a one-form on TU with kerT=HN and compatible with the orientation 

of U, and s : U -> R+ 
b2) H h is a hermitian metric on (HN,H J) 
b3) {ra} : U -> C1"1 

c) r : C/->M, v G t/(n,C). 

PROPOSITION 3.3. Let (HU,H J,H /i,r,5,ra) be as in a)-b3) and {fa} as in 3.1. 
Then there exists a unique vector field X G Y(TU) with 

i)   T{X)=8 
ii) h(VxXJa) = ra for the metric h on TU with h\H = Hh, h{X,X) = 1, 

X±H, and V its Levi-Civita connection. 

Proof. Let {/#,£} be dual to {y?a,r} and make the ansatz X — a^/^ -h st. Then 
by [KN I, p. 160] and the integrability of the CR structure, 

h(X7xXJa) = 2h([fcnX},X) 

= 2/i([/a,a7/7 + a^/? + st],X) 

= 2a7C([/ffl, /7]) + 2sC([/a, *]) + ^(U • s). 

Here, C — h(',X) and one has £ = 5_1r. Therefore, 

h(WxX,fa) = 2s-1a7T([UJ7])+2T([fcnt}) + 2s-1(U-s). 

Since (HN,H J) ^^ TA^ is a nondegenerate CR manifold, its Levi-form r[/a,/7] is 
invertible, and the above equation can be solved uniquely for a7. Then, since a7 = a^, 
the vector field X is uniquely determined. D 

Let (^n := Cj/n '•— X,uh := h and recall the notation of 3.1.   Now defining 

we have the following 

COROLLARY 3.4. Let (HU,H J,H h,T,s,ra,r,v) be as in a)-c). Then the state- 
ment of Theorem 3.2 holds for Eu as defined above. 

Proof By Proposition 3.3, the above definition of EUJ matches the one in 3.2. 
Therefore we may apply Theorem 3.2. □ 

4.0. Laplace Operator on (TiV, Nh). Setting fn = /n, the Laplace operator 
on a tensor T on C 0 TN is given by 

^AT := traceTN(NV2T). 

Note that for an immersion F : N2"-1 -* M, NAF = MV¥ V/,F - MVivv, f-F + 

complex conjugate = MVfkfk - NVfkfk + c.c. = LNX2n5 where L^ := E^. 
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The latter equals the trace of the Riemannian second fundamental form oriented 
in such a way that LNX2n points out of a convex hypersurface. Let now 

Note the analogy with £ap as given in 1.4.   For the other coefficients (pa), id   ^ is 
defined analogously in the pattern of 1.4. The is easy to verify the following 

(pa) — Ty^PV  ^a   i" ^-pn^-na- 

We also define \£\2 := ^pn^ikpq.  Now the Simons commutator identity in C1, see 
[CdCK] reads 

NA£pa - 2{NV*LN)va = LNe{pa) - \(\Hva. 

4.1. Laplace Operator on {HN, Hh). We define a weakly elliptic second order 
differential operator 

^AT— traceHN(HV2T). 

for a tensor T as above. It gives a tensor H AT on C0 HN of the same type. We also 
define the trace of the Levi form, 

which may be viewed as a horizontal mean curvature of N. For F : N —> M, we have 

HAF = MVf^hF -M VHV/^_F 

= MVhh-HVhh 
= en(MVeaea +

M Veaea)en + en(MVeae^ +M Ve&ea)en 

= LX2n' 

4.2. Commutator identities for HA£ in Euclidean Space. For a real 
hypersurface F : N -* Cn we compute the following commutator relations for HA£. 
We use the Codazzi and second-order relations from 2.4 and 2.5. Note that since 
M = Cn here, M0 = 0. 

— t-ap-yj ~ ^a^77 + ^K^apj ~ ^a^pJl + 2(£a^7 — £a^7p) + 2(tQ;77 — tj^ajp 

— iv2L£apn + -(^7^^a7 + £a^jP ~ "jp"<xif ~ ^aj^jP) 
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~L£ai3n}   +   ^oipL ~ ^a/^77 + ^a _ o ^  ^7^ "^ ^7^) 

~^aP\^nnL + 9 ^ 77 — ^77)) "^ ^n^V-n^ap ~ ^TIP^OL^) 

-htayi^nn^yp + 9^  ^7 ~    7^^ ~~ ^J^nn^oi0 + 9^  ^a ~ ^a^))j 

— XV ^[tn^ytQ,^^,      ^wy^aPy   *   ^K^ay^yPn      ^yp^ajn) "T tnpLia      £n0Lljp      £apLin\ 

-"2^*^77 "^ ^77 "^ ^^^ "*" y^^aP "*" ^a "+" ^na^np) 

~^^Pa ~ 2 ^  a^lP "^ ^oryZyp)- 

A£ap    -   2£yyap 

— ^a/?77 — "otPyy   1   ^V^Q;/?7       "ayP/y H~ ^(^07/37       ^ot^yP)   '   ^(,^a77 — ^yya/p 

— IV 2Lza/3n + nK^yP^cxy "^ ^ya^Pl ~ ^-yP^aj ~ ^ya^Pl) 

-rly Ayi-nfilay       "ny*~-aP   •   ^an^Py/y 

-Ti-py^ay   1   ^ck:/3^77 — "yy^aP ~ ^ay^Pl   '   ^V^(-CQ;7^7n — t-na^yyjp 

— ZV Z[L/lapn ~r ^71^(^0:77 -" ^77a/ "r ^-np^a        •   ^0:7(^717      ^Pyn) "i" ^ay^yPn 

^ny^aPy      •^Q:/3v^'n77      ^yyn)      ^cxP-^n   *   ^^anX^Pyy      ^yyPJ   *   ^^cxn-^P 

~T~£'X'Py\X'Otriy       *--otyn)   '   ^^Py^-yotn "i- £0:7^771/3       ^■yPn) ~T" ^cty^ypn 

~T'"ny\"ayP       ^aPy)   1" ^ny^cxpy       "na-L'P       ^y^ocnP      ^aPn)       ^^apn] 

^^apL ~ f-otptyy + tpy^ay — t-Pyt-ay + 9 (^a^ ~*~ ^a^ "" 'o^^lP ~*~ ^yoc^Pl) 

— ly Z\Znyt(xPy       X-ny^aPy   •" -^v'^Q:7^7/?n   1   ^Py^-yan)   '   ^np-^a   '   ^ncx^P       ^a/J-^nj 

{yriPKyay^yn      ^na^1) ~T ^ocy\ynn^Py       ^nP^ny   \   9(^7/?       "py)) 

lt 
—£ap(—Llnn + ^(^77 ~ ^77)) + ^ani^Py^yn ~~ t-npL) 2V 

1 -^0:7\^nn^yp       ^ny^np ~r ~ (.^7 — ^yp)) 

-Ttny\tnytap      Z-np^ay      ^an^py)      ■^{^■nn^aP ~ ^na^-nP   1   ~V^a ~ ^a/?//J 

+£aplj ~ taP^yy + ^Py^ay — ^Py^ay + 2 ^a^ + ^^ _ 'j^^lP + ^ya^Pl) 

IV Z\tnytaPy      t-nyi-aPy   »   -^(^a^^/Jn   •   ^Py^yan)   1   ^na-^P   «* ^nP-^a       ^a/J-^nj 
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1 "      ^2      ,   nl      ,   o^2   \       1 r/^2      ,   ^2 — ^^a/?(^77 + ^ + 2£nn) + -L(£ap + ^a 4- 2£na£n^) 

-2£nn(£al3 + ^^g^) + 4(£an£n/? + tan£pn) + Tti^aP + ^/?a) _ o (^7^7/? + ^a^Pl)' 

^"np       ^7771/? 

:::= ^n/377      ^nfiyy   •   •^v^n/^T'      ^n'yPJj "T ^y^-njP'y      ^7177/?/   «   ^(,-^7177      ^7772//? 

= iV2L£n(3n + i(4n - 4n^7) + iVS^ - ^ + 2£nn^7)7 

+4^77 - ^7^7 + iyfti-Llnn + ^77 " 4y))/? 

—£(3§{£5^ ~ t-liS) ~ ipd-Ls — ^7(^57 — ^7^/?) — ^Sl^ydP 

• Zc/37v£nn7 — "wyn)   1   ^^p^^wyn   1   ^nnV^/577      ^11P)   '   ^nn-L'fi 

—£nnLi3 — L(£nn/3 — £n/5n) — L£npn 4- ^(^77 — ^77)/?] 

~^P8\^5;y£'yn ~ £n5£"yy) ~ ^djy^wy^ps ~ ^^S^Pn) 

3 

3 1 
— L(-(£pn — £np) — £nn£np)] + Tjj(^n "" ^n^Pl) + ^n/?^ "~ ^717^7 

= iV^[2^£n7n + ^nn-Z/? + ^L^ - ^jZ/5 + -(^75^7/3 - £7^7/?)] 

/?2      ,   /92   \   ,    1 r/y72      ,   ^2 

H-2(^7^n7 + ^g) — ^(^717^7/3 + ^/3n)- 

^ A/       —1P- 

IV l±j£nnn -v ly 1\ — \£^n — tn'y)   *   ^7171^717/7 

— ^nwyy      -^717177   1   ^(^^^7       ^71771)7 "T ^(,^717717       ^717771) "r ^^7177       ^-7771/71 

f 
—iy A'Cn^ntn^i H      T=(t7^-cn7^ — "Sj^n^s) ~T~ ^7171^77 — ^717^^7 

+»^(-/„„i+^(^-4y))„ 
3 3 

2V^[-^^nn7i   1   X^7^(^717 ~ ^<57nj   1    Q^yJ^^n 

3 3 3 3 
+ 2^5(^77 - ^775) H- ^nSLj - -^(^77 ~ ^77^) ~ 2^^5 

3 3 
9^57(^71^7      ^"ySn) ~ 9^7^7571   '   ^717-^71717 ~r -^7271(^7177 — ^7771/ "T" "nn-L'n 
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11 1 

J_^2    T — f2   P   - 

3 

3 2 1 
— 2^1(^77 "^ ^77 "^ o^nn) + ^K^nn + (^nn)   ) + 6tnn + " (^ — ^S^yS)' 

4.3. Computation of ^A(^_). 

= 2£0st
HAiap + 4ealhe0(n 

-£
2
PP(^ + 4r + 2^n) + i^ + ie*qa + 2£L) 

+ 2^a^Q - (tp-y^p + Zp-y^p) + ^aP^Po^y 

= U0&La0 - i2^H2^Ln + 223/2(^_e7 - ^nc^) • L 

+ZV z(£n7e^ — -0.717^7} " £pp + ^ap^Potl ~^ (-^^77 — (^77/   / "^ ^^P&^pa ~    pp  11 

+2{l0Bt§a - 47) + 2(£C - ^O 

5. Maximum principle and an application. An embedded curve in N is 
called horizontal if its tangent is contained in HN c-> TiV. The Laplace operator H A 
of (HN,H h) satisfies a strong maximum principle along horizontal curves of N. This 
was proved earlier in [A] in three dimensions for contact manifolds and the arguments 
apply in the case of a strictly pseudoconvex AT. 

THEOREM 5.1. Let HAg > 0 for a smooth real function g on N and g < K on 
N. If g(a) = K for some a € N, then g\j = #(a) for all horizontal curves 7 of N 
through a. 

If the horizontal distribution HN in TiV defines a contact structure on iV, that 
is if iV inherits a nondegenerate Cii-structure, then the horizontal curves are also 
called Legendre curves and by a well-known result, see [AG], they connect arbitrary 
points on iV. The above now immediately gives the following strong maximum prin- 
ciple: Let iV M- (M, J, h) be a compact embedded real hypersurface that is strictly 
pseudoconvex. If HAg > 0 (or < 0) for a smooth real function g on iV, then g is 
constant. 

THEOREM 5.2. Let F : N <->> Cn be a compact, connected, strictly pseudoconvex 
real hypersurface. Assume that the horizontal mean curvature L of N is constant and 
that MV\(F*T1^M x iJ^iV) C H^N. Then N is a metric sphere. 

Proof. Let {e^} be frame adapted to iV <-> Cn as in 1.2. Then by the assumption 
on the Levi-Civita connection, 0n(S/ekea) = 0, and therefore £ak = 0. Now by 4.3 
and since L = const, we have 

("A - iV2(enSea - 1^6^) ■ t2^ > («L - (4a)2)- 
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Since iV is strictly pseudoconvex, we have £a5 > 0 for every a, and therefore the right 
hand side is nonnegative. To see this choose a frame in which £ap is diagonal. Then 

2^4*0:  I   I   / M00)     I   ~~  I J^JJ-oia)    I     —  o / A<x^&(3^<xa lee? >0. 

The differential operator acting on ^a satisfies the strong maximum principle, there- 
fore t\h = const. This implies L^& - (^a)2 = 0 and ^ = ci for all /?. Next 
consider 

VeaX2n = -/|VeQ(en - en) 

= —2ia0e/3 

1 
= -2cle«- 

Now on A^ C Cn we have, if z denotes the coordinate vector of Cn, 

2 2      1 
VeQ (2: 4- — X2n) = e^ + —(--)ciea ci ci      2 

= 0. 

This implies, since also Vefi (z + ^-X2n) = 0, and the curvature of Cn vanishes, that 
on N 

0 = V[eQ,e5](z + -^X2n) 

2 

i 2 

Therefore, since ^aa 7^ 0, we conclude that (z + ^^2n) vanishes identically on iV, and 
for any t; e TJV, v • |z]2 = 2Re(z,v) = -2^-(X2n,^) = 0 which implies that (zj2 = C3 
on iV-. Therefore N is a metric sphere. D 

REMARK. The assumption that Hli0N is parallel in (F*rlj0M,M V) is equivalent 
to ^jk/j = 0 on the hypersurface. Since 

VxnXn = - (fl*(Vew(c„ + 6^)6* +fl*(VCn(en + Cn))cjE) 

= g (Wn(Cn)c*+wS(en)Cjfe) 

—  9372 ^nkek — f-kn^k) ' 

we see that the condidtion €an = 0 implies that the integral curves of the vertical line 
bundle are geodesies of N. This, together with the condition £a/j = 0, implies that the 
second fundamental form for the underlying Riemannian metric, as related in 1.4, has 
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the form ^40Zn^® A Here we refer to the real basis Xi, ...,Xn_i7Xn,Xn+i,..., ^n-i 
that corresponds to the frame e^ as in 1.2 and in which £ap is diagonal, and A 
is the (n-l)x(n-l) matrix with the coeflBcients kap as in 1.4. The assumption of 
strict pseudoconvexity says that A is positive definite, and constant horizontal mean 
curvature says that the trace of A is constant in this setting. We have no assumption 
on the real coefficient £nn. 
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