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EXISTENCE AND UNIQUENESS OF 
MINIMAL GRAPHS IN HYPERBOLIC SPACE* 

RICARDO SA EARP+ AND ERIC TOUBIANA1 

Abstract. In this paper we prove general existence and uniqueness theorems for minimal ver- 
tical graphs in hyperbolic space. 

Introduction. In this paper we shall prove general existence and uniqueness 
results for vertical minimal graphs in the hyperbolic space H3 = {(xi,X2,X3) e 
R3, xs > 0} over bounded and unbounded domains in c?ooH3 (see Eq. 1-1). We 
solve the Dirichlet problem for the minimal equation (Problem (P) in §1) in two vari- 
ables Xi, X2 over bounded C0 convex domains, given arbitrary non negative continuous 
boundary value data (see Theorem 2.3). If the boundary data and the domain are 
smooth enough an analogous result also holds in every dimension (See Theorem 2.2). 

The main result of this paper is the derivation of the Perron process for the 
minimal vertical equation in the upper halfspace model of hyperbolic three space (see 
Problem (P) in §1). More precisely, we shall infer that existence of a supersolution 
yields a solution for the Dirichlet Problem (P). When the boundary dCt is C0 convex at 
p, or the boundary data / vanish at p, and p has a barrier (see Definition 1.6) then the 
solution given by Perron process is continuous up to p and takes the given boundary 
data at p. In particular, in any convex arc T C dfl such a solution is continuous up 
to F. Moreover, if p has a barrier and / > a > 0 then the solution given by Perron 
process is continuous up to the boundary and takes the prescribed boundary value 
/ at p (see Theorem 3.4). We shall infer by Perron process, several existence and 
uniqueness results for minimal complete and non complete graphs over C0 unbounded 
convex and non convex domains, namely complete minimal graphs, invariant by a 
given 1-parameter group of hyperbolic or parabolic isometries of H3 (see Propositions 
3.9 and 3.12). We shall also infer from Perron process the existence of the Dirichlet 
problem for the minimal vertical equation over a band, given arbitrary non negative 
continuous boundary data (see Theorem 4.1). Theoretically, this result can be viewed 
as an example of application of Perron process. For a convex unbounded domain in 
a band ft, we shall prove the following uniqueness result: if the prescribed boundary 
data / is bounded, non negative and uniformly continuous then the Dirichlet problem 
for the minimal vertical equation admits at most one solution. Moreover, any such 
a solution is bounded and uniformly continuous. In fact this result holds in higher 
dimensions (see Corollary 1.11 and Remark 1.9). From Perron process we shall deduce 
a maximum principle for domains in a proper sector (see Theorem 4.3) that gives rise 
to an existence result for the Dirichlet problem (P) over convex domains in a proper 
sector (see Theorem 4.5 and Remark 4.7). Next, we explain the main tools. 

Throughout this paper, we use L. Simon interior estimates for mean curvature 
type equations in two variables as a major tool, see [Si], together with the control at 
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the boundary that we have succeeded (see Theorem 1.7) to establish the mentioned 
Perron process, see §3, for the minimal vertical equation, Eq. 1-1. Of course, we also 
make use of the geometry of hyperbolic space to get some useful boundary and interior 
a priori estimates. 

There are earlier results related to this article that we now mention. Firstly, we 
must note the pioneer work of Anderson about existence results for complete minimal 
varieties in hyperbolic space with preassigned asymptotic boundary, see for instance 
[An, 1] and [An, 2]. In [An, 1], Anderson solved for a C2 bounded mean convex domain 
fi in Rn, n > 2, the Dirichlet problem for the minimal vertical equation (Problem 
(P)) with zero boundary data. Secondly, it is worth mentioning that Lin in [Li, 1] gave 
a short proof of Anderson's existence result cited above using PDE methods. He also 
proved in the same paper uniqueness, and he achieved his main result about regularity 
of the solution up to the boundary; that is, if the boundary dfi, is smooth then the 
graph is smooth as dfi, up to the boundary. In [Li, 2] Lin studied the asymptotic 
behavior of area-minimizing locally rectifiable currents in hyperbolic space. Recently, 
the authors have carried out an existence result about minimal vertical graphs over 
an annular domain, see [SE-To, 1]. 

Now, by way of conclusion, we are going to state two open questions arising from 
this work. An interesting question is related to the maximum principle at infinity for 
minimal surfaces in Euclidean space inferred by Langevin and Rosenberg in [La-Ro], 
Meeks and Rosenberg in [Me-Ro] and Soret in [So]. Is it true that if Mi and M2 are two 
minimal vertical graphs over an unbounded domain ft such that dist(9Mi,M2) > 0 
and dist(<9M2,Mi) > 0 then dist(M2,Mi) > 0? 

Bers showed that the classical minimal surface equation in Euclidean space cannot 
have an isolated singularity (see [Be]). It is not difficult to show that if u is a solution 
of the minimal vertical equation (Eq. 1-1) over a puncture disk then u is bounded from 
above (on a possible smaller puncture disk) by a positive constant b and bounded from 
bellow by a positive constant a. The proof of this assertion uses minimal hyperbolic 
catenoids as suitable barriers. Thus one can naturally ask if u extends smoothly to 
the puncture ? 

1. Basic results. In this section we give some technical tools and we prove 
some basic results that we shall need throughout this paper. We choose the half-space 
model of hyperbolic space. Namely 

Hn+1 = {(m,...,xn+1) e R
n+1, zn+i > 0} 

equipped with the hyperbolic metric 

ds2 = -1^- • —n+l dx2 + ...dxl 
Ln+1 

We are concerned with positive C2 functions u defined on domains 
ft of Rn = {xn+i = 0} (considered as asymptotic boundary of Hn+1) whose 
graph S = {(xi,..., xn, u(xi,..., #„)), (#1,..., xn) € ft} is a minimal hypersurface 
of Hn+1. We say that 5 is a vertical graph. That is, we consider C2 functions u on ft 
satisfying the following strictly elliptic quasilinear PDE: 

i,j=l   N 11// 

in ft. We will allow that u takes zero value boundary data on a part of 9ft. Notice 
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that V(u) = 0 is the minimal hypersurface equation in euclidean space Rn+1. 

THEOREM 1.1. Let ft C Rn be a bounded domain such that (Kl G C2>a. Let 
(f) E C2'a(f2) and let Q be a quasilinear strictly elliptic operator in fi. Consider the 
Dirichlet problem 

(*) Qu = 0  in fi   and u — (j)   on dSl. 

For t E [0,1] consider the family of Dirichlet problems: 

Qtu = dij (x, u, Du)DijU + 6(x, u, Du, t) = 0,   in ft 

u = t(j)   on dft 

satisfying: 
(i) Qi = Q and b(x,u,Du,0) = 0; 

(ii)  The operators Qt are strictly elliptic on ft for all t E [0,1]; 
(Hi) The coefficients a^ E C1^ x R x Rn), b E Ca(fi x R x Rn) for each t and 

considering as mapping from [0,1] into Ca(ft x R x Rn), the function b is continuous. 
Suppose there exists a constant A such that for each t and for each C2ia(ft) solution 
u of the Dirichlet problem Qtu = 0 in ft and u = t(f) on dft, 0 < t < 1, we have : 

\U\CI(Q\ = sup \u\ + sup \Du\ < A, 

(A independent of u and t). Then the Dirichlet problem (*) is solvable in C2'a(ft). 

The above existence theorem is a consequence of Schauder theory and the global 
Holder estimate of Ladyzhensaya and UraPtseva, see [Gi-Tr, Theorem 13.7], and [Gi- 
Tr, Theorem 11.8]. 

The next Lemma is an adaptation of a result of L. Simon, see [Si, Theorem 2"]. 
LEMMA 1.2. Let ft C R2 be a domain and let u : ft -*]0, +oo[ be a C2 solution 

of (Eq. 1-1) (that is the graph of u is a minimal surface in H3). Let p E ft. Then 
there exists p > 0 such that Dp(p) C ft (where Dp(p) is the euclidean open disk of 
radius p centered at p), and there exist two real constants ci, C2 depending only of p 
and inf p ^ u(x) such that: 

(*) |i7tt(p)|<ciexp(c2^). 
P 

Consequently for each compact part K C ft there exists a real number M > 0 depending 
only o/inffc:^) and swpK(u) such that: 

\Du(p)\ < M 

for each p E K. 

Proof. We are going to use results and notations of L. Simon [Si]. The function u 
satisfies (Eq.1-1) on ft. For any point (x,z,p) E ft x R x R2, we define aij(x,z,p) = 
8ij - PiPj/{l +Pi +P2)> h 3 — !> 2. Let 8 > 0 be such as the conditions (3.2) of [Si] 
are satisfied where the functions o*^ are defined by (2.1) of [Si]. Note that they are 
the same functions which appear in the equation of minimal surface of R3. Let p E ft 
and let r > 0 such that Dr(p) C ft. Let a = m{Dr^ w(a;), observe that a > 0. Let 
h : R -»■ R+ be any C1 positive function such that: 

(1) h(z) — j for any z > a, 
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(2) h' < 0, 
(3) h < I 

Then u satisfies on Dr(p) the PDE 

^    l + uf + ^l"11 - 2l + uf + U|"
12 + l + uf + ^l"22 = -^ = 6(af.«.-D«)- 

Now b(x,z,p) is a C1 function on Dr(p) x R x R2 and we can apply Theorem 2" of 
[Si]. For this observe that setting 6* = (1 + |p|2)"1/2&, the condition (3.10) of [Si] is 

satisfied provide that 2h(u) < - (since h! < 0 and -— = 0, j = 1,2). Then for any 
r OXj 

positive p < r such that -■ < |, Theorem 2// of [Si] shows the existence of constants 
ci and C2 such that (*) holds. Note that the condition (1.3) of [Si] holds on Dp(p) 
with // = ^. The other assertion follows immediately. □ 

THEOREM 1.3. (Compactness theorem) Let fi C R2 be a domain and let 
(^n)n€N be a sequence of C2 functions on Vt satisfying (Eq. 1-1). Suppose that for 
each compact part K C ft, there exist two positive real numbers a, b (depending only 
of K) such that 0 < a < un(x) < b for every x £ K and every n. 

Then there exists a subsequence of (un) converging on K, in the C2 topology, to 
a C2 function u satisfying (Eq.1-1) on K. Consequently there exists a subsequence of 
(un) converging on ft, in the C2 topology, to a C2 function u satisfying (Eq.1-1) on 
ft. 

Proof. Let K C ft be a compact part. We infer from Lemma 1.2 the existence of 
a real number M > 0 such that 

\Dun(x)\ < M 

for every x € K and every n. Then using interior Holder estimate of Ladyzhenskaya 
and Ural'tseva, see Theorem 13.1 of [Gi-Tr], we get uniform C1,a estimate for the 
sequence un on K. At last, using Schauder theory ([Gi-Tr] Corollary 6.3) we have 
uniform C2'a estimate on K. Therefore the sequence un with their first and second 
derivatives on K give rise to a normal family. Then there exists a subsequence con- 
verging on K to a C2 function in the C2 topology. By a continuity argument, this 
function satisfies (Eq.1-1). Considering a compact exhaustion of ft and using the stan- 
dard diagonal process, we infer the existence of a subsequence converging on ft in the 
C2 topology to a solution of (Eq.1-1). D 

Now we write down the well-known Maximum Principle. 
PROPOSITION 1.4. (Maximum Principle) Let ft C Rn be a bounded domain. 

Let u, v G C2(ft) fl C0(ft) be two positive functions. Assume that u\dQ < V^QQ and 
thatV(u) >V(v) on ft. 

(i) Interior Maximum Principle:  Then we have u < v on ft and equality occurs 
at an interior point if and only ifu = v. 

(ii) Boundary Maximum Principle: Letp £ 9ft be such thatu(p) = v(p). Suppose 
that p lies on the boundary of a round ball contained in ft. Assume that the outward 

d(u — v ] 
derivative —  exists at p. Then we have 

ov 
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unless u = v on H. 

Proof. We will proceed the proof for the sake of completeness. A straightforward 
computation shows that: 

n 

(i+\Du\2)V(u) - (i + \Dv\2)V(v) = J2 [Mi + \Du\2) - uiuj] («« - ««) 

A:=l 

(izfc+i;fc)(-+ ^ SijVi^-^iui+v^Vik 
i=l 

(wfc-Vife)-—— "(u-t;). 
uv 

We define a linear operator C setting: 

n 

A/) = £ [Mi + l^l2)" uiuj] fa 

n 

+E 
7t 7t 

(Wife + *>*)(- +  ^ ^j%) - ^(Wi + ViJVafc 
*>i=i i=l 

n(l-fl^l2)f 

IXV 

for every C2 positive function / on 0. Let us observe that C is an uniformly elliptic 
linear operator of the following form: ]r\ . aij(x)Dijf + Ylk bk(%)Dkf + h(x)f where 
/i(a?) < 0 on fi. It follows that C satisfies the Maximum Principle as stated in [Pr-We, 
Theorem 6 p.64]. As C(u — v) > 0 on Q, and u\dQ — V|aQ < 0 we conclude that u — v < 0 
on O with equality at an interior point if and only if u = v. This shows the Interior 
Maximum Principle. 

Furthermore observe that in the conditions of (ii) we can apply Theorem 8, p. 67 
in [Pr-We] to infer the Boundary Maximum Principle. D 

REMARK 1.5. 1) In the same way, differentiating (Eq.1-1) with respect to xq, 
we find that uq satisfies an uniformly elliptic linear operator of the following form: 
Ylij Q>ij(x)DijUq + J2k bk(x)DkUq + h(x)uq where h(x) < 0 on ft. We conclude that 
|w9| and then \Du\ has not an interior maximum. In particular if a solution u of (Eq 
1-1) is C1 up to the boundary, the maximum of \Du\, if any, is assumed on dft. 

2) As a direct consequence we get that, in the same conditions of Proposition 1.4, 
if u = v on dQ, and V(u) = V(v) = 0 on ft then u = v on ft. That is the Dirichlet 
problem for vertical minimal graph in Hn+1 admits at most one solution on bounded 
domains. 

3) Let ft C Rn be a compact domain. Consider Mi, M2 C Hn+1 two hypersur- 
faces which are graph over ft. Suppose that Mi is an euclidean minimal hypersurface, 
M2 is a hyperbolic minimal hypersurface and <9Mi stays below 9M2. Then it imme- 
diately follows from the Maximum Principle that Mi stays below M2 without any 
interior contact point. Note that dMi and <9M2 can have contact. 

4) Let ft C Rn be a C2 domain and consider two positive C2 functions u and 
v on ft satisfying (Eq.1-1) and such that u < v. Let p G 9ft be a boundary point 
such that u(p) =v(p), u and v are C1 -continuous up to p and such that Ui(p) = Vi(p) 
for i = l,...,n. Then the Boundary Maximum Principle implies that u = v on 
ft. Geometrically this means the following. Let Mi, M2 C Hn+1 be two minimal 
hypersurfaces with C2 boundaries. Assume that Mi and M2 are C1 up to a common 
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boundary point p. Suppose that Mi and M2 are tangent at p, M2 stays above Mi in 
a neighborhood V C Hn+1 of p and the tangent spaces of the two boundaries dM\ 
and 9M2 agree at p. Then the two hypersurfaces are equal in a neighborhood V of p. 

DEFINITION 1.6.     Let fi c Rn be a domain.   Let f :  dfl -> [0,+oo[ be a 
continuous function. Consider the following Dirichlet problem (P): 

(p) 

E UiUj n 
{Sij - TTWK'+ « =   on 

u\dn = f 

ueC2(n)nc0(Ti) 

1) Let p € 90 be a boundary point. Assume first that f(p) > 0. Suppose that 
there is an open neighborhood Af of p in Rn such that for any M > 0 (resp. n £ N*) 
there exist a sequence of functions UJ^ (resp. u;^) in C2(J\f fl fi) D C0(Arn ft) such 
that 

(0 ^(aOianrW > /(*) and ^WiajVnQ > M 

(resp. a;^(a:)|anrw < /(«) and ^k(x)\0ArnQ < -) 

(if) X>(u;^) < 0 (resp. X>(a;^) > 0 in the part where w^ > 0) in Af Pi 1), 
(m) limib_,+00a;jj"(p) = /(p) (resp. linu_>+00 u'(p) = /(p)). 

If /(p) := 0 we substitute UJ^(X) for the vanishing function on Af. 
Then we say that p admits a superior (resp. inferior) barrier for the problem 

(P). If p admits a superior and an inferior barrier we say more shortly that p admits 
a barrier. 

2) Let u : Tt -> R+ be a solution of the problem (P), u G C2(ft) fl C0(n). We 
say that u has a modulus of continuity along 90 if for every e > 0, there is 5 > 0 such 
that if |p - re I < 5, p € 90, £ € O, then |n(p) - u(x)\ < e. 

THEOREM 1.7. Let ft C R2 6e a C0 convex domain in a band (a band is a domain 
bounded by two parallel straight lines of H2). Let f be a non negative and bounded 
function on dQ. Then there exist a real number B > 0 such that 0 < u < B on Q for 
any solution of the problem (P). Furthermore, if f is also uniformly continuous, then 
any solution of (P) has a modulus of continuity along dft. 

Proof Let A > 0 be an upper bound for /. Consider a hyperbolic catenoid C in 
H3 such that dooC (which is composed of two circles) has a component on each side 
of the band in R2. Up to a homothety with respect to a point of <9ooH3 = R2, which 
is a hyperbolic isometry, we can assume that the height of C above the boundary of 
the band is greatest than A. Therefore C is above the graph of / along <90. Observe 
that if v is a C2 function satisfying X>(v) = 0, then V(v + a) < 0 for any a > 0. By 
the Maximum Principle (Proposition 1.4), using euclidean vertical translations on C, 
we deduce that C is above the graph of any solution of (P). Using the horizontal 
translations parallel to the band (they are hyperbolic isometrics), we conclude that 
each translated of C is above the graph of any solution of (P). Therefore there exists 
a real number B > 0 such that u < B for any solution of (P). Next we will construct 
a barrier at any point of dfl using a construction done in [Ro-SE]. 

Let p G dft and let L be any straight line through p keeping O on one side of L. 
Let e > 0 and let So > 0 be such that |/(p) - f(q)\ < e/3 if |p - q\ < SQ, p, q G dft. 
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Define 

*> = 'M + S + *B!!^&f 
We have / < ip on dVt and |D^|, l-D2^! are bounded where \D2Lp\ = ^i. sup^ (/^^(a?)!. 

1               e2B6 - 1 
Define d(x) = d(x,L) and v(a;) = ip(d(x)) = 7log(l H d(a:)) where x G fi 

and 6 and Ji are two positive real numbers to be defined later. In order to evaluate 
V(ip + v) we set A = A(x) = 1 + \D<p + Dv\2 and aij(x) = 5ijA - Di(tp + v)Dj((p + v). 
Note that for any vector £ = (^1,^2) and for any C2 function h we have: 

III2 < X>y60 < AICI2, and X^A^ < A|I»2/i|. 

Define J7 = ^i • UijDivDjV. As y? is C1 bounded and C2 bounded there is a, /3 > 1 

DiV = 'i(j,(d)Did and JD^-v = il)"{d)DidDjd since Ajd = 0. From this we infer that 

such that A < aT and A|Z}2<£| < fiT whenever \Dv\ > 1. Observe that = -6, 

2 
AV((p + v) = ^ aij(x)Dijv 4- J^ aij(x)Dijip H —A 

*.J 
(V;')2 J '     ^l     e 

<(-6 + i3 + —)^ 

whenever |JDI;| > 1. Now we choose b and Ji such that 
(1) &>/? + ^>l 
(2) S^e2™ < e2Bb - 1 

We define J\f = {x G fi,d(x) < 5i} where 5i is sufficiently small. With those choices 
we have that |JDU| = i/t'lDdl > 1 on jV since |Dd| = 1 (we have used (1) and (2)). 
Clearly, taking into account (1), we deduce V(<p 4- v) < 0 on J\f. 

Let u be any solution of the problem (P). We get u < tp 4 v on ^A/* fl fi (since 
^((5!) = 2B) and on A/* fl dft we have also w < (p 4- v because u = / on 9^. By the 
Maximum Principle we deduce that w<(^4-vonA/"nn. 

Now choose S < SQ, SI, S > 0, such that: 

^logQ 4 \p-x\2)      e , ,  / x,      ^ 

whenever |p — x\ < S. Then we get u(x) — u(p) < e whenever \p — x\ < S. 
^ogjl + lp-xl2) 

log(l + So) 
connected component of Afnfi, where <p — v > 0. Let a > 0 be such that |l?2^(a;)| < a 
for any x G R2. Now set dij(x) = Sij(l 4- \D(p - Dv\2) - Di(Cp - v)Dj{(p - v). On U 

Consider the function <p(x) = f(p) - |-2g     ,_n     x J    on A^nfi. Let U be a 
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we have: 

(1 + \D<p - Dv\2)V(v -v) = -^2 a*i Ai« + E atiDitf + 2(1 + I^-J»I2) 

LV-~     ^     r^ V-~     r,     -        2(1 + \D(P - DV\2) = 02^ dijDivDjV + 2^ aijDijip + -1 -zr1 L-i 

> b ^2 Q>ijDivDjV 4- ^2 QijDijV 

> b\Dv\2 - \D2<p\(l + \Dtp - Dv\2) 

>b\Dv\2-a(l + \D<p-Dv\2) 

> b\Dv\2 - a(2\D(p\2 + 2\Dv\2 + 1) 

> (b - 2a)\Dv\2 - a(l + 2\D<p\2). 

As \D<p\ is bounded (on R2), and \Dv\ > 1 on A/" we will have V(fi — v) > 0 if we 
choose b big enough in (1). Therefore the Maximum Principle shows that (p — v < u 
on U for any solution of (P). Thus (p — v < u on N fl ft for any solution u. Therefore 
for any solution u and for any p € 90, and any x G Vt such that |p - x\ < 5 we have: 

\u(x) — u(p)\ < e 

and this shows the modulus of continuity as desired. □ 

COROLLARY 1.8. Consider problem (P) where fi C R2 is a convex domain in 
a band and f is bounded, uniformly continuous and non negative on 90. Then any 
solution of (P) is uniformly continuous on Vt. 

Proof. Let e > 0, then Theorem 1.7 shows the existence of S > 0 such that 
\u(p)—u(x)\ < e for any solution u of (P), any p € dVt and x 6 fi such that \x—p\ < 6. 
On the other hand for any a > 0 the Lemma 1.2 shows that \Du\ is bounded on 
fia = {x e fi,d(£,dfi) > a:} (as u is bounded on fi, see Theorem 1.7). This implies 
that u is uniformly continuous on Cla for any a > 0. Therefore, w is uniformly 
continuous on H. D 

REMARK 1.9. 1) Let us consider again problem (P) for any domain Q c R2. Let 
p G dQ and suppose that dfi, is C0 convex at p (that is, there exists a straight line L 
through p, L C R2, such that L fl Q = 0). Then the proof of Theorem 1.7 shows that 
p admits a barrier. 

2) In fact the Theorem 1.7 holds for any dimension. More precisely consider any 
convex domain of Rn contained in a slab (that is a domain bounded by two parallel 
hyperplanes of Rn). Then if / is bounded and uniformly continuous it follows that 
any solution of (P) admits a modulus of continuity. The proof is the same, working 
with n-dimensional hyperbolic catenoids. Also if we just assume that dQ is locally 
convex at p G dQ, then the proof of Theorem 1.7 shows the existence of a barrier at p. 

3) Theorem 1.7 does not hold for domain in a proper sector. We will see in 
the Appendix (Proposition A.l) that there exists a (unique) minimal graph over any 
proper sector taking zero value boundary data. Moreover, this graph is invariant under 
homotheties with respect to the vertex of the sector. We deduce that this graph is 
neither bounded nor uniformly continuous. 
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Now we state a straightforward generalization of a Phragmen-Lindelof type the- 
orem as founded in 6.1 of [Ro-SE]. The unique difference comparing with [Ro-SE] is 
that our operator has a term in the form "h(x)u" where h < 0. Since the proof there 
applies with minor modifications we will omit it here. 

LEMMA 1.10. Let fi, C Rn be a domain in a slab. Let C(u) = £].• aij(x)DijU -h 
^2k bk{x)DkU + h(x)u be a linear elliptic operator on ft with h < 0. 

Let u E C0(Q) fl C2($7) be a function such that: 
(1) C{(JJ) > 0 on fi. 
(2) For each S > 0, S sufficiently small, C is uniformly elliptic on 

0,$ = {x G fi, d(a;,9n) > 5}, and the coefficients of C are uniformly bounded 
on fij. 

(3) u has a modulus of continuity along <9fi. 
Then if CJ < A on dft, and UJ < B on Jl it follows that u < A on fi. 

COROLLARY 1.11. Let Ct C Rn be a convex domain in a slab and let f be a 
bounded function on dfi,, non negative and uniformly continuous. Then problem (P) 
admits at most one solution. 

Proof. Let u and v be two solutions of (P). Observe that u and v are uniformly 
bounded, see Theorem 1.7. The Theorem 1.7 also shows that u and v have a modulus 
of continuity. It follows that the function v = u — v has also a modulus of continuity. 
Furthermore we have C(u>) = 0 where C is the operator defined in the proof of the 
Proposition 1.4. Note that C and LJ satisfy the hypothesis of Lemma 1.10 with A = 0. 
It follows that LJ = u — v < 0 on Cl. Setting now LJ = v — u and using the same 
argument we get that u = v on fl. D 

REMARK 1.12. Observe that Theorem 1.7 and Corollary 1.8 and 1.11 hold in the 
case where fl is a proper band. In fact they also hold for more general domains. 
Namely we can consider domains fl C R2 such that outside a compact part K C R2, 
fl — K is a finite union of convex domains in a band. 

2. Existence and uniqueness of graphs over convex bounded domains. 
DEFINITION 2.1. Let fl C Rn be a bounded domain such that dfl is C2. We 

say that fl is strictly convex if for every p 6 dfl all the principal curvatures of dfl at 
p (with respect to the inward normal orientation) are positive. 

THEOREM 2.2. Let fl C Rn be a bounded strictly convex domain where dfl is 
C2,a for some real number a €]0,1[. Let f : dfl ->]0, +oo[ be a C2,a function. Then, 
problem (P) is uniquely solvable. More precisely there exists an unique positive func- 
tion u G C2'a(fl) satisfying (Eq. 1-1) and such that U^Q = f. 

Proof. Observe that the Remark 1.5 shows the uniqueness of solutions, if any. 
Hence it suffices to prove the existence part in the statement. Let a = infan /(p), we 
have a > 0. Let h : R -> R+ be a C1 function such that: 

(1) h(z) = —!— for z > 0, w    w     z + a 
(2) h' < 0 

(3) h< - 
a 

We wish to use Theorem 1.1, for that we define the following family of Dirichlet 
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problems, parametrized by t e [0,1]: 

.S ^ " l+^l2^ + ^^ = 0 ^ ^ 
v\dQ = *(/ - a) 

As / admits an euclidean minimal extension (see [Je-Se]) we can suppose that 
/ £ C2'Q;(n). Note that for any t € [0,1], the euclidean mean curvature (with respect 
to the upward normal orientation) of the graph of any solution vt of (Pt) is negative. 
It follows that for any t G [0,1], any solution vt attains its minimum value at the 
boundary and then it is non negative. Note that this also follows from the Maximum 
Principle (Proposition 1.4). Therefore any solution vt for any t satisfies: 

iS--iTi^)v-+tVT-a=0onQ 

v\dn = t(f - a) 

Hence, for t = 1 and for any solution v of (Pi) the function u = v + a is a solution of 
the problem (P). Then to find a C2^(Q) solution of (P) it suffices to find a C2>a(Ti) 
solution of the problem (Pi). To accomplish this note that the family (P*) satisfies the 
hypothesis of Theorem 1.1. It follows that to solve (Pi) (and then to prove Theorem 
2.1) it suffices to get a real number A > 0 such that 

supvt + sup \Dvt\ < A 

for every t £ [0,1] and every C2'Q:(n) solution vt of (Pt). Observe that for each t and 
71 

any solution vt of (Pt) we have V(vt 4- a) = (1 — t) > 0. Observe also that the 
vt + a 

graph of a + t(f — a) on dfi, stays below the graph of /. Consider now any totally 
geodesic hyperplane (more shortly geodesic hyperplane) 11 of Hn+1 which stays above 
the graph of /. Namely 11 is a hemisphere orthogonal to Rn = <900H

n+1 above the 
graph of / (which is compact). Using the Maximum Principle, we deduce that for 
every t the graph of vt +a stays below 11 for any C2'Q;(n) solution of (Pt). Then using 
11 we get a real number B > 0 such that Vt < B for every C2'Q:(n) solution vt of (Pt) 
and every t 6 [0,1]. 

Now we look for C1 apriori estimates. First, note that vt\QQ is C1 uniformly 
bounded. Moreover, observe that the same argument as used at Remark 1.5 shows 
that for each t E [0,1] and every solution vt of (Pt), the maximum of \Dvt\ is achieved 
at the boundary of Vt. Therefore it suffices to give uniform C1 estimates on the 
boundary. We begin to give (uniform) lower C1 boundary estimates. Let C+ be the 
(half) vertical cylinder over dtt. That is we set: C+ = dVt x [0, +oo[c Hn+1. Let us 
call Yt the graph of the function t{f - a) 4- a on c?fi. Observe that each Ft is a C2 

hypersurface of C+. Moreover each Ft is contained in the following compact part of 
Hn+1: C+ H {a < xn+i < supan /}. 

Now consider a point p G Ft. Let P be the euclidean tangent hyperplane of C+ 

at p. Let Lp be the codimension 2 euclidean plane through p, tangent to Ft. For 
any 9 < 0, let us define Pe to be the hyperplane P rotated by 0 with respect to Lp. 
That is, we require that Pe fl C+ stays below the euclidean hyperplane orthogonal to 
C+ at p containing Lp and the angle between PQ and the vertical hyperplane P is 6. 
Observe that when 8 = 0 we have PQ = P and C+ fl P is the vertical line through p. 
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Clearly when |0| is small enough C+ 0 Pe is a hypersurface of C+ which is a vertical 
graph, over a part of 9(1, staying below IV Now as all the hypersurfaces Ft, t € [0,1] 
are uniformly bounded up to the C2 topology, and they stay in a compact part of 
Hn+1, there exists an uniform 6 < 0 such that for each t G [0,1] and each p G Tt we 
have that C+ fl Pe stays below Tt and (C+ fl Pg) D Tt = {p}. Now we show that for 
any t G [0,1], for any solution Vt of (Pt) and any point p G F^ the graph of vt + a 
stays above the compact part of Pe bounded by C+. Then this will give a lower C1 

estimate of vt at p, independent of p,_i_ and vt. Indeed, choose t, Tt and p G Tt as 
above and call u^p the C2 function on ft such that its graph is precisely the euclidean 
hyperplane Pe. Observe that we have (vt + a)\dn > (ut,p)\dQ' Suppose it is not true 
that ut,p <vt+a. Then there exists a real number b > 0 such that ut,p < vt + a + b 
with equality occuring at an interior point of ft. But this gives a contradiction with 
the Maximum Principle since on the part of fi where ut,p > 0 we have: 

V(ut,p) = — >   ^"f, = V(vt + a + 6). 
ut,p      vt+a + b 

Now we look for upper C1 apriori boundary estimates. We begin as before but 
now we consider the positive rotated hyperplanes Pai a > 0, That is Pa fl C

+ stays 
above Tt. The same argument shows there exists a > 0 such that the latter is true 
for each t G [0,1], for every solution vt of (Pt) and each p G Tt. Unfortunately, 
we cannot apply the Maximum Principe to conclude the proof (because there is no 
contradiction to the fact that Pa stays over the graph of vt -+- a with a tangent point 
of contact). But observe that this situation is not possible substituting (euclidean) 
hyperplanes by (hyperbolic) geodesic hyperplanes. Observe also that if a > 0 is 
small enough, the euclidean hyperplane Pa is almost vertical. Therefore, the (unique) 
geodesic hyperplane Sa of Hn+1 through p G Tt tangent at Pa is C2 close to Pa in 
a compact part of Hn+1. Now choose a compact part K of Hn+1 including in its 
interior the set C+ D {a < xn+i < snpdQ /}. That is 5Q fl C

+ is C2 close of Pa fl C
+ 

in K. We infer that if a > 0 is small enough each intersection Sa fl C
+ stays over 

Tt, for each t G [0,1], each solution vt of (Pt) and each p G IV Using the Maximum 
Principle as in the proof of the lower C1 apriori estimates, we get that the graph of 
Sa over H stays over the graph of vt + a, with intersection at the boundary point p. 
This gives upper C1 boundary estimates and concludes the proof. □ 

THEOREM 2.3. Let Q, C R2 be a compact C0 convex domain and let f : 90 —> 
[0, +oo[ be a continuous function. Then problem (P) admits an unique solution. 

Proof. When / = 0 the result follows from Theorems 3-4. We will proceed the 
proof for / ^ 0. In view of Remark 1.5 it suffices to prove the existence of a solution. 
Let F : fl -+ [0, +oo[ be the (unique) euclidean minimal extension of / over Vt. Note 
that the usual maximum principle for minimal surface of R3 shows that F(x) > 0 (as 
P\dQ — f ^ 0) for any x E ft. This can be shown also using the Maximum Principle 
in Proposition 1.4. Consider now a compact exhaustion (Kn), n G N, of ft such that 
for each n, Kn C ft is a compact part of H, homeomorphic to a closed disk, and 
dKn is a C3 strictly convex Jordan curve. Let us call un : Kn ->]0, +oo[ the unique 
hyperbolic minimal extension of F\QKn given by the Theorem 2.2. Hence V(un) = 0 in 
Int(Kn) and un = F on dKn. Moreover the Maximum Principle shows that un > F 
on lnt(Kn) for each n. Let 11 be any geodesic plane above the graph of / on dft. 
Namely 11 is a half-sphere orthogonal to dooH3 = R2 containing the graph of / in its 
"interior". Now choose Kno where no G N is a fixed integer and consider the functions 
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un for n > TIQ. The above observations show the existence of two positive numbers 
a, b such that 0 < a < un < b on Kno for any n > no- The Compactness Theorem 
1.3 gives rise to a subsequence of (un) converging in the C2-topology to a positive C2 

function u on fi satisfying (Eq. 1-1). By abuse of notation we continue to call (un) 
this subsequence. It remains to prove that u is continuous in Q, and u\d^ = /. 

Observe that by construction we have F < u on VI. Furthermore, the graph of 
u stays below the geodesic plane 11 as this is true for each un. Let B > 0 be the 
maximum height of 11, then u < B on fi. For each n let Un : ft -► [0, +oo[ be the 
continuous function defined by 

{un(x)     for     x e Kn 

F(x)     for     x e n - Kn. 

Clearly Un converges to u on £2. Let p £ dQ, be any fixed point, as 9(7 is convex 
p admits a superior barrier, see Remark 1.9. Therefore there exists an open neigh- 
borhood TV of p in R2 and a sequence of functions u^ in C2(Af fl fi) fl C0(J\fn fl) 
satisfying conditions (z), (ii) and (Hi) of Definition 1.6, where M is substituted by B. 
The Maximum Principle implies that w^ > F on (AT n ft)) for each k. This proves 
that u;^ > I7n on Af fi (?.ftTn for each k and n. Observe also that u^ > B > Un 

on ^jVn Kn. The latter and the Maximum Principle yield cjjj" > Un on (AfnKn). 
Finally we get cjjj" > C/n on (A^nn) for any k and n. Let any x € Af Dfi,, we have 
F(x) < u(x) < w%(x) and then F(x) - f(p) < u(x) - f(p) < w+(x) - f(p). When 
x converges to p and k -> +oo we get that u(x) converges to f(p). That is u is 
continuous up to p and u(p) = f(p). D 

The next result shows that the vertical graphs constructed in Theorem 2.3 are 
unique in the class of minimal surface with the same boundary. 

THEOREM 2.4. Let ft C Rn be a strictly C2 convex domain and let M C Hn+1 be 
a compact (hyperbolic) minimal hypersurface continuous up to the boundary. Suppose 
that F = dM is a continuous vertical graph over dft. Then the whole hypersurface M 
is a C2 vertical graph over ft. Furthermore M is the unique connected and compact 
immersed minimal hypersurface whose boundary is T. The same statement hold when 
n — 2 and dft is only supposed to be a C0 convex domain. 

Proof. Let C+ = 3fix]0,+oo[C Hn+1 be the (half) cylinder over dft. Then 
F = dM C C+ and by the Maximum Principle the whole hypersurface M stays inside 
the solid cylinder bounded by C+, that is in fix]0,+oo[. To see this observe that 
the vertical (euclidean) hyperplanes are geodesic hyperplanes, and then are minimal 
hypersurfaces of Hn+1. For the same reason, M cannot have any interior point on the 
cylinder C+. Let x G ft be any point. Consider the A-homotheties, h\, with respect 
to x, with A > 0 and recall that they are hyperbolic isometrics. More precisely we 
have h\(X) = X(X -x)+x for any X G Hn+1. As dft is strictly convex, F is a radial 
graph with respect to x, that is h\(T) fl F = 0 for any positive A ^ 1. We have also 
that hx(T) n M = 0 for any A > 1 since M stays in the convex closure of C+. 

Suppose now that M is not a radial graph with respect to x. Hence, there exists 
A > 1 such that h\(M) DM ^ 0. But the last implies the existence of Ao > A such that 
h\Q{M) and M are tangent at some interior point and h\Q(M) stays "above" M in 
the sense of radial graph (with respect to x). Now the Maximum Principle applies to 
induce that h\0(M) = M which is absurd since AQ > 1 and then h\Q(dM) fl dM = 0. 
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Therefore we conclude that the whole hypersurface is a radial graph with respect to x. 
In particular, the intersection between M and the vertical line through x is reduced 
to a single point. Since the previous argument holds for any x £ H, we deduce that 
M is a vertical graph over 0. It remains to prove that this vertical graph is C2. 
That is M no has interior point with vertical tangent space. Suppose there exists 
an interior point X G M such that the tangent space of M at X is vertical. Let us 
call x € fi the orthogonal projection of X on Rn = cJooH71"1"1. We know that M is a 
radial graph with respect to x. Consider the following family lit, t > 0, of geodesic 
hyperplanes of Hn: for each t > 0, Ut is the hemisphere centered to x with (euclidean) 
radius t. When t is big enough lit no has intersection with M and M stays below 
lit. When t decreases to 0 we get a first contact point between M and a hemisphere 
Uto- Now we use the Alexandrov reflection to conclude. Namely for t < to, we call 
Mf the part of M being above lit and Mf the part being below lit. Furthermore we 
call M/ the reflected of M£

+ with respect to lit. Recall that reflections with respect 
to hemispheres orthogonal to d(X>li

n are hyperbolic isometrics. Hence M4* is again 
a hyperbolic minimal hypersurface. As M is a radial graph (with respect to x) the 
intersection between Mj~ and Mt* only occurs on their common boundary, that is on 
lit. It follows from the boundary Maximum Principle (see Remark 1.5 (4)) that Mf 
and Mt* cannot be tangent on their common boundary. But when we choose lit to be 
the hemisphere containing X we get: 

x G <9M; n dMf, Mf n M; = dMf = BM;. 

Furthermore the tangent spaces of Mf and M£ at X are the same since the tangent 
space of M at X is vertical. We deduce from the boundary Maximum Principle that 
Mf = Mf, that is M is symmetric with respect to lit- But this is absurd since dM 
is not symmetric. 

The uniqueness of M comes from the uniqueness of vertical graph with fixed 
continuous boundary data, see the Remark 1.5. 

Clearly the whole construction is valid when n = 2 and dVt is only supposed C0 

convex. □ 

REMARK 2.5. Note that Theorems 2.3 and 2.4 do not hold any longer if fi is 
neither convex neither connected. Indeed, consider two positive real numbers 0 < 
r < 1 < R. Let U C H3 be the region delimited by the two hemispheres (geodesic 
hyperplanes) centered at 0 whose radius is respectively r and R. It is known that for 
r, R properly chosen, the region U contains a family J7 of hyperbolic catenoids whose 
axis of rotation is the vertical axis {xi = X2 = 0}. Furthermore each catenoid of this 
family is symmetric with respect to the hemisphere 11 centered at 0 whose radius is 1. 
For every point P G 11, P ^ (0,0,1), there is a catenoid of T intersecting orthogonally 
Hat P. 

Now we choose fi, C R2 = dooll3 to be an annular domain bounded by two circles 
centered at 0 with radius r < ri < 1 < r2 < R. If ri and r2 are closed enough of 
1, one of the catenoid of J7 contains a part S bounded by two horizontal circles, one 
of those circles is a graph over the circle of radius 7*1 and the other is a graph over 
the circle of radius r2. But 5 is not a graph, thus Theorem 2.4 does not hold for the 
domain ft. 

Now we choose ri < r < R < r2. Then the Dirichlet problem (P) with / = 0 
has no solution. Indeed, suppose M C H3 is a minimal surface, which is a graph 
over Q, and such that dooM = dQ.   Then by an argument of continuity, we could 
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get a catenoid C of !F tangent to M and staying below M. But the latter yields a 
contradiction with the Maximum Principle. We conclude that Theorem 2.3 does not 
hold for the domain fl. 

3. Perron process, elliptic, hyperbolic and parabolic surfaces. Now we 
describe the Perron process (see [Co-Hi], chapter IV, §4), for minimal surfaces of H3. 
The Perron process was applied in the theory of minimal surfaces in R3. See, for 
instance, [Je-Se, 1], [Je-Se, 2] and [SE-To, 1]. 

DEFINITION 3.1. Consider problem (P) where Q is any domain of R2 and / is 
any non negative continuous function on dfl. 

1) Let u : fi -> [0, -hoof be a continuous function. Let U C 0, be a closed round 
disk. It follows from Theorem 2.3 that u^u has an unique minimal extension u on U, 
continuous up to dU. We then define the continuous function Mu(u) on Q, by: 

(u{x) Hxen-u 

2) Let u : O —> [0, +oo[ be a continuous function. We say that u is a subsolution 
(resp. supersolution) of (P) if: 

(0 uian < f (resp. 1/^0 > /). 
(ii) For any closed round disk U C fi we have u < Mu{u) (resp. u > Mu(u)). 

REMARK 3.2. We now give some classical facts about subsolutions and superso- 
lutions, see [Co-Hi]. 

1) It is easily seen that if u is C2 on Q and if u > 0, the condition (ii) in Definition 
3.1 is equivalent to ^(u) > 0 for subsolution or ^(u) < 0 for supersolution. 

2) As usual if u and v are two subsolutions (resp. supersolutions) of (P) then 
sup(u,v) (resp. mi(u,v)) again is a subsolution (resp. supersolution). 

3) Also if u is a subsolution (resp. supersolution) and U C SI is a closed round 
disk then Mu(u) is again a subsolution (resp. supersolution). 

4) Let Q C R2 be a bounded domain and let u, v : fi —> [0,4-oo[ be two continuous 
functions such that Mu(u) > u and Mu(v) < v for any closed round disk U C 
fi. Suppose that U^QQ < V\QQ^ then we have u < v on Q. Roughly speaking, a 
supersolution is greater than a subsolution. 

EXAMPLE 3.3. 1) For any domain Q C R2, if / is any continuous positive function 
on #£}, then the vanishing function u = 0 on ft is a subsolution for (P). Observe that 
for every x G fi there exists a subsolution u of (P) with u(x) > 0. Indeed let II be any 
hemisphere centered at x such that 9ooII C ft. Then II is the graph of a continuous 
function v defined on a closed round disk U C ft. Then set u = v on U and u = 0 on 
ft — U. One easily verify that the function u is a subsolution. 

2) Choose ft to be a proper sector of R2. That is a region of R2 bounded by two 
rays issue from the same point x G R2 and making an angle 8 £]0,7r[ at x. In the 
Appendix, Proposition A.l, it is shown that there exists a solution ue for problem (P) 
where / = 0 is the null function. In fact the graph of ue is invariant by any homotheties 
hXi\ with center x and ratio A > 0. More precisely, we have ue(hXi\(p)) = \.ue(p) for 
any p G ft. We deduce that UQ is a supersolution for (P) (with / = 0). In fact, we 
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will prove in §4 (Corollary 4.6) that ug is the unique solution of (P). 
In the same way let (7 be a band of R2. Up to an isometry of H3, we can suppose 

that fi = {(#,2/) G R2, 0 < y < 1}. Consider problem (P) where / = 0 is again the 
null function. Also in the Appendix, Proposition A.2, it is proved that problem (P) 
has a solution UB- Again we deduce that UB is a supersolution for (P). In fact the 
graph of UB is invariant under any horizontal translation fixing the band fi. That is 
we have UB(P + (#, 0)) = UB(P) for any p E 0 and any x G R. We will prove that UB 

is the unique solution of (P) in §4 (see Corollary 4.2). 

3) Let ft C R2 be an unbounded domain in a band. Let / be any non negative 
and bounded continuous function on dCl. Then using again the hyperbolic catenoids 
and the horizontal translations parallel to the band, in the same way as in the proof 
of Theorem 1.7, we can show that any solution for the problem (P) is bounded. 
Therefore, using a well chosen band B containing fi, such that the solution UB (see 
item 2 above) envolves /, that is such that UB\dn > /? we get a supersolution for 
problem (P), invariant under any horizontal translations parallel to the band. Namely, 
the supersolution is w^.^. 

4) Now let H C R2 be any bounded domain and let / : dCl -¥ [0,+oo[ be any 
continuous function. It is easy to construct a supersolution for problem (P). Indeed, 
let C C H3 be a hyperbolic catenoid such that its orthogonal projection, Co, on R2 

has a non empty intersection with Q. Let x G Q be an interior point of CQ. Consider 
the homotheties h\,x with respect to a;, A > 0. Clearly, for A > 1 big enough, a piece 
of h\iX(C) is a vertical graph v over a domain containing ft and V\QQ > sup(/). That 
is, v is a supersolution for (P). 

THEOREM 3.4. (Perron process) Let Q, C R2 be a domain and let f : dft -> 
[0, +00[ be a continuous fonction. Suppose that problem (P) has a supersolution (j). 
Set S^ = {w,   subsolution of (P), u < </>}.  We define for each x G ft 

v(x) = sup u(x). 

Then the function v is C2 on O and satisfies (Eq. 1-1), 
Furthermore, consider p G dft and suppose that either one of the following cases 

holds: 
(i) dQ, is C0 -convex at p. 

(ii) p has a barrier and f > a > 0 on dQ,. 
(Hi) p has a barrier and f(p) = 0. 

Then v is continuous up to p and v(p) = f(p).  In particular if ft is C0 convex, the 
function v is continuous up to dft. 

Proof First observe that S^ ^ 0 since the vanishing function belongs to 5^. By 
construction we have v < </> on ft. Let u G S^ and let U C ft be a closed round disk. 
Note that Mu(u) G 5^. Indeed we know that Mu(u) is a subsolution. Furthermore 
the graphs of Mu(u) and Mu((j>) over U are two minimal surfaces such that the graph 
of Mu{u) = u on dU is below the graph of Mu((f)) = 0 over dU. The Maximum 
Principles induces that Mu(u) < Mu (0). But by the very definition of supersolution 
we have Mu{(j)) < </> and then Mu(u) < 0. 

Now we show that v is C2 on ft and satisfies (Eq. 1-1). Let x G ft be any point. 
Consider a sequence (un) in S^ such that un(x) -» v(x) when n -» +oo. Let U C ft be 
any closed round disk centered at x. We can assume that for each n and each y G dU we 
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have un(y) > 0. Define for each n the function vn(p) = sup{ui(p),..., un(p)}, p G ft. 
By construction we have also Mu{vn)(x) -> v(x) when n -> +00. Set Vn = Mu(vn). 
Therefore Vn is an increasing sequence of functions bounded above by 0, satisfying 
(Eq. 1-1) on [/. We deduce the existence of two real numbers 0 < a < b such that 
a < Vn(p) < b for each n and every p G U. Now we get with Theorem 1.3 that a 
subsequence of (Vn) converges to a C2 function V on Int(U) satisfying (Eq. 1-1). Let 
us call again (Vn) this subsequence by an abuse of notation. By construction we have 
V(x) = v(x). It remains to prove that V(p) = v(p) for any p G Int(U). Let y G 
Int(U) be a fixed point. Let (un) in S^ such that un(y) -> v(y) when n -> +00. Set 
vn = s\ip(yn,un). As above we can assume that (vn) is an increasing sequence. Set 
Vn = Mu(vn), then there exist two real numbers 0 < a < b such that a < Vn(p) <b 
for any p G U and any n. It follows from the Compactness Theorem (Theorem 1.3) 
that a subsequence of (Vn) converges on U in the C2 topology to a C2 function V on 
U satisfying (Eq. 1-1). We have un(y) < Vn(y) < v(y), we infer that V(y) = v(y). 
Also by construction we have Vn < vn < Vn, the last inequality holds since vn is a 
subsolution of (P). Therefore we get V < V, from which we deduce V(x) = v(x) 
(because V < v). Now, observe that V and V are C2 functions on Int(?7) satisfying 
(Eq. 1-1) such that V < V with equality at an interior point x. The Maximum 
Principle applies here to deduce that V = V on Int(C/). In particular V(y) = v(y), as 
this is true for any y G Int(U) we conclude that v = V on Int(i!7). This shows the first 
part of the theorem. 

Let p G dfi, be a boundary point. Observe that for each of the three cases p admits 
a superior barrier. Therefore, there exist a neighborhood Af of p and a sequence of 
functions a;jj!", as in Definition 1.6 where M > 0 is chosen so that M > supajV/-nfi(0(a:)). 
For each k and any u G S^ we have ^(x) > u(x) for every x G d (Af Oft). We infer 
that &£ > v on Af fl Q, for each A:, see Remark 3.2 (4). 

Now, suppose that case (i) occurs. We define for x G ft, 

hk{x) = f(p)-£±- log(l + \p - x|2) - log(l + -^dix)), 

where (ek) and {5k) are monotonous sequences of positive real numbers such that: 
£k -v 0, 8k ->> 0 when k -)► +00, <j>{x) > f(p) - ^ if \p - x\ < 5k and hk(x) < 0 if 

\p — x\ ^ fik- Furthermore, we want that 5keb < eb — 1 and V(hk) > 0 in the part 
where hk(x) > 0 and d(x) < 5k, see the proof of Theorem 1.7. Therefore, we can 
choose UJ^(X) = max(0, hk(x)) for x G ft. In fact, note that for every k G N, we have 

that (^k(x) < <l>(x) on ft and Mu(^k) — ^k' *'iat 'ls ^k ^ ^0 ^or every &• Therefore 
uo^ < v. We infer that 

M*) " /(P) < «(^) " /(P) < ^W " /(P) 
for every k and every x G A/" fl fi. When a: converges to p and k converges to +00 we 
get that v(x) converges to f(p) as desired. 

Suppose now that case (ii) holds. In particular p has an inferior barrier. Let Af be 
a neighborhood of p and UJ'J~ a sequence of functions as in Definition 1.6, where n > 0 
is choosen so that 1/n < a. Set /?*. = supdj^nQ ^(x), we have 0k < a since ^ < 1/n 
on cWfl fl. We define Uk on fl setting Uk(x) =max(LJk(x),Pk) for a: G Afdft and 
^^ (x) = (3k for a: G fl — Af. Observe that Uk is a continuous function on fl and is a 
subsolution for problem (P). We infer that Uk < v < u^ on Af D fl for every k G N. 
We deduce that when x converges to p and k converges to +00, then v(x) converges 
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to f(p). 
Finally assume that case (in) holds. Consequently, we get 0 < v < (j~£ on jVofi. 

We conclude that v(x) converges to 0 = /(0) when x converges to p. □ 

The following result is a straightforward consequence of Theorem 3.4. 

COROLLARY 3.5. Let Ct C R2 be an unbounded domain and let f be any non 
negative continuous function on 9fi. Suppose there exists a supersolution </> for problem 
(P). Let F C dQ, be a convex arc, if any, with respect to the interior transversal 
orientation of d£l. Then the solution v of Perron, relative to <j>, given in Theorem 3.4 
is continuous up to T and v(p) = f(p) for any p G I\ 

REMARK 3.6. 1) The same holds for any bounded domain. Namely consider 
problem (P) where Q is a bounded domain and / is any non negative function on dtt. 
Note that problem (P) admits always a supersolution 0, see Example 3.3 (4). Let 
F C dft be a convex arc, if any. Therefore the solution of Perron v relative to 0 is 
continuous up to T and v(p) = f(p) for any p G F. 

2) We remark that in order to proof Theorem 3.4 (Perron process), we just need 
to applied Theorem 2.3 when dQ is a round circle. 

Now we show that for each type of positive isometry of H3 (namely elliptic, 
hyperbolic and parabolic isometries), there exists a complete minimal vertical graph in 
H3 invariant by the action of a discrete group of such isometries of H3. 

PROPOSITION 3.7. (Elliptic Surfaces) Let n G N, n > 0, be any integer and 
set 9n = ^L. Let Rn be the rotation with respect to the xs-axis whose argument is 9n. 
Then there exist a complete and a non complete minimal surfaces in H3 invariant by 
the rotation Rn. 

Proof Recall that Rn(p) = eien .p for any p G R2. Let rn C R2 be a regular 
polygon centered at the origin 0, with n sides. Let Q C R2 be the domain whose 
boundary is rn. Consider / : rn -> [0,+oo[ any continuous function invariant by 
Rn. That is f(Rn(p)) = f(p) for every p G rn. We know that problem (P) has a 
supersolution 0 (see Example 3.3 (4)). Therefore, as dfl is C0 convex we conclude 
with Remark 3.6 that the solution of Perron v (relative to </>) given in Theorem 3.4 is 
continuous up to the boundary and v(p) = f(p) for any p E Tn. Furthermore as fi 
is a bounded domain, the problem (P) has at most one solution, see Remark 1.5 (2). 
Thus v is invariant under action of Rn. Namely we have v(Rn(x)) = v(x) for every 
x G H. In particular if we choose / = 0 to be the null function, then the graph of v 
will be a complete minimal surface of H3. Note that we could also invoke Theorem 
2.3 to insure existence and uniqueness of solution of the problem (P). □ 

LEMMA 3.8. Let Q, C R2 be an unbounded domain. Suppose that dfi, is embedded 
and there exist a point p G dft and a real number X > 1 such that h\,p(dfi,) = dCl, where 
h\,p is the homothety with respect to p, of ratio A. Suppose also that SI is contained 
in a proper sector of R2 whose vertex is p. Consider problem (P) where f = 0 is 
the null function. Let </) be any supersolution for (P) such that (j)(h\,p(x)) = A • </>(#), 
x G H, see Example 3.3 (2). Assume that the solution of Perron v of (P) relative to (j) 
is continuous up to the boundary. Then, it follows that v(h\,p(x)) = X'v(x) for every 
x G ft. Consequently, the graph S of v is a complete minimal surface o/H3 invariant 
by the hyperbolic isometry h\iP: h\7p(S) = S. 
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Proof. Observe that v{x) = 0 for each x G dfl.   We can assume that p = 0 
and then h\,p(X) = h\(X) = A • X for every X € H3. Let us call 3$ the family of 
subsolutions u of (P) such that u < (j). By construction we have v(x) = sup{u(#)r u G 
c?^} for any x e ft. Now observe that the minimal surface \.S is the vertical graph 

j*   

of the function v\(x) = \v(—), x G fi.  By construction we have v\{x) = 0 for any 
A 

a: G dQ,.   We deduce that VA is a subsolution for (P) and v\ < <fi (since ?;AOE) = 

^(T) < ^0(T) — ^(*))- It follows that v\(x) < v(x), x G fi, from the very definition 
A A 

of v. On the other hand, the same argument applied with 1/A instead A shows that 
vi/\{x) < V(^)J ^ G fl. Prom which we deduce that v\(x) = v(x), a: G f). D 

PROPOSITION 3.9. (Hyperbolic Surfaces) Let fi C R2 be an unbounded do- 
main with dQ embedded. Suppose that: 

(i) 0 G 90 and there exists A > 1 such that Q, is invariant by the homothety h\ 
with respect to 0 whose ratio is A. 

(«) For anyp G dfl, p^O, there exists a hyperbolic catenoid C such that dooCn 
ft = 07 p G dooC and such that the segment joining the centers of the two components 
of dooC intersects ft. 

(Hi) ft is contained in a proper sector ofR2 whose vertex is 0. 
Consider problem (P) where f is the vanishing function on dft.    Then (P) has a 
solution v which is invariant under the homothety hx. Consequently, the graph Sofv 
is a complete minimal surface of H3 invariant under the discrete group of hyperbolic 
isometrics {hq

x,  q G Z}. 
Proof. Observe that as ft is contained in a proper sector, the problem (P) admits 

a supersolution 0, such that <f>(\x) = A-<^(x), x G fi, see Example 3.3 (2). Furthermore 
the condition (ii) implies that each point p G dft, p ^ 0, has a superior barrier (for 
(P)). As dft is convex at the origin 0, we know that 0 has a barrier for (P), see Remark 
1.9 (1). Note that the null function is an inferior barrier for any point p G dft. We 
conclude that any point p G dft has a barrier for (P). Therefore, if v is the solution 
of Perron (relative to (/)) of (P) it follows that v is continuous up to the boundary and 
V\QQ = 0, see Theorem 3.4. Furthermore, Lemma 3.8 shows that v(X • x) = A • v(x) for 
any x G ft. D 

REMARK 3.10. In the context of Proposition 3.9, suppose that ft is C2. Let R > 0 
and set P = {p G dft, R < \p\ < X.R}. Let k(x) be the euclidean curvature of P with 
respect to the interior normal orientation. Let 9 G]0,7r[ be the angle of any proper 
sector containing ft whose vertex is 0. Suppose that 8 is small enough so that the 
condition (ii) is satisfied for 5^. Consequently, the condition (ii) is achieved (for ft) 
if it is assumed that |A:(a;)| is small enough. 

In the same way, we can prove analogous statements for parabolic minimal sur- 
faces, the arguments are essentially the same. For this reason we just state the results 
without give a proof. 

LEMMA 3.11. Let ft C R2 be an unbounded domain. Suppose that dft is embedded 
and there exists a non null vector £ G R2 such that T(ft) = ft, where T is the euclidean 
translation T(x) = x 4- £, x G R2. Suppose also that ft is contained in a band o/R2 

invariant under T. Consider problem (P) where f = 0 is the null function. Let <fi 
be any supersolution for (P) such that (j)(T(x)) = (t>(x), x € ft (see Example 3.3 (2) 
or (3)).  Assume that the solution of Perron v of (P) relative to (j) is continuous up 
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to the boundary. Then we have v(T(x)) = v(x) for every x G ft. Consequently, the 
graph S of v is a complete minimal surface of H3 invariant by the parabolic isometry 
T: T{S) = S. 

PROPOSITION 3.12. (Parabolic Surfaces) Let Cl C R2 be an unbounded domain 
with dQ embedded. Suppose that: 

(i) There exists a non null vector £ E R2 such that fi is invariant by the hori- 
zontal translation T(x) = x + £ 

(ii) fi is contained in a band invariant under T. 
(Hi) For any p G dfl, p ^ 0, there exists a hyperbolic catenoid C such that dooCD 

ft = 0, p G dooC and such that the segment joining the centers of the two components 
of dooC intersects ft. 
Consider problem (P) where f is the vanishing function on Oft. Then (P) has a 
solution v which is invariant under the horizontal translation T. Consequently, the 
graph S of v is a complete minimal surface of H3 invariant under the discrete group 
of parabolic isometrics {T9,   q G Z}. 

4. Graphs over unbounded domains. For the whole section we design by B 
the open band B = {{x,y) G R2, 0 < y < 1}. Observe that for any open band C in 
R2 = dooH3 there exists an isometry of H3 sending C on B. Therefore there is no 
loss of generality in just consider the band B. 

THEOREM 4.1. Let ft c B be a convex domain. Let f : dft -» [0,+oo[ be a C0 

function. Then problem (P) has a solution. That is f admits a minimal extension on 
ft. 

Proof. For any n G N set ftn — {(x^y) G ft, —n < x < n}. Note that ftn is a 
bounded and convex domain. Let fn : dftn —> [0, -f-oo[ be any continuous function 
such that (fn)\dQ = /• Let us call un the unique minimal extension of fn on ftn, 
see Theorem 2.3. Consider now a hyperbolic catenoid Cn such that dooCn has a 
component on each side of the band B. Up to a homothetyr we can assume that the 
vertical projection of Cn on R2 = dooH3, contains ftn in its interior. Observe that 
there exists a positive number tn such that the vertical translated Cn = Cn + (0,0, tn) 
stays strictly above the graph of /. We deduce with the Maximum Principle that if 
k » n is sufficiently big, the graph of Uk over ftn stays below Cn. This gives uniform 
upper estimate for the sequence (uk) over ftn (at least for k big enough). Now, for 
any e > 0 set ftn,£ = {p G ftn, d(p,dftn) > e}. Let p G flni£ be any point and 
let Ilp be any hemisphere in H3 centered at p such that dooKp C ftn,£. As lip is a 
minimal surface in H3, the Maximum Principle shows that the graph of any function 
Uk stays above lip for k » n big enough. This gives uniform lower C0 estimate for 
the sequence (uk) on ftn,£. As the family ftnj£ is a compact exhaustion of ft, we infer, 
according to Theorem 1.3, that there is a subsequence of (uk) which converges on ft 
for the C2 topology to a C2 function u satisfying (Eq 1-1). As ft is convex we know 
that each point of dft has a barrier, see Remark 1.9 (1). From which we deduce that 
u is C0 up to dft and u = f on dft as in the proof of Theorem 3.4. D 

COROLLARY 4.2. Let ft c B be a convex domain. Let f : dft -¥ [0,-hoof be a 
C0 function. Assume that f is bounded and uniformly continuous. Then problem (P) 
admits an unique solution u. Furthermore u is also bounded and uniformly continuous 
on ft. 
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Proof. We know by Theorem 4.1 that problem (P) admits a solution. The unique- 
ness arises from Corollary 1.11. Furthermore, Theorem 1.7 shows that u is bounded. 
Finally, we deduce from Corollary 1.8 that u is uniformly continuous. □ 

THEOREM 4.3. (Maximum Principle in a band) Let Q, C B be a domain 
and let f : dft -> [0,+oo[ be a continuous function such that f(p) < UB(P) for every 
p € dCt (see Example 3.3 (2) for the definition of UB). Then any minimal extension 
F over fi, F^Q, — f, satisfies F <UB- 

Proof. Let us consider the following problem (P): 

0 
ELboUfi v U 

U\dB = 0 

ueC2(B)nc0(B) 

Define v(p) = sup(F(p)yUB(p)), P G 0, and v(p) = UB(P) for any p G B — SI. As the 
graph of / stays below the graph of UB we deduce that v is a continuous function on B 
with v\dB = 0. It is easy to see that v is a subsolution for problem (P). Furthermore, 
using a hyperbolic catenoid as in Example 3.3 (3) we can construct a supersolution 
(j) for (P) whose graph stays above the graphs of UB and F. We deduce that v < (/>. 
Set St = {u G C0(B), subsolution of (P), u < (/>}. As in Theorem 3.4 we get that 
U(p) = supwGo {u(p)} is a solution of (P). As problem (P) has an unique solution, 
see Corollary 4.2, we deduce that U = UB- From which we conclude that F <UB for 
any minimal extension F of / on Vt. D 

DEFINITION 4.4. For every 0 E]0,7r[ we will design by 5^ any open sector of 
R2 — 9ooH3 whose angle at the vertex is 6. 

THEOREM 4.5. (Maximum Principle in a proper sector) Letuo £ CQ{So)C[ 
C

2
{SQ) be a function satisfying ^(ue) = 0 and UQ = 0 on BSQ. Let U C SQ be a 

domain and f : dQ —> [0, +oo[ be a continuous function such that f(p) < ue(jp) for 
every p G dVt. Then any minimal extension F of f on Q, satisfies F < ug. 

Proof. We can assume that SQ — {p G R2, 0 < arg(p) < 6} (up to an isometry 
of H3). Let po G R2 be any point such that arg(po) = f + TT. That is po ^ SQ and po 
lies on the median line of SQ. Let Ho C H3 be a hemisphere centered at po such that 
doollo fl SQ = 0. Observe that Ho is a geodesic plane of H3 and that reflection with 
respect to UQ is an isometry of H3. If N is any part of H3 or R2 we design by iV* 
the reflected of iV with respect to IIo. 

Note that SQ is a compact and C^-convex domain in R2. Let M C H3 be the 
graph of UQ over SQ. Therefore M* is a minimal surface in H3 whose asymptotic 
boundary (OSQ ) is compact and convex. We infer from Theorem 2.4 that M* is a 
vertical graph. Now let N C H3 be the graph of F, where F is any minimal extension 
of / on fi. It follows from hypothesis that N* is a minimal surface whose boundary 
stays in the closure of the "bounded" component of H3 - M*. Suppose, by absurd, 
that N* does not stay in this bounded component. Let p G SQ be any point. Consider 
the homotheties hp,\ from p, where A > 0. As M* and iV* are compact in H3 there is a 
real number A > 1 such that hp,\(M*) and N* are tangent at some point and hp,\(M*) 
stays above N*. But this gives a contradiction with Maximum Principle since both 
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surfaces are minimal in H3. We deduce that AT* stays below M*. Reflecting with 
respect to EQ we conclude that F < UQ for any minimal extension F of / on fi. D 

PROPOSITION 4.6. For every 6 €]0,7r[, there is at most one connected complete 
minimal surface M in H3 which is properly immersed such that its asymptotic bound- 
ary is dSe U {00}. 

In particular if fi = SQ and f = 0 is the null function on d£l, the problem (P) 
has at most one solution. 

Proof. We use the same notations and constructions as in the proof of Theorem 
4.5. Let M and N two minimal surfaces in H3 satisfying the hypothesis of Proposition 
4.6. We get that M* and N* are graphs over the convex and bounded domain 5|. 
Then using the homotheties hp,\ as in the proof of Theorem 4.5, we can show that 
M* stays below and above iV*. We deduce that M* = N*. Reflecting with respect to 
Ho we get M = N. D 

REMARK 4.7. 1) We will see in the Appendix that it does exist for any 0 E]0,7r[ 
a solution ug for problem (P), where 0 = S0 and / = 0 is the null function on dil. 
It follows from Proposition 4.6 that (P) has an unique solution. Furthermore we will 
see that the graph of ue has an important geometric property. 

2) Let H C Se be a C0-convex domain in a proper sector, 0 €]0,7r[. Let / : 
dQ ->• [0, +oo[ be a continuous function such that / < UQ on dQ. Observe that ug is 
a supersolution for problem (P). We can deduce, using Perron process as in Theorem 
3.4, that problem (P) admits a solution. That is / has a minimal extension on fi. 
Also, let Q, = Se be a proper sector and let / : dSe —> [0, +oo[ be a continuous 
bounded function. Then, there exists a positive constant c such that / < ug + c on 
dSg. Therefore the function ug 4- c is a supersolution for the problem (P) and we 
deduce in the same way that (P) admits a solution. 

3) Consider the limit case where 0 = TT, that is 5- is a half-plane, let / : dQ, -> 
[0, +00[ be any continuous function. Then problem (P) admits no solution. Indeed, 
let p G 5^ be any point. Let 11 C H3 be any geodesic plane such that dooU. C 5^ 
is a circle in 5^ and p belongs to the open disk bounded by ckoll. We get from the 
Maximum Principle that 11 stays below any minimal extension F of /. Therefore, as 
the radius of 11 can be made as large as we want, we deduce that F(p) = +00 for any 
p G STT and any solution F of (P), which is absurd. In fact, this argument holds for 
any dimension. 

Appendix. For sake of completeness, we give a proof for existence of some min- 
imal surfaces in H3. There were studied in the paper of M. Gomes, J. Ripoll and 
L. Rodriguez entitled: On surfaces of constant mean curvature in hyperbolic space, 
preprint 1985, IMPA. 

From now on, we design by Sg, 0 G]0,7r[, the open sector of R2 whose vertex is 
q = (-1,0,0), with angle 0 and whose median line is the real ray [-1, +00[. 

That is: 
0 0 

Sg = {pe R2,   -- < arg(l +p) < -}. 

PROPOSITION A.l. Let 0 G]0,7r[ be any number. Then there exists an unique 
complete minimal surface Mg properly immersed in H3

; whose asymptotic boundary 
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is the boundary of SQ . Moreover this surface is a graph over Se and is invariant under 
the homotheties hqi\, with fixed point q = (-1,0,0), for any A > 0. 

Proof. We will construct a solution for problem (P) where Q = 3$ and / = 0 
on dQ,. For this we first provide a supersolution </>. To fix notations, let us say that 
the real ray [— l,-foo[ is supported by the rri-axis. Let 11 be the vertical half-plane 
through (0,0,0) orthogonal to the xi-axis, that is 11 = {X £ H3, xi = 0}. Consider 
the following C2-curve on 11: j(t) = (0,rcos(£),a 4- rsin(t)), t G]0,7r[ where a > 0 
is a real number to be defined later, and r > 0 is a fixed number. Note that the 
image of 7 is a vertical semi-circle F of radius r. Then we choose r big enough so 
that the points ±(0, r, 0) ^ 5^ and the segment joining those two points intersects 5^. 
Let C C H3 be the "cone" over F with respect to the point q = (-1,0,0). That is 
C = Ux^hq^T) where hq%\(X) = A - (X 4- (1,0,0)) + (-1,0,0) for any A > 0 and 
every X G H3. Observe that C is a C2 surface, and is the graph of a C2 function 0 
defined in a sector containing 5^ in its interior. In order to compute the hyperbolic 
mean curvature HH of C we first evaluate its euclidean mean curvature HE both in 
relation to the normal orientation corresponding to increasing z. For this we use the 
following parametrization of C = X(]0,7r[x]0, +oo[) where: 

X(t, A) = A • [(0, r cos(*), a + r sin(*)) + (1,0,0)] + (-1,0,0),  t €]0,7r[, A > 0. 

A straightforward calculation shows that the euclidean mean curvature HE of C is: 

TJ  u w l + r2 + 2arsin(*)+a2 

2Ar[l + (r + asin(*))2]3/2 

We have the following identities: 

V(4>) = y/1 + |Z^|2 

X3 

= 2>AWgg 
<P 

where D<fi is the euclidean gradient vector of 0, iVs =   /   ]    ,2 is ^he third component 

of the upper unit euclidean normal vector field iV along C. From which we infer: 

^, , x 2 sin(t) 1 + r2 + 2ar sin(t) + a2 

A(a + rsin(0)v/l + (r + asm(f))2      Ar [1 + (r + osin(*))2]3/2 

<£> 2sin(t)r[l + (r + asin(t))2] < (a + r sin(t))(l + r2 + 2arsin(*) + a2) 

Clearly, the last inequality will be satisfied if we choose a > 0 big enough. Therefore, 
^ is a supersolution for problem (P). It follows from Theorem 3.4 that (P) has a 
solution ue. It is inferred from Proposition 4.6 that ug is the unique solution of (P). 
Let Me C H3 be the graph of ug. Observe that for any A > 0 the surface hqi\(Mo) 
is also a minimal graph over 3$ with zero boundary value data. Uniqueness of such a 
graph yields hq,\{Mo) = Me for any A > 0. More precisely, Me is invariant under the 
homotheties with respect to q = (—1,0,0). D 
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PROPOSITION A.2. Consider the horizontal open bandB = {(xi1X2) € R2, -1 < 
X2 < 1}. There is an unique connected complete minimal surface M properly immersed 
in H3 such that: 

(i) dooM = dBU{oo} 
(it) M is globally invariant under any horizontal translation leaving B invariant. 

More precisely, TXl (M) = M for every xi G R, where TXl is the horizontal translation 
defined by TXl (X) = X + (xi ,0,0). 
Furthermore, M is a vertical graph over the band B. 

Proof. Consider the vertical half-plane 11 = {xi = 0} in H3. Let M C H3 be a 
complete minimal surface as in Proposition A.2. Observe that 11 and M are transverse 
and IlnM is a connected C2 curve P. Now we use the following notations: y = #2 and 
z = X3. Let 7(£) = (0,2/(t),z(t)), t G]0,1[ be a regular parametrization of P. We can 
assume limt->o y(t) = —1 and limj-n y(t) = 1. By hypothesis the surface M is obtained 
translating horizontally P. That is M = UxeIiTx(T) where TX(X) = X + (a,0,0) for 
every X G H3. Consider the following parametrization of M = X(]0, l[xR) where: 

X(t,x) = (x,y(t),z{t)), t G]0,1[, x G R. 

Let N(t,x) = N(t) = = • (0, — z'ty^y'tt)) be an unit euclidean normal vector 
vV2 + z'2 

field along M. The euclidean mean curvature of M with respect to the normal field 
AT is: 

HE&X) = HE® = 2(2//2 +^2)3/2 (*)• 

Let ffif be the hyperbolic mean curvature with respect to the normal field N. We 
have: 

2HE = -(HH-N^, 
z 

where N^ is the third component of iV. Thus 

Observe that the previous differential equation is invariant by homotheties in y and 
z coordinates. If we assume that P is a graph with respect to ?/, we have 7(2/) = 
(0,2/, z{y)). Therefore 

(*) ffiyiiO^*'^^1**2*. 

Let us show that equation (*) admits a "complete" solution of the following form: 
z = z(y), y G] — 1,1[, with lim^-ti z{y) = 0. For this we will use the same technics 
as in [SE-To, 2] or [SE-To, 3]. First using Picard theorem we get, for every r > 0, 
an unique solution zT of (*) defined on an interval ] — 2/o,2/o[ such that zT(0) = r and 
zT(0) = 0. Observe that the function Z(t) = z(—t) satisfies the same equation (*) with 
same initial conditions. Hence zT(—t) = zT(t), that is the graph of zT is symmetric 
with respect to the z-axis. Now as z" < 0 on ] — yo, yo[ it follows that z' < 0 on ]0,2/o[- 
Thus zT and zT has a limit at yo. Clearly zT(yo) G]0,r[. Suppose that zT(yo) = -00. 
Let P C H3 be the vertical half-plane {y = yo}. Let rr be the graph of zT. Let 
us call MT = Ux6R(Ta;(rr)) the (minimal) translation surface generated by rr. Note 
that P and MT are tangent at (0,2/0,2(2/0)) and MT stays in one side of P.   This 
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gives a contadiction with the Maximum Principle with boundary. We deduce that 
-oo < zr(yo) < 0. Using again the Picard theorem this allows us to extend the 
solution zT to a larger interval. As we have z" < 0 we get a solution satisfying: 
zT(0) = r, zT(0) = 0, zT is defined in some interval ] — yT,yT[ with lim^-j-^ z(y) = 0. 
Observe that the translation surface MT is a complete minimal surface in H3, which 
is a graph over a band BT. Moreover we have d^Mr = dBT U {oo}. At last, using 
the homothetic curves a • (y,zT(y))J varying a, we can find an a > 0 such that BT is 
precisely the band B. This proves the existence part in the statement of Proposition 
A.2. Let us call more briefly M this surface and F the corresponding curve. 

Now we prove uniqueness. Let Mi C H3 be another surface satisfying the as- 
sumptions of Proposition A.2. Observe that Mi fill is a connected C2-curve Pi whose 
boundary points are ±(0,1,0) as well as F. Suppose the two curves F and Fi are not 
identical. Then there is a real number a > 0 such that the homothetic curve a • F and 
Fi are tangent at some point. Thus those curves satisfy the same differential equation 
(*) with same initial conditions. This gives a contradiction and shows uniqueness in 
the statement. D 
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