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HARMONIC MAPS OF DEGREE 1 INTO THE UNIT 2-SPHERE* 

YUXIN GEt 

1. Introduction. Let S2 be the unit 2-sphere in R3 and M a closed Riemann 
surface of genus greater than 1. Let Hl (M, S2) be the set of all u £ H1 (M, IR3) with 
u(x) e S2 for a.e. x G M. The Dirichlet energy functional E on if^M, S2) is given 
by 

E(u) = l[  \Vv\2dVolM,      VueH^M^S2) 

The critical points of the energy functional are harmonic maps, which satisfy the 
following Euler-Lagrange equation 

(1.1) Au+\Vu\2u = 0, 

where A is the Laplace-Beltrami operator. Notice that the energy functional does 
not depend on the choice of the metrics on M, provided that they are compatible 
with the complex structure on M. So the weak harmonic maps from M to S2 depend 
only on the complex structure on M. In this paper, we will consider the following 
problem: is there a harmonic map of degree 1 from M to S2? There is definitely no 
E'-minimum, since it would be holomorphic or anti-holomorphic [14]. And it is well 
known that there is no harmonic map of degree 1 from a torus to a 2-sphere (see 
[8]). In 1978, using a minimization procedure in a suitable space, L. Lemaire [14] 
obtained that there exists a harmonic map of degree one from M to 52 provided that 
M has three planes of symmetry. Using the result due to J. Jost [13], G.F. Wang [21] 
improved this result under the condition that M has one plane of symmetry. Here, 
we will follow a strategy proposed by J.M. Coron [5]; using the Minimax Principle of 
J. Jost; to prove the existence of such a harmonic map in a different class of Riemann 
surfaces defined as below. In particular, we do not need any symmetry assumption 
and our existence result proves the existence of degree 1 harmonic map on all Riemann 
surfaces described by an open subset of the moduli space of Riemann surfaces. Let 
i^i and R2 be two closed Riemann surfaces with positive genus gi and #2 respectively. 
For each j, fix a point pj 6 Rj, and a coordinate neighborhood (Vj,Zj) around pj 
such that Zj(pj) = 0 and Zj(Vj) = B = {ZJ G C : \ZJ\ < 2}. For every complex ej, 
with 0 < \ej\ < 1 , we set 

Vj* = ^({ZJ £V: jejl < IZJI < 1}),        j = 1,2. 

Now, fix two points qi and q2 € S2, and two coordinate neighborhoods (U^Zj) around 
qj such that ^(g^) = 0 and z^U'j) = JB(0,1) = {^ G C : |^| < 1}. We define 

^ = U'j - (z'jrHiz'j G C: Iz'jl < M}),       j = 1,2. 

Then, identifying Uje. and Vjiej for j = 1,2 by the mappings 

zj ' zj — ej 5 
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we obtain a Riemann surface Re!,€2 of genus g = 91 + 92 with g > 2. In fact, these 
surfaces i?€l)e2 with specific conformal structure are close to the infinity in T^, the 
Teichmiiller space of genus g > 2. Therefore, we obtain the following theorem 

THEOREM 1. There exists a > 0 swcft that if \ej\ < a for j = 1,2, £Aen we can 
find a harmonic map of degree 1 from i2ei)€2 to S2. 

More generally, with the help of Schiffer's interior variation [12] (Appendix A), 
we establish our main result 

THEOREM 1'. There exists an open subset H in Tg such that for each Riemann 
surface R G H, we can find a harmonic map of degree 1 from R to S2. 

Here, our method follows those in [4] and in [9]. For this type of problems, 
the minimizing method fails. But the energy level sets near the minimum have a 
nontrivial topology, which allows us to look for a critical point with the help of a 
topological method. Our approach is the following. In Section 2, we will study 
minimizing sequences. We observe that concentration phenomena occur. In some 
way, our analysis is similar to P.L. Lions' concentration compactness results [15] on 
the best constant of Sobolev embedding for the limiting case, and to results of Brezis- 
Coron [2] and Struwe [19] on il-surfaces. More generally, C.Y. Wang [20] (see also 
[16]) showed that every Palais-Smale sequence may concentrate its energy at finitely 
many points where the sequence may generate a nontrivial harmonic mapping from 
S2 to S2 (called a bubble). This is the reason why Sacks-Uhlenbeck [17] and K. 
Uhlenbeck [23] studied a family of perturbed functionals and established a perturbed 
Morse theory for harmonic maps. M. Struwe [18] developped a similar theory using 
the heat flow for harmonic maps (see also K.C. Chang [3]) and J. Jost [13] carried out 
the bubbling process of a mini-max value for the Dirichlet energy of a mapping from 
a surface to a closed Riemannian manifold, a crucial result in our proof. 

In Section 3, we will analyze nonconstant harmonic maps from Riemann surfaces 
to the unit 2-sphere 52, based on Schiffer's interior variation in Teichmiiller space. 
Notice that E and harmonic maps depend only on the conformal structure of surfaces; 
we can consider the above problem on the set of all biholomorphic equivalence classes 
of closed Riemann surfaces of genus #, denoted by Mg (the Riemann's moduli space 
of genus g). Actually, we construct a family F of Riemann surfaces of genus > 1 
containing the subfamily A = {Rei^ : \€i\ < M = 1>2} and we show that the energy 
of nonconstant harmonic maps from each Riemann surface to S2 is uniformly bounded 
from below. 

In the last section, we construct a non-trivial loop in an energy level set near the 
minimum, which is contractible in higher level sets. Then, thanks to a result of J. Jost 
[13], based on ideas of Sacks-Uhlenbeck [17], we can apply a topological critical point 
theory in a level set of the energy functional where no blow-up can occur. In particular 
the result of Section 3 shows that no bubbling effect occurs, and this establishes our 
result. 

2. Study of a minimizing sequence. First, we can label homotopy classes as 
the following connected components 

+00 

Jff
1(^'?2)nC0(M,52)= \Jek(M) 

—00 

= (J |«6ff1(M,52)nC0(M,52),j- f u-(uxxuy)dVolM = k\, 
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where Q(u) = — I   u- (ux x Uy)dVolM is the degree and subscripts denote partial 

differentiation with respect to coordinates. We can also consider S2 as C U {00} 
with the conformal metric (1 .t^dzdz, uz = du, d = |(^ — i^), and Uz = du, 

3 = ^(^ + i&j)- Then the energy functional is 

(2-1) E(u) = j^ (1+jM|2)2(K|2 + \n^)dzdz 

and 

(2.2) Q{u) = lf  —-1—(|^|2 - \u,\*)dzdz. 

In the following, we will consider the energy functional on €i(M). Our main result in 
this section is 

THEOREM 2. We have 

MM)=    inf    £(*;)= 47r, 
veei(M) 

and (f)i(M) is attained if and only if M is simply connected. Moreover, ifM is multiply 
connected and if {un}nej^ is a minimizing sequence of E, then there exists ZQ G M 
such that, modulo a subsequence, 

-\Vun\2dVolM —> 47r^0,       in ft(M), 

where 8ZQ is the Dirac mass concentrated at ZQ G M and TZ(M) is the space of Radon 
measures on M with finite masses. 

In order to prove this result, we need the following lemmas. 

LEMMA 1. (see [1] and [9]) Assume that (pn is a bounded sequence in iJ1(M,]R)n 
L00(M,IR). Let an —> 0 weakly in ^(M.JR) and strongly in Z,2(M,]R). Then for 
every b G iijr1(M,IR)? we have 

lim   /   (pn{{an)xby - (an)ybx)dVolM = 0. 
n-+00JM 

LEMMA 2. (Isoperimetric inequality see [22] and [9]) Assume that ^ = (ipi,ip2,i>3) 
e^iM^JR^nH^M.JR3).  Then, 

\[ * • (9X x 9y)dVolM    < T- ( /  l^x x yy\dVolM )   • 
\JM I       47r \JM ) 

Proof of Theorem 2. Obviously, 

(2.3) E(u) > 47rQ(u) = 47r,       \fu G ei{M). 
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On the other hand, let (£/, z) be a coordinate neighborhood containing p G M such 
that z(U) = B(0,1) = {z e C : \z\ < 1}, we define for any e > 0 

(2.4) tip>€(g) = ^ 

It is clear that 

f, ifkto)l<|; 

^(3-4H),   if^<|^)|<|; 

0, j£qeM\z-1(B{0,l)). 

lim E(up e) = 47r. 

Therefore, we prove the first part of the Theorem. Using the Uniformization Theorem 
(see [12]), we may prove that 0i(M) is achieved provided that M is simply connected. 
Conversely, assume u € £i(M) such that E(u) = 47r. Then, u satisfies equation (1.1) 
and is regular (see [10]). From (2.1) to (2.3), we deduce that Uz = 0; that is, u is 
holomorphic. But, the degree of u is one, and this is possible only if M is simply 
connected. In particular we deduce that if M is multiply connected, then Inequality 
(2.3) is strict. 

Now let {un}nejN be a minimizing sequence of E in £i(M) for a Riemann surface 
M of genus greater than 1. Since H1 is reflexive, we may assume that, modulo a 
subsequence, un —> u weakly in H1 for some u G H1. But iJ1(M, 52) is weakly 
closed, therefore u G iJ1(M, S2) and by weak lower semi-continuity, we have 

E(u) < liminf E(un) = Air. 
n—too 

Hence u G £o(M) because of (2.3). Set an = un — u so that (as in [9]) by lemma 1 

1 = Q(un)    - — j   un' {(un)x x (un)y)dVolM 
47r JM 

= T~   /     Un ' {(^n)xX(^n)y)dVolM + -r-   /     U - (uxXUy)dVolM + o(l) 
47r JM 47r JM 

= T~   /    un' ((an)x X (an)y)dVolM + 0(1)- 47r JM 'M 

Therefore, 

>47r + o(l). ^(^n) = o /   \Van\2dVolM >\      un' ((an)x x (an)y)dVolM 
* JM \JM 

On the other hand, we have 

47r + o(l) = E(un) = E{u) + E(an) + o(l), 

which implies 

E(u) = 0        and       E(an) = 47r + o(l). 

Hence, u is constant. Set //n = ^|Van|2(iyo/M and z/n = an • ((an)^ x (an^dVo/M- 
Clearly, //n(M) = 47r + o(l), ^n(^) = 47r and |i/n| < /in. Therefore {/in} and {^n} 
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are bounded in TZ(M). Modulo a subsequence, we may assume that /zn —^ //, i/n -*> v 
weakly in the sense of measures where [i and v are bounded measures on M. Moreover, 
/i(M) = 47r and v{M) — 47r since M is compact. Choose £ G C00(M,1R). Applying 
lemma 2, we have 

It is clear that 

/    iOLn • ((^an)x X {iOin)v)dVolM     =       /    C3«n ' ((ttnja? X (ttnjy)^^ + o(l) 

/  |V(^n)|2dyo/M    =     / e2|Van|2dyo/M+o(l) 

since an —>• 0 strongly in L2 and ||an||L« < 2. Consequently, we get 

/   £oLn - ((an)x x (an)y)dVolM    < ^- ( /   £2|Vc*n|2e2yoZM + o(l) )   . 
MM ^^^  WM / 

Passing to the limit as n -> oo, there holds 

(2.5) \f ^dU    -hij ^dfl)   '       V^GC^CM,^). 

By approximation, therefore, 

(2.6) K^OI* < (T-) 
3 KE)       {E C M,E borel), 

which implies 

IK^)I* < ( J- ) 3 l*(A)   and  |i/(Af \ A)\§ < ( ^ J ' fi(M \ A)  for any Borel set A. 

However, /i(M) = i/(M) = An. Thus, we deduce that 

u{A) = /i(A) = 0      or      i/(M \ .4) = /i(M \ ^) = 0. 

Since it is true for all A, that implies the assertion of Theorem 2.    □ 
Now let g be a metric compatible with the complex structure on M. By Nash- 

Moser's Theorem, (M,g) can be isometrically embedded in some Euclidean space IR* 
and we denote this embedding by /. We analyze the topology of the energy level 
sets EM*

1
 = {u e £i(M) : E(u) < 7 4- 47r} for small 7 > 0. For this purpose, we 

introduce a map C from ei (M) into lRk 

C:    ei(M)    —>    lRj k 

~ [  I(q)\\7u\2(q)dVolM. u w_ 

There is a neighborhood U5 - {x G R* : dz8t(a;, M) < 5} of M in IR* on which the 
nearest projection P from [/^ onto M is continuous. According to Theorem 2, we can 
construct a map TT for all small 7 > 0 

ff:    <^    —>    M 
W I—>     7f(u) = P(C,(U)). 
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Note that, the construction given in (2.4) shows that TT is surjective. For some 7 fixed, 
we choose a suitable €0 such that for any p G M, we have up^Q G E^^7. So we define 
another continuous map r from M to E^1 

r(p) ^,€0 ' 

Using Theorem 2, we deduce that r o TT and Id^^ are homotopic and that TT o r 

and IdM are so if 7 is sufficiently small; i.e., E^^7 and M are of the same homotopy 
type. 

3. Study of nonconstant harmonic maps. In this section, we will analyze 
the energy of nonconstant harmonic maps from closed Riemann surface of genus g to 
52. For this purpose, we consider Schiffer's interior variation in Tg. Assume distinct 
points ri, ... , rsg-s, are given on JRI. We take coordinate neighborhoods (Uj,Zj) of 
every ri so that 

z*(r-) = 0; 
^(Uj)^ {ze<£: \z\ < 2},       j = 1,..., 3<7 - 3; 

Uj n Vx = 0, 

where Vi is defined in §1. Set Dj = (^j)~1({^ G C : \z\ < 1}). For any complex 
number e'j with \€j\ < |, consider the mapping 

When |c'.| is sufficiently small, ^ / (dDj) is a simple closed curve in the 2^ , -plane, 

which is denoted by Cjie'., and Zj €, gives a conformal mapping of a suitable neigh- 

borhood Ajje>. of dDj. Now exclude Dj from Ri and paste the domain £>j?e'. in the 
Zj, -plane surrounded by Cj,e>.. Thus, for ei and €2 fixed, we can construct a family 

{Rei e2 e/} of Riemann surfaces depending on complex parameters e' = (e^, ...jC^.g) 
(see [12]). 

We also need the Hodge star operator. For each a G AP(M), we associate to a a 
(2 — p)-form *a, called the adjoint of a, defined as follows: 

(3.1) *1 = 77, *dx = dy, *dy = -c/x, *7; = 1, 

where rj is the oriented volume element on M. And we define Sa by 

(3.2) Sa = (—l)p *~1 d * a,       where p = deg(a). 

Then, the Laplace operator A is defined by 

(3.3) A = d5 + <ta. 

THEOREM 3. Under the above assumptions, there exists (3 > 0 s^cft that for any 
Riemann surface Re^^^1 with \ei\ < 1 and |cj| < | and a nonconstant harmonic map 
u from R€lj€2,e> to S2, we have 

E(u) > 0. 
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As a direct consequence of Schiffer's interior variation, we obtain the following 
corollary 

COROLLARY. The energy of nonconstant harmonic maps to S2 is uniformly 
bounded from below on a open set ofTg. 

REMARK. Mg is identified with the quotient space Tg/Modg, where Modg is 
the Teichmiiller modular group. Hence, our result is also true on a open set of Mg 
equipped with the quotient topology. 

In order to prove the theorem, we need a technical lemma. 

LEMMA 3. (see [10] and [11]) Let u : 5(0,1) = {z € C : \z\ < 1} —> S2 

be a harmonic map.   Then there exists a positive constant C such that for any zi, 
Z2 e B(o, |), 

(3.4)        \u(z1)-u(z2)\<c(f IVufdzdzY l(f \Vu\2dzdzY +1J . 

Proof In view of (1.1), there exists G from B to IR3 satisfying 

dG _        du 9G__       du 
dx dy'        dy dx' 

By the Courant-Lebesgue Lemma, there exists some r G (|, 1) for which U\QB^0^ is 
absolutely continuous and 

(3.5) \u(z3) - u(z4)\ < (^ 2 (^ \Vu\2dzd^ 2 , 

for all zs, Z4 G dB(0,r). In B(0,r), we will decompose u into its harmonic (UQ) and 
non harmonic (ui) components 

u = Uo 4- ui, 

where 

,     . f Auo    =0    in 5(0, r) 
^•D; \     uo    =fi   on dB(0, r), 

/o 7\ / Awi    = Au = ux x Gy -f Gx x Uy    in B(0, r) 
1     ; \     ui    =0 on 95(0,r). 

Thanks to the Wente's inequality (see [1] and [22]), we obtain 

(3.8) IKIIco<q|VH|L2||VG||L2. 

And by the Maximum Principle, we deduce that for all zi, z^ G 5(0,r) 

(3.9) K(*i) - ^0(22)1 <       sup       |no(^3) - wo(^4)| 
;Z3,Z4ed£(0,r) 
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Combining (3.5)-(3.9), we establish (3.4).    □ 

Proof of Theorem 3. Let us decompose R€l^2^' = F U (R€l^2^ \ F), where 
F = {z E i?ei)€2)e/ : rank(Vu)(z) < 1} is the set of degenerated points. Denote by T-L2 

the 2-dimensional HausdorfF measure in IR3. Applying Sard's Lemma, 

(3.10) n2(u(F))=0. 

For each z G i?€lj€2,€/ \ F, there exists a closed neighborhood Gz of z such that 
U\GZ : Gz —> B(u(z),rz) is a diffeomorphism. Notice that u(Reiy€2j€' \ F) is open. 
Then, using Vitali's covering theorem, we can choose a countable family of disjoint 
discs B(u(zi),rZi) satisfying 

oo 

(3.11) u(R€u€2^\F) C (J B(u(^),5r2i). 
i=l 

Consequently, there exists a positive constant C such that 

-HHuiR^t, \F))    < H2({J BMzO.Sr,,)) 
i=l 

oo 

<'E'H2{B(u(zi),&rXi)) 
2=1 

(312) ^ 

i=l 
oo 

< C Y^   /        lW * (Wa: X Uy)\dzdz 

< CE(u). 

On the other hand, according to Lemma 3, for some Si, 52 E S2 and for any sufficiently 
small E(u), we have 

(3.13) u f i?i\ ( Vi U | [J UiA ) J C BisuCy/Wtf) 

and 

(3.14) u^ \ V2) C B(s2,C^/E^uj) 

Let Q be the antipodal mapping on 52; that is, Q(v) = —v for all v e S2. Combining 
equations (3.10)-(3.14), we have 

n2(K U Q(K)) < CE(u),       for sufficiently small E(u), 

where K = u(Reu€2^) U B{suCy/E{u)) U B(s2,Cy/E(u)). However, iiT U ©(if) is 
closed since u(Rei,e2,e>) is compact. Thus, choosing E(u) sufficiently small, we can 
find a pair of antipodal points vi and —vi on S2 such that vi £ K U Q(K) and 
—vi ^ K U Q(K). Without loss of generality, we suppose that vi = (0,0,1) is the 
north pole. Denote Ki = S2 \ {vi,—vi} and let 

u^ : 7ri(jR€lfe2fC/) —► TTICRTI) = Z 
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be the induced map on the fundamental groups. We claim that if E(u) < f3 (here (3 
is a uniform constant), then u% is trivial. Indeed, if E(u) is sufficiently small, we can 

choose a simply connected subset K2 of Ki containing B(si,Cy/E(u)), for i = 1,2, 
and a deformation map of Ki such that 

/itfiXfl},!]—*#!, 
/(0>0 = WJ 

f{K2,t)cK2,        for all tG [0,1], 
f{K2,l) = {81}. 

Denote ft = f(t, •). Hence, u% = (/1 o ix)jj. We can write fiou = f o P1, where 

Pi '     ^ci,€2,ef       ^ fiji\(yxu y ^jju(B2\v2)J 

is a projection from i?€l?e2je/ onto K3 which is equipped with quotient topology, and 
/ is a continuous mapping from K3 to Ki since fi(K2) = {^i}. Notice that iiTs is 
simply connected, the claim is proved. 

Denote u = (w1,^2,^3). Set u1 + m2 = ^/(w1)2 + (w2)2e^. In fact, ^ can be 
defined locally or on a simply connected subset of Rei^2%ei. But u^{ni{Rei^2^)) is 
trivial in ^i{K{). So ip is defined on the whole J?Clj€2>€/. It follows from (1.1) that 

d^(((^1)2 + (u2)2)V</0 = divCti1 Vti2 - u2Vu1) = 0, 

or equivalently, using the language of differential forms, 

8{{{u1)2 + (t42)2)#) - 0. 

Consequently, 

0 = f 8{{{u1)2 + {u2)2)d^)^dzdz = f ((u1)2 + {u2)2)\dil>\2dzdz, 

which implies that I/J is a constant mapping. That is, u(Reii€2i€i) is contained in a 
great circle. Replacing {vi,—vi} by another pair of antipodal points {vj[,—vi} and 
proceeding similarly, we deduce that u is a constant mapping. This completes the 
proof. 

4. Proof of Theorem 1. First, we recall some facts which can be found in [13] 
(§4.2), primarily due to Sack-Uhlenbeck [17]. 

LEMMA 4. Let M be a compact Riemann surface without boundary, and N be a 
compact Riemannian manifold without boundary. Let A be a compact parameter space 
and let ho : M x A —> N be continuous. Let H be the class of all maps homotopic 
to ho and put 

K = inf supE(h(-,t)). 
heHt£A 

In case dA ^ 0, h\MxdA is fixed in such a way that the above supremum cannot be 
attained on dA. Then there exists a harmonic map 

u0 : M —> N 
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and possibly also some nontrivial conformal harmonic maps 

ui'.S2 —> N      (i = l,...,m) 

with 

E{uo) + Y^E(ui) = K>- 
i=l 

Here (wo;ui,...,i/m) represents a saddle point corresponding to H in the sense that 
there exist sequences {hn} C H, {tn} C A and points xi,..,Xk € M, k < m (ifm > 1) 
with 

E(hn(',tn)) —* «      ; 
hni'ftn) —> UQ weakly in H1; 
hni'itn) —► uo uniformly on each compact subset of M \ {xi, ..,a;jfc}. 

Furthermore, for each i € {1, ...,m}, there exists a sequence {A^}nGiN C 1R+, A^ -> 0 
as n —)• oo with, 

hn [ [ v"'^) ,*n) —> Uu 

where {p,(p) are polar coordinates centered at some Xj^n with Xjin —> xj (1 < j < k). 

LEMMA 5. Let u be a harmonic map from S2 to S2. Then u is conformal and 

(4.1) E(u) =47rdeg(u). 

In view of the results in §2, we know that the energy level sets near the minimum 
have a nontrivial topology. Thus, we can construct a nontrivial loop in such level 
sets. However, it will be contractible in higher energy level sets. With the help of the 
above lemmas, we obtain a critical value of E using the Minimax Principle for the 
energy E based on this loop. In case no blow-up can occur, we prove the assertion. 

For simplicity, we use conformal coordinates 2;GCU{oo}on52, such that qi — 0 
and #2 = oo. Choose a function il){z) G CQ^IR^IR) such that supp(ip) C 5(0,1), 
0 < il> < 1 and fl>(z) = 1 if \z\ < |. We write S2 = 52 U Si where S2 = {v = 

(v\v2,v3) € S2 : v3 > 0} ~ B(M) and 52 = {v = (v\v2,v3) G S2 : v3 < 0} - 
CU {oo} \ 5(0,1). Similarly, we write i2€l,€2,e> = R*^, U R7ue2,e' 

where K^e' 
(resp. R~ € €/) is obtained by pasting Ri (resp. R2) to 52 (resp. 5i). For z* G S1 

and 0 < t < 1, we set az* t(z) = =-. We construct a continuous map h from 

5(0,1) x ^,62,6'to 52 by 

' te*, 

h(z*,t,z)={    az'Az), 

if|ci|<kl<2|ei| 

1 
if 2|ei| < |z| < 

<7z'M if 
2|ea| 

<|2|< 

if z <= R 
ti,e2,e' 

2|e2| 
1 

hi 
>\ui 

€2* 

(4.2) 
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Notice that, for any z*, t, the map z i—> /i(2:*,^z) is constant on the glued surfaces 
i?i and i?2; if t —> 1, it concentrates at some point on the equator of S2, parametrized 
by z*. A direct computation shows 

(4.3) lim E(h{z*, t, •)) = ^      uniformly on S1 

and 

(4.4) lim        sup     Eihiz^t, •)) = An. 
€i,e2-»0z*t€J3(0}1) 

Thus, there is a > 0 such that 

sup E(h(z*,t, •)) < 47r 4- /? < STT      for any |ei| < a and |e'| < -. 
£(o,i) 2 

Now, fix ei and e'. We choose some small ^o in such a way that TT in §2 can be 
defined continuously from E^+^0 i to i^el)e2,c

,. By (4.3) and Theorem 2, we can find 

0 < to < 1 such that E(h(z*,to, •)) < 47r + //Q for all z* € S1 and z* -+ fr(h(z*,to, •)) 
is a nontrivial loop in 7ri(jRClj£2jC/) since lim 7f(/i(z*, i, •)) = z* G iiCl>€2j€/. We consider 

ft as a function defined on B(0, to) x iZci,c2,c/ and ^ -H" be the homotopy classes of h. 
Set 

«£l,€2fe/ = inf      sup      E(f(z*,tr)). 
f€H z*teB(0,to) 

LEMMA 6. We have 

Proo/. We suppose that K^i^e' < 47r + //Q- Then for some / € iiT, we have 

E{f{z*,t, •)) < 47r + /io,        for all t G [0, to] and z* G S1. 

Hence, we can construct a deformation map / from B(0, to) to .R€lje2)€' by 

/:     i?(0,£o)       > ^eiJe2,e/ 

that is, / is a contraction of 51 in R€l^2^. This contradiction completes our proof. 
D 

Proof of Theorem 1'.   Obviously, K^^,*'  < 47r + /J, where (3 is chosen as in 
Theorem 3. Now, according to Lemma 4 and Lemma 5, there exists a harmonic map 

^o : -R€i,€2,e/ —> S 

and possibly also some non-trivial conformal harmonic maps 

UiiS2 —-> S2,       {i = l,...,m) 

with 
m 

Kei,e2,e' = E(uo) + ^2 E(ui) ^ ^n + E(uo),       for some fc G IN. 
i=l 
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Finally, notice that 47r + fio < ^€l)€2)€/ < 47r + (3 < STT. SO k = 0 or k = 1. But, in 
view of Theorem 3, the latter implies that UQ is a constant map, which contradicts 
Kei,e2,e/ > 47r + /io- Thus, UQ is harmonic map of degree 1 from Rei^2^i to 52.    D 

REMARK. In general, if we attach several small handles to the unit sphere S2 as 
in §1, we have the same result. 
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