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THE GEOMETRY OF HYPERBOLIC AND ELLIPTIC 
CR-MANIFOLDS OF CODIMENSION TWO* 

GERD SCHMALZt AND JAN SLOVAK* 

Abstract. The general theory of parabolic geometries is applied to the study of the normal 
Cartan connections for all hyperbolic and elliptic 6-dimensional CR-manifolds of codimension two. 
These structures present a very distinguished case in CR-geometry with many features of the non- 
degenerate real hypersurfaces. The geometric meaning of the individual components of the torsion 
is explained and the chains of dimensions one and two are discussed. 

There have been many attempts to use some ideas going back up to Cartan, in 
order to understand the geometry of CR-manifolds. In the codimension one cases, 
the satisfactory solution had been worked out in the seventies, see [22, 23, 8], but 
the higher codimensions have not been understood yet in a comparable extent. In 
general, there are no canonical homogeneous models for higher codimensional CR- 
structures (since there is a continuum of non-isomorphic ones) and, furthermore, the 
spaces of automorphisms of these homogeneous models are much smaller than in the 
hypersurface case. There is an exception, however: the 6-dimensional CR-manifolds of 
codimension two. There are just three non-isomorphic non-degenerate homogeneous 
models for these geometries and the automorphism groups happen to be semi-simple 
for two of them. Compared to all other cases, not much has been known about these 
distinguished geometries, see [9] for more historical remarks and a few results. 

In this paper, the recent general theory of the so called parabolic geometries is 
applied to the latter semi-simple cases. In particular, we use the approach developed 
in [4, 21], see also [24, 27] for earlier results. Relying on recent achievements by the 
authors, a clean and quite simple construction of the normal Cartan connection is pre- 
sented. This Cartan connection replaces the absolute parallelisms from [9] by more 
powerful geometric tools and it enables the detailed study of geometrical and analyt- 
ical properties of the CR structures. Consequently the resulting geometric picture is 
much more transparent and surprising new results are obtained. 

The main advantage of our approach is the fully coordinate-free handling of the 
normal Cartan connection and its curvature. Thus we are able to translate the coho- 
mological properties of the structure algebras into full geometrical understanding of 
the curvature obstruction, without writing down the curvature components explicitly. 
The initial section introduces the CR structures and provides a brief exposition of 
distinguished second order osculations of the surfaces by quadrics. Then we observe, 
that this osculation transfers enough data from the quadric to apply the general con- 
struction of normal Cartan connections, due to [24, 4]. This leads easily to the main 
Theorems 1.2 and 1.3. In fact, the Cartan connections are constructed also for certain 
abstract CR-manifolds though the embedded ones have many distinguished proper- 
ties. The second section is devoted to the exposition of the generalities on parabolic 
geometries modeled over |2|-graded algebras and provides the proof of the existence 
of the normal connections. 

Next we study the local geometry of the hyperbolic points in detail. We recover 
easily all known facts from [9], but we go much further. In particular, we identify 
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the complete geometric obstructions against the integrability of the almost product 
structure on the tangent bundle (Theorem 3.5), the integrability of the almost com- 
plex structure on the tangent CR space (Theorem 3.6), and the compatibility of the 
almost product and almost complex structures (3.8). It turns out that the latter two 
obstructions always vanish on the embedded hyperbolic CR-structures which results 
in automatic vanishing of several algebraic brackets. In particular, the whole hyper- 
bolic CR-manifold M C C4 is a product of two 3-dimensional CR-manifolds if an only 
if its almost product structure is integrable, see Theorem 3.9. Finally we discuss the 
chains of dimensions one and two. 

Following our intuition, the geometric properties at hyperbolic points have been 
expected to have their counterparts in the local geometry at the elliptic points, cf. 
remarks and open problems in [9]. This is the subject of Section 4. In particular, we 
observe that the roles of almost complex and almost product structures are swapped. 
Thus, there is an almost complex structure on the whole tangent bundle TM and we 
distinguish the algebraic brackets obstructing its integrability in Theorem 4.3. The 
obstructions against the integrability of the almost product structures on the complex 
spaces TCRM and their compatibility with the almost complex structures vanish 
automatically for the embedded elliptic CR-structures. They are discussed in 4.4, 
4.5. The analogy to the product property of torsion-free hyperbolic geometries is the 
holomorphic normal Cart an connection in the elliptic case, see Theorem 4.6. Finally 
we prove that for torsion-free elliptic geometries, there are unique one-dimensional 
complex chains in all complex directions transversal to the complex subbundle TCRM 
(Theorem 4.7). 

The last section collects some conclusions and remarks on future applications. 
The necessary cohomologies are computed in Appendix A while some more details on 
the normalized osculations and the discussion of chains on the hyperbolic and elliptic 
quadrics is postponed to Appendix B. 

The whole paper stresses the differential-geometric properties and we have con- 
fined the analytical problems and consequences to a few remarks. The function theo- 
retical aspects will be discussed elsewhere. 
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1. CR-structures of codimension two. Let M be a real submanifold in the 
complex space C^. Then there is the CR-subbundle TCRM = TM n J(TM) which 
consists of all vectors €x eTxM such that the canonical complex structure J on C^ 
maps t;x to J(^) G TXM. We say that the CR-codimension of M is k if dimM is 
2n + k and dimTCRM is 2n. By means of the implicit function theorem, we may use 
a holomorphic projection of C^ -» C71"1"* and express M locally as 

Imu^ = fv(z,z, Rew),    u = 1,..., k 

where z = (zi,..., zn), w = (wi = ui 4- ivi,..., Wk = Uk + ivk) are coordinates in 
£n+k an(j y^Q) _ Q^ rfj(o) = 0. Geometrically this means that the origin belongs to 
M and TQM is just {v = 0}. By means of further biholomorphic transformation of 
second order we are able to eliminate the "harmonic" part of the second order term 
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in/: 

Only the hermitian part in the second order term of /: 

h^z) = 2 2-<d^rJl0
ZiZj 

will remain, thus we achieve that M is given by 

(1.1) v = h(z,z) + 0(S) 

at a neighborhood of the origin. For more details see [19]. The vector-valued hermitian 
form h shall be denoted by (z, z) in the sequel. The submanifold M is called Levi non- 
degenerate (at the origin) if the scalar components of (z, z) are linearly independent 
and do not have a common anihilator. The Levi form ^h is given by means of the 
standard Lie bracket { , Jxie of vector fields modulo the complex subspace TCRM, 
£ ^ {&, J&Hie € TM/TCRM for the CR-vector fields f,Jf : M -> TCRM. The 
latter bracket is algebraic since the standard Lie bracket composed with the projection 
onto the quotient is clearly linear over functions. 

The geometric meaning of (1.1) is that M osculates the quadric 

Q: v = (z,z) 

in second order. Both M and Q share the same tangent space, CR-tangent space and 
Levi form at the origin. 

Now, let us assume that M C C4 is of CR-codimension 2 and assume further that 
M is Levi non-degenerate. Thus M is a smooth real 6-dimensional manifold. 

The quadric Q can be always understood as an open domain in the homogeneous 
space G/P where G is the group of the automorphisms of the quadric Q and P its 
isotropic subgroup of the origin. This means that the tangent space in the origin 
carries the P-module structure of g/p in a canonical way and the second order data 
that are P-invariant can be carried over to M from cj/p to the individual tangent 
spaces of M by means of the osculation. 

Thus, in order to try to study the geometry of M in the spirit of the general theory 
as briefly reviewed in Section 2, we have to distinguish the possible non-degenerate 
C2-valued hermitian forms by a suitable normalization and to analyze the remaining 
freedom in the osculation. This has been done in [16, 19], see Appendix B for a review. 
In particular, we can achieve one of the following three forms for h(z, z) = (z, z) G C2 

by a linear transformation in z's and v's 

(1.2) ft1 (2,2) = zizu h2(z,z) = Z2Z2 

(1.3) ^(z^z) = Z1Z1,        h2(z,z) = Rezi22 

(1.4) hl{z,z) = ReziZ2,    h2(z,z) = ImziZ2 

and we refer to these cases as to hyperbolic, parabolic, and elliptic, respectively. The 
normalization (1.1) with one of these hermitian forms h is given uniquely up to the 
isotropic subgroup of the origin in the group of all biholomorphic automorphisms of 
QCC4. 
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We say that a point x G M is hyperbolic or parabolic or elliptic if the osculating 
quadric at x is of that type. The set of all hyperbolic points is open and the same for 
the elliptic ones. The CR-structure on M is called hyperbolic, or parabolic, or elliptic, 
if all points of M are of the same type. 

Let M C C4 be a CR-structure of codimension two, such that all its points are 
either hyperbolic or elliptic. As discussed above, the choice of the canonical form of 
the osculating quadric Q = G/P reduces the freedom in the osculation (1.1) to the 
isotropic subgroup of the origin in G/P and this allows to transfer the P-invariant 
data of first and second order from the origin of Q to the individual tangent spaces 
in all points of M. 

We recall the details on the resulting groups 

(1.5) G = ((SU(2, IJ/Za) x (SU(2,1)/Z3)) x Z2 

in the hyperbolic case, and 

(1.6) G = (SL(3,Q/Z3)xZ2 

in the elliptic case, P, Go, and their Lie algebras in Appendix B. At the moment, let 
us notice that in both cases the Lie algebra g carries the |2|-grading 9 = g_2 ® Q-i 0 
Qo © Qi © 92, P = 0o © fli © 22- In the elliptic case, this grading is just given by the five 
diagonals in the matrices in SL(3, C) with 0_2 corresponding the entry at the lower 
left corner of the matrices, etc. This grading survives in the real form 517(2,1). See e.g. 
[8] or [4] for more details on the grading. The subgroups P and Go corresponding to p 
and go have all properties discussed in 2.1 below. In particular P is the subgroup of all 
elements whose adjoint action leaves the p-submodules in Q invariant, while Go consists 
of all elements which leave the components Qi invariant. Thus, the tangent space TXM 
at each point x G M is identified with the P-module g/p which is the tangent space 
to the osculating quadric Q at its origin, the normalized osculation transfers the P- 
submodule g_i C g/p to TCRM c TM, and the algebraic structure of g/p is carried 
over to the associated graded tangent space GrTM = (TM/TCRM) 0 TCRM. 

LEMMA 1.1. Let M C C4 be a hyperbolic or elliptic 6-dimensional CR-manifold. 
Then all algebraic brackets TCRM x TCRM -+ TCRM and TCRM x TCRM -> 
TM/TCRM on the real graded tangent space GrTM, and the analogous algebraic 
brackets on the complexified graded tangent space GrTcM are obtained via the oscu- 
lation from the corresponding brackets at the origin of the quadric. 

In particular, the algebraic Lie bracket { , }Lie on GrTM coincides with the 
algebraic bracket carried over by the osculation (1.1). 

Proof. The Lie bracket on g_ = g-2 0g-i is Go-equivariant, and so the osculation 
(1.1) induces an algebraic bracket on the associated graded vector bundle GrTM. A 
neighborhood of the origin in Q can be identified with the exponential image of g_ 
in G and the Lie bracket in g_ is given by the usual Lie brackets of the left invariant 
vector fields on G. By means of the osculation, we can project these fields onto M 
locally and clearly the algebraic bracket TCRM x TCRM -> TM/TCRM induced by 
the Lie bracket of vector fields on M coincides with that one carried over from g_ by 
the osculation. Obviously, the result will not be effected by the action of an element 
in P+ on Q (i.e. by the possible change of the osculation). 

All other algebraic brackets on the real graded tangent space can be treated in 
exactly the same way, provided they are P-invariant on the quadric. The action of 
an element of Go always commutes with the osculation while the action of P4. is not 
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visible in all our cases. Indeed, the action is trivial if all arguments and values are 
in rCi?M, while the contributions of the action is factored out in the case of the 
brackets TCRM x TCRM ->- TM/TCRM. Similarly, the left invariant vector fields in 
the complexified tangent spaces on the quadric can be mapped into complex vector 
fields on M and the above arguments apply as well. 

Let us notice, however, that the possible algebraic brackets taking some arguments 
in TQ/TCRQ are never P-invariant. D 

The latter lemma turns out to be the most crucial point for our further develop- 
ment. Indeed, there is the general theory of the so called parabolic geometries which we 
adapt for our purposes in the next section. In particular, Theorem 2.13 due to [24, 4] 
will provide the canonical principal bundles together with canonical Cartan connec- 
tions for all hyperbolic and elliptic 6-dimensional CR-manifolds with CR-codimension 
two (see the beginning of Section 2 for definitions and more explanation). We should 
also like to mention already now that the complete proof of Theorem 2.13 is in fact 
constructive, it is based on well known facts from representation theory, and it is even 
shorter and simpler than the ad hoc construction of the absolute parallelisms in [9]. 
The ultimate results read as follows: 

THEOREM 1.2. On each 6-dimensional hyperbolic CR-manifold M C C4 of CR- 
codimension two, there is the unique normal Cartan connection UJ of type (G/P) on the 
principal fibre bundle Q —> M, up to isomorphisms. The subgroup P is the subgroup of 
all elements in G from (1.5) which respect the p-module filtration on su(2, l)0su(2,1). 

THEOREM 1.3. On each 6-dimensional elliptic CR-manifold M C C4 of CR- 
codimension two, there is the unique normal Cartan connection u of type {G/P) on 
the principal fibre bundle Q —)> M, up to isomorphisms. The subgroup P is the subgroup 
of all elements in G from (1.6) which respect the p-module filtration on sl(3, C). 

For the proof of these theorems see 2.14 below. The reason why the methods 
of [9] could not produce a principal fibre bundle Q with structure group P and a 
normal Cartan connection on G, was hidden in the initial choice of the normalization 
which had to produce a Cartan connection without torsion. In our approach, the 
torsions are the important parts of the curvature which are easily observable on the 
CR-manifold itself. The Sections 3 and 4 are basically dealing with the consequences 
of the vanishing of the individual components of the torsion of the canonical Cartan 
connection for the hyperbolic and elliptic local geometries. 

2. Parabolic geometries modeled over |2|-graded Lie algebras. The aim 
of this section is to introduce the reader to the so called parabolic geometries, but we 
shall concentrate on the cases similar to the real forms of the two-graded complex Lie 
algebra g = sl(3,C) 0 51(3, C). Beside well known facts, we shall also have to adapt 
and extend some points. 

Let us notice first that the general ideas go back to E. Cartan and his notion 
of "espace generalise". The interest in the parabolic structure groups was pointed 
out by Fefferman, [12], in connection with problems in conformal and CR geome- 
tries. Extensive study was undertaken even earlier by Tanaka (see [24] and the refer- 
ences therein), motivated by a class of equivalence problems for differential systems. 
Tanaka's approach was developed further, see e.g. [18, 27]. Motivation coming from 
twistor calculus led to another direction of related research, see e.g. [2, 1, 14]. Gen- 
eral background and an introduction to the subject may be also found in [20]. The 
exposition in this section extends the development in [5, 4] and follows mainly [21]. 
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2.1. Graded Lie algebras. Let g be a |2|-graded Lie algebra, p and Q- its 
subalgebras: 

9 = 9-2 © 9-i © 9o © 9i © 92 

0_ =g_2©0-i,    p = 0o ©Si ©02- 

Further, let G be a Lie group with the Lie algebra 9. Then there is the subgroup 
P C G of elements whose adjoint representations on 0 preserve the filtration by p- 
submodules 91 © g^+i © • • • © 92 and there also is the subgroup Go C P of all elements 
whose adjoint representation leaves invariant all 91. Thus the components 9i of the 
grading can be understood as Go-submodules, but also as the factors in the graded 
P-module components associated to the P-module filtration. Similarly we define the 
|fc|-graded algebras 9 = 0-.* ® • • • © 0*. 

In the sequel, we shall deal with semi-simple |2|-graded Lie algebras exclusively. 
It is well known that all graded semi-simple Lie algebras are sums of |&|-graded al- 
gebras for suitable fc's and the subgroups P C G are always suitable real forms of 
parabolic subgroups Pc C Gc in the complexification. The exposition below extends 
easily to general semi-simple \k[-graded Lie algebras and the corresponding parabolic 
structures, as discussed in [4] for example. Many geometric and algebraic properties 
of these geometries are deduced in [6]. 

2.2. Cartan connections. Let G be any Lie group and P be its closed sub- 
group. The left Maurer-Cartan form u € n1(G, 9) on the homogeneous space p : G —> 
G/P is the (homogeneous) prototype of the so called Cartan geometry. In general, a 
Cartan geometry of type G/P is a principal fibre bundle p : G -> M over a smooth 
manifold M, equipped with a 9-valued one-form u G fi1^,^) satisfying 

• ^(Cx(u)) = ^ for all X G p and fundamental fields Cx on Q, 
• u is equivariant with respect to the right action rb on £7, i.e. (r6)*a; = 

Ad^-^ot^forallfreP, 
• the restrictions U\TUG ' TUQ ->• 9 are linear isomorphisms, i.e. the obvious 

mapping TQ -> Q x 9 is a diffeomorphism. 
See e.g. the recent book [20, pp. 181-184] for a detailed exposition. 

The homomorphisms of Cartan geometries are those principal fibre bundle mor- 
phisms which respect the Cartan connections. The flat Cartan geometry is the homo- 
geneous space G -> G/P with the Maurer-Cartan form u. 

Let us also observe that the above absolute parallelisms u turn out to be special 
cases of principal connections cD on the principal bundle Q = Q Xp G with structure 
group G. Indeed, the connection forms of all principal connections on G whose hori- 
zontal distributions do not meet the tangent space TQ C TG restrict to forms u with 
the required properties. See e.g. [20] for more comments. 

2.3. Normal coordinates. For each X 6 9, the parallelism LJ defines the vector 
field o;-1^) on G> The horizontal vector fields u~1(X) on G are those with X G 9- 
and their values span the horizontal distribution on G- Due to the third property of a;, 
the choice of a frame u G G defines an injective smooth mapping of a neighborhood 
of zero in 0_ 

(2.1) X^F\f1{X)(u),    X Gfl- 

defined by means of the flows of the vector fields UJ~
1
(X). The tangent space of its 

image at u belongs to the horizontal distribution on G and its composition with the 
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projection p : Q -> M defines the locally defined mapping 

(2.2) u : 0_ -> M,    X H> p(Fli ■1 w(ti)) 

which is difFeomorphic on a neighborhood of the origin. We call u the normal coordi- 
nates on M given by the frame u. At the same time, u induces the local trivialization 

(2.3) (JU : M -> &,        «(!") ^ Fl^"1(y)(tt) G 0- 

Clearly, the normal coordinates around a fixed point x G M are parameterized by 
elements in P and they generalize the usual normal coordinates of affine connections 
on manifolds. The general concept of the normal coordinates has been introduced and 
studied in [21]. 

2.4. Chains. The notion of normal coordinates suggests a straightforward gen- 
eralization of the geodetical curves. For each choice of X G £j_ and u G Q we define 
the 1-chain au>x : E -» M on a neighborhood of 0 G R by 

att^(*)=p(Flt
w"1W(fi)). 

Clearly the tangent direction to the 1-chain au'x at its origin is the vector 
Tp.uj~1(X)(u) since the tangent bundle TM is identified with the associated bundle 
Q Xp (g/p) via the adjoint representation, {u, X} *-» Tp.uj~1(X). In particular we see 
immediately that many different 1-chains may share the same tangent direction. 

The 1-chains have been studied under various names like Cartan's circles or gen- 
eralized circles, see e.g. [20], and the chains introduced by Chern and Moser for 
CR-geometries of codimension one are exactly the 1-chains with X G 0_2. Since 
dimg_2 = 1 for these geometries, the latter 1-chains coincide with the chains defined 
below. 

All 1-chains corresponding to a fixed frame u yield exactly the normal coordinates 
with origin at p(u) and the transformation rules for these coordinates under the 
change of u may be quite complicated, in general. On the other hand, the 1-chains 
corresponding to the parameters {u,X} with X G g-2 have very specific properties. 
We define the chain /3U : 0_2 -> M by the formula 

Pu(X)=p(Flf1{x\u)). 

Thus the chains are parameterized submanifolds in M of dimension dimg_2. 

REMARK 2.5. The importance of the chains grows whenever they are given 
uniquely by their tangent directions in the origin. Another important question is 
whether two different chains may intersect nontrivially in each small neighborhood 
of their common origin. The answer to these questions is usually very easy because 
of the following equivalent definition of 1-chains by means of their developments into 
the associated bundle FM = G xG (G/P). 

The principal connection UJ on Q provides the induced (generalized) connection on 
the bundle FM and there is the canonical embedding of M into FM, p(u) »-> {u, [e]}. 
Thus each curve a(t) G M can be mapped by the parallel transport of u) into a curve 
a in the fibre over a(0). This curve a is called the development of the curve a. Clearly, 
the germs of curves through a(0) are in bijective correspondence with the germs of 
their developments. 
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Now, our definition of the 1-chains can be easily rephrased as follows. The 1- 
chains are exactly the curves a whose developments a are given by one-parametric 
subgroups in G, i.e. au'x = {u, [exptX]}. See e.g. [21] for more details. 

Since our chains /3U are obtained via 1-chains, all structural questions mentioned 
above are obtained by the discussion of the chains in the homogeneous case. 

2.6. Curvature and torsion. The structure equation 

defines the g-valued horizontal 2-form K G fi2(£/,g). If we evaluate the structure 
equation on two horizontal vector fields we obtain the so called frame form of the 
curvature, the equivariant function K G C^^JA

2
^!. ® £|)

P 

K{U)(X,Y) = K(u-\X\u-\Y)){u) 

= [X,Y\-u{\u-\X\u-\Y)\(u)). 

The Cartan geometry is locally isomorphic to the flat one if and only if its curvature 
vanishes. 

If 0 is semi-simple, then P is a parabolic subgroup of the semi-simple group G 
and we then refer to the above geometries as to parabolic geometries of type G/P. 

The curvature K has values in the space of cochains of the Lie algebra cohomol- 
ogy H*(Q-,Q). The grading on Q induces the grading on the space of cochains. The 
homogeneous cochains of degree A; are those which map Qi A gj into Qi+j+k and this 
grading is respected by the Lie algebra cohomology differential d. For each cochain 
rj e Akg- 0 A with values in a g_-module A the differential is given by 

k 

dT,(Xo,...,xk)= ^(-irx^Xo,.:.,^) 
(2.4) *=o 

+ 'E(-l)i+jri{[Xi,Xj],Xo,.:.,Xk) 
i<j 

where the dot in the first summand means the g_-module action while the hats denote 
the obvious omitions. 

In particular, the whole curvature splits into the homogeneous parts K^ 

3i 

K=      £     K^ 
k=-e+2 

where £ = 2 is the length of the grading. On the other hand, we may split K, according 
to its values. In particular, there is the torsion part K- with values in g_ 

i 

The torsion has a simple geometrical meaning: Let us define the horizontal bracket 
[fi,rj\h on the space Xh{G) of all fields belonging to the horizontal distribution on Q 
by the standard Lie bracket followed by horizontal projection. By the very definition, 
the torsion of u vanishes if and only if the mapping g_ 3 X ^ UJ~

1
{X) G Xh{G) is a 

Lie algebra homomorphism. 
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2.7. Regular and normal connections. We say that the parabolic geometry 
(G,u) is regular if K^ = 0 for all k < 0. 

In the sequel, we shall always assume g is semi-simple. Then there is the adjoint 
of the Lie algebra cohomology differential 9, the codifferential d* : Akg"L 0 g —► 

We say that u is a normal Cartan connection if its curvature is co-closed, i.e. 

a*o« = 0GC7oo(^fll®fl). 

Let us recall, that the whole space of cochains decomposes into a sum of irreducible 
components as a go-module. Each such component is either in the image of d or in 
the image of 9* or in the kernel of both. The latter components are called harmonic 
and they are in bijective correspondence with the non-zero cohomologies if*(g_,g). 

THEOREM 2.8. ([24, 27, 4]) Let (G,u)) be a normal Cartan connection and assume 
that all components K^ , j < k, vanish. Then d o KW vanishes and so all non-trivial 
irreducible components of K^ are harmonic. 

In particular, the whole curvature of u vanishes if and only if its harmonic part 
does. 

The latter theorem is a straightforward consequence of the important Bianchi 
identity for Cartan geometries: 

k-l 

(O 5) cyclic i=l 

cyclic 

where the sum is the cyclic sum over X, Y, Z G g_, and \Z\ = j if Z G Qj. See e.g. [4] 
for more details. 

2.9. The underlying geometry on M. A part of the Cartan geometry (G,v) 
is visible directly on the underlying manifold M and, fortunately, these data are 
sufficient in order to reconstruct the Cartan connection completely. This is the core of 
our approach to the CR structures in this paper. As before we shall restrict ourselves 
to the |2|-graded cases below, but the discussion extends easily to the general case. 

The P-module structure on g (defined via the Ad representation) determines the 
filtration by P-submodules 

0 = V'2 D V-1 D V0 D V1 D V2 = g2 

Vk = Qk © • • • e 92 C g,    k = -2, -1,0,1,2. 

This in turn defines the filtration on TG 

TG = T-2G D T^G D T0G D T1^ D T2G 

ri(ff)=a;-1(ti)(V*),    fc =-2,-1,0,1,2, tie ff. 

The right invariance of LJ yields 

(2.6) u-^u.bXX) = Trb.u)-1{u)(Ad(b).X) 
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where Trb denotes the tangent mapping to the right principal action of b € P on Q, 
and so the latter filtration on TQ is P-invariant. The P-invariant projection p : Q -> M 
defines then the filtration 

TM = T-2M D T^M D {0}. 

Moreover, each fixed frame u £ Q with p(u) = x G M determines the linear isomor- 
phism of filtered vector spaces 

u : g- -► TXM       X ^ Tp.u-^XXu) 

and on the level of the associated graded spaces we obtain the linear isomorphism 

u : V-t/V-1 0 V-l/V0 ~ 9-2 0 5-i -> T^M/T^M 0 T^M. 

The whole structure group P is a semidirect product of its reductive subgroup Go 
(corresponding to the Lie algebra go) and the subgroup P+ which corresponds to 
P+ = 0i © 52- Obviously, the latter identification u does not change if we replace the 
frame u by u.b with b G P+. Thus we have identified the graded tangent bundle GrTM 
with the associated vector bundle to the principal bundle Go = (7/P+ whose standard 
fibre is the Go-module g_. In particular the Lie bracket on Q- is transfered to the 
algebraic bracket { , }o by 

{6r,ife}o = fidfi"1^),^"1^)]),    f*,*/* € GrTxM,u <E 0. 

Notice that this definition does not depend on the choice of u since u is independent of 
the action of P+ and the Lie bracket on g_ is Go-equivariant. Since our Go-structure 
on GrTM is defined by the Cart an connection, we may choose representing vectors 
^ € TJM, fjx € TJM, their covering vectors €u,f)u £ T5 and we obtain 

{€x,rix}o = ^(^(M&OM^)])^)) 

where TT is the obvious projection Ti+ig -> Ti+^M -> Ti+jM/Ti+J+1 M'. 
We shall see in a while that the regular Cartan geometries are exactly those for 

which the latter bracket is induced from the Lie bracket of vector fields in an algebraic 
way. Since we shall need a good control over the relations between the brackets of the 
horizontal vector fields and some brackets on the underlying manifold in its proof, we 
shall first formulate a general lemma based on our concept of the normal coordinates. 

LEMMA 2.10. Let u G G and let au be the corresponding distinguished local triv- 
ialization of G, see (2.3). Further let X,Y G $-, and consider the projectable vector 
fields £, 77 over M, such that their restrictions to the image of au coincide with the 
horizontal fields UJ~

1
 (X), UJ~

1
 (y), respectively. Then [UJ~

1
{X),UJ~

1
(Y)]{U) = [$,^](w). 

Thus, in particular 

Tp.^iX)^-1^)]^) = [TP.lTp.fj](p(u)). 

Proof Let us write £ = UJ~
1
(X) + /x, fj = UJ~

1
(Y) + u and compute their bracket. 
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By the very definition, we obtain 

[lv}(u) = !|o
r(F1-t) 0 (w"1^) + ") 0 (Flf)(«) 

dt 

dt 

= [|>a;-1(y)](u) 

T(Flit) o (c-^y) + V) o (Fir" (X))(u) 
at|o 

= ^  T(Flit) o {u>-\Y)) o (Fir"1(X))(U) 

where the first equality follows from the fact that the flows of £ and UJ~
1
{X) through 

u coincide, the next one results from the vanishing of v on the image of au. Now, 
repeating the same arguments for [ci;-1(Y), £], we achieve just the required equality. D 

LEMMA 2.11. Let UJ G fi1(^,s) be a Gartan connection with a \2\-graded Lie 
algebra Q. Then K^ = 0 for all i < 0 and the Lie bracket of vector fields defines an 
algebraic bracket { , JLie on the graded vector bundle GrTM. Moreover, K^ vanishes 
if and only if the latter bracket coincides with the algebraic bracket { , }o on GrTM. 

Proof Recall that the defining equation for the homogeneous components 
KW(U)(X,Y), k^OiueGiXeguYevj is 

(2.7) K<*>(!i)(X,y) = -u;i+j+k([u;-1(X)^-1(Y)}(u)) 

while the component of degree zero is 

(2.8) «(0)(ti)(X,y) = [X,Y] - ui+j([u-1(X),u-1(Y)](u)). 

Now, consider vector fields £ in JPM, r) in X^M and let us choose elements Xr G V\ 
Ys G V* such that £ = Tp.^/^-^Xr), rj = Tp.^g'u^iYs) with suitable 
functions /r, gs on Q. Then 

K.i,] = (Tp.£/'y["-1(Xr),u;-1(r.)]) modT^+1M. 

The negative homogeneous components /c^^, A: < 0 have to vanish because the 
algebra is |2|-graded and so we have no choice of arguments for cochains with such ho- 
mogeneity. The lowest possible case will be a cochain g_i x g_i —>> g_2 of homogeneity 
zero. The fact that the Lie bracket of vector fields produces an algebraic bracket on 
the associated graded tangent bundle is obvious. 

Now, the two brackets in question may be expressed for all vectors 
& = TT^-^X)^)) and nx = Tr^OOM) as 

{^Vxh = 7r(u-1([X^Y])(u)) 

{Sx,rix}ue = [Tp.lTp.rj\{x) mod Ti+'+1M 

= TT{[U-
1
{X),UJ-

1
{Y)]{U) mod Ti+'"+1£) 

= K{u-\u:i+j{[u-\X),u-\Y)](u)))) 

where ^ or fj are some projectable fields from the previous Lemma 2.10. Thus, accord- 
ing to (2.8), the two brackets equal each other if and only if tt(0) vanishes. D 
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Now we have got the motivation for the following definition of geometric structures 
on manifolds. Let us also remark that the version of the latter lemma which is valid 
for all |fc|-graded structures needs one more condition. Namely, the existence of the 
algebraic bracket induced by the Lie brackets of vector fields, which is equivalent to 
the vanishing of all negative components ^k\ k < 0. 

DEFINITION 2.12. Let Q, G, P, and Go be as in 2.1. A regular (g,P)-structure 
on a smooth manifold M is a filtration of the tangent bundle TM 

TM = T-2M D T^M 

together with the reduction of the structure group of the associated graded tangent 
vector bundle GiTM to the subgroup Go, such that the algebraic bracket on GiTM 
induced by the Lie bracket of vector fields coincides with the algebraic Lie bracket 
defined by the Go-structure. 

We may understand the above condition as the requirement that the subbundle 
T~lM be reasonably non-involutive. Due to our restriction to 12[-graded algebras we 
do not need to consider the other condition from Lemma 2.11 on the Lie brackets of 
vector fields, namely that they must not be "too much non-involutive". 

Surprisingly enough there is the theorem claiming that, apart from a few excep- 
tions, all regular normal parabolic geometries are uniquely given by the underlying 
(g, P)-structures on the manifolds M: 

THEOREM 2.13. Let M be a smooth manifold, g a graded semi-simple Lie algebra, 
G a Lie group with Lie algebra %, and assume that all homogeneous components of 
the cohomologies H}(Q-,Q) with positive degrees I > 0 are trivial. Then there is a 
bijective equivalence between isomorphism classes of the regular (g^P)-structures on 
M and the isomorphism classes of regular normal Cartan geometries {GiOj) over M. 

For the proof see Section 3 of [4]. The computations in [27, 4] show that, apart 
from situations with simple components in go? the only exceptions are g = 51(2, C), 
specific maximal parabolic subalgebras in special linear algebras in higher dimension 
(|l|-graded examples) and specific maximal subalgebras in symplectic algebras (|2|- 
graded examples). An equivalent theorem for the cases g simple and G connected was 
proved in [24]. 

2.14. Proof of Theorems 1.2 and 1.3. The relevant cohomologies for the real 
forms of s[(3, C) 0 sl(3, C) are computed in Appendix A. In particular, there is no 
obstruction in the construction of the normal Cartan connections out of regular (g, P)- 
structures according to Theorem 2.13. The definition of the relevant (g,P)-structures 
by means of the fundamental second order osculation (1.1) was discussed at the end 
of Section 1, see Lemma 1.1. 

3. The hyperbolic structures. In this section, we shall study the consequences 
of the algebraic structure of su(2,1) 0su(2,1) for the hyperbolic points on embedded 
6-dimensional CR-manifolds of CR-codimension two M C C4. Thus the Lie groups G, 
P, Go, as well as the corresponding Lie algebras will be fixed throughout this section. 

3.1. Almost product and almost complex structures. As we noticed al- 
ready in the proof of Theorem 1.2, there is the relevant (g,P)-structure on M. Since 
the individual left and right components of g are P-submodules up to swapping L and 
R, this structure introduces the natural splitting of the whole tangent bundle TM, 
i.e. an almost product structure on M. The almost product structure also restricts to 
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the complex tangent bundles TCRM. Following our notation for the left and right 
components of the structure group in the Appendix, we shall write 

TM = TRM 0 T^M,    TCRM = TCR>RM © TCR>LM 

GiTM = (TLM/TCR'LM © TCR'LM) 0 {TRM/TCR>RM 0 rCR»HM) 

but we keep in mind that the splitting is available only locally, in general. In particular, 
the two components of TM are orthogonal with respect to the algebraic bracket 
{ ?   }Lie- 

Next, we observe that the canonical almost complex structure J defined on TCRM 
is induced by the (g, P)-structure. Indeed, we define 

J e (TCRMy 0 TCRM,    JiTp.uj^iX)^)) = Tp.(u'1(iX)(u)) 

and this formula does not depend on the choice of u and X because the adjoint action 
of P on 0_i C g/p is complex linear. 

At the same time, there is the obvious integrable complex structure coming from 
the definition TCRM = TM n iTM C TC4 on the embedded CR-manifolds. The 
fundamental osculation (1.1) then implies that these two almost complex structures 
on TCRM coincide. 

3.2. The abstract hyperbolic CR-manifolds of dimension six and CR-codimension 
two are defined by the specification of a regular (g, P)-structure on M in the sense of 
Definition 2.12. In particular, they come equipped by the CR-subbundle TCRM C TM 
of real codimension two with an almost complex structure, and the compatible almost 
product structure on TM. The general theory then applies as well and so the normal 
Cart an connections are given uniquely on all such manifolds. We shall see, however, 
that the embedded ones have very specific features. The automatic integrability of 
the almost complex structure J on TCRM is an example. We can meet these more 
general structures on some 6-dimensional real submanifolds in 8-dimensional almost 
complex manifolds. 

Our goal is to understand fully the local geometrical properties. For that reason 
we shall first discuss all possible algebraic brackets on TM which arise from the Lie 
bracket of vector fields and we shall link them to certain components of the curvature 
of the canonical Cartan connection u on M. In fact we shall work on the abstract 
level, forgetting more or less about the embedding of the manifold M into C4. For 
the embedded hyperbolic CR-manifolds, however, some of the obstructions will vanish 
automatically. 

For example, the algebraic Lie bracket of two vector fields £,77 in TCR,LM has 
no contribution in TRM/TCR,RM and so the projection of the Lie bracket [£, 77] to 
TRM = TM/TLM has values in TCR'jRM. Analogously we can deal with left and 
right components exchanged and so there are two obvious algebraic brackets 

(3.1) { , }L : TCR'LM x rCR'LM -> TCR>RM 

(3.2) { , }R : TCR'RM x TCR>RM -> TCR'LM 

which have to vanish automatically for all embedded hyperbolic CR-manifolds in 
view of Lemma 1.1. We shall see in a moment that these brackets vanish even for the 
abstract structures. 

Our general strategy will be to link algebraic brackets to certain components of 
the curvature K of the Cartan connection LJ. According to Theorem 2.8, we have to 
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homog. cochains comment 

0?2 x g*! -> ^2 real linear in both arguments 

0£2 X fl^! -> g^ real linear in both arguments 

fl^i x j^ -)► fl^! antilinear in both arguments 

B£i x 8-i -> 8-i sesquilinear 

8-i x 8-i -> 8-i antilinear in both arguments 

8-i x s£i -^ 8-i sesquilinear 

4 8-2 x 8-i -> sf real and complex linear 

4 8-2 x 8-i -> Bf real and complex linear 

TABLE 3.1. Real cohomologies of g- with coefficients in g 

start by the description of the real cohomologies 

H*(gi 0 8-,su(2,1)L 0 su(2,1)R). 

LEMMA 3.3. All irreducible components of these real cohomologies are the one- 
dimensional go-modules which are generated by the (real) bilinear cochains listed in 
Table 3.1. 

Proof. Let us consider the 8o-niodules 

At = #|(8- 0 8-,su(2,1)L 05u(2,1)R). 

By the general theory we know that the complexifications (A^)c of the dual 8o- 
modules A^ are the complex cohomologies JH'^(p+,5[(3,C) 0sl(3,C)) listed in the 
table of all complex cohomologies, see Table A.2 in Appendix A. Further, let us notice 
that the two components in 8-i have a canonical complex structure. Now, we have just 
to keep in mind, that a complexification of a real linear mapping (/>: V -> W, defined 
on a complex vector space V, splits into two components according to the splitting of 
the complexification VQ = V 0 V. If the target of such a mapping is complex as well, 
then the mapping </> itself splits into the complex linear and complex antilinear parts. 
Thus the complex cohomologies on the list of Table A.2, and the other half of them, 
must come exactly from the components listed in Table 3.1. D 

Now we are ready to find the geometric meaning of the individual torsion compo- 
nents. First, we shall focus on the obstructions against the integrability of the natural 
almost product structure on M. 

Thus we are interested in brackets Gr TLM x Gr TLM -> Gr TRM and those with 
the left and right components exchanged. The restriction of { , jxie vanishes clearly. 
Hence, apart from the algebraic brackets (3.1), (3.2), there is another candidate 

(3.3) 

(3.4) 

{ , }L : TLM/TCR'LM x TCR'LM -+ TRM/TCR'RM 

{,}R: T
R
M/T

CR
'
R
M x T^'^M -> TLM/TCR'LM. 
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Indeed, choosing any representative of the argument from the quotient space, the 
ordinary Lie bracket projected to the desired component yields our algebraic bracket. 
In contrast to the Levi form, these two algebraic brackets are not coming from the 
quadric by the osculation. 

LEMMA 3.4. The brackets (3.1), (3.2) vanish identically. The brackets (3.3), (34) 
are given by the formulae 

(3.5) WO.fH = -*R{TP.U-\KV{U){X,Y)){U)) 

(3.6) {**(«,»?}* = -'KLiTp.u}-
l{K^{u){X,Y)){u)) 

where u 6 G, TTL and TTR are the obvious quotient projections in the left and right 
components of the graded tangent space, and X G y^i Y G g^j, or X G 0^2-> Y ^ 8-i> 
respectively, and 

Z = Tp.u>-\X){u),    T1 = Tp.co-1(Y)(u). 

There are no more non-trivial algebraic brackets GTT
L
M X GTT

L
M —)* GrT^M and 

GTT
R
M x GiTRM -> GTT

L
M. 

Proof. We shall discuss only brackets GrTLM x GrTLM -> GrT^M. The other 
ones are treated analogously. 

The first part is quite easy. Let us consider t;x,r]x G T£R>LM. Further, choose 
u G G, x = P(M), and X,Y G ^ such that ^ = Tp.uj-l(X){u), ^ = Tp.u^iY^u). 
According to the Lemma 2.10, there are the projectable vector fields £, r) on Q such 
that their projections i — Tpo^r] — Tp.fj satisfy £(x) = ^, rj(x) = rjx and 

(3.7) [Z,T,]{X) = Tp.[|,7y](u) = Tp-to;-1^), w-^yJKti). 

Now let us recall the general formulae (2.7) and (2.8) for the evaluations of curvatures 
and remember there are no curvature components of non-positive homogeneities. In 
particular, 

U;([UJ-
1
(X),U;-

1
(Y)](U)) G ^2 0 (g^ 0 5^) modp. 

Thus applying the projection TTR onto the image TCR>RM of { , }/,, we may rewrite 
(3.7) as 

{€X,VX}L =nR0Tp.[irj] 

= TrRoTp.u-'Miuduj-HXluJ-^Y)}^))) 

= -7rRoTp.uj-1{u)(KM(u)(X,Y)). 

In particular, the bracket must vanish because there is no cohomology represented 
by cochains g^ x g^ -> Q

R
1, see Table 3.1, and so this component of the curvature 

vanishes by Theorem 2.8. 
We shall proceed analogously in the case of the bracket (3.3). Let us fix again 

a frame u G Q, x = p(u), choose the element in TLM/TCR>LM represented by 
Tp.u^iX)^) with X G 0^2» and choose another vector r}x G T£R'LM, r]x = 
Tp.uj~1(Y)(u), with Y G Q^. Next, we consider the projectable vector fields | on 
G such that uj^iX) = £ on the image of au and similarly for rj. Then the value of 
Tpo £ = £ at x represents the right argument in TLM/TCR>LM and we obtain 

(3.8) [t,r,](x) = Tp.[i,f}}(u) = Tj>.[u;-1(X),u/-1(y)](«) 
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(see again Lemma 2.10). Since X € 0^2? ^ € 0-i> our takle 0f cohomologies implies 

where o;^ is the component of u valued in g^- ^n particular we obtain the required 
equality (3.5). 

There are still two more possibilities for algebraic brackets GvTLM x GrTLM -> 
GrTRM. The first one, 

TLM/TCR>LM x TLM/TCR>LM -> GrT^M 

is obviously zero since the arguments are from an one-dimensional space. The remain- 
ing brackets 

(3.9) { , }L : TLM/TCR>LM x TCR>LM -> TCR>RM 

(3.10) { , }R: T
L
M/T

CR
>
R
M x TCR'RM -+ TCR>LM 

can be well defined and are algebraic if and only if the brackets (3.3) and (3.4) vanish, 
respectively. If so, then their values are again defined by considering the representa- 
tives of the elements in the quotient spaces in the domain. By the vanishing assump- 
tion, their projection to the quotient on the right hand side is zero, thus they lie in 
the desired targets. 

So let us assume that the bracket (3.3) vanishes. Then tracing the above compu- 
tation of the latter bracket step by step, with the target replaced by TCR,i*M, we end 
up with the formula 

{*L(Z(X)),T,(X)}L = -TTROTP^-HU^HU^X^Y))). 

Thus the vanishing of our bracket is equivalent to the vanishing of the corresponding 
component K^ : g^ x 0-i -* B-i- Consider now the homogeneous component of 
degree two of the Bianchi identity, see (2.5) in Section 2. Its right hand side includes 
terms of two kinds: 

(3.11) K(
1
)(K(

1
)(X,F),Z)       £W-HZ)K(

2+
WHX,Y). 

The differential OK^ on the left hand side is homogeneous of degree two again. Since 
our component of K^ is not in the list of the available cohomologies and K^ is co- 
closed, this component must be in the image of d*. Further, let us notice that d acts 
injectively on the image of d* (cf. the Hodge-structure mentioned in 2.7). Thus the 
image of K^ under d vanishes if and only if this component vanishes too. Now, we 
are interested only in the component g^* ® fl-i* ® £-1 and so its image under d will 
sit in the subspace (cf. (2.4)) 

(flV ® 0V ® B-i* ® fl-2) © (fl-i* ® fl-i* ® fl-i* ® fl-i)- 

Our knowledge of all possibly non-zero components of first degree in K (remember 
we assume that the bracket (3.5) vanishes) and a straightforward inspection of the 
few possibilities of the placement of the arguments in the two terms in the Bianchi 
identity shows that there is no way to get anything non-zero. 

Thus the vanishing of the last possible algebraic bracket has been proved. □ 

THEOREM 3.5. Let M be an abstract hyperbolic 6-dimensional CR-manifold of 
CR-codimension two. The left distribution TLM is involutive if and only if the bracket 
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(3.3) vanishes, the right distribution is involutive if and only if the bracket (3.4) 
vanishes. 

The almost product structure on M is integrable if and only if both these brackets 
vanish. 

Proof. All projections of the Lie brackets TLM x TLM -> TRM are linear over 
functions and thus algebraic. Therefore, Lemma 3.4 implies immediately the first 
claim. Similarly for the other distribution TRM and the last claim follows by the 
standard foliation theory. D 

THEOREM 3.6. Let M be a 6-dimensional abstract hyperbolic CR-manifold of CR- 
codimension two. The canonical almost complex structure J on TCRM is integrable if 

and only if the part Kaa £ C00(5, g!_i A g^ (8) 0-i) of K^ which is antilinear in both 
arguments vanishes. In particular, this part of the torsion vanishes on the embedded 
6-dimensional hyperbolic CR-manifolds in C4. 

Proof. By the defining properties of the regular (g, P)-structures, the complexi- 
fied CR-tangent subbundle T§RM c TcM must be involutive. Thus the obstruction 
against the integrability of J is the Nijenhuis tensor N e A2(TCRMy <g> TCRM. 
Consequently, the theorem will be proved once we verify the following claim: The 
Nijenhuis tensor N, expressed by its frame form u G C00(G,9-i A Q-i <8> 0-i), equals 

to 4Kha - 
In order to prove this, let us choose vector fields £, 77 in TCRM, a frame u G 

Q, p(u) = x e M, and X,Y G Q-i such that f(ar) = Tp.oj"1^)^), r)(x) = 
Tp.tJ^iY)^). We have 

N(Z(x),r,(*)) = M] " [Jt,Jl] + J([JZ,V] + foW) 

and N(Tp.uj-1{X){u),Tp.u;-1(Y)(u)) = Tp.uj-^u^iX^Y)). 
As before, there are projectable vector fields ^, fj over £ and 77, such 

that [u;-1^),^-1^)]^) = [£,f}](u) and similarly for J£(x) = Tp.uj^iiX^u) and 
Jri(x) — Tp.u^^Y)^). Then we can compute 

N{&xU{*)) = Tp.{[u;-l(X),u;-1(Y)} - [^(iX)^^)} + 

uj-1{iij([uj-1(iX),LJ-1{Y)} + [o;-1^),^-1^)])^)))^) 

= Tp. (a;"1 ([X, Y] - [iX, iY] + i[iX, Y] + i[X, iY] + 

K^ (X, Y) - tt(1) (tX, iY) + m(1) (iX, Y) + i^1) (X, iY)) (ti)) (ti) 

= TP.U-
1
(4KW(U)(X,Y))(U) 

D 

3.7. The complexified Cartan connection. The proof of the preceding the- 
orem could be also done by the methods of 3.4, with the help of complexification. 
Indeed, the complexification of the canonical form u is uc : TcG -» Qc which is a 
complex linear automorphism on each complex tangent space. The Lie bracket of real 
vector fields extends to the complex ones and again each choice of u G G, X,Y G 
(g_)c allows to choose projectable complex vector fields £, fj such that [|,^](u) = 
[UJ^

1
(X),UJ^

1
(Y)](U). Furthermore, the expansion of CJCQ^H^J^C^QOD into the 

real and imaginary parts shows that the latter expression yields exactly the complexi- 
fication KC of the curvature. Thus we may proceed exactly as in 3.5 in order to link the 
component of Krc' acting on two holomorphic vectors in the complexification of g_i 
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and valued in the antiholomorphic ones, with the obstruction against the integrability 
of the holomorphic tangent subbundle in (TCRM)c' Of course, the same applies if we 
swap the holomorphic and antiholomorphic vector fields. 

3.8. The rest of the torsion. Similarly, the remaining two components of 
the curvature obtain a nice geometric interpretation in form of an algebraic bracket 
which is defined as follows. Take a holomorphic vector field £ G (TCR'LM)c, an 
antiholomorphic 77 G (TCR>RM)c and project their Lie bracket to the holomorphic 
component in (TCR,RM)c. Clearly, this is an algebraic bracket and it vanishes if and 
only if the corresponding curvature component vanishes. Similarly to the involutivity 
of the holomorphic and antiholomorphic bundles, this obstruction has an tensorial 
interpretation 5* G (TCR>LM)* (8) (TCR>RM)* ®TCR>RM, 

(3.12) SR& rj) = **([£, rj\ + [Jf, Jr?] - J[J£, 77] + Jfc, J77]). 

Swapping the left and right tangent bundle components, we obtain 

(3.13) SL G (TCR>RMy 0 (TCR>LMy ® TCR>LM. 

THEOREM 3.9. Let M C C4 be a Levi non-degenerate 6-dimensional CR-manifold 
of CR-codimension 2 and let x G M be a hyperbolic point. Then M is the product of 
two Levi non-degenerate 3-dimensional CR-structures Mi,M2 C C2, locally around 
x, if and only if the algebraic Lie brackets 

{ , }L : TLM/TCR>LM x TCR>LM -► TRM/TCR>RM 

{ , }R : TRM/TCR>RM x TCR>RM -> TLM/TCR>LM 

vanish on a neighborhood of x. 
The abstract 6-dimensional hyperbolic CR-manifolds of CR-codimension two are 

locally products of (abstract) 3-dimensional CR-manifolds of CR-codimension 1 if and 
only if the above algebraic brackets, as well as the Nijenhuis tensor Nj G A2(TCRM)*<g) 
TCRM and tensors SR, SL from (3.12), (3.13) vanish. 

Proof. All considerations are local and so we may suppose that the whole M is 
hyperbolic. If M is a product of two 3-dimensional CR-manifolds, then we can also 
consider the product Q -» Mi x M2 of the corresponding canonical Cartan bundles 
Qi —> Mi, Q2 -> M2 equipped with the product u = ui © a^ of the corresponding 
normal Cartan connections. These bundles and connections were constructed already 
by Cartan in [7] and their construction is also covered by Theorem 2.13. By definition, 
the new form u G fi1(^,g) has all properties of normal Cartan connections and its 
curvature K is the sum of the two curvatures Ki and K2 of (Ji and LJ2, respectively. 
In particular, there is no torsion because the connections ui and LJ2 are torsion free. 
Thus the four tensorial obstructions on M C C4 have to vanish as well. 

Now, let M be an (abstract) hyperbolic 6-dimensional CR-manifold and assume 
that all six tensorial obstructions from our theorem vanish globally. According to pre- 
vious results, all homogeneous components K^ of the torsion of the normal Cartan 
connection vanish globally. Thus, according to Theorem 2.8 and the table of the rele- 
vant cohomologies, all homogeneous components K;W , z < 3, vanish too. In particular, 
there is no torsion part in K. Let us consider next the part K

L
 of the whole curvature 

which is represented by cochains of the form g^ x g^ -> gR and analogously K
R
 with 

left and right components swapped. We shall use the induction on the homogeneity 
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degrees to show, that all these components vanish. Thus, assume we have done this 
for homogeneity less than j and consider the components in homogeneity j. Since 
there are no cohomologies of the types in question, the corresponding parts of KL

 and 
K

R
 are in the image of d* and so the differential d acts on them injectively. Thus we 

can apply the Bianchi identity in order to see that there is no component which could 
contribute, cf. the end of the proof of Theorem 3.5. Consequently, both K

L
 and K

R 

vanish. 
The splitting g = gL 0 Q

R
 induces two complementary P-invariant distributions 

on G, TQ = TLQ © TRQ. These distributions are involutive if and only if the obvious 
algebraic bracket TLG x TLG -> TRG ~ Tg/TLg vanishes and similarly with L and 
R swapped. Since the brackets are algebraic, we may use the parallel fields UJ~

1
(X), 

a;-1 (Y) with properly chosen X, Y for their evaluation. The projection may be realized 
by means of the component of u valued in the left or right part of g. But this is 
controlled by the curvatures ttL, K

R
 and so the brackets vanish, as proclaimed. 

Now, we know that the Cartan bundle G locally splits into a product of two 
manifolds but we need much more. We wish to prove that there is a neighborhood of 
x over which the whole Cartan bundle (S,u;) is isomorphic to a product of (GL^L) 

and {GR,OIR) for some suitable Cartan connections ax,, a/?. In fact, if we construct 
these data only locally around a chosen frame u G G, then the right invariance will 
ensure what we need. The normal coordinates determined by the choice of u will be 
again our basic tool. 

So let (pu : gfi 0 gR -» G be the mapping defined only locally around the origin by 
the horizontal flows and let au be the corresponding section of G —> M. By abuse of 
notation, we shall not mention the definition domains of these and other locally defined 
mappings. Let us write PL and PR for the parabolic subgroups in the individual 
components of G and define the trivial principal bundles GL = 9- x PL> GR = QR x PR* 

Further, consider the principal fibre bundle morphism ^ : GL X GR ->• G (notice PL 

and PR commute and the whole mapping is defined on fibers over a neighborhood of 
the origin in £f_ only) 

*:((X,p),(Y,q))>-><pu(X,Y)pq. 

Furthermore, the restrictions of ^ yield principal fibre bundle morphisms 

VL'-GL-^G,    (X,p)^ipu{X,0)p 
VR'-GR-^G,     {Y,q)^ipu(0JY)q 

and consider the one forms ai = ^J^L, OLR = ^ROJR where LUL and UJR are the 
left and right components of u. It remains to prove that {GLIOLL) X (GR,OLR) is a 
bundle with Cartan connection (defined locally over a neighborhood of the origin) 
and \l/*a; = OLL 0 OLR wherever defined. 

First notice that, due to our choices and the involutivity of the left and right parts 
of TC/, the forms a^ and OLR are pullbacks of the whole UJ (viewed then as forms with 
values in g, but without any contribution to one half of the image). Thus the properties 
of the Cartan connections are simply transfered by ^L and ^R. Furthermore, since 
the curvature of u does not mix left and right sides either, the structure equations for 
OLL and an are obtained as pullbacks of the structure equation of a;. In particular, the 
curvatures are again <9* closed. Thus (GLI&L) and {GR,OIR) are 3-dimensional CR- 
manifolds of CR-codimension one (locally around the origin of the base manifolds). 
Finally, we observe that \I>*u; will (locally) coincide with the product of the newly con- 
structed Cartan connections if and only if they will evaluate equally on vectors tangent 
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to a fixed section of GL^GR- Thus consider the section (X, Y) !->• ((X, e), (Y, e)), eval- 
uate (OL 0 an) at the vector (W^Q) + (0,Z) € T((x,e),(y,e))(^L x ^ii), and compare 
this with ^*UJ. In fact, we may even deal with the left and right components of the 
tangent space separately. 

Each such vector £ = ^0((X + tW,e), (Y,e)) is mapped by *L to T(VL)(€) = 

■^.0Fl^+tw(u) and so we can easily compare the values #£(£) and &*&(£): 

(«L)(0-^(^|0EI?"1(WHr)(«)) 

*Mo=^(iloFir1(xw+K)(W)). 

Next, we observe that UJ~
1
(Y) commutes with u~1(X + £W) since there is no coho- 

mology mixing the arguments from the left and right components of g_. Thus we may 
rewrite the last expression as 

*M0 = «L(r(F]f 1(y))(& |0Fir"1(;f+t,y)(u))) 

= (Fl1
w-1<y>ra,L(^|0Fir-1<jr+'^(«)). 

Thus, in order to see that the two values coincide, it suffices to show that 

(F^"1(y))*£i;L = LJL for all Y G g*. 

We know this for the flow in the time zero, FIQ * ^ = idg, and so we have just 

to show that ^(Fl^ (
Y

^)*UJL vanishes identically. Each vector in the left component 
of TVG is of the form ct;~

1(y)(^) with V € gL and we compute 

(Fir,(y))-«i;(^|0Pir"1(V)(t»)) = uL(&l0K
1{Y) oFlf1{V\v)) 

= u;L(u>-l(V)(Flf1(Y\v))) = V. 

Since the derivative of this constant mapping vanishes, the required invariance of LUL 

has been proved. 
Similarly we deal with the other component LJR. 

Finally we observe that if M is embedded in C4, then we may always find em- 
beddings 0i of the components Mi in neighborhoods of Xi into C2 such that 

0 = fa 0 fa : M -> C4 = C2 © C2 

is an embedding of M at x = (^i,^)- In fact, consider the initial embedding ip : 
M ->• C4. Then the restriction of ^ to Mi x {0:2} is an embedding of Mi into C4 that 
respects the CR-structure of Mi. There is a holomorphic projection xi '- C4 -> C2 

that is diffeomorphic from ^(Mi x {X2}) onto its image. Denote the resulting mapping 
by 0i and the analogous mapping for the second component by ^2 • Then </>i 0 ^2 is 
the desired embedding. By passing to normal forms (see Appendix B) one can even 
prove that the embeddings 0 and ^ are equivalent, i.e., 0 = $ o ^ with some locally 
defined biholomorphic map $ : C4 ->• C4. □ 

3.10. Chains. The last topic we want to discuss are the analogies to the chains 
on CR-manifolds of CR-codimension one. We have introduced the general concepts 
of chains and 1-chains in 2.4 for all parabolic geometries. These two notions coincide 
for the CR-manifolds of CR-codimension one and they also coincide with the chains 
defined in [8]. 
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Let us recall that the amount of different 1-chains up to parameterizations passing 
in fixed direction through a given point x G M, as well as the set of all chains through 
x is visible from the homogeneous case (see 2.5). 

The detailed discussion on the quadric Q is reviewed in Appendix B with the 
following result: There is a one-parametric family of distinguished parameterizations 
on each (non-parametrized) 1-chain, and in each direction which does not belong to 
the subspace T^RM and does not belong to T^M neither to T^M, there is a 1- 
parametric class of 1-chains up to their parameterizations, cf. (B.3). If the direction 
does belong to the left or right tangent space then there is a unique 1-chain in that 
direction. The chains through a given point x G M are available only in 2-dimensional 
directions of the form {u, X AY} £ TXM A TXM with u G Q in the fibre over x and 

x,yG0-2. 
A general 2-dimensional surface is said to have the chain property at its point y 

if there is a chain providing a parameterization of this surface around y. 
The vector fields UJ~

1
(X), X G g_2 span a two-dimensional distribution in TQ 

which we call the chain distribution of the CR-structure. 
In general, the two-dimensional (non-parameterized) chains /3Ut rotate around 

one fixed 1-chain auo,x(t) if we move the ruling frame ut = Fl^ ^ \u) along the 
horizontal flow. This is not possible, however, if the whole torsion of our CR-structure 
is zero, because then the whole chain distribution is integrable. This is in accordance 
with the previous theorem claiming that the whole bundle Q is the product of two 
canonical Cartan bundles and the Cartan connection is a product, too. Thus, in the 
torsion-free case, our chains f3u are obtained as products of the chains in the three- 
dimensional CR-manifolds. In particular we have proved the following theorem. 

THEOREM 3.11. Let M C C4 be an embedded 6-dimensional hyperbolic CR- 
manifold and assume that the algebraic brackets { , }L and { , }R from Theorem 
3.9 vanish identically. Then each chain f3u : U C 0_2 —> M has the chain property at 
each of its points. 

The same conclusion holds for abstract 6-dimensional hyperbolic CR-manifolds of 
CR-codimension 2 without torsion. 

4.  The elliptic structures. 

4.1. Almost complex and almost product structures. Let us recall that 
on embedded elliptic 6-dimensional CR-manifolds of CR-codimension two, the funda- 
mental osculation (1.1) provides the (0,P) structure on M with g = si(3,C), and its 
standard complex Borel subalgebra p (both viewed as real Lie algebras). The proper 
choices for the groups G, Go, P are discussed in Appendix B. 

There are striking general similarities between the hyperbolic and elliptic geome- 
tries. Indeed, the decomposition of the subspace g_i C g_ 

9-1 = £J-i e 0*! 

induces an almost product structure on the complex tangent bundle TCRM. We shall 
write again TCR'LM and TCR'RM for the individual components. Furthermore, the 
complex structure of the whole real Lie algebra s[(3,C) induces the almost complex 
structure J on TM, given by the formula J{Tp.u~l\X){u)) = rp.a;""1(iX)(w). Clearly 
this formula is independent of the choice of X and u which give the same vector 
Tp.u)~1{X){u) G TXM because the adjoint action of P on g is complex linear. 
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homog. cochains comment 

S-2 x g^ _> g_2 antilinear in both arguments 

0_2 x g^ -> g_2 antilinear in both arguments 

fl^X X Jj^! -^ fl^ totally real 

9*! x g^i -^ fl^x totally real 

5?! X flfl! -^ g^! sesquilinear 

9-i x 5-1 -^ 5-i sesquilinear 

4 9-2 x gii -> flf complex linear in both arguments 

4 9-2 x fl?! -> gf complex linear in both arguments 

TABLE 4.1. Real second cohomologies of Q- with coefficients in g = s[(3, C) 

As we have seen in the hyperbolic case, the knowledge of the real second coho- 
mologies of the algebras in question is most essential. Also now, we shall mostly deal 
with the abstract (g, P)-structures defined on 6-dimensional manifolds but we shall 
point out the specific properties of the embedded ones. In particular, all obstructions 
coming from cohomologies with cochains of the form g_i xg^ —^ g_i will disappear 
automatically according to Lemma 1.1. 

Roughly speaking, the role of the integrability of the almost complex structures 
on the complex subbundles on hyperbolic manifolds is played by the integrability of 
the almost product structure on TCRM in the elliptic case. In particular the almost 
product structure will always be integrable on the embedded elliptic CR-manifolds. 
Further, the integrability of the almost product structure of the hyperbolic manifolds 
corresponds to the integrability of the almost complex structure J on the elliptic ones. 
In particular, the almost complex structure J is intrinsic to the manifold M and it 
cannot be induced by the ambient complex structure in C4. 

LEMMA 4.2. All irreducible components in iy*(g_,5[(3,C)) are the one dimen- 
sional Go-modules which are generated by the cochains listed in Table 4-1- 

Proof. Exactly as in the hyperbolic case, the complexification of the cohomologies 
we want to describe is fully described by Table A.2 in Appendix A. Because of the 
complex structure on g_, each of the real components will produce two copies in the 
complexification. In order to recognize them, we have to notice that complexifications 
of complex linear maps will not swap the two copies in the complexified Lie algebra, 
while the antilinear ones will swap them. This simple observation leads immediately 
to our Table 4.1. D 

THEOREM 4.3. The almost complex structure J on an abstract elliptic CR-mani- 
fold of CR-codimension two is integrable if and only if the antilinear part KaJ of the 
curvature K of the canonical normal Cartan connection vanishes. This in turn happens 
if and only if the algebraic Lie brackets 

(4.1) 

(4.2) r(i,o)M/TCflM x (rCfl,flM)(l,0) T(o,i)M/rCfl M 
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on the complexified graded tangent bundles vanish identically. 

Proof. Essentially, all technique we need has been developed already. In particular, 
we may repeat the computation of the Nijenhuis tensor from the proof of Theorem 
3.6. Since Q- is complex, we can do that with any X, Y G Q-. The result tells us that 
the Nijenhuis tensor JV, evaluated on Tp.LJ~1(X)(u), Tp.uj~1(Y)(u)1 is equal to 

Tpju-^teW +442
a) + 4KW)(X,Y)(U))(U). 

Now, under the additional condition that the higher homogeneities cannot contribute 
whenever ftia (X, Y) vanishes, the Nijenhuis tensor vanishes if and only if /4a vanishes. 
According to the table of cohomologies, the latter expression must be given by the 
algebraic brackets (4.1), (4.2). 

Thus we have to show, that if /sL vanished, then no other antilinear component 
valued in g- could occur in /^2), and if so, than even not in /J3). Let us assume the 
two brackets (4.1), (4.2) vanish. Then there is the algebraic bracket 

T(1'0)M/T«?HM x (yCT^jif )(1'0) _> (TCR
M)^

1) 

which can be evaluated by means of the complexified curvature component of ho- 
mogeneity two. Clearly this must come from an antilinear component and the van- 
ishing of this algebraic bracket is equivalent to the vanishing of the antilinear parts 
Kaa • Q-2 x Q-i —> 0-1- Using the Bianchi identity exactly as in the end of the proof 
of Lemma 3.4 we verify that there is no curvature like this. 

Similarly we could proceed with the remaining algebraic brackets on the holo- 
morphic tangent bundle with values in the antiholomorphic tangent bundle. However, 

(3) the only component of homogeneity three is «oo •0-2X9-2-^5-1 and this vanishes 
automatically because it is complex antilinear and $-2 is of (complex) dimension one. 
D 

THEOREM 4.4. Let M be an abstract 6-dimensional elliptic CR-manifold with 
CR-codimension two. The distributions TCR,LM, TCR,RM in the complex subspace 
TCRM are integrable if and only if the algebraic Lie brackets 

(43) ^0^,1,^(1,0) x (Tc#,z,M)(o,i) ^ (TCR,RMyi,o) 

(4.4) (TCi?,JRM)(i,o) x (2,01,11^(0,1) _> (TCi*,z,M)(i,o) 

on the complexified complex spaces T£RM vanish identically. 
In particular, these almost product structures are always integrable on the embed- 

ded elliptic CR-manifolds. 

Proof. The distributions are integrable if and only if the algebraic Lie brackets 
of two fields from the same component projected to the other one vanish. This is 
equivalent to the corresponding condition on the complexified bundles T£R. NOW we 
may use the technique introduced in 3.7. Thus all the algebraic brackets in question 
will be linked to specific components of the curvature. Since they are all living on 
the CR tangent spaces, they must vanish automatically on the embedded elliptic 
manifolds. 

On abstract manifolds, this means the brackets of holomorphic fields projected to 
the other component vanish automatically and the distribution TCR>LM is integrable 
if and only if the algebraic bracket (4.3) vanishes (cf. Table 4.1). The other distribution 
is treated similarly. □ 
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4.5. Remaining torsion components. Let us notice that also the remaining 
two components of the torsion part of the curvature K, of the canonical normal Cartan 
connection allow an expression by algebraic brackets. This time we obtain 

(4.5) (TCJ*,i*M)(l,0) x (TC/l,LM)(0,l) _> (TC7*,LM)(1,0) 

(4.6) (T
CR

'
L
M)(

1
>
0)
 x (TCR^RM)^1>} -» (TCR^RM)^li0) 

and they vanish again on all embedded elliptic 6-dimensional CR-manifolds in C4. 

THEOREM 4.6. Let M C C4 be an embedded 6-dimensional elliptic CR-manifold 
of CR-codimension 2 and assume that the algebraic brackets (4-1), (4-^) both vanish. 
Then the complex structure J on the entire Cartan bundle G is integrable, the normal 
Cartan connection is holomorphic, and there are two integrable foliations of M by 
complex curves in C4 which span the complex subbundle TCRM. 

The same conclusion is true on the abstract 6-dimensional elliptic CR-manifolds 
if and only if all algebraic brackets (4-1), (4-%), (4-3), (4-4), (4-5)> o.nd (4-6) vanish 
identically. 

Proof In fact, we have nearly proved all necessary facts. Again, the same com- 
putation with the Nijenhuis tensor reveals, that the antilinear part Kaa of the entire 
curvature obstructs its integrability. Once we assume that all the torsion vanishes, 
there are no components of the curvature up to homogeneity four. This is not antilin- 
ear, however. A simple check with the Bianchi identity shows that the complex linear 
curvature components can never produce anything antilinear. Thus the integrability 
of the complex structure follows. Since the complex structure J on G has been defined 
by the absolute parallelism CJ, clearly u G n1(5,g) is holomorphic. 

On the abstract manifolds, the same argument applies if we assume that the 
whole torsion vanishes. On the other, each of the components of the torsion eventually 
produces some antilinear contribution in higher homogeneities via the Bianchi identity. 

Now, assume J is integrable and the torsion vanishes. Then also all horizontal 
vector fields UJ~

1
(X), a;~1(y) with X, Y € g^, or both in the other component, 

commute. Thus we obtain the integrable (real) 2-dimensional distributions in TQ 
spanned by their values. The integral surfaces can be locally parameterized by the 
holomorphic (with respect to J) mappings 

and also their projections to M will be holomorphic curves. Obviously, we have ob- 
tained integral manifolds for the distributions TCR'R and TCR'L. □ 

4.7. Chains. Let M be a 6-dimensional elliptic CR-manifold with CR-codimen- 
sion two, x G M, £ E TXM. As discussed in 2.4, the projections of the flows of horizon- 
tal vector fields determined by elements in 0_2 are 1-chains with specific properties, 
while 

0_2 3 X .-> Flf 1(XV) ^p(Fir 1{X\u)) 

is the chain at x determined by a fixed frame u G G over x. A complex chain is a 
(locally defined) curve ft : C -> M which is holomorphic with respect to the almost 
complex structure J and has the chain property in all its points. 
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THEOREM 4.8. If the brackets (4-1) and (4-^) vanish on a neighborhood of an el- 
liptic point x of an embedded 6-dimensional CR-manifold M C C4 of CR-codimension 
two, then there are unique complex chains through x in all complex directions which 
do not belong to TCRM. 

The same conclusion is true for the abstract elliptic CR-manifolds if the other 
four obstructions against the vanishing of the torsion equal to zero too. 

Proof. Analogously to the hyperbolic structures, there is the chain distribution in 
TQ spanned by the horizontal fields CJ

-1
 (X) with X G g-2- Again, the straightforward 

inspection of the possible curvature components reveals that there is no curvature with 
both arguments in g_2 if the torsion vanishes. Thus the chain distribution is integrable. 
Consequently the flows of the horizontal fields yield holomorphic parameterizations 
and the theorem is proved. □ 

5. Final remarks and conclusions. 

5.1. Relation to other results. Mizner [17] constructed CR-invariant connec- 
tions for weakly uniform CR-structures of codimension 2. In the cases considered 
there, the automorphisms of the quadrics are always linear (thus, p+ is absent) and so 
[17] does not come even close to our results in the distinguished 6-dimensional case. 
Similar results were obtained by Garrity and Mizner for CR-structures of codimension 
bigger than 2 with rigid osculating quadrics. The CR-manifolds that are considered 
in this paper are not covered there. 

In [9] Ezhov, Isaev and Schmalz constructed parallelisms for hyperbolic and el- 
liptic manifolds. These parallelisms turn out to be Cartan connections only in very 
special cases. The geometric reason for that is the presence of torsion in our Car- 
tan connection. We were able to characterize the torsion-free ("semi-flat") cases as 
manifolds with integrable almost product structure in the hyperbolic case and with 
integrable almost complex structure in the elliptic case. Thus we give an answer to the 
question about the geometric meaning of "semi-flatness" for elliptic manifolds that 
has been posed in [9]. 

Let us also remark that the almost CR-manifolds of CR-codimension one (e.g. 
certain real hypersurfaces in almost complex manifolds) have been studied from the 
point of view of the general theory of parabolic geometries in [3]. In particular, a nice 
geometric specification of the construction from 2.13 is presented there. 

5.2. The parabolic CR-geometry. Unfortunately, the automorphism group of 
the parabolic quadric (1.3) does not fit into our scheme of general parabolic geometries 
at all (notice the abuse of the non-compatible use of the word "parabolic" which is 
used in the sense of Section 2 now). This is obvious already from its dimension which 
is 17. The structure of its infinitesimal automorphisms is described in detail in [19] 
and it turns out that the discrete center Z2 of the hyperbolic or elliptic group blows 
up into the additional dimension and one copy of su(2,1) sits still inside. So it plays 
nicely its role of an intermediate state between the hyperbolic and elliptic points. 

In particular the methods of Section 2 which are based on the existence of the 
Hodge theory on the cochains in the Lie algebra cohomology cannot work. One should 
believe that some specification of the very general approach in [18] could be applicable. 
We consider this as a very interesting open problem. 

5.3. Webster-Tanaka connections. There is a very rich underlying geome- 
try on each manifold equipped with a Cartan connection modeled over graded Lie 
algebras. In particular, we always have the principal bundles Qo = G/P+ -> M with 
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structure group Go and the principal bundle Q -> Go with the structure group P+. 
The latter bundle always admits global smooth Go -equivariant sections and the set 
of all of them is parameterized by one-forms on M. The pullback of the (g_ 0 Qo)- 
component of the Cartan connection u by means of any of these sections provides an 
affine connection on TM, i.e. a soldering form on Go together with a principal con- 
nection on Go- This construction has been described in full generality in [21] and it 
produces the Webster-Tanaka connections on the CR-manifolds with CR-codimension 
one. Thus we have a similar class of linear connections on M underlying our elliptic 
and hyperbolic structures. 

5.4. Natural bundles and invariant operators. Another very interesting 
consequence of our construction of the canonical Cartan connections is the theory 
of the semi-holonomic jet modules for general parabolic geometries, which allows to 
transfer the problem of finding invariant operators which act on some natural bundles 
coming from representations of P into problems in finite dimensional representation 
theory. The first application of this theory is worked out in [5, 6]. 

In particular, there are the Bernstein-Gelfand-Gelfand sequences for all irreducible 
G-modules V which specialize to the BGG resolution of the constant sheaf with coeffi- 
cients in V on the homogeneous space, see [6]. The analogies to classical complexes on 
CR-manifolds with CR-codimension one should be localized inside of these sequences. 

A. Cohomologies. The aim of this section is to provide the list of all non-zero 
cohomologies in iJ2(g_,g) for the complex algebras 

g = s[(3, C) 0 sl(3, C)    p = {all upper triangular matrices in g} 

We shall refer to the two copies of st(3, C) as the left and right ones. The two parts 
of go coincide with the parts of the Cartan subalgebra of the diagonal matrices and 
all the one-dimensional root spaces are (complex) one-dimensional. We shall denote 
them as indicated in the following matrices 

(A.1) 

Here the stars fill up the subalgebra go, P+ consists of the strictly upper triangular 
matrices, Qi = gi,o 0 90,1 as go-module, etc. 

The cohomologies for modules over simple algebras are completely described in 
terms of the orbits of the Weyl groups on the weights. We shall use the notation 
and technique as developed in [2]. First, we have to recall a few basic facts on the 
representations of the parabolic subalgebra p C g. 

The Dynkin diagram of s[(3,C) is •—• . The parabolic subalgebras are denoted 
by crossing the nodes which correspond to the negative simple coroots which do not 
belong to p. In our case this means one x—x for both left and right s((3, C). The 
weights of irreducible representations of p are then denoted by the coefficients in their 
expressions as linear combinations of fundamental weights, placed over the corre- 
sponding nodes. The g-dominant weights have non-negative integral coefficients, the 
p-dominant weights must be non-negative over the uncrossed nodes only. For exam- 
ple, the trivial representation and the first and second fundamental representations 

0 0        1 0        0 1 
of s[(3, C) have the highest weights x—x , x—x , x—x . Each p-module enjoys the 
filtration of the p-submodules such that the associated graded p module decomposes 

* 01,0 02M / * 0U) 
0-1,0 * 0oL,i © 0*1,0 * 

^» 00,-1 *J u2 So!-] 
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into the direct sum of irreducible p-modules. For example, the filtration and decom- 
position of the p-module sl(3, C) is as follows 

0-1,0 01,0 
(A.2) 9-2    +      0      +    flo    +     ©     +    02 

00,-1 00,1 

and in the terms of the highest weights for the one-dimensional irreducible p-modules 

(A.3) 

-1 2 
X X 

X—X 

1       1 

+      X—X 

The whole Weyl group W of sl(3,C) is generated by the two simple reflections 
sii s2 with respect to the two simple roots, acting on the weights QQ. 

a b —a      a+b a b a+b      —b 
(A.4) si : x—x     H->     x—x        s^ : x—x     i-»     x—x 

Since our parabolic subalgebra p C g is the Borel subalgebra, the corresponding 
parabolic subgroup Wp coincides with the whole W. 

The differential d respects the homogeneities of the cochains and so the coho- 
mologies split into homogeneous components if/(0_,0) too. Moreover, we have the 
identification Hf(g^,g) ~ iJ^(p+,0) (of real vector spaces). Thus the Kostant's 
version of the Bott-Borel-Weil theorem is relevant for our aims as well: 

THEOREM A.l. Let p C g be a parabolic subalgebra in a complex simple algebra 
Q. If A is a finite dimensional irreducible g-module of highest weight A, then the 
whole cohomology iJ*(p4.,^4) is completely reducible as a p-module and the irreducible 
components with highest weight JJ, occur if and only if there is an element w E Wp C W 
such that ji = w.\ = w(X + p) — p and in that case it occurs in degree \w\ with 
multiplicity one. 

The degree of an element w € W is defined as the smallest possible number of 
simple reflections whose composition is w. See e.g. [15, 25] for the proof the Theorem. 

Now, we have a simple procedure to compute the cohomologies: First, we write 
down the labeled Dynkin diagram depicting the g-dominant highest weight A. For 

i      i 
example, the highest weight of the adjoint representation is x—x . Then we add one 
to each coefficient and act by combinations of simple reflections according to (A.4). 
Finally we subtract one from each coefficient. The p-dominant results are just the 
highest weights of the cohomologies. 

Unfortunately, we deal with a sum g = gL 0 g^ of two simple algebras. In order 
to make use of the latter theorem, we shall view the representation spaces of g and 
p as the (exterior) tensor products A\%B of g^modules A and g^-modules B. In 
particular, we understand the adjoint representation on g = gL 0 g^ as 

g = (gLSC)0(CSgii) 

with the obvious tensorial actions of p+ = p^ 0 p^. 
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H0(P+,C) 
0 0 

X X tf0(p+,s[(3,C)) 
i     i 
X X 

HHP+X) HHP+M^Q) 
X—X 

-3 3 

X—X 

3 -3 

X X 

H2(p+,C) 

-3 

-X 

-3 

x- 
H2(p+,5l(3,C)) -5 

x- 

TABLE A.l. 

The cohomology with values in a direct sum of modules is just the direct sum of 
the cohomologies with values in the submodules. Now, the Kiinneth theorem implies 
for each tensor product of our modules A 21B 

(A.5) Hp(^©p?>ABB)=   ^ {Hi(p^A)^Hj(p^B)). 
i+j=P 

Thus, in order to compute the second cohomologies 

^2(p£ep£,5t(3,C) 0 51(3,0)) 

we have to know all cohomologies ff*(p+,s[(3,Q), i = 0,1,2, and i^(p+,C). The 
results computed by the procedure as described above are listed in Table A.l. 

The homogeneity of the components is given by the sum of the coefficients, which 
is the action by the so called grading element E E $1(3, C), E = diag(l, 0,-1). There 
is another independent element F € s[(3, C), F — diag(l, —2/3,1), which acts trivially 
on g25 by 1 on g-i,0j and by —1 on go,-i- Thus the action of F on a weight module 
is given by one third of the difference of the coefficients over the nodes in the Dynkin 
diagram. 

Now, the rest of our computation is quite easy since all irreducible components in 
the cohomologies are one-dimensional. Thus in order to localize the representatives of 
cohomologies as bilinear mappings, we have just to evaluate the actions of the left and 
right go-elements EL, ER, FL, FR on the weight modules in the second cohomologies 
and this always describes the possible domain and target of a bilinear representative 
in the space of cochains uniquely. A half of the result is listed in Table A.2. The other 
half is obtained by mutually replacing all the left and right components. 

In fact, we are interested in the real cohomologies i^(g_,su(2,1) 0 5u(2,1)) and 
i^(0_,sl(3,C)) where fl_ is the negative complement to the real Borel subalgebras p. 
As we have mentioned already, the latter cohomologies are dual to the real cohomolo- 
gies i^(p+,su(2,l) 0 5u(2,1)) and H^_£(g-,si(S,C)). Thus the complexifications of 
the requested cohomologies will be dual (as real modules) to those listed in Table A.2. 

B. Normal forms. For embedded real-analytic hyperbolic or elliptic CR-mani- 
folds one has constructions of normal coordinates in the ambient space in a neigh- 
borhood of a given point. These coordinates are uniquely determined up to some 
Lie-group action of the isotropy group of the quadric (1.2) resp. (1.4). The equation 
of the manifold takes then a special form called normal form that refines the os- 
culation (1.1) by the quadric. These constructions generalize Chern-Moser's normal 
form for real-analytic hypersurfaces in Cn. They were obtained by Loboda [16] in the 
hyperbolic and by Ezhov and Schmalz [11] in the elliptic case. 
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homogeneities components in U2^ 0 p+,0L 0 C) 

total 
actions of 

EL,ER,FL,FR components cochains 

2,-3,0,1 

2,-3,0,-1 

i 
-x 

i 
-x 

0 -3 
X X 

0,-1,-2,-1 

0,-1,-2,1 

0,-1,2,-1 

0,-1,2,1 

-3 3 -2 
x—X 0 x- 

1 -2 
X X 

-3 
-x I 

-2 
X- 

1 -2 
X—X 

0ofi 
x0o!i-*'sf,o 

5o,i x 5M -> fl^o 

fli^o x flM -* 80,1 

flfto 
x fli!o -» flog 

-4,2,0,0 

-4,-2,0,0 

0 
X- 

x—x IS x- 

52  x fli;o "> 0-1,0 

TABLE A.2. 

Let us recall the isotropy groups of the quadrics. It is convenient to choose coor- 
dinates that reflect the geometric structure of the quadrics. The hyperbolic quadric 
is the direct product of two hyperspheres in C2 : 

vi = |2i|2,     V2 = \Z2\2. 

The geometric structure of the elliptic quadric will be revealed by passing to coordi- 
nates 

w\ — Wi +iW21 w: Wi — IW2. 

Then V = vi 4- iv2 = ^^^ and the equation of the quadric takes the form 

V = Wi -^2 
2i = ^1^2- 

Thus this quadric carries a complex structure; it is a complex hypersurface in C4 with 
coordinates zi,Z2, wl^wl- Below we will use these coordinates and omit the sharps. 

The automorphism group of any quadric contains a transitive subgroup called 
Heisenberg group. For any point (p, q) at the quadric the Heisenberg translation that 
takes the origin into (p, q) has the form 

z   — z +p 

w* = w + q + 2i(z,p). 

Thus, any automorphism decomposes into a Heisenberg translation and an 
isotropic automorphism. The subgroup of isotropic automorphisms will play the role 
of the parabolic subgroup P with Lie algebra p. 

For both our quadrics the isotropic automorphisms can be described by the well- 
known Poincare formula for sphere automorphisms 

Z* = C(Z + AW)(1 - 2iAZ - (R + iAA)W)-1 

W* = CCW(1 - 2iAZ - (R + iAA)W)~\ 
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where Z and W are diagonal 2 x 2-matrices with entries z\, 22 and wi, w<2,, respectively, 
C and A are complex diagonal matrices, and R is a real diagonal matrix. There 
occurs an additional discrete automorphism that interchanges z\ «-> Z2 and wi «f> ^2. 
The group P decomposes into Go and P+ where Go consists of the linear isotropic 
automorphisms (with A = R = 0, including the discrete automorphism) and P+ 
consists of the "non-linear" automorphisms with C = 1. The Lie algebras of the latter 
subgroups are go and p+, respectively. 

The only difference between the hyperbolic and elliptic case is a different definition 
of the complex conjugation. In the hyperbolic case the conjugation is the usual one 
and R is real means that it has real entries. Thus, the automorphisms also split into a 
direct product. Since the automorphism group of the sphere is SU(2,1)/Zs this shows 
that the automorphism group of the hyperbolic quadric is 

((SU(2,1)/Z3) x (SU(2,1)/Z3)) » Z2. 

In the elliptic case the complex conjugation is the usual one combined with in- 
terchanging zi «-> Z2 and Wi 0 W2. R is real means now that the entries are mutually 
complex conjugate numbers. The identification of the automorphism group G as 

(SL(3,C)/Z3) XZ2 

is less evident than in the hyperbolic case. As shown in [19] the Lie algebra of in- 
finitesimal automorphisms of the elliptic quadric is isomorphic to sf(3, C). Since G acts 
effectively at sl(3, C) via Ad one can consider G as a subgroup of Autsl(3, C). Both 
groups have the same dimension and consist of two connected components. Therefore 
they must coincide. It is not hard to check that Autst(3,C) = SL(3,C)/Z3 x Z2. 

It follows from the explicit description of the action of G on the infinitesimal 
automorphisms that P is exactly the subgroup that respects the filtration of g by the 
p-submodules (cf. 2.1). 

Let us remark that the hyperbolic and elliptic quadrics have compact comple- 
tions in OP2 x QP2 resp. QP2 <8> C. All automorphisms extend to automorphisms of 
the completion and are then linear with respect to the corresponding homogeneous 
coordinates (see [10]). Moreover, these completions can be considered as G/P. 

Now we formulate the concrete normal form conditions: In the hyperbolic case 
the normalized equation of the manifolds takes the form 

(B.l) vj = \zj\
2 + J2Nki(z>^u)> 

where N^ = A^. are polynomials of degree k in z and of degree / in z with coefficients 
that are analytic functions of u = Rew. The summation runs over all integral kj 
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with max{fc,Z} > 1 and min{fc,Z} > 0 The polynomials satisfy the conditions 

^1 = 0 ^=0,    for&>2 
OZi OZ2 

dzidz2 dzidz2 

d*N}2        _n d*NZ2 = 0         _    _   =0 
dzi dz2dz\ dz2 dzi dz2 dzi dz2 

d^m,      =0 e^Nj,      =0 

-o ,n „,ii,n      =o 
(a^)3(^i)2i„2=o (dz2)Hdz2)*lui=0 

d6Nk _n d°N$3 = o ,n ,0/r_10      = o. 
^1)3(^1)3|U2=0 (dz2ndz2rlui=0 

The manifold M is torsion-free if and only if JVJ" depends only on Zj, Zj and Uj. Then 
the conditions above coincide with Chern Moser's conditions. 

In the elliptic case the normalized equation takes the form 

(B.2) V = ziZ2 + 5^JVw(zJz,W,W), 

where U = Wl+Wz and the iV^; are polynomials as above (though without additional 
reality condition). The summation is also as above and the polynomials satisfy the 
conditions 

dN^      n dNlk      n     *     ^o 
0_    = 0 —— = 0,    for k > 2 
dZ2 OZi 

53iv21   = o a3;v12   = o 

dzidzidz2 dz2dzidz2 

54iV22       =0 d4N22 =0 

dzidz2dzidz2 {dzi)2(dz2)2 \n=Q 

dbN32 =0 a5iV23 ^0 

(^l)3(^)3|^0 
= 0. 

Elliptic torsion-free manifolds are obtained for iV = N(zi,Z2,U). Then M is a 
complex hypersurface in C4 with complex coordinates (^i,^2,i^i,iD2). 

From the normal form one can see that the real 2-dimensional surface {z — 0, v = 
0} resp. {z = 0, V = 0} is always contained in the manifold. It is called standard 
2-chain /do (with respect to the given normalization). One can define analytic 2-chains 
as all possible images of the standard 2-chain under renormalizations. The family 
of chains passing through a given point does not depend on the choice of normal 
coordinates but it does depend on the initial point. In difference to the situation for 
hypersurfaces a 2-chain /x for the initial point p need not be a 2-chain for other points 
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It is easy to obtain the analytic 2-chains for the quadrics through the origin as the 
images of the standard chain under isotropic automorphisms. Thus these 2-chains co- 
incide with the geometrically defined chains from 2.4. One obtains that unparameter- 
ized 2-chains are the intersections of the quadric with so-called matrix lines Z = AW, 
where Z, W, A have the same meaning as above. Automorphisms with C = 1, A — 0 
preserve the standard chain and change only the parameter. Since the renormaliza- 
tions of a manifold coincide up to higher order terms with automorphisms of the 
osculating quadric this shows that there exists exactly one 2-chain through the origin 
tangent to {Z - AU}. 

The 1-chains considered in 2.4 can be easily described for quadrics (see [19]). The 
projections of the 1-parametric families from 0_2 are straight lines in ^o through the 
origin. All other 1-chains are obtained by the action of isotropic automorphisms. Since 
the latter preserve 2-chains it follows that 1-chains always remain in some 2-chain. 
The isotropic automorphisms decompose into one automorphism that preserves //Q 

and one that maps //o to another chain. Therefore it suffices to study the 1-chains 
that are contained in //Q- For the hyperbolic quadric we have the following situation: 

• There are two singular directions at ^o such that the only 1-chains in these 
directions are straight lines: {u\ — 0} and {u^ — 0}. 

• In all non-singular directions one has a 1-parametric family of 1-chains con- 
sisting of one straight line and hyperbolas 

(B.3) m       aU2 

1-/W 

where a indicates the direction and /? is the additional parameter. 
• 2-chains may intersect at single points or singular 1-chains only. 

In the elliptic case we have 
• In any direction of /io there is a 1-parametric family of 1-chains consisting of 

a straight line and circles 

(B.4) ^(-uf + i/l) 4- sin au\ — cos au2 — 0, 

where a indicates the direction and /? is the additional parameter. 
• 2-chains intersect at single points. 
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