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HOLOMORPHIC SYMPLECTIC GEOMETRY AND ORBIFOLD 
SINGULARITIES* 

MISHA VERBITSKYt 

Abstract. Let G be a finite group acting on a symplectic complex vector space V. Assume 
that the quotient V/G has a holomorphic symplectic resolution. We prove that G is generated by 
"symplectic reflections", i.e. symplectomorphisms with fixed space of codimension 2 in V. Symplectic 
resolutions are always semismall. A crepant resolution of V/G is always symplectic. We give a 
symplectic version of Nakamura conjectures. 

1. Introduction. 

1.1. Symplectic desingularizations in algebraic geometry and represen- 
tation theory. Let V be a complex vector space, and G a finite group acting on V 
by linear transformations. The variety X = V/G is usually singular, and this pa- 
per deals with its desingularizations (also called resolutions). A resolution of X is a 
proper birational map TT : X —> X such that X is smooth, and TT is an isomorphism 
outside of singularities of X. 

A singularity of the type V/G is called a quotient or orbifold singularity. 

The crepant resolutions of X are resolutions TT : X —> X such that the canonical 
class of X is obtained as a pullback of a canonical class of X (see 2.1). 

EXAMPLE 1.1. The Hilbert scheme of n points on C2 provides a crepant resolution 
of the quotient (C2)n/5n of (C2)71 by the natural action of the symmetric group Sn 
(this is well known; see e. g. [N]). 

The crepant resolutions of quotient singularities in dimension 3 and more became 
a focus of intense study after the paper [IR] of Y. Ito and M. Reid, because of their 
relations with physics and with the theory of Hilbert schemes ([IN]). For a history of 
these questions and their relevance to the mirror symmetry, see [R] and [BD]. 

Another reason to study the crepant resolutions comes from the holomorphic 
symplectic geometry and representation theory. Suppose that a complex vector space 
space V is equipped with a C-valued symplectic form, and G acts on V by symplectic 
transformations. The desingularization X —> X is called a symplecticresolution if 
X is holomorphic symplectic, and the holomorphic symplectic form on X is lifted from 
X (see 2.3). Clearly, the symplectic resolutions are always crepant. It turns out that, 
conversely, any crepant resolution of {V/G) is symplectic (2.4). Symplectic resolutions 
were studied by R. Bezrukavnikov and V. Ginzburg (1998, unpublished), who worked 
in the following situation. Consider a semi-simple Lie algebra Q over C, and its 
Cartan subalgebra () C g. Bezrukavnikov and Ginzburg considered the space I) © J)* 
(a direct sum of a Cartan algebra with its dual). Clearly, f) 01}* is a symplectic vector 
space, equipped with a natural action of the Weyl group W of g. They suggested 
that the variety f) 0 t)* /W admits a natural symplectic desingularization, and this 
desingularization is hyperkahler. This is true for the case g = sl(n), because in this 
case 
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and the desingularization is provided by the Hilbert scheme (Example 1.1). The 
conjectural desingularizations of Bezrukavnikov and Ginzburg are quite important, 
because they generalize the usual Hilbert schemes. 

A second example when Bezrukavnikov-Ginzburg conjecture is valid was invented 
by A. Kuznetsov, who considered the Lie algebras associated with the Dynkin dia- 
grams Bn, Cn. The corresponding symplectic desingularization of § 0 F)*/W is bira- 
tional to the Hilbert scheme of the total cotangent space r*CP1 of CP1. Kuznetsov's 
construction is explained in more details in [KV2]. There is some indication that 
Bezrukavnikov-Ginzburg conjecture is not valid for the Dynkin diagrams G2, Dn 

(n ^ 4) and En (n = 6,7,8). 

Another reason to study the symplectic desingularization comes from the hy- 
perkahler geometry. Consider a compact complex torus T, dime T = 2, and its n-th 
Hilbert scheme of points T[n]. Let Alb : T^ —> T be the Albanese map. A gener- 
alized Kummer variety K^n~1^ is defined as 

JSfln-l] c r[n]j    K[n-1] ._ ^5-1 (Q). 

The variety K^'1^ is smooth and holomorphically symplectic ([Bea]). By Calabi-Yau 
theorem ([Y], [Bea]), the variety K^ is equipped with a set of hyperkahler struc- 
tures, parametrized by the Kahler cone. In [KV1], it was falsely claimed that, for 
a generic hyperkahler structure, K^ has no subvarieties compatible with the hy- 
perkahler structure (such subvarieties are called trianalytic, see [VI]). We mentioned 
above the simple agrument used by Kuznetsov to prove the existence of symplectic 
desingularizations of f) 0 l)*/W for the Dynkin diagrams Pn, Cn The same argument 
proves existence of trianalytic subvarieties of generalized Kummer varieties ([KV2], 
Theorem 6.10). 

In [KV2] (Section 4), this topic was pursued further. It turns out that all trian- 
alytic subvarieties of generalized Kummer varieties (at least, for generic hyperkahler 
structures) are isomorphic to symplectic desingularizations of a quotient of a com- 
pact torus by an action of a Weyl group. This establishes a very interesting relation 
between the Dynkin diagrams and hyperkahler geometry, and motivates the study of 
symplectic desingularization of quotient singularities. 

1.2. Symplectic desingularizations and symplectic reflections. In this 
paper, we carry the argument used in [KV2] a step further, to obtain information 
about the structure of finite groups G C Sp(V) such that V/G admits a symplectic 
desingularization. This is done as follows. Let g € End(F) be a symplectomorphism 
of finite order. We say that g is a symplectic reflection if 

codimy ( {x 6 V \ g(x) = x} j =2, 

that is, the dimension of the fixed set of g is maximal possible for non-trivial g (see 
3.1). This definition parallels that of complex reflections - a complex reflection is an 
endomorphism of finite order with fixed point set of codimension 1. The main result 
of this paper is the following theorem. 

THEOREM 1.1. Let V be a symplectic vector space over C, and G C Sp(V) 
a finite group of symplecic transformations. Assume that V/G admits a symplectic 
resolution. Then G is generated by symplectic reflections. 
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Proof. This is 3.2, which is proven in Section 4. D 

This result is analogous to a well known theorem (3.5, Remark 3.3), stating that 
for any finite group of endomorphisms G C End V, V/G is smooth if and only if G 
is generated by complex reflections. However, the "if" part in symplectic case is not 
proven and is likely false (see Conjecture 1.6). 

In connection with 1.1, the following questions appear. 

QUESTION 1.2. Is it possible to classify the groups generated by symplectic re- 
flections? 

A complete classification of groups generated by complex reflections was obtained 
in [ST] (Shephard and Todd, 1954). 

The basic example of groups generated by symplectic reflections is the following. 

EXAMPLE 1.3. Given an action of a group G C EndW we consider the natural 
action of G on End(jy 0 W*). Clearly, G acts on W © W* preserving the standard 
symplectic structure. The action of G on W 0 W* is generated by symplectic reflec- 
tions if and only if the action of G on W is generated by complex reflections (see the 
proof of 3.3). 

The Weyl group acting on f) 0 ()* (Subsection 1.1) is a special case of Example 
1.3. 

REMARK 1.4. Not all the groups generated by symplectic reflections are provided 
by Example 1.3. Take, for instance, any finite subgroup G C SL(V'), dimV = 2. 
Clearly, all non-trivial elements of G are symplectic reflections. The group G is 
obtained from Example 1.3 if and only if G preserves a direct decomposition V — 
W\ © W2, dirnVFi = dim W2 = 1- The finite subgroups of SL{2) are well known, and 
for most of them such a decomposition does not exist. 

Another question appearing in connection with 1.1 is the following 

QUESTION 1.5. Let G C End V be a subgroup generated by symplectic reflections. 
Determine whether V/G admits a symplectic resolution. 

In the case dim V = 2, the answer is "always" by the classical results of Du Val; 
in the next non-trivial case (dim V = 4) the answer is unknown already. 

An example of a Weyl group of G2 acting on f) 0 f}* = C4 motivates the following 
version of Nakamura's conjecture ([R]). 

CONJECTURE 1.6. Let G C Sp(V) be a finite group acting on a symplectic C- 
vector space, and X := HilbGy the G-Hilbert scheme ([R]). 
(i) Then X is a smooth holomorphic symplectic orbifold with singularities in codi- 

mension ^ 4, and the natural map TT : X —> V/G is an orbifold desingular- 
ization of V/G. 

(ii) Moreover, for any crepant orbifold desingularization TTI   :    Xi —Y V/G with 
dimSingXi ^ 4, the orbifold Xi is diffeomorphic to X. 

The second part of Conjecture 1.6 is motivated by a result of Huybrechts [H]: 
birational holomorphic symplectic compact manifolds are diffeomorphic. 
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1.3. Contents. 
• The present Introduction is independent from the rest of this paper. 
• In Section 2, we define symplectic desingularizations and state their main 

properties. Any crepant desingularization of a quotient singularity F/G, G C 
Sp(V) is symplectic (2.4). Simplectic resolutions are semismall (2.7). 

• In Section 3, we state our main result: if a symplectic desingularization of V/G 
exists, then G is generated by symplectic reflections (3.2). We illustrate this 
result by a proof of a classical theorem about groups generated by complex 
reflections. 

• In Section 4, we give the proof of our main theorem. The proof is based 
on the following preliminary proposition (4.1). Let X —> X be a resolution 
of a quotient-type singularity X = V/G. Then the manifold X is simply 
connected. 

2. Symplectic resolutions. Let X be an irreducible complex analytic variety. 
A proper morphism TT : X^—> X is called a resolution of singularities, or a 
desingularization of X if X is smooth and connected, and TT is an isomorphism 
outside of the set of singular points of X. 

DEFINITION 2.1. In the above assumptions, let X be a normal variety, and U a 
non-singular part of X. Since TT is an isomorphism over U, we may consider U as a 
subset in X. Let CcU be a divisor associated with the canonical class ofU, and C 
a closureyf C in X. We say that TT is crepant if the divisor C lies in the canonical 
class of X. 

In other words, crepant resolutions are those which preserve the canonical class. 

DEFINITION 2.2. Let V be a vector space, G a finite group acting on V by linear 
transformations, and B C V a G-invariant open ball. In this case, we say that B/G 
has orbifold singularities or singularities of quotient type. 

DEFINITION 2.3. Let TT : X —> X be a resolution of a quotient-type singularity 
X — V/G, where V is a symplectic C-vector space. Assume that G acts on V by 
linear transformations preserving the symplectic form: G C Sp(V). Consider the 
natural symplectic form fix on X, defined outside of the singularities of X. Assume 
that the pullback 7r*fi can be extended to a holomorphic symplectic form on X. Then 
TT : X —> X is called a symplectic resolution of X. 

REMARK 2.1. Clearly, symplectic resolutions are crepant. 

The following preliminary theorem establishes the relationship between the sym- 
plectic and crepant resolutions. We shall not use it in this paper, but prove it here to 
validate the notion of a symplectic desingularization. 

THEOREM 2.4. LetX = V/G be a quotient of a symplectic vector space by a finite 
group G C Sp(V). Assume that TT : X —> X is a crepant resolution of singularities. 
Then TT is a symplectic resolution, in the sense of 2.3. 

Proof. Another proof of this theorem is given in [K], (Proposition 3.2), and in 
[Bea2], (Proposition 2.4). 

Let U C X be the set of all points where TT : X —> X is smooth, and U := TT
-1

 (U) 
the corresponding subset of X. Consider the symplectic form Q,x as a section of the 
sheaf of holomorphic 2-forms tiy. Let Q^ := n^Slx be its pullback. We need to show 

that the form fi^ can be extended to the whole X.  Consider a smooth Hermitian 
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metric on X, and let h be the corresponding metric on Q,2X. Then Qfj is a holomorphic 

section of a Hermitian vector bundle fi~ over U. Such a section can be extended to 

a section of a bundle over X unless it has singularities on the complement X\U. To 
prove that flfj can be extended to X, it remains to show that for any compact set 

K C X for every x 6 U H K, the Hermitian norm of fi^ is bounded 

hx{Qfj\x)<CK 

by some constant CK depending on K. 
A symplectic form 0 in a Hermitian vector space L can be naturally represented 

in the form 
n-l 

2=0 

for some orthonormal basis 21,..., Z2n in L*, where A; are non-negative real numbers. 
The numbers A^ are called the eigenvalues of 0; the set of eigenvalues is defined 
canonically by the symplectic form and the Hermitian form. Denote the eigenvalues 
by A;(0). Clearly, for any x E U, we have 

M"grL)<C'-maxA?(n&|j. 

for some constant C depending only on dimX. Therefore, to show that h(Cljj) is 
bounded, it suffices to show that the eigenvalues of Qfj are bounded. 

Since the manifold U is holomorphic symplectic, its canonicall class is trivial. 
Denote by rj G Q,dimXU the trivializing section of the canonical class, obtained as an 
dlI^x-th power of fix- Since the resolution TT : X —> X is crepant, the section 77 can 

be extended to a global section rj of the canonical class of fidlm*X. Therefore, the 
Hermitian norm h(rj) is bounded over any compact. On the other hand, for all x G U, 
the norm h(rf)\ is equal (up to a canonical constant) to a product of all eigenvalues of 
fi^ . Therefore, h(rj) is bounded implies h(fijj) is bounded, unless some eigenvalues 

of ffcjj I tend to zero as x tends to the complement X\U. Therefore, to prove that the 
eigenvalues of Clfj are bounded from above, it suffices to show that these eigenvalues 
are bounded from below by some positive constant. 

Consider the Kahler metric on U C X obtained from the flat metric on V. The 
map TT : X —> X is analytic, and therefore, Lipschitz on compact subsets K C X 
(the Lipschitz constant being given by the supremum of the absolute value of the 
derivative). By definition of Lipschitz mappings, for any compact set K C X, we may 
assume that, after rescaling the metric, the map 7r|    is decreasing distances. 

The form fi[/ is parallel with respect to the natural flat coordinates on U. Clearly, 
the eigenvalues of flu are constant. Since TT : U —> U is decreasing distances, the 
eigenvalues of Qfj = TT*^ are bounded from below by a positive constant. As we 
have shown earlier, this implies that these eigenvalues are bounded from above. 2.4 
is proven. D 

DEFINITION 2.5. Let TT : X —> X be a resolution of singularities. The map TT is 
called semismall if X admits a stratification & with open strata Ui, such that 

Vx G Ui |   dim7r~1(rc) ^ -codim?7i 
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DEFINITION 2.6. Let V be a symplectic vector space, G C Sp{y) a finite group, 
X = V/G. For every subgroup Gi C Gy consider its fixed point set VG1 . Let X^ C X 
be the image of Vbi under the quotient map a : V —> V/G. Consider a stratification 
of X with closed strata XG1 , numbered by the subgroups Gi C G. This stratification 
is called the G-stratification of X. There is a similar stratification ofV, which is 
also called a G-stratification. 

The main tool of our arguments is the following theorem. 

THEOREM 2.7. Let n : X —> X be a symplectic resolution of a quotient singu- 
larity X = V/G, G £ Sp(V). Then TT is semismall with respect to the G-stratification. 

Proof. This statement easily follows from Proposition 4.16 and Proposition 4.5 of 
[V2] (see also [K], Proposition 4.4). D 

3. Symplectic and complex reflections. 

3.1. The statement of the main result. Let V be a symplectic C-vector 
space. 

DEFINITION 3.1. Let 7 £ Sp(V) be an endomorphism of finite order. We say 
that 7 is a symplectic reflection if codimy Vy = 2, where Vy is the space of all 
vectors fixed by 7. 

This is a "symplectic analogue" of the usual notion of a complex reflection. The 
complex reflection is a linear automorphism of a vector space fixing a subspace of 
codimension 1. Since the fixed space of a symplectomorphism must be symplectic, 
the minimal codimension of Vy is 2; the endomorphism 7 is a symplectic reflection 
when this minimum is reached. 

We say that a group G C Sp(V) is generated by symplectic reflection if 
there exist symplectic reflections 71, ...7n € G which generate G. 

The main result of this paper is the following 

THEOREM 3.2. Let V be a symplectic vector space over C, and G C Sp(V) a 
finite group. Assume that the quotient X =. V/G admits a symplectic resolution. Then 
G is generated by symplectic reflections. 

The rest of this paper is taken by the proof of 3.2. 

As a first corollary of 3.2, we obtain a new proof of the following theorem of 
Kaledin ([K], Theorem 1.7). 

THEOREM 3.3. Let W be a complex vector space, G C EndPF a finite group of 
endomorphisms of W, and V := W 0 W* be a symplectic space, obtained as a direct 
sum of W and its dual. Consider the natural embedding G <-)• Sp(V). Assume the 
V/G has a symplectic resolution. Then the action ofG onW is generated by complex 
reflections. 

Proof. By 3.2, the action of G on V is generated by symplectic reflections. Take 
a symplectic reflection g &G, and let W^, Vg be the fixed subspaces of the action of g 
on Vg, Wg. By definition, Vg = WgtbW*. Since codim Vg = 2, we have codim Wg = 1. 
Therefore, g acts on W as a complex reflection. □ 

Using the arguments of [KV2], Theorem 5.6, one can immediately obtain the 
following corollary of 3.3, which generalizes [KV2], Theorem 5.6. 
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COROLLARY 3.4. Let T be a 2-dimensional compact complex torus, which is 
Mumford-Tate generic (see Definition 5.4 of [KV2]). Consider the natural holomor- 
phic symplectic structure on T and its n-th power Tn. Let G be a finite group acting 
on Tn by symplectomorphisms and fixing a point 

xeTn,   £=(x, ...,£),   xeT. 
N times 

Assume that Tn/G admits a symplectic resolution. Then G is a Weyl group associated 
with some reductive Lie group Q. Moreover, the tangent space T? is identified as a 
representation of G with f) 0 f), where F) is the Cartan algebra of g. D 

3.2. Groups generated by complex reflections. The proof of 3.2 is based 
on the same ideas as the proof of the following well-known statement ([Bou], Ch. V, 
§5 Theorem 4). 

PROPOSITION 3.5. Let V be a complex vector space, and G C GL(V) a finite 
group acting on V. Assume that X := V/G is smooth. Then G is generated by 
complex reflections. 

Proof Let Go C G be a maximal subgroup of G generated by complex reflections. 
Clearly, Go is a normal subrgroup of G. Consider the corresponding quotient XQ := 
V/Go, and let 

*/(G/Go) 
r :   XQ -^ > X 

be the natural quotient map. 
Since Go contains all the complex reflections, for all rj in the complement G\Go, 

the fixed point set V^ C V has codimension > 1. Let 

S:=     U    Vn* 
TJGG\GO 

and So := S/GQ C XQ its image in XQ. Clearly, 

(3.1) codim^o So > 1. 

The following claim is trivial. 

CLAIM 3.1. The group T := G/GQ acts freely on Xo\5o 

Proof Let 7 £ F be a non-trivial element, and 7 an element of G\Go which is 
mapped to 77 under the natural quotient map. Consider a fixed point x £ V/GQ of 
7, and let v £ V be a point mapped to x under the natural quotient map. Then, 
7(v) — 9(v)i where g € GQ. We obtain that v is a fixed point of g~1;y. Since g~1;y 
belongs to G\Go, we have 

vev9-^cs=   (J   TV 
7ieG\Go 

Therefore, 7 has no fixed point outside of So = S/GQ- □ 

REMARK 3.2. Notice that in the proof of Claim 3.1 we nowhere used the exact 
nature of the group Go- This means that Claim 3.1 holds for any normal subgroup 
Go C G: the quotient F := G/Go acts freely on the set Xo\5o defined as above. 
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Let Si := S/G C X. By Claim 3.1, the natural quotient map 

is etale over X\Si. By (3.1), codimSi > 1. Since X is smooth and codim5i > 1, the 
open embedding X\Si «->• X induces an isomorphism on the fundamental group: 

(3.2) 7r1(X)=7r1(X\51) 

Consider the scaling map h\ : V —> V, X EC: 

h\(v) = X'V. 

Clearly, this map is G-equivariant, and hence, can be extended to X = V/G. Taking 
all A € E, we obtain a map 

h : X x R —>X,      h(x, t) = ht(x). 

This map establishes a contraction of X into a point. Therefore, X is contractible, 
and TTi (X) = 0. By (3.2), 7ri(X\5i) = 0. This implies that obtained above etale 
covering 

r :   Xo\So ^—> X\51 

is trivial. This covering is by construction a Galois covering with the Galois group F; 
hence, F is trivial. This proves 3.5. D 

REMARK 3.3. A converse statement is also true ([Bou], Ch. V, §5 Theorem 4). 
Namely, let X be a quotient of a vector space by an action of a group generated by 
complex reflections. Then X is smooth. 

4. Symplectic desingularizations and symplectic reflections. In this sec- 
tion, we prove 3.2. 

4.1. Fundamental groups of resolutions of quotient singularities. We 
use the following theorem, which seems to be well known. 

THEOREM 4.1. Let V be a linear space, and G C GL(V) a finite group of 
linear transformations. Consider the quotient X := V/G, and let TT : X —> X be a 
resolution of singularities.  Then the manifold X is simply connected. 

Proof. The following proof was suggested by F. Bogomolov. 

First of all, we construct a canonical surjection 

(4.1) G -^ w1(X). 

This is done as follows. Let Z C V be the union of all G-strata of codimension ^ 2 
(2.6). For any x G Vr\^, the stabilizing subgroup Stx(G) is generated by complex 
reflections. A quotient of Cn by an action of a group generated by complex reflection 
is smooth (Remark 3.3). Therefore, the quotient (V\Z)/G is smooth. 

Since the map TT : X—> X is idenity over smooth points of X — V/G, we have 
a canonical open embedding 

(V\Z)/G ^ X. 
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The following claim is trivial. 

CLAIM 4.1. Let U <-> Y be a Zariski open subvariety of a complex variety Y. 
Then we have a natural epimorphism 

(4.2) ME/)—►Trify). 

D 

This gives a natural surjective homomorphism 

(4.3) ^((nZJ/C?)—►7r1(X). 

Since codimy Z > 1, we have 7ri(V\Z) = 7ri(V). Therefore, the manifold V\Z is 
simply connected. 

CLAIM 4.2. A quotient of a simply connected manifold Y by an action of a finite 
group G has a fundamental group which is a quotient of G. 

Proof.  Any covering Y  -%  Y/G correspond uniquely to a map Y  —> Y, in 
such a way that 

aob: Y—+Y/G 

is the quotient map. □ 

By Claim 4.2, the group TTI ((V\Z)/G j is a quotient group of G.  Using (4.3), 

we obtain the surjection (4.1). 

For any g G G, denote the corresponding cyclic group by (g). Consider a complex 
line Lg C SnV in the symmetric power of V, such that 
(i) (g) fixes Z^, and we have an embedding (g) ^ End(Lg) 
(ii) (g) is the group St(Lg) of all 7 G G which map the line Lg to itself. 
Such a line exists by invariant theory (any representation of G is a component of SnV, 
in particular, an induced representation, corresponding to an embedding (g) C G). 

Let 

Cg := Lg\{0}/ (9) 

be the corresponding subset of V/G. Clearly, Cg lies in (V\Z)/G. As a complex 
manifold, Cg is naturally isomorphic to C*. Denote by 7^ the generator of ni(Cg) = Z. 

LEMMA 4.2. Consider the natural group homomorphism TTI (C^) —^ TTI (V\Z)/G). 
T/ien r maps 7^ £0 £/ie element p(g) corresponding to g G G under the epimorphism 
(4.1). 

Proof. Clear from the definition of (4.1). D 

Return to the proof of 4.1.    Let g G  G.    Consider the corresponding curve 

Cg —^ X. The map X —> X = V/G is proper. Using valuative criterion of proper- 

ness, we extend the embedding Cg -^ X to a map Cg —^ X, where Cg = C is 
the completion of Cg in zero. Since Cg is simply connected, the path 7^ C Cg is 
contractible in Cg C X. This proves 4.1. D 
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4.2. A subgroup generated by symplectic reflections. Return to the as- 
sumptions of 3.2. Let Go C G be a subgroup of G generated by all symplectic 
reflections in G C End(F). Clearly, Go is a normal subgroup of G. We denote by XQ 

the fibered product 

XQ:={VIG0)xv/GX, 

associated with the Cartesian square 

XQ    ^->    X 

(4.4) .oj j. 

V/Go —^-> V/G. 

The top horizontal arrow XQ -^> X is finite, since the bottom horizontal arrow is 
finite. Denote the ramification variety of the map GQ by R C X. 

LEMMA 4.3.  We have codim^ R ^ 2 

Proof. Let Rx C X be the ramification variety for CTQ : V/GQ —> V/G. Then 
R c 'K~1{Rv)' Clearly, Rx is a union of several strata of the G-stratification (2.6). 
By 2.7, for any stratum Ui of a G-stratification, we have 

codim TT
-1

 {Ui) ^ - codim Ui 

Therefore, to prove codim % R ^ 2, it suffices to show that 

(4.5) codim* Rx ^ 4. 

Let Z C V be the union of fixed sets of all g € G\Go. By Remark 3.2, the group 
(G/Go) acts on (V\Z)/Go without fixed points. Therefore, the natural quotient map 

(V\Z)/Go -2). (V\Z)/G 

is etale. By definition, Rx is the ramification variety for the map CTQ : V/GQ —> V/G. 
Therefore, Rx C o"(^), where a : F —>• X is the quotient map. Since the map a is 
finite, to prove (4.5) it remains to show that codim Z ^ 4. By definition, 

Z=    U    Vn> 
veG\Go 

where V^ denotes a fixed space of 77 G G\Go. To prove codim Z ^ 4, we need to show 
that codim V^ ^ 4. The space V^ is symplectic, hence its dimension (and codimension) 
is even. On the other hand, codim V^ > 2, because 7/ is not a symplectic reflection. 
This proves (4.5). We proved 4.3. □ 

COROLLARY 4.4.  The natural embedding X\R <-^ 7ri(X) induces an isomorphism 

*i(.Y\iJ)£ffi(X) 

Proof. The manifold X is smooth, and codimjf R > 1 by 4.3. D 
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By 4.1, the manifold X is simply connected. We obtain that X\R is also simply 
connected. On the other hand, the map ao of (4.4) induces a Galois covering with 
the Galois group G/GQ: 

Since X\R is simply connected, this map is trivial, and its Galois group G/GQ is 
also trivial. This implies that G coincides with its subgroup Go generated by the 
symplectic reflections. We obtained that G is generated by symplectic reflections. 3.2 
is proven. D 
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