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ITERATED FUNCTION SYSTEMS WITH OVERLAPS* 

AI-HUA FANt, KA-SING LAU*, AND SZE-MAN NGAI§ 

Abstract. In general it is difficult to study the multifractal structure of a self-similar measure 
when the associated iterated function system does not satisfy the open set condition. In this paper 
we will give two methods to deal with the overlapping situation. For the first method we make use 
of a transition matrix to calculate the Lp-scaling spectrum r(p) of the measure. The second method 
depends on the Fourier transformation and the Ruelle operator; we use it to calculate the Sobolev 
exponent of the measure. We apply these two methods to study the ra-th convolution of the Cantor 
measure, and also an interesting construction investigated recently by Kenyon [K] and Rao and Wen 
[RW]: So(x) = iz, Si(x) = |x+ |, S2(x) = ±x + §, with 0 < A < 1, X £ Q. 

1. Introduction. Let /J, be a bounded positive Borel measure on Rd with com- 
pact support. For p > 0, the Lp-scaling spectrum (or Lp-scaling exponent) r{p) of fi 
is defined as 

/i-K)+ ln" 

where Qi(h) = [ni/i, (ni + l)h) x- • -x [n^/i, (nd + l)h), (ni,... ,714) € Zdis an /i-mesh 
cube in IRd and the sum is taken over all such cubes which intersect the support of /i. 
(A more general definition of T(P) which includes negative values of p can be found 
in [LN1], [O], [R].) The function T(P) plays a central role in the theory of multifractal 
measures. It is well known that if // is the self-similar measure defined by a family 
of contractive similitudes {Sj}JL0 which satisfies the open set condition [Hu], then 
there is an explicit formula to calculate r(p) ([CM], [0]). Moreover, the Legendre 
transformation (concave conjugate) of r(p) (i.e., r*(a) := inf{qa — r(g) : q 6 M}) 
equals the Hausdorff dimension of the set 

where Bh(x) denotes the fo-ball centered at x, and supp(/i) denotes the support of/x. 

The quantity lim — is known as the local dimension of u, at x, the Hausdorff H J h->o+       In ft ^ 
dimension of K(a) as a function of a is called the dimension of //, and the relationship 
between r(p) and the dimension is the well-known multifractal formalism (see e.g., 
[F], [CM]). In general it is difficult to handle K(a) theoretically or computationally. 
The scaling spectrum r(p) and the multifractal formalism hence serve as an important 
alternative to study the multifractal structure. 

Following the terminology of Barnsley [B], we call the above family of contractive 
similitudes {Sj}^Lo an iterated function system (IFS). If the family does not satisfy 
the open set condition, it is much harder to obtain the scaling exponent r(p) and 
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it is not known whether the multifractal formalism will hold in general [LN1]. For 
example, for the standard Cantor measure JJL, the IFS 

1 a 1        2 

box = -x,    oiX=-x-^- 

satisfies the open set condition and it is well known that the Lp-spectrum of /J, is 
(p — 1) jj^f. The m-time convolution v = JJ,* - - * /j, satisfies the following self-similar 
relation 

>-±£®"r- j=0 

1      2 
with Sj(x) = -x+ - j,  0 < j < m (see (3.2)). Note that this new family {S^j^o does 

o        o 
not satisfy the open set condition when m > 3 and nothing is known about the scaling 
spectrum and the local structure of v. Of course it is easy to see that the support 
of v is an interval and v is singular (because p,(€) •/* 0 as £ -> oo [JW], and the 
same holds for &(£)(= MO771))- In [Stl] and [St2], Strichartz made some preliminary 
study of such convolution (under a slightly more general setting) and estimated the 
corresponding scaling exponent through the Fourier transform. However in his work, 
he had to assume the open set condition on the family of similitudes defining the 
convolution. 

Another interesting study of this type of IFS has recently been carried out inde- 
pendently by Kenyon [K] and Rao and Wen [RW]. Let 

So(x) = -x,    Si(x) = -x + -,    52 (a?) = -x + -, 

where 0 < A < 1 and let F\ be the associated self-similar set (or attractor) of the 
IFS. They showed that for A = a/b a rational number, if a ^ b (mod 3), then the 
open set condition fails and F\ has Lebesgue measure zero. Surprisingly if a = b 
(mod 3), then the open set condition is satisfied and F\ has nonempty interior. In 
the first case, nothing is known about the multifractal structure of the corresponding 
self-similar measure /x (with weight 1/3 on each map). In the second case, nothing 
is known about the smoothness of the density function. We call such // a X-Cantor 
measure, using the terminology in [RW]. In the first case we would like to know the 
ZAscaling spectrum of /x. In the second case fi is absolutely continuous and we would 
like to know the Sobolev exponent of the corresponding density function. 

In this paper we will use two approaches to investigate the questions raised above. 
For the first approach we need to make use of a new concept of separation of an IFS, 
which extends the open set condition. We say that a family of similitudes 

Sj(x) - px + &j,    0 < p < 1,    bj E R,    j = 0, 1,... ,m 

has the weak separation property (WSP) if there exists 6 > 0 such that for J = 

Ulj" ">3n)'> J   — Ul? • • • >.7n)> 

(1.2) either  Sj(0) = Sj'(0)    or    |Sj(0) - S>(0)| > 8pn. 

(Sj denotes the composition 5^ o • • • o Sjn.) The WSP defined under the present 
setting is equivalent to the more general definition introduced in [L'Nl] where the 
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contraction ratios pj can be different for different Sj and the domain of Sj is Ed. 
Under the general form of the weak separation condition and the assumption that 
r* (a) is strictly concave, the multifractal formalism described in the first paragraph is 
proved to be valid [LN1]. By using the maximal eigenvalue of some finite nonnegative 
transition matrix, we can calculate r(p) for p equal to a positive integer. This method 
has already been developed in [LN3] and it applies not only to the above two cases 
with p = 1/3, but also to the more general case when p-1 is a P. V. number (i.e., 
an algebraic integer whose algebraic conjugates have moduli less than 1 [S]. Positive 
integers > 2 and the golden ratio (\/5 4-1)/2 are examples of P.V. numbers.) P.V. 
numbers play an important role in obtaining the finite transition matrix. 

Our second method is to use Fourier transformation. Recall that for a self-similar 
measure /i generated by contractive similitudes {5j}!?L0 with contraction ratio p, we 
have 

oo 

(i.3) A(o=np(^). 
71=1 

for some trigonometric polynomial P. For a locally integrable function G on M, we 
define 

(1.4) I3(q) = sup{S :  f" (1 + |e|')*|G(0|« dZ < oo},     q € K. 
^ J — OO 

Note that if G = /, then /?(2) is the Sobolev exponent of /. In the measure case we 

have / = — (in the distributional sense if /i is singular). 
ax 

We are interested in calculating (3(q) for the A-Cantor measures (the case of 
convolution of the Cantor measure can be handled similarly).   The technique is to 
make use of a setup in dynamical systems (see [Bo], [Ru], [FL], [H]). Let g be a 
nonnegative Holder continuous 1-periodic function with #(0) = 1. Let Lg be defined 
on the space of continuous functions / in C[0,1] by 

Lgf(x) = <?(f )/(f) + P(| + 3)/(| + 3) + ^(| + 3)/(| + 3). 

Lg is called the Ruelle operator. Let pg denote the spectral radius of Lg. By us- 
ing g(£) = |P(f)| as in (1.3), we obtain a formula relating pq

g and f3(q) (Theo- 
rem 5.4). To calculate pg (or p^g), we make use of an observation of Herve [H]: 
pg = Irnin-^oo HL^iy1/71 (use the supremum norm), and the value will be the same if 
we restrict the operator to an invariant subspace containing 1. In the case of A-Cantor 
measures, we can find such a finite dimensional subspace and pg can be calculated. 

We organize the paper as follows. In Section 2, we present an algorithm to 
calculate r(p) for p a positive integer. This method is modified from the one used in 
[LN3]. We use this algorithm to study convolutions of the Cantor measure in Section 
3 (Theorems 3.2 and 3.3), and the A-Cantor measures in Section 4. In Section 5, 
we consider the Fourier transform method. To obtain I3(q) it is more convenient to 
replace the integral in (1.4) by Jm<T |£|9S|G(f)|9 ^f • ^ general theory of this has been 
developed in [FL]. Again we have modified it into the present setting. We implement 
the method by calculating /?(2) for the A-Cantor measures. In the case the measure 
is singular, the values match well with the r(2) calculated by using the first method; 
this is justified by Theorem 5.1. 
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2. The basic theorem to calculate r(p). We first observe that on R, the 
1   f00 

expression ^2i^{Qi{h))q is the Riemann sum of the integral - /     !//(#/>(£))|peft, 

where Bh(t) := \t — h, t + h). Hence we can modify the definition of r(p) in (1.1) into 

r{p) = lim  fin ( f™ \fji(Bh(tWdt)/\nh) - 1 

(see [LI], [St3]). In this section we will show that for the class of self-similar measures 
      If00 

under consideration, we can find a = rfp) such that 0 < lim TTT— /     \LL(Bh(t))\p dt 
h^o+h1+ocJ_00

1^     w/l 

< oo. The basic idea has been developed in [L2] and [LN3]. Here we will modify it to 
fit our more general case. Some key ideas are included and the details can be found 
in [LN3]. 

Let 

Sj(x) = px 4- bj,    j = 0,1,..., m. 

For convenience we can assume that bj > 0 for all j with bo = 0. Let 

771 

(2.1) p = ^2wjfjioSr\ 
j=o 

where {WJ}£LO 
1S a set 0^ probability weights, i.e., Wj > 0 and ^^Wj = 1. Then 

supp(^) is contained in [0, C], where C = bmSiK/(l — p) and &max = max{6j : j = 
l,...,m}. 

Let p be a fixed positive integer. For a > 0, h > 0, and s = (si,..., sp), let 

1      f00 

(2.2) ^)ih) = -—J^Bh(t + Sl))---f,(Bh(t + sp))dt. 

Note that &W(h) := ^(h) = j-^ / fJ>(Bh(t))
p dt. For our purpose one simple 

way to interpret the s in (2.2) geometrically is to think of it in the following form 

*ia) W = J^ / Hfihixi)) ■ ■■n{Bh{xp)) dry, 

where 75 is the line with direction vector (1,..., 1) passing through the point s and 
/ denotes the line integral along 7S, i.e., we regard s as j3 (see the diagram in Figure 
2.1). It is easy to see that if s' = s'+ c(l,..., 1), then 

(2.3) *<?>(*) = *£a)(/0- 

Also, by substituting (2.1) into (2.2) and making use of a change of variables, we have 

e>«=^/;j(|o^<H-^))<" 
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with fe = (ki,..., kp) and kj € {0,1,..., m}. Hence we have the following identity 

(2.4) #(«>(*) = ^w* ■■■WkA")(-0) := ^E"**^)' 

where 

(2.5) sfe =p~1(s-6fe),    bk = (bkl,...,bkp),    and   wk = wkl -'Wkp. 

We define a set of states «S inductively as follows: Let so = 0 = (0,..., 0) 6 Mp 

be the initial state. Suppose all states on level n — 1 have been defined. Then level 
n consists of all possible states of the form sfe, where s is a state on level n — 1, 
k = (fci,.. .,fcp), with fcj € {0,1,. ..,ra}. 

Next, we define a transition matrix on such states. For a fixed integer p > 2 and 
s = (si,.. .,Sp), we let 

(2.6) Ts^^Ws* 

(see Figure 2.1) and let (S) denote the linear space spanned by S. By regarding 5 as 
a word (or as the line 7S) and adopting the convention that 

(2.4) reduces to 

(2-7) *ia)W = ^*&)(J). 

REMARK. Note that in (2.5) s and sk are regarded as vectors, while in (2.6) 
they are regarded as "words" of the vector space (S). To avoid confusion we use the 
notation Yli (k' si to emphasize that the linear combination is taken in (S), not in Rd. 
We also write r X^ c* • s^, r G M, to mean ^(rc,-) • Sf, and r J2i Si to mean ^ r • s;. 

On the set of states defined above, we identify s1 with s if and only if s' = 
s 4- c(l,..., 1) for some number c (see (2.3)). We denote the quotient set of states 
under this identification by the same notation S. It is easy to extend T to a linear 
map T : (S) -> (S). 

PROPOSITION 2.1. Let C — bmaiX/(l - p) and let 

Si = {s e S : \si - Sj\ < C for all  1 < i,j < p}. 

Then T is invariant on (S\Si). 

Proof. Let s G S\Si. Then there exist 1 < io,jo < p such that \si0 — Sj0\ > C. 
Note that 

Ts = Y^Wk'Sk = ^'wfe • (p"1^ - bk)). 
k k 

For each fe, we have 

k'K - hi0) - p-\8j0 - bkio)\ > p-l{C - 6max) = p-l{C - (1 - P)0) = C. 
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Hence sk G S\Si and the result follows. □ 

In the case that Si is a finite set, 

T = 
Q 

o 
T2 

where Ti corresponds to the states Si. Ti is a sub-Markov matrix (since the sum of 
each column of T is 1 so that the sum of each column of Ti is less than or equal to 1) 
and it is the basic matrix we use to calculate r(p) for //. The following proposition 
provides a sufficient condition for {S^JLQ to have the WSP and Si to be finite. 

PROPOSITION 2.2. Let a e R, 0 < p <' 1, and let Sj(x) = px + arj, where 
0 < j < m and rj are rational numbers. If /3 = p'1 is a P.V. number, then {Sj}!-L0 

has the WSP and Si is a finite set. 

Proof. Since the r^'s are rational, we can write rj = fj/r for 0 < j < m, where 
r, fj E Z. Then for any J = (ji,..., jn), 1 < jk < m, 

^ k=i k=i 

Hence for J' = (ji,...,Jn)> 

|Sj(0) - 5^(0)1 =Pn-1?|E(fifc -^)^- 
k=i 

Since /? is a P.V. number, a lemma of Garsia ([G, Lemma 1.51]) implies that there 
exists 6 > 0 (independent of n) such that if Y^k=i(fjk ~ ?j'k)Pn~k ^ ^' t^en 

E^-^)^ n—ft 

Jfe=l 

> s. 

aS 
Hence |Sj(0) - 5j/(0)| > — -p", and {SAf^ has the WSP. 

pr J 

To show that ^i is finite, we observe that for any s in the n-th iteration as defined 
in (2.5), starting from So, 

si = -{p-^-'K + p-^-2)bh + ■■■+p-%^ + bjn) = -p-in-»sm. 

Let dij — si — Sj, where Sj = -p~(n~1^5j/(0) is any other such coordinate. Then 
s G Si if and only if \dij\ < C for all 1 < i, j < p. It suffices to show that the distinct 
dij's are separated by at least some fixed positive constant. Note that 

|dy - 4| = p-^|(5j(0) - 5^(0)) - (£,(0) - S^(0))|. 

As in the proof of the WSP, the right hand side of this expression can be written as 

i—k 

k=i 

where rjk belongs to some finite set of integers (independent of dij,dij). The same 
lemma of Garsia implies that there exists some 5' > 0 such that either d^ = d^ or 
\dij — dij\ > 5'. This completes the proof. D 
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Let // be defined as in (2.1). It follows from a similar proof as in [L2, Proposition 

3.1] (also [LN3, Proposition 3.2]) that if ^(h) > 0 for all ft > 0 then s G Si; the 
converse holds if some representation s' of s satisfies s' G supp (/x) x • • • x supp(/i) 

> ^ ' 
p 

(see Figure 2.1). By using this fact, we see that if <Si is finite, then there exists ho > 0 
such that for all 0 < h < ho, (2.7) holds with Ti replacing T, i.e., 

If A is the maximal eigenvalue of Ti with maximal eigenvector u = Y^ ai' si-> and if 
a satisfies pa = A, then the above identity becomes 

(2.8) $L0)W = *La)(^ 

and it follows that 0 < lim /l_>o+ $^ CO < 00' From this we can show (see [L2, The- 
orem 4.2] for details) 

THEOREM 2.3. Letp > 2 be a positive integer and let // be the self-similar measure 
defined by {SJJ^LQ with a set of probability weights {^j}^o- Suppose Si is a finite 
set. Then r(p) = lnA/lnp? where A is the maximal eigenvalue o/Ti. 

Combining Proposition 2.2 and Theorem 2.3 we have 

THEOREM 2.4. Let a G 1R, 0 < p < 1, and let Sj(x) = px + arj, where 0 < j < m 
and rj are rational numbers. Suppose 0 = p~l is a P.V. number. Then T(P) = 
In A/ In p, where A is the maximal eigenvalue of Ti. 

In many calculations, it is more convenient to reduce the size of Si and Ti: For 
s = (si,...,Sp) G 5i, we let s^ be a decreasing rearrangement of s (i.e., sa(i) > 
S(T(2) > * * * > sa{p))' It follows directly from definition that 

$(«>(/*) = $(*>)• 

Let Si be the set of all such s^. (See Figure 2.2 for the prismatic region; we take Sa- 
to be the representative on the triangular base.) We summarize the above into the 
following algorithm to calculate A when Si is finite: 

Step (I). The set <Sf : For s G Si, we can use (2.3) to choose the representation 
with the last coordinate equal to 0, i.e., all representations in Si are of the form 
(t,0) G Si (the shaded region in Figure 2.1). Starting from 0, suppose we have 
chosen (t,0) G <Sf (the triangular region in Figure 2.2) in step (n — 1). Let s be a 
state in step n, i.e., there exists k such that 

S = (t,0)fe = p-1((t,0)-6fc) 

as in (2.5). Rearrange s to sa so that s0.(1) > • • • > sa^ and let 

(t',0) = (5^(1) - S<T(p),...,.S<r(p-l) - S<7(p)50). 

Do this for all elements (t,0) G <Sf in step (n — 1). If there is no new (£' ,0) we stop 
the process; otherwise we continue onto the next step. This process will stop after a 
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finite number of iterations because Si is a finite set.  (The set «Sf is defined by the 
shaded region in Figure 2.2.) 

Step (II). The canonical matrix Tf on <Sf : For each (t,0) G 5f, the entry 
corresponding to (t',0) € <Sf is given by 

y^ iwk : (t,0)k equals (t',0) after the rearrangement in Step (I) >. 
k 

The matrix Tf so constructed has the same maximal eigenvalue A as Ti [LN3, Propo- 
sition 2.3]. 

REMARK 1. The case p = 2 was first considered in [L2]. The notation is much 
simpler: We omit the last coordinate and consider <Si to be obtained directly from 
the iterations 

tn = P^itn-l + Cn),      |*n| < C, 

where cn is of the form bi — bj (see (2.5) and Step (I)). The corresponding <Sf is 
obtained by replacing tn with \tn\. 

REMARK 2. Let 

&Sf = {s€5f :s1=C}. 

The region defining 95f is part of the boundary of the area defining <Sf (see Figure 
2.2).   We claim that s G dS* implies the rearrangement of sk does not belong to 
si \dSi • To Prove this

5 
we let s € dSi- Tlien 

sk = (p-1(C-bjl),...,p-1(sp-1-bjp_1),p-1(-bjp)). 

Hbfr < &max, then 

p-1(C7-6il)=p-1(^-6,1)>p-1(^-&max)=C7, 

which implies that sk ^ Si. Hence for sk to belong to Si, bj1 must equal 6maxj and 
the rearrangement of sk will belong to dS*. This proves the claim. 

By using this and a similar proof as in [LN3, Proposition 4.2], we can show that 
the maximal eigenvalue of Tf on (5f) is equal to the maximal eigenvalue of the 
restriction of Tf on (Sf \&Sf). We can hence reduce the size of <Sf by omitting all 
those s e Si with si = C. 

NOTATION. We denote by 5°* the set «Sf \55f, and by T*7 the restriction of 
Tf on (S*). 

3. Convolution of the Cantor measure. Let 0 < p < 1 and let p, = fip be 
the self-similar measure defined by the similitudes 

(3.1) ipo(x)=px,    ipiix) = px + (l-p), 

with probabilities WQ and wi respectively. 
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FIG. 2.1.  Diagram showing that the action of T on 8 (represented by the line js) produces a 
linear combination of the sk (also represented by lines). 

FIG. 2.2.   Diagram showing the region defining Sf.   The representatives sa = (*, 0) lie on the 
shaded triangular base and dS* is defined by the line segment joining the points (C, 0) and (C,C). 

PROPOSITION 3.1. Let v = /i 
self-similar measure defined by 

(3.2) 

where 

= /x * • • • * fi (m times).   Then v is the unique 

"=z;(7)<~v«'<>s$-1. 
i=o 

Sj{x) — px + (1 - p)j,    for 0 <j <m. 

Moreover supp(v) C [0,m], and supp(u) = [0,m]   if and only if p > ^W. 

Proof. For v = p, * /i, a direct calculation shows that 

= WQ*' 
0 'S'O^

1
 + 2'iyoti;i^ o 5f1 + i^i^ o 5^"1. 

The case for */ = /i*m follows by induction. For 0 < j < m, 

5i[0,m] = [(1 - p)j, mp + (1 - p)i] C [0,m]. 

It follows that if p < ^j, then {SjfOjra]}!^ are nonoverlapping intervals and 

supp(z/) C U^o^iP'771]- ^ P ^ ^+1? t*1611 ^-[Ojm] and 5^+1 [0,m] have nonvoid 
intersection and hence [0,ra] = U^o Sj]p^m]. D 
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In view of the proof, we see that {Sj}'jL0 satisfies the open set condition if p < ^j 
and T(P) for the measure z/ can be calculated by an explicit formula ([CM], [LW], 
[St3]). In the case /x is the standard Cantor measure, then v = JJL * // is defined by 
Sj(x) = |a: 4- |j, j = 0,1,2, and the open set condition is satisfied (an open set is 
(0,2)). It follows that r(p) is given by 

,3.3, ^J-Wr+m, _00<I)<00. 

(See Figure 3.1.) 
In the following we will let v be the m-th convolution of the standard Cantor 

measure with m > 3. The family {5j}^_0 has the WSP (Proposition 2.2). For each 
p, by using (3.1) and the definition of T in (2.6), we get 

<M> re, -^r (-)... (»). A 

where 

2 
sk = (3si - 36^,... ,3sp - 36A.P),    fa e {0,1,... ,ra},    and    ^ = -j. 

To calculate T(2), we observe that if u satisfies the self-similar identity 

m 

(3.5) v(E) = y£cjV°S-1(E), 
3=0 

where Sj(x) — \x+ |j for 0 < j < m, then according to the algorithm in the previous 
section, the state space is inductively defined by 

tn = 3tn_i - 20*1 - J2),    0 < ii,i2 < m, 

starting from to = 0. Since (7 =   max = —7- = m, we see that tn G Si if and only 
1 — p      1 — 1/3 

if \tn\ < m. By identifying the positive and negative elements (Remark 1) and omitting 
the boundary element according to Remark 2, we conclude that 5°" = {0,2,..., 2m}, 
where m = f221^]- Consequently for the state 2j e Sa

1 

where 

Let afc = J]^ cici-k- Then a& = a_^ and it follows that for 0 < i,j < m, 

{asj if   i = 0, 
asj+i + asj-i       if   i^0. 

Hence the matrix Ta is 
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(3.6) 

do as 
2ai 0,4 4- 0*2 

2a2 as +ai 

a? + ^5 

as + 04 

a4m + a2ri L2arTi     flfn+S + CLfh-S 

By using Theorem 2.4, we have 

THEOREM 3.2. Let n be the standard Cantor measure and let v = ^*m. Then for 
p = 2, the corresponding matrix T* for u is given by (3.6) with {a^} = {cu] * {c-k}, 
and Ck — 2^"Cfc)- ^e L2-scaling exponent r(2) = |lnAm/ln3|7 where Am is ^fte 
maximal eigenvalue ofTa. 

The following is a list of values of r(2) for m < 10. 

T(2) m m r(2) 

1 0.6309297535 6 0.9997949242 
2 0.8927892607 7 0.9999564485 
3 0.9766281250 8 0.9999906718 
4 0.9952461964 9 0.9999979911 
5 0.9990215851 10 0.9999995658 

In regard to T(P) for the other integers p, we only consider the case z/ = /J, * /j, * /x. 
We need to define three px p matrices: 

A^ = 

(S)(l + 3p) 
(?)(3 + y) 
®(32+3p) 

0 
0 
0 

U2)(3p-2 + 3P)    0 
L(A)(3p-1 + 3p)    0 

A^ = 

3p 0 

3P-2{1)    ZP-2^-1) 

0 
0 

3p-2(Po2) 

L3(A)  3a)   SG^) 
0 

3(S). 

,4(2) 

1 
0 

(S) 
3(f) !»: 

- (V) 
- 3(p72) s^T1) 

; 0 32© • -  32(-2) 3W) 
0 0 0 

0 0 0 0 
3p-2(P^) 
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THEOREM 3.3. Let /z be the usual Cantor measure and let is = /j, * /i * fj,. Then 
for any integer p > 2, T(P) = |ln Ap/ln3|, where \p is the maximal eigenvalue of the 
p x p matrix 

^ = 2^(0)+^(1)+^(2))- 

Proof We first apply the algorithm in Section 2 to find the set S*. For SQ = 
(0,..., 0), by using (3.4) we have 

(3-7) T^ = ^X(l)--(l)-(-^---^K), 

where 6&. € {0, |,|,2}. By observing that for 1 < i,j < p, Sb^ - 36^. are even 
integers, and by applying the condition 136*- — 36^1 < 3 to be a member in 5°*, we 
conclude that the states in S* generated by T(so) are of the form 

(3.8) sn := (2,..., 2,0,... ,0),    0 < n < p - 1. 

n 

For such sn with 1 < n < p — 1, 

(3.9) T(Sn) = ±;J2'(l)-- (k ) '(6 " Sbki' • • •'6 " 3bk"' "36fc»+1' • • •' -3bk*)- 
By the same argument as above, the states in S* generated by T(sn) must belong 
to the set {sn}^I.0. Since no more new states are generated, we conclude that S* 
consists of the p states in (3.8). 

Next, we write (3.7) and (3.9) as T(sn) = -r- J^^n • S£. We want to calculate 

the value of each entry a£n of T*. For the first column (corresponding to T(so) given 
by (3.7)), we can see from (3.7) that the coefficient of St (1 < £ < p - 1) comes from 
rearranging the following three types of states: 

(i) Exactly £ of the b^ are 0 and the rest are 2/3 (which means ki = 0 and 1 respec- 
tively) . The sum of the probability weights from these states equals 

i.e. a£n = 3P £{p
i), which is the corresponding entry in A^K 

(ii) Exactly £ of the fr*. are 2/3 and the rest are 4/3. The probability weights from 
these states sum up to 

1 (p\(3Y(sY~£ - 3P fp 
2
3

P \£J \l)   \2j 2
3

P \e 

(iii) Exactly £ of the 6^. are 4/3 and the rest are 2, with sum of probability weights 
equal to 

1   M/^V^V"'      3' fp\ 
2

S
P \£   \2    137 2

3
P V^ 
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FIG. 3.1. (a) shows curves of T(P) for the standard Cantor measure /z together with the convo- 
lutions 11*11 and n * fi * fi. For ii, T(P) = 1^3 (p — 1) (dot-dashed line). For /z * /z, T(P) is given by 
(3.3) (dotted curve) and for /x * /x * /z it is plotted by using Theorem 3.3 (solid curve). Figure (b) 
shows the corresponding dimension spectra, given by T*(a). For /z it is just the point (}^§, y^f )• 
For pi* fi it is shown by the dotted curve. In fact, it can be shown (see [LN1]) by using (3.3) that 

the infimum of the domain of r*(a) is amin = limp_>oo ^~ = }^-| with T*(amin) = 0, while the 

supremum is amax = limp-^-oo ^^ = ^J^2 with T*(Qmax) = |^-|- The dimension spectrum for 
/z * fj, * n (solid curve) is approximated by using integral values of T(P) for 0 < p < 300. We are not 
able to calculate T(P) for p < 0 and hence the corresponding part of r*(a) is not shown. 

Types (ii) and (iii) together account for the first column of A^0\ To get o^o, one 
only has to add the case when all 6^ (1 < i < p) are 0. 

To find the entries a£n corresponding to T(sn), n > 1, we use (3.9) and divide 
the a£n into three classes: 
(a) i > n. In order for the rearrangement of (6-36^,..., 6-Sbkn, -3bkn+i,..., -3&fcp) 
to equal S£, the following conditions must be satisfied: 6^ = 2 for all 1 < i < n, and 
for n + 1 < j < p, exactly £ — n of the bkj are 0 and the rest are 2/3. Hence the 
coefficient of se is 

3p -£ 

2
3
P U nj 

The corresponding entry is under the diagonal in the matrix A^. 
(b) £ < n. In this case, the conditions become: 6^. = 0 for n + 1 < j < p, and for 
1 < i < n, exactly £ of the fc^ are 4/3 and the rest are 2. We hence get 

Oi£n m'o n-t 

The corresponding entry is above the diagonal in A^. 
(c) £ = n. In this case, both (a) and (c) above can occur and we need only sum up 
their contributions. This accounts for the diagonals of A^ and A^ and the proof is 
complete. Q 

We can further apply Theorem 2.4 to consider the self-similar measure fip defined 
by the similitudes in (3.1), together with its convolution when p-1 is a P.V. number 
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[LN3]. For the case p = (\/5 - l)/2, the spectrum r{p) of // has been studied exten- 
sively ([LI], [L2], [LN2], [LN3].) In particular, a formula (in terms of a series) defining 
T{P) is obtained and is verified to be valid for 0 < p < oo [LN2]. Recently, a formula 
for r(p), —oo < p < 0 has been obtained by Feng ([Fel], [Fe2]). 

In [L2], it is shown that for p = (\/5 - l)/2, r(2)  = 0.9923994...  and the 
associated 5°" and T* are respectively 

{0,p,p2}    and 

For v = Pp* Up, the corresponding S* is: 

{0,p,2p,3p, 1 + p, l,l-p,2p-l,3p-l,4p-1,2-/9,2-2^,2-3p,3-2p,3-3p}. 

and the matrix T*7 is 

[2 0 1" 
2 0 2 
0 1 0 

42 

6 0 0 0 0 0 4 0 0 0 0 1 0 0 0' 
8 0 0 0 0 0 7 0 0 0 0 4 0 0 1 
2 0 0 0 0 0 4 0 0 0 0 6 0 0 4 
0 0 0 0 0 0 1 0 0 0 0 4 0 0 6 
0 4 0 0 0 6 0 1 0 0 4 0 0 1 0 
0 6 0 0 0 4 0 4 0 0 1 0 1 0 0 
0 4 0 0 0 1 0 6 0 0 0 0 4 0 0 
0 1 0 0 0 0 0 4 0 0 0 0 6 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 4 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 
0 0 4 0 1 0 0 0 6 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 4 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 4 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

From this we get r(2) = 0.9999864326.... 

4. A-Cantor measures. For 0 < A < 1 we consider the IFS 

Si (a?) = -x,    52(a?) = -a; + -,    Sz{x) = -x + -, 

and let F\ be the self-similar set associated with the three maps. This family of 
iterated function system and the invariant set F\ have been considered by Kenyon 
[K] and Rao and Wen [RW]. To summarize their results, let A = f e Q fl (0,1) with 
(a, b) = 1. If a = b =£ 0 (mod 3), then the IFS satisfies the open set condition and F\ 
contains interior points. On the other hand if a ^ b (mod 3), then the IFS does not 
satisfy the open set condition and diinB(F\) < 1, where dimB(F\) denotes the box 
dimension of F\. 

We let p = p\ be the A-Cantor measure defined by 

(4.1) P =   -P O S1   1   +   -P O S2   1   +   -P O 5; -1 
3    * 
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Then supp(/i) C [0,1]. The above mentioned result implies in particular that if a ^ b 
(mod 3), then fi must be singular. It follows from Proposition 2.2 that if A € Q, then 
the IFS has the WSP. 

Throughout the rest of this section, we assume that A G Q fl (0,1), and a ^ b 
(mod 3). We will use the method described in Section 2 to compute r(p) for some 
interesting cases studied in [RW]. The case a = 6 (mod 3) will be discussed in Section 
5. 

For the two families of values A = 1 - pr and A = ^ (N > 1), the Hausdorff 
dimension of the self-similar set F\ has been calculated in [RW]. Hence we consider 

Case I: A = 1 — ^r, iV > 1. Fix an integer p > 2. For s = (si,..., sp) G <S, 

(4.2) T(s) = h S'^i-6!'---'3^-^)' 

where £/v = {0,1 — pr, 2}. Since (7 = 1, the rearrangement of s = (si,..., sp) belongs 
to S* if and only if 

(4.3) \si-Sj\<l   for all  l<i,j<p. 

We will first determine the set 5°". Define 

Um,k = (1- —,...,1- —,0,...,0),    m = l,...,JV, fc = 0,l,...,p. 
> * ' 

k 

(Note that um,o = nm?p = UQ - (0,..., 0).) 

PROPOSITION 4.1. S* = {um^ :l<m<iV, 0<fc<p}. 

Proof. Consider the action of T on the three types of states below: 

(i)        T(t*o) = ^  £'(ei,...,€p). 

In the case that at least one e; from (ei,..., tp) is zero, then for the rearrangement 
of (ei,... ,ep) to belong to S*', condition (4.3) implies that the other e/s must be 0 
or 1 — pr. After a rearrangement, there are (£) states of the form u^^k for each 
ft = 0,1,..., p — 1. On the other hand, if ei ^ 0 for all 1 < i < p, then for (ei,..., e^) 
to belong to S* after a rearrangement, either 6i = 1 — 3V for all i, or e* = 2 for all z. 
We conclude that 

(4.4) T^uo) = ^(s'Uo + Y! 

(ii) For 1 < m < AT and 1 < ft < p - 1, 

1    v^' 

P-1   ,  x 

ft> 
uNh 

3P 
e 

1    ^WQ 1 Q 1 "" 3P     2^   ^       3m-l   -€l,...,3- 3m_1   -Cfc,-Cfc+i,...,-Cp). 

For the rearrangement of  3wm,A; - 6   to belong to S0", condition (4.3) implies that 
€i = 2 for 1 < i < ft, and e^ = 0 for ft + 1 < j < p. Consequently, 

(4.5) T"(umyk) = ±-um-hk. 
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(iii) For m = 1 and 1 < k < p — 1, 

T(u1,k) = ^ £'(3«M-6) 

1     ^V 

et€^A 

For Sui^ — € to belong to S* after a rearrangement, (4.3) forces e* = 2 for 1 < i < k, 
amdcj =0OT 1- £r for fc + 1 <j <p. Iie(0<£<p-k) oftheej (k + 1 < j < p) 

are equal to 1 — 3^, then we have (p^ ) states of the form IZJV,P-^ i.e., 

(4.6) ^(«M)=^i:(p/)-«Jv,p^ 

This completes the proof. D 

We arrange the basis elements in 8° in the order 

^Oj^iV,p-l, > UN,! 5 UN-l,p-l 5 • • • J V>N-1,1, • • • , U2,p-1, . . . , tX2,l, tXl,p-l, • • • , 1*1,1 • 

Then the proof of the above proposition also gives us the explicit form of the matrix 
T0". (4.4) and (4.6) imply that T^^UQ) and ^(ui^) can be represented respectively 

by 7pCp and — Ap where 

(4.7) Op — 

.(A). 

and 

Co) 
(I) 
0 

•     (" ) (V)! 
!?1 

0 
0 

0     •• 
0     •• 

•'       (^2) 
0 

(PS) 
ri). 

(Note that Ap is a p x (p — 1) matrix.) (4.5) implies that T^ti™^) (1 < m < N and 
1 <k <p—l) can be represented as the identity matrix I^^^xy For iV > 1, we 
define an (N(p - 1) + l) x (N(p - 1) + l) matrix 

Mf) 1_ 
3P 

Cp 0 Ap 
(4*8) Mp 3*> [0    hN-Dip-i) 

We have the following 

THEOREM 4.2. Let A = 1 - pr (iV > 1) anrf /e^ fji = fix be defined by (4.1). Then 

for any integerp > 2, the matrix T* for fi is equal to Mp ' and T{P) = \ In \p/(pln 3)|, 

where Xp is the maximal eigenvalue of Mp    . 

2 
For example when A = -, the matrices T* corresponding to p = 2 and p = 3 are 

o 
respectively 

3   1 
2   1 

1 
27 

"3 1    1" 
3 
3 

1    2 
0   2 
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For the corresponding fix, r(2) = 0.80125326... and r(3) = 1.50972657....   For 
o 

A = -, the matrices corresponding to p = 2 and p = 3 are respectively 

3 0 1 
2 0 1 
0   10 

[3 0 0 1 1" 

1 
27 

3 0 0 1 2 
3 0 0 0 1 
0 1 0 0 0 
0 0 1 0 0 

For the corresponding /zA, r(2) = 0.93719034... and r(3) = 1.83901647.... 

Case II: A = pr, N >1. As this case is more complicated in notation, we will only 
explain the simpler situation p = 2 and make a remark on the extension of this to 

2 
p > 2. Define a set of states: UQ := 0, UN := r^, and for 1 < k < N - 1, 

2 2 2 
Uk>*i := 3fc + 3*HFI

7
7*+

1
 + • • • + -jgrm, 

where 77 = (T^+I, ..., TJN), m = 0, ±1, k + 1 < i < N. 

PROPOSITION 4.3. Let BQ = {UQ}, BN = {UN}, and for 1 <k < N -1, let 

B, k = {u^ : rji = 0, ±1, k + 1 < i < N}. 

Then forp = 2, S" = \Jk=0 Bk- Consequently S" contains (3N 4-1)/2 elements. 

Proof. We will use the notation in Remark 1 of Section 2. Consider the following 
cases: 

(i) 

T(uo) = l   X)'   (-ei+e2), 
ei,€2€:£jV 

where £jsf = {0,^,2}.   If the rearrangement of — ei 4- 62 belongs to <Sa, then the 
rearranged state must be either UQ or UN = ^7-, which belongs to BQ \JBN. 

(ii) For 2 < k < N, 

^      /    /   2 2 2 \ 

ei,e2G^N 

If €2 = 2, then condition (4.3) implies that ei must also be equal to 2, and vice versa. 
In fact, if 61 = €2, then the corresponding state is 

3*" T + 3* »7*+i + • • • + 3JV-1 W, 

which belongs to Bk-i- The remaining choices for ei and 62 are (€i,C2) = (0, pr) or 
(pr, 0). In both cases, the rearrangement of the state is of the form 

2 2 2 2 
3*^1 + 3*^+1 + '"' + -jpTiW + zpW+i* 
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which belongs to Bk-i- 

(iii) k = 1. Then 

For the rearrangement of 2 + |r/2 H h -^YVN — ^1+^2 to belong to 5°", condition 
(4.3) forces €1 = 2, and €2 = Oor ^•. The corresponding state is 

2 2 2 
3*?2 + • • • + p^zr^iv + 53^+1,    r/iV+1 = 0 or 1- 3iv' 

JV 

The rearrangement of this state clearly belongs to M Bk. 
k=o 

The assertion 5^ = \Jk=0 Bk follows by combining (i), (ii) and (iii). D 

2 
By using the above we can easily write down the respective matrices T0" for A = - 

and 
32* 

3    1 
2    1 

3 10 0 0 
0 0 3 11 
110 0 0 
0 0 110 
0   0    10    1 

For the corresponding /iA, r(2) = 0.80125326... and 0.86881773... respectively. 

REMARK. The above proof can be generalized to the case p > 2. For N > 1 and 
for 1 < m < N — 1, define 

2 2 
3m+ie™+1 + •*' + p76^' 

where e = (em+i,...,CJV), €{ e £N = {0, pr, 2}. Also, we let 

2 
^iV,- 37V and    iA/v+i,€ = 0,   for all e. 

It can be shown that S* is the set consisting of all states of the form 

V^mi ,€1 j • • • j ^TTlfc ,€fc J 0 . . . , U), 

> 0, 6i € £x~mi, 1 < mj < N 4-1, and  0 < jfe < p - 1. 
We omit the proof since it is similar to the one above. 
where wmif€l >       > umk,€k 

m 
5. Fourier transformation. Let // be a bounded Borel measure on M and let 

e271"**^ (i^(i) be the Fourier transform of /i. The following general Taube- -r J —c 

rian theorem shows that the L2-scaling exponent r(2) also plays an important role in 
Fourier transformation [LW, Corollary 4.5]. 
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THEOREM 5.1.   Let n be a bounded positive Borel measure on E with compact 
support and let 

1       P00 

^a)(h) = 1^J     \KBH(x))\2dx 

as defined in Section 2. Suppose 0 <  lim   $(a\h) < oo. Then there exist Ci,C2 > 0 
/i->0+ 

such that 

dim   ^a)(h)< Im   ^— /       |A(0|2df <C,2   liE   $(a)(/i). 

For a self-similar measure defined by an equicontractive iterated function system 
such that the set of states Si is finite, if we denote r(2) by a, then $(a\h) is an 
asymptotically multiplicative periodic function with period p (see (2.8)). This implies 

0 < lim   $(a)(/i) < oo and the rate of   /        |£(£)|2d£ is T1"7"^) as T -^ oo. 
/i-»0+ J\Z\<T 

        1       /•oo 

If r(2) = 1, then 0 <   lim $(r(2))(W =   lim — /      \fi(Bh(x))\2 dx < oo im- 

plies that /Lt is absolutely continuous with an L2-derivative ([HL]). It follows that 

l£(£)|2d£ tends to the constant \\ji\% as T -> oo. This does not provide suffi- x KI<T 
cient information regarding the rate that ft converges to zero at oo. A more effective 

way is to consider  /        |£|*|/i(£)|2df for suitable s. More generally in the following 
J\S\<T 

we will consider the rate of /        |^|s|/i(^)|9d^ for q > 0. 
J\Z\<T 

For a self-similar measure /JL defined by (2.1) with contraction ratio p, its Fourier 
transform is 

oo 

n=l 

where P(^) = 1}2™=0'Wje27rtbj^/p' When p-1 is an integer > 1, there is an elegant 
theory due to Ruelle for handling this infinite product and the integral of jj, ([Bo], 
[FL]). Let g be a nonnegative Holder continuous 1-periodic function such that ^(0) = 
1. In order to study the class of A-Cantor measures, we define a Ruelle operator Lg 
on the space of continuous functions C[0,1] as 

Lgf(x) = <?(f )/(§) + P(| + i)/(| + I) + 2(| + |)/(| + |). 

The spectral radius of Lg, which is the maximal eigenvalue of the positive operator 
Lg, is given by pg =  lim HI^lH1/" (supremum norm). The reader can refer to [Bo] 

for the significance of pg in connection with the dynamical system defined by Lg. For 
q > 0, we let p(q) = pgq where gq(x) := (g(x))9. 

THEOREM 5.2. Letg be a strictly positive, Holder continuous 1-periodic function 
on M with g(0) = 1 and let p(q) be the spectral radius of pgg.    Then for G(£) = 
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.T (Ta      if a>0 

/   Z8G{0qdZKllnT     if a = 0 

[0(1)    if a < 0. 

IfGi(0 = n?=i9i(&) where g^) = (1(1 +e2^ + e***))"g(Z) (g1 admits zeroes 

at€ = - and -), then for a = s +   ,        - Nq, the integral   /   Z'\Gi(€)\9d€ has 
o o In o J ^ 

the same expression as above. 

(The sign « means the left and the right hand sides dominate each other by 
positive constants.) 

Proof. The first part is proved in [FL, Theorem 3.2] for p = |. The proof for 
p = | here is the same. For the second part we observe that 

1 1      1 _ p67rz£ 

Hence 

p27ri£ 

11 "Vg/fe ; gn      -j^ _ e2irit/3n ' 
k=l 

oo ^ 

so that nk|k) 
fc=i 

1 - e2** 

2iriZ 
I sin 7r£|   T   , „ 1        Sl   It follows that 

*KI 

We can apply the same argument as in [FL, Theorem 3.4] and conclude the second 
part of the assertion. D 

The value s := SQ for which a = 0 is significant. We let 

(5.1) m = supji : J(l + K|«)*<?(0«de < ooj. 

Note that 13(2) is the Sobolev exponent of the function (or distribution) F satisfying 

F = G. It is easy to show that for the G in Theorem 5.2, /3(q) = so = rSr> and 
gmS 

for Gi, (3(q) = SQ = ——- H- N. Moreover, it follows from the comments following 
gin 3 

Theorem 5.1 that for r(2) < 1, (3(2) = (r(2) - l)/2. 
We will now make use of this to consider the class of A-Cantor measures p, = /JL\ 

in (4.1), where A = -, 0<a<6 are integers and (a, b) = 1. It follows that 

oo . 

k=i 
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with P(0 = |(1 + e27ri^ + e47r^). Note that P(bO = |(1 + e2™* + e47ri^). It is more 
convenient to replace P(b£) by 

(5.2) Q(z) = < ^      6 I 1 + 22 -{-20,    if a 

is odd, 

is even. 

We need the following technical proposition. The proof of it is completely algebraic 
and will be postponed to the end of the section. 

PROPOSITION 5.3. Let Q be defined as above. We have 
(i) if a ^ b (mod 3), then Q has no root with \z\ = 1; 

(ii) if  a = b (mod 3), then Q has only two simple roots with \z\ = 1, namely 
e27r*/3 ande47ri/3. 

By using this proposition we can immediately conclude from Theorem 5.2 that 

THEOREM 5.4. Let /x be the self-similar measure defined by (4-1) and let /3(q) be 
the exponent in (5.1) for G := /i.  Then the following hold: 

(i) if a ^ b (mod 3), then 

(3(q) = -lnp(q)/qln3, 

ral 't 

(ii) if a = b (mod 3), then 

where p(q) is the spectral radius of Lgg with </(£) = T|Q(e27r^)|; 

/?(<?) = 1-In p^A? In 3, 

where p{q) is the spectral radius corresponding to gq with 

9iA) = \Q{e2^)\l{l + e^+ei^). 

In either case   I       (1 + |£|9)s|A(Olgdf ^ias ^ie exPress^on as in Theorem 5.2 with 

a = q(s-p(q)). 

Proof.  Assume a ^ b (mod 3).  If a is odd, then |/i(&£)l == FIj^Li ^C^")? where 

g(£) = -jQ^2^)^ and if a is even, then fi(2bt;) = Ilfcli diiz)- Hence we need only 
o 

consider Ilfcli P(^")- Since g is strictly positive, the first part of Theorem 5.2 applies. 
If a = b (mod 3), then g in the alternative form is strictly positive and the second 
part of Theorem 5.2 applies. D 

In the following we want to calculate the spectral radius of Lg and the exponents 
in Theorem 5.4. We make use of the following observation of Herve [H]. Suppose F 
is an invariant subspace of Lg in C[0,1] and contains the constant function 1. Then 
Lg and Lg\F have the same spectral radius. The most interesting case is when g is 
a positive trigonometric polynomial. We will see that we can take F to be a finite 
dimensional subspace of trigonometric polynomials. 

Let g(x) = ^2n-_N ane27rinx. We decompose g in the following manner 

g(x) = e-2™ Y, asn-ie6™* + £ a3neQ"inx + e2™ £ a3n+1e^
inx 

:= c-2* Vi(3x) + 0o(3z) + e2-ixg1(Sx). 
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Similarly for any trigonometric polynomial /, we can decompose 

f(x) = e-2irte/-i(3ar) + /o(3a0 4- e2^/i(3x). 

It follows that 

= EEe2'ri(il+i2)(t+l)/i1w^(a;) 
A;  ii ,i2 

= ^ (e2^+A)*/i1(^ia(*)Eca,ri*ai+is)/3)' 
jlj2 k ' 

where the sums of k,ji,J2 are over —1,0,1. Note that the last term is 

D 3      if ^±^ = 0. 

We conclude that 

(5.3) Lgf(x) = 3(go(x)fo(x) -hg^f^x) +y_1(x)/1(x)). 

From this we see that Lg is invariant on the space of trigonometric polynomials T^ 
of degree not greater than N where N = [N/2] + 1 for N = 2 and N = [(N - l)/2] 
for N > 3. 

By using (5.3), it is easy to see that if f(x) = e27rl(3ex\ then 

Lgf(x) = Sg0(x)e2^ = 35>3n-Me2*<B*; 

n 

if/(aj)='c2'r<(w-1)*,then 

n 

if/(a:) = e27ri(3<!+1>x, then 

Lgf(x) = Sg^(x)e2^ =3^2a3n-3e^e2"in\ 
n 

Consequently for the basis {e2winx}\n\<N, we can write down the (2^+1) x (2JV +1) 
matrix representing Lgi 

a_4 a_5 a_6 a_7 a_8 
a_i a_2 a-s a-4 a_5 

(22 a>l ^0 (2-1 (2-2 
(25 Ol (23 ^2 (2l 
as 07 ae as 04 



IFS WITH OVERLAPS 549 

N 
K    9(x)     =     En=-iV   an  e 

r,2Trinx is   such   that    an = a_n,    then g(x) = 

op + 2En=i ancos{27rnx). If we use cos27mz =J(e27rinx +_e-2ntnx), 0 < n < N as a 
basis, we can obtain, directly from above, an (N -f 1) x (iV + 1) matrix representing 

M = S 

ao 
0>3 

2ai 

ay -fas 

2a2 
as H-ai 

ag + 04 

2ajY 
aiV4-3 "+" aiV-3 

a4iV + a2iV La3N     a3iV+l + a37V-l 

We remark that for /J given by  (3.5), £(£) = H^Li p(h)  where ^(0 = 

E£loc*e4,rifc?- Hence 

ft i 

= E«ne4'rin«, 

where an = E^^^-n and «n = fl-n- The matrix corresponding to g(€/2) = 
E ane2ninZ is the transpose of that in (3.6). This is necessary in view of Theorem 5.1 
and Theorem 5.2 with 5 = 0. 

Return to the case in (5.2). We see from the proof of Theorem 5.4 that we need 
only consider \g{0\2, where g(t) = ||Q(e27r^)| with Q defined by (5.2). 

Case 1. a ^ b (mod 3).   In this case fj, is singular, we have calculations for p(2), /3(2) 
(Sobolev exponent), and r(2) (L2-scaling exponent) for some simple cases. 
(i)  A = |:   \g(0\2 = k + |cos27rf + |cos67r? + f cos87rf • The Af corresponding to 

J\9\ 2   IS 

1     2/3 
1/3   1/3 

It follows that 

P(2) = ^l9l2 = 
2 + V3 

1.24402, 

0(2) = -^r^r = -0-099373 2 In 3 

T(2) = 1 - ^^ = 1 + 2^(2) = 0.801253 
In 3 

(Theorem 5.4), 

(Theorem 5.1). 

(Note that r(2) can also be obtained by Theorem 2.3.) 
(ii)  A = |:   \g(Q\2 = | + | cos2^ + | cosIOTT^ + | cos 12^. 

M = 
1     2/3     0 ' 
0       0     2/3 

1/3   1/3     0 

p(2) = 2+/2 = 1.13807, 0(2) = -0.058863, r(2) = 0.882274. 
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(iii)  A = |:   \g(012 = | + f cos 27rf + | cos 4^ + | cos 6^. 
Since the matrix is the same as case (i), the values are the same. 

Case 2. a = b (mod 3).   In this case /J, is absolutely continuous and hence r(2) = 1. 
In view of Theorem 5.4, we replace |p(£)|2 by 

(i)  A = |: By using long division, we get 

Q(z) l + z + z8 

l-z2 + z3-z5 + z6. 
l + z + z2      l + z + z2 

Hence 

\g(^) |2 = 5 - 4 cos 27r£ - 4 cos 47r£ + 6 cos 67r£ - 2 cos STT^ - 2 cos IOTT^ + 2 cos 12^. 

M = 

(ii)  A=|:   |p(^)|2 =3-2cos27r£-2cos47r£ + 2cos67r£. 

15 -12 -12 
9 -9 -9 ^(2) = 7.68466, /?(2) = 0.071908 
3 -3 -3 

M = 
9   -6 
3   -3 

Pi{2) = 7.24264,       ^(2) = 0.0988696. 

The following is a table of the Sobolev exponents /3(2) of n with A = |, a ratio- 
nal number. When the exponent is negative, the corresponding measure is singular; 
otherwise it is absolutely continuous. (Note that for r(2) < 1, /?(2) = (r(2) - l)/2.) 

a=l a=2 a=3 a=4 a=5 a=6 a=7 a=8 a=9 a=10 

b=2 -.0994 

3 -.0589 -.0994 

4 .0719 / -.0466 

5 -.0994 .0989 -.0600 -.0440 

6 -.0444 / / / -.0273 

7 .0405 -.0734 -.0355 .0601 -.0485 -.0288 

8 -.0410 / -.0328 / 0.0200 / -.0239 

9 -.0598 -.0994 / -.0734 -.0469 / -.0305 -.0314 

10 .0301 / -.0422 / / / .0114 / -0.197 

11 -.0378 .0558 -.0345 -.0561 .0155 -.0490 -.0362 .0236 -.0262 -.0186 

Finally we will complete the proof of Proposition 5.3. We need a lemma. 

LEMMA 5.5. Let z and 7 be two complex numbers with \z\ = I7I = 1 and satisfy 
1 + z + 722 = 0. Then 7 = 1, and z = e2™/3 or e47ri/3. 

Proof. The hypothesis implies that 1 = |1 + 72I, which reduces to 2R,e(7;z) = -1. 
Hence 72 = a or a2 where a — e2W3. Substituting z = a/7 or a2/7 into 1+z+jz2 = 
0 yields 7 = 1 and the lemma follows. D 
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Proof of Proposition 5.3. We will first consider the case when a is odd. Let 
|^| = 1 be a root of Q. Then 

Lemma 5.5 implies that z2^b~a^ = 1 and 

(5.4) (1)  za = e2™/3 := a   or    (2) za = e47ri/3 = a2. 

We concentrate on case (1); case (2) follows by using z instead. By writing z = e27rix, 
we get ^(| + ki) = x = 2(^Qx for some integers ki and fo. It follows that 

(5.5) 2(6 - a)(l + 3fci) = Safe 

and hence a = b (mod 3). This proves part (i) of the proposition. Also it is a direct 
check that both a and a2 are roots of Q if a = b (mod 3). To see that a and a2 are 
simple roots, it suffices to note that Q'{a) ^ 0 and ^'(a2) ^ 0. 

We next show that in the case a = b (mod 3), a and a2 are the only roots of 
Q of modulus 1. Observe from (5.5) that fe must be even (since a is odd). Hence 
2(6 - a)x = k2 implies that (6 - a)x is an integer and zb~a = z27:^b~a^x = 1 and we 
have 

(5.6) zb = za =a (or a2). 

Without loss of generality we can assume that 0 < x < | and choose r = | or — | so 
that e27ribr = e27rzar = a. For y := x — r, we have 

JZiriay _ e27riby _ -^ 

It follows that ay = ka, by = fc& for some integers A:a and &&. Consequently afo = bka 

and hence 6|fc&. From by = fo, we see that y is an integer. Since \y\ < 1, the only 
possibility is 2/ = 0, i.e., x = | or — | and z = a or a2. 

In the case when a is even, we use the alternative expression Q(z) = 1 + zf + z6. 
(5.4) becomes ^f = a (or a2) and (5.5) is the same, which implies again that a = 6 
(mod 3). To show that a and a2 are the only roots of Q of modulus 1, we observe 
that za = zb, z% = a or a2, so that (5.6) holds the same and the proposition follows. 
D 
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