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NEW EXAMPLES OF INTEGRABLE GEODESIC FLOWS* 

LEO T. BUTLERt 

Abstract. The existence of a family of nilmanifolds which possess riemannian metrics with 
Liouville-integrable geodesic flow is demonstrated. These homogeneous spaces are of the form D\H, 
where if is a connected, simply-connected two-step nilpotent Lie group and D is a discrete, cocompact 
subgroup of H. The metric on D\H is obtained from a left-invariant metric on H. The topology 
of these nilmanifolds is quite rich; in particular, the first example of a Liouville-integrable geodesic 
flow on a manifold whose fundamental group possesses no commutative subgroup of finite index 
is obtained. It is shown that several of the conclusions of Taimanov's theorems on the topology 
of manifolds with real-analytically Liouville-integrable geodesic flows do not obtain in the smooth 
category [28, 29]. 

1. Introduction. A manifold (L2k,Lj) is symplectic if the skew symmetric 2-form 
u is closed, and non-degenerate. A vector field X on a symplectic manifold (L2k,uj) is 
hamiltonian if its contraction with u is exact: ixw = dH where if is a smooth, real- 
valued function on L2k. X is often denoted by XH in such a situation. Here smooth 
will always mean C00 unless explicitly stated otherwise. An especially important 
class of hamiltonian vector fields, which forms the starting point of Poincare's study 
of problems in celestial mechanics [26] and its subsequent elaboration in K AM theory, 
is the class of Liouville integrable hamiltonian vector fields: 

DEFINITION 1.1 (Liouville Integrability). The hamiltonian vector field XH is Li- 
ouville integrable on (L2k,uj) if there exists a smooth function F := (/i = H,... , fk) : 
M2k _^ Rk such that 

i) fi,fj are in involution: (^(Xf^Xf.) = dfj(Xfi) = {fj,fi} = 0 for all 1 < 
ij < k; 

ii) and functionally independent on a dense subset of L2k: the rank of the map 
dFp : TpL

2k ->• TF(p)Rk is k on an open dense subset of L2k. 

If all objects in the above definition share a property P, then it is customary to say that 
XJJ is Liouville integrable with P first integrals. Most commonly, one is concerned 
with smooth, real-analytic or algebraic first integrals. 

2. Results of this Paper. In this paper, a family of real-analytic, 2-step nilpo- 
tent manifolds of all dimensions k > 3 is introduced. The manifolds admit real- 
analytic riemannian metrics whose geodesic flow is Liouville integrable with k invo- 
lutive first integrals. Their fundamental groups are not almost abelian, nor is there 
an injection of cohomology rings if*(Trf; <Q>) ^ H* (Qk; Q) where d = dim H1 (Qk; Q). 
In light of work done by Taimanov , quoted in theorem (3.2) below, these flows do 
not have k independent, involutive real-analytic first integrals. Therefore, the first 
example of a real-analytic riemannian manifold that admits smooth but not real- 
analytically Liouville-integrable geodesic flows is introduced. 

In the work on integrable geodesic flows by Thimm [30], Guillemin and Stern- 
berg [16], and Paternain and Spatzier [22], the Liouville integrability of geodesic flows 
on certain riemannian manifolds is demonstrated in a manner that leaves many ques- 
tions about the flows still unanswered. For example, it is unclear if these geodesic 
flows have additional, non-involutive first integrals. Bogoyavlenskij [3] has shown if 
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an integrable hamiltonian vector field has a non-commutative algebra of symmetries, 
then it is degenerate in the sense of KAM theory. It is currently unknown if a man- 
ifold that admits such degenerate integrable geodesic flows admits non-degenerate 
geodesic flows [11]. In this paper, explicit action-angle coordinates are constructed 
that demonstrate that the manifolds Qk admit non-degenerate geodesic flows. 

In addition to the non-degeneracy of the geodesic flows on Q*, it is possible to 
prove that the topological entropy of these geodesic flows vanishes. This is true, in 
spite of the fact that all three of the hypotheses of theorem (3.3) below are not true 
for these geodesic flows. 

3. The Topological Implications of Integrability. A question that has been 
posed by many researchers is this: what are the topological implications of 
Liouville integrability? This broad question is addressed in [19, 5, 6, 18, 11, 12] 
to cite some recent work. The short answer is that there are none [5]. However, 
once suitable restrictions are placed on the behaviour of the first integrals along the 
singular set, many more things are known. In the case where L2k — T*Mk

1 u is 
the canonical symplectic form on T*M and H is the hamiltonian associated with a 
riemannian metric on M, a good deal is known: 

THEOREM 3.1 (Kozlov:[17]).   Let M2 be a smooth, compact surface and H : 
T*M —>• M be the hamiltonian of a riemannian metric on M2.   Suppose that there 
exists a smooth function f : S*M = {H = 1} -> E such that 

i) f is a first integral of H; 
ii) f has finitely many critical values; and 
ii) for each c G M, the set of points q £ M such that {/ = c} D 5*M is either 

the entire fibre or finitely many points is everywhere dense in M. 
If M2 is orientable, then it is homeomorphic to either S2 or T2; otherwise M2 is 
homeomorphic to either RP2 or K2, where K2 is the Klein bottle. 

Kozlov's theorem relies heavily on the structure of the covering spaces of two- 
dimensional surfaces and their minimal geodesies [13]; a weaker form of this theorem 
for a Bott first integral is proven in [6] that does not rely on [13]. There have been two 
ways in which Kozlov's theorem has been generalized: the first directly generalizes 
the techniques used in his theorem, while the second is based on the notion of the 
topological entropy of a flow. 

THEOREM 3.2 (Taimanov:[28, 29]). Let Mn be a compact, connected, boundary- 
less manifold and g be a riemannian metric on M such that the geodesic flow of g is 
geometrically simple.  Then: 

i) 7ri(Mn) possesses a commutative subgroup of finite index; 
ii) dimi7i(Mn;Q) < n; 

Hi) if d = dimHi(Mn]Q), then there is an injection of algebras H*(Td;Q) M> 

#*(Mn;Q) 
iv) if d = n, then the injection is an isomorphism. 

In the same paper, Taimanov shows that a real-analytic metric that is Liouville 
integrable with n real-analytic first integrals has a geometrically simple geodesic flow. 

Theorem (7.1) of this paper demonstrates that the conclusions i and in of theo- 
rem (3.2) do not obtain when the first integrals are constrained only to be C00. 

The topological-entropy approach to the topological implications of integrability, 
due to Paternain, is based on two appealing observations: (i) the flow of a Liouville- 
integrable vector field has zero topological entropy when restricted to an open, dense 
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domain of invariant tori; (ii) the surfaces identified in Kozlov's theorem that do (do 
not) admit a Liouville-integrable geodesic flow are precisely those surfaces that do (do 
not) admit geodesic flows with zero topological entropy [10]. Indeed, until the work of 
Bolsinov and Taimanov [7], no integrable geodesic flows were known to have positive 
topological entropy. 

THEOREM 3.3 (Paternain:[23, 24, 25]). Let (Mk,g) be a smooth, compact rie- 
mannian manifold and H : T*M —> M be the hamiltonian of the geodesic flow of g 
andletS*M = H-l(X). If 

i) H is invariant under the effective, hamiltonian action o/T*-1 on T*M; or 
ii) there is an m G M such that every point p € S^M has a neighbourhood in 

S*M that admits action-angle variables with singularities; or 
Hi) if H is integrable with non-degenerate first integrals, 

then the fundamental group of M is of subexponential growth and if TTI (M) is finite, 
M is rationally elliptic. 

In each proof the main difficulty is ensuring that the behaviour of the geodesic flow 
on the singular set of the first integrals is "tame enough" that it has zero topological 
entropy. The work of Dinaburg [10], Gromov [15] and Yomdin [32] then imply the 
two topological results. 

Although it was conjectured that smoothly integrable geodesic flows must have 
zero topological entropy, Bolsinov and Taimanov have recently shown that the sus- 
pension manifold of a linear Anosov diffeomorphism of a torus admits a geodesic 
flowthat is Liouville integrable and has positive topological entropy [7]. 

4. Continuing Questions. There are a number of questions that this paper 
naturally poses. Are there simply connected manifolds that are not rationally elliptic 
and have integrable geodesic flows? It is conjectured by Taimanov [29] that the Betti 
numbers of Mk are dominated by those of T* if Mk admits a geodesic flow that is 
either Liouville integrable or has zero topological entropy. Is this true? 

The first integrals of the geodesic flow in this paper, although non-analytic and 
degenerate, are relatively tame: the singular set of the first-integral mapping is a union 
of closed submanifolds. Is it possible to characterize the topological implications of 
integrability with this type of first integral? 

5. A Statement of the Theorems. 

5.1. The Groups Up. In this subsection, the groups Up and the topology of 
their quotients is studied. Let Up := (M1 xW x W, *) where the multiplication * is 
defined by 

(1) (x,y, z) * (x', y', z') := (x + x',y + y', z + z' + xy'). 

It is easily verified that these groups are 2-step nilpotent and the coordinates (x^y^z) 
are coordinates of the second kind [20]. 

The family of 2-step nilpotent groups, H*, has a rich structure. First, the group's 
descending central series consists of 1ip,Tip/Z(1ip), 1 where the centre of the group 
coincides with the derived group. This allows one to write Up as the non-trivial 
central extension of Ep+1 by W 

(2) 1 -* W -> lip -> M1 x W -> 1. 
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The subgroup Np := 0 x W x W is also a normal, commutative subgroup. This allows 
us to express Up as a non-central extension of M1 by Mp 

(3) 1 -► Mp -* Up -+ M1 -> 1. 

In this case x 6 M1 acts on (y, z) € A/'p by the matrix x - 
Ip     0 

%lp       -Lp 
where Ip is the 

p x p identity matrix. The group Tip is therefore the semidirect product of E1 with 
M2p in which the representation of M1 in GL(2p; M) is indecomposable. It is clear that 
Afp is a maximal abelian subgroup of Up. In the sequel, this fact will be important. 

It is clear that for each p, Hp possesses a discrete, cocompact subgroup; take the 
subgroup D := {(#, ?/, z)  : x G Z, ?/, 2 G Z1*}, for example. 

THEOREM 5.1. Let g be a left-invariant metric on Tip and let F be a discrete, 
cocompact subgroup of Up. Then the geodesic flow (ft : T*(r\?/p) ->> T*(r\Hp) 
induced by g is Liouville integrable. 

The two following theorems are proven for the special metric g defined below (8.3): 

THEOREM 5.2. The geodesic flow (ft is non-degenerate in the sense of KAM 
theory. 

THEOREM 5.3. The topological entropy of (ft vanishes. 

6. Liouville Integrability. Let g be a left-invariant metric on Up, and let 
H : T*T-Lp —> M be the hamiltonian associated to #, XH the geodesic vector field 
and (j)t the geodesic flow. Because g is left invariant, all right-invariant vector fields 
are isometrics of #; the cotangent lifts of these vector fields then provide first integrals 
of<^. 

The left-invariant differential 1-forms a,/?2,7* provide a trivialization of T*^; 
let (x,2/,z,pa,p/?,p7) be the coordinates on T*Hp induced by this trivialization. It is 
clear that the coordinates (PaiPpiP-y) descend to coordinates on T*(r\%p) = r\Hp x 
Lie(/Hp)*, where F is a discrete subgroup of Up. 

LEMMA 6.1. Let Zi := ^p-. Then Z; is a right-invariant vector field on Tip and 
d := p7i is a first integral of tpt. 

Proof. Zi is generated by the center of Tip, and Gi = p(Zi) =pli. □ 

LEMMA 6.2. Let Yi := A-. Then Yi is a right-invariant vector field on Tip and 
Fi := pfo — xp^ is a first integral of iff 

Proof. Right invariance is clear. In addition, Yi = y^ — xZi where ^ (Zi = Zi) 
is left invariant and dual to ft7, (jl). So: Fi = p(Yi) = ppi — xp7i is the hamiltonian of 
the cotangent lift of Y*. D 

LEMMA 6.3. Let(j)(u) = exp(—u~2) be a smooth function onR, letT be a discrete, 
cocompact subgroup of Tip, let a be a generator of the cyclic group T/TnAfp and let 
T := <f a be the integral of a = dx over a, where the loop representing a is identified 
with a in the obvious way. Then the functions 

(4) /i:=^7,)sin|:(gi-^ 

are C00 first integrals of the geodesic flow of g on T*(T\Tip) =: T*Q. 
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Proof. The 1-form a — dx is closed but not exact, meaning that x : Q - 
is a smooth function. Therefore, fa is a well-defined, real-valued function on T*<Q, 
and the smoothness of fi follows from the properties of </> and sin. That fa o fa = fa 
follows from the fact that fa = (t>(Gi) sin ^j*-, where both F* and Gi are first integrals 
of fa. Therefore, fa descends to a smooth first integral of fa onT*Q. □ 

LEMMA 6.4. Let t/; := (/i,... , /p, Gi,... , Gp,H) be an energy-momentum map- 
ping for H. Then rankch/^ = 2p 4-1 for q in an open, dense subset of T*Q. 

Proof. As usual, the cotangent bundle of Q is viewed sis the cotangent bundle of 
T-Lp subject to the periodicity conditions imposed by F, and we let TT : T*^ -» T*Q. 
Let * = (JFi,... , Fp, Gi,... , Gp, H) be the energy-momentum map of H on T*%p. 
The rankd^g = rankd^p, where q = 7r(P), unless dfa = 0 for some i, that is p7i = 0 

or ^ f ^ — x) G Z. So: rankd^g < rankd^p implies that for some 2, fi(q) =0 or 

±1. 
It is clear that rankd^p = 2p+ 1 for an open, dense subset of P G T*HP, and so 

rankdt/>g = 2p + 1 on an open, dense subset of T*Q. D 

LEMMA 6.5.  T/ie /zrst integrals fa,... , /p, Gi,... ,Gp,i7 Poisson commute. 

Proof. The right-invariant vector fields Yi,... , Yp, Zi,... , Zp commute, so the 
hamiltonians of their cotangent lift to T*Tip, Fi,... ,Fp,Gi,... ,Gp, Poisson com- 
mute, /i,... ,/p,Gi,... ,Gp generate an algebra that is functionally dependent on 
the former algebra, so this algebra is Poisson commutative, too. It has already been 
established that each function Poisson commutes with H. □ 

Proof of theorem (5.1): This completes the proof. □ 

7. Topology of T\np. 

THEOREM 7.1. Let T be a discrete, cocompact subgroup of Tip, p > 1, and let 
Q := T\HP.  Then: 

i) 7Ti(Q) ~ F has no abelian subgroup of finite index; and 
ii) dimiJ1((5;M) = p+ 1 but there does not exist an injection of cohomology 

algebras iJ*(TP+1;Q) -* H*(QiQ); 
Hi) the Betti numbers of Q are dominated by T2p+1. 

Proof, (i) F, because it is a discrete, cocompact subgroup of a connected, simply 
connected nilpotent Lie group, is a finitely generated, torsion-free 2-step nilpotent 
group [20]. By [31], the word growth of F is 3p -4- 1; if F' < F were an abelian 
subgroup of finite index, then the word growth of F would be equal to that of F', 
which as a rank 2p + 1 free abelian group, would be 2p -t-1. 
(ii) Let a = dx, /3l = dy1 and 7* = dz1 — xdy1 for i = 1,... ,p. This is a basis of 
Lie(%p)*, the vector space of left-invariant forms on Up and da — d/31 = • • • = d/3p = 0 
while d^ — —a A {& for j = 1,... ,p. Nomizu's theorem [21] asserts that if G is a 
connected, simply connected nilpotent Lie group, Lie(G)* is its Lie coalgebra and D 
is a discrete, cocompact lattice in G then the de Rham cohomology ring of D\G is 
isomorphic to the cohomology ring of Lie(G)*. Moreover, the isomorphism is induced 
by the natural inclusion of the left-invariant alternating forms on G with the complex 
of differential forms on JD\G. This means that il^QjM) = spanR {a,/?1,... ,j3p}; 
on the other hand, the cohomology class \a A /?*] = 0 for all i. Hence, there is no 
injection .H'*(T,H"1;R) M> i7*(Q;E). By the isomorphism between de Rham and 
singular cohomology, and the universal coefficients theorem, this implies that there is 
no injection iJ*(Tp+1;Q) «-> iJ*((9;Q) in singular cohomology. 
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(iii) This is clear, since the exterior algebra A*(Lie(/Wp)) is isomorphic to H*(T2p+1; R) 
as an M algebra. D 

8. Non-degeneracy of the Geodesic Flow. In this section it will be shown 
that the geodesic flow ipt of a left-invariant metric g on T*(T\Hp), p > 2, is non- 
degenerate in the sense of KAM theory (see below for a definition). This will be done 
in two steps: (i) it will be shown that the flow (ft on an intermediate covering, T*(rn 
AfpXHp), is non-degenerate; (ii) this is shown to imply that the flow on T*(T\Hp) is 
non-degenerate. 

8.1. A Covering Space. 

LEMMA 8.1. Let T < %p be a discrete, cocompact subgroup of Up. Then there 
exist unique integers 1 < ki\ — -\kp such that T is isomorphic to the group D(k) 
generated by elements a, &i,... , 6p, ci,... , Cp £ Up where a = (1,0,0), bi = (0, e^, 0) 
and Ci = (0,0, A;r1ei) where ei is the i-th standard basis vector ofW. 

A proof of this appears in [9]. The following lemma is proven, essentially, in [14]: 

LEMMA 8.2. Let g be a left-invariant metric on Tip and T < Hp be a discrete, 
cocompact subgroup and let f : D(k) —> T be an isomorphism. Then f extends to an 
automorphism of Up and {TyHp^g) is isometric to (D(k)\Hp,f*g). 

Because all invariants of the geodesic flows are invariant under isometries, it is clear 
that it is only necessary to prove that there are flows on T*(D(k)\Hp) =: T*Q{k) 
that are non-degenerate. 

LEMMA 8.3. Let N{k) be the rank 2p, free abelian subgroup of D(k) generated by 
&i,... ,Cp. Then T*(N(k)\Hp) = T*(M x T2p) with coordinates (x,y,z,pXlpy,pz), yi 
is measured mod 1, zi is measured mod k^1. The left-invariant metric 

p 

g = a O a + ^ /?* (8) /f + Y (8) 7*, 

induces the hamiltonian 

2H = p2
x + ^2(pyi + xpzi f + p2

zi. 
*=i 

Proof. The differential forms a — dx^l5l = dyl, and dzl are invariant under the left 
action of N(k), so they descend to T*(N(k)\Hp). The coordinates pa = Px, Pz* — Py 
and Pyi = pp — xpji, and in terms of the coordinates PaiPpiP-y, the hamiltonian is 

The geodesic vector field in the above system of coordinates on T*(N(k)\Hp) is 

(5)     XH = 

which clearly reveals that # = (Fi = Pyi,... , Gp = PZP , H) is a first-integral map- 
ping that is of maximal rank on { pi + (^=1^ + xPz^Pz*)2 7^ 0 }• There is 
another independent, non-involutive, first integral, in the event that p = 1, too: 

K = <l>{Pz)Sm2i:(^+y). 

Px =     -Y,Pi=l(Pyi+XPzi)Pzi, X =     Px, 
Pyi = 0, y1 =          Pyi    +   XPZi , 

Pz< = 0, z1 =         PZi    +X(Pyi    +XPzi). 
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LEMMA 8.4. Let a, b G W. Suppose that b ^ 0. Then the level set {Fi = 
oi,... Gp = bp, H = E} is a compact subset of T*(N(fyXHp). 

Proof. The cotangent bundle T*(N(k)\np) = T*(M x T2**) via the chosen coor- 
dinates. It is only necessary to show that x and px are bounded. But pi < 2E while 
(Pyj +xpzj)

2 = (cij+xbj)2 < 2E. Since bj ^ 0 for some j by hypothesis, x is bounded 
too. D 

In the sequel it will be useful to denote by A2 = ^=1 a
2, B2 = Y^=i tf, D = 

Y^i=i aibi' ^ will be assumed that B2 / 0 so that C = D/B2 is defined. 
On the level set {Fi = ai,.. .Gp = bp,H = E} the hamiltonian takes the form 

2H - A2 - B2 (1 - C2) - pi + B2 (x + C)2. Ignoring the coordinates {y, z), this gives the 
equation of an ellipse with axes of length r = y/2H — A2 — B2(l — C2) and s = r/B. 
The generating function S(x, I) = $lcPx dx defines the implicit canonical coordinate 
change 

^    (/        —      //   -h ^     , (^       —     z   f db   , 

OS fl        —      dS 

dS 

and ai,bi are unchanged. The action variable / is defined by 2^1 = §pxdx — area 
of ellipse = 7Tr2/B. The hamiltonian H in the canonical action-angle coordinates 

(M,^,J,a,&) is 

(7) 2H = A2 + B2 - D2/B2 + 2IB. 

The geodesic vector field in these action-angle coordinates is 

(e    =  B, /   =  o, 
tf*    =    di-DB^bi, en    =    0, 
^    =    (l + IB^+^B-^fci-DB-2^,        6i    =    0. 

In the special case of p = 1, the geodesic vector field is simplified to 

r 0    =   6, /   =   0, 
(9) Xtf = <   tf    =    0, a    =    0, 

[0    =    7 + 6,       6    =    0. 

The additional first integral K = (j)(pz) sin27r(px/pz + y) appears here in the guise of 

8.2. Non-degeneracy of the geodesic flow. 
DEFINITION 8.5 (Poincare Non-degenerary: [26]). Let M - W xTn be a toroidal 

neighbourhood with coordinates (1,0) and the symplectic structure u = YH=I d0l Adli. 
The hamiltonian H = H(I) is non-degenerate if there exists a dense subset U CW1 

such that for all I G U, 

detHess(if(7))^0. 

A Liouville-integrable hamiltonian vector field XH on the symplectic manifold (L2n,u) 
is non-degenerate if, for all toroidal neighbourhoods M ^ W x Tn, the hamiltonian 
on M is non-degenerate in the previous sense. 

Bogoyavlenskij [2, 4] has proven that this definition is independent of the choice 
of action-angle variables on the toroidal domain, and it is equivalent to the state- 
ment that the Lie algebra of all symmetries of XH is abelian. It should be observed 
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that Poincare non-degenerary is a necessary condition for the application of KAM 
theory [1]. 

LEMMA 8.6. Let p > 2. The determinant of the hessian of H in the action 
coordinates (/, a, b) is 

f  CW'-ffi*8-*)    ifa-DB->b?0. 
(10) detHess(#) = I 

( 0 otherwise. 

In particular, the hamiltonian H is non-degenerate on an open, dense subset of 
M+ x Mp x W, and the geodesic flow is a dense, quasi-periodic winding on almost 
all invariant tori {I = cst.,a = cst.,b = cst.}. 

Proof Let a, 6 6 !*\ V := span {(0,6,0), (0,a,0), (0,0,6), (0,0,a), (1,0,0)}, and 
V1- is the orthogonal complement of V in E x Rp x W. The hessian of H in the action 
coordinates (/, a, b) is computed to be 

(ii) 

Hess(£0 = 

0 B-H' 0 

B-tb   IB-D-2bb' 
2Z)£-4&&' 

lp    "    "" -DB-2Ip-B-2ba' 

2DB-%b' {l + IB-i+D2B-*)Ip 

0 DB-2I - B-2ab>       -V*-' + *D2B-6)bb' UB    lp    B    ab        +2DB-Hab' + ba')-B-2aa' 

where a',b' are the transposes of a,b and lp is the p x p identity matrix. Both V 
and V1- are invariant under the linear transformation Hess(if) so its determinant 
is the product of the determinants on each subspace. On the subspace V-1 this 
transformation has the matrix representation 

(12) Hess(if)|vJ 
Ik -DB-2Ik 

-DB-2Ik    (1 + IB-1 + D2B-4)Ik 

where fc = p-2ifa^ DB-2b and k = p - 1 if a = DB-2b. Therefore 

(13) det(Hess(F)|vx) = (l + /JB-1)fc. 

On the subspace V one computes the determinant of the restriction of the hessian 
to be 

(14) det (Hess(F)|v) = (A2B-2 - D2)B-\ 

These two facts prove the claims above. D 

LEMMA 8.7. Suppose that it : (M2k,u)) -t (N2k,8) is a symplectic covering, 
F : N2k -»■ E is a smooth hamiltonian and G = F o TT. // XQ is Liouville integrable 
and non-degenerate and Xp is Liouville integrable, then Xp is non-degenerate. 

Proof. Let U C N2k be an open toroidal domain. Then there exist action-angle 
variables (/,<£) : U -4 D" x Tn. Let V = TT"

1
^) and J = / o TT : V -* W. Then 

Hess(F)(J) = Hess(G)(J). D 

COROLLARY 8.8. The geodesic flow induced by the metric g of lemma (8.3) is 
Poincare non-degenerate on T*Q(k) for all compact quotients Q(k) of Tip. 
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9. Topological Entropy. It is recalled that if M is a compact topological space, 
the topological entropy of the open covering U is the natural logarithm of infimum of 
the cardinality of all subcoverings of M: 

h{U) := loginf{|[/'|  :  U' C U, U' covers M }. 

If U and V are coverings of M then U V V is the covering of M given by uDv for all 
w G [/, v € V. The topological entropy of the continuous mapping T : M -¥ M with 
respect to the covering U is defined by 

h(T\U):= lim h(U WT^U V ... VT"71*/). 
n—KX) 

DEFINITION 9.1 (Topological Entropy:[27]). The topological entropy of T is then 

h(T) := sup{h(T\U)  :  U covers M }. 

The topological entropy of a one-parameter group of transformations, or flow, is de- 
fined to be the topological entropy of the time-1 map. 

A nice corollary of the Liouville-integrability of the geodesic flow is that 

COROLLARY 9.2. Let T < Up be a discrete, cocompact subgroup of %V} Q = 
ryhp, g be the left-invariant metric on Tip from lemma (8.3), and the geodesic flow 
of the left-invariant metric on T*(T\Hp) be (ft- Then tpt has zero topological entropy. 

Proof. Let L be the set of regular points of the energy-momentum map tp, and let 
S be its set of singular points. The topological entropy of (ft is equal to the maximum 
of the topological entropy of tptls an(^ ^II* The geodesic flow on the invariant set 
L is zero because this flow is smoothly conjugate to a straightline translation on a 
2p + 1 torus. 

Indeed, it is clear that the critical-point subset Sm := Uf=1 {fi = 0,p7i ^ 0} 

is "movable": Let fi = 0(p7i) cos ^ f ^ - x). Then /* are first integrals that are 

independent on a neighbourhood of Smi so on 5m the geodesic flow is smoothly 
congjugate to a translation flow on a torus, too. 

It is therefore essential to show that the topological entropy of ipt restricted to 
the critical-point set 

p 

{p7t. = 0 : some i} U {pa = 0, ^p/3t.p7i = 0} 
«=i 

is zero. To do this, recall 

THEOREM 9.3 (Bowen: [8]). Suppose that (X,d) is a compact separable metric 
space, the compact Lie group G acts continuously on X and let Y = X/G and TT is 
the projection onto Y. Suppose that St : X ->• X and Tt : Y -» Y are 1-parameter 
groups of homeomorphisms such that 

TT O St = Tt O TT, 

and St commutes with the action of G on X. Then 

h(St\X) = h(Tt\Y). 
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In the present situation, we will examine the flow generated by the geodesic 
flow on a symplectic quotient and show that the flow on this symplectic quotient 
is smoothly conjugate to a natural geodesic flow on the symplectic quotient. An 
induction argument on p will then prove the theorem. 

For the case where p = 0, the space T*Q = TT1 and the hamiltonian of the 
geodesic flow is H = p^ whose flow is a straightline flow everywhere. The topological 
entropy of this flow is therefore zero. 

Assume that for q = 0,... ,p — 1 the geodesic flow on all the cotangent bundles 
T^Q', Q' = T'XHq, has zero topological entropy. It will be shown that the topological 
entropy of the geodesic flow on T*Q must be zero, too. 

First, suppose that < p/3,p7 >^ 0. 
If 0E,2/,2,pa,p/?,p7) are coordinates on T*Q then the canonical 1-form 

p 

6 = paa + ^PfoPi + p7i7i 
i=l 

and so the symplectic form in these coordinates is 

p 

Q = -d0 = a A pa + ^^ Pi A dpfc + 7i A dp7. + p7t.a A /?*. 
2=1 

Let J C {1,... ,p} be a set of indices and suppose p7j = 0 iff j G J. Let / be 
the complement of J, and TJ>Z be the torus whose action generates the momenta p7j.. 
The torus TJ>Z acts freely on the zero momentum level set Sj := C\j€j{p7j = 0} so 
it is possible to form the symplectic quotient Sj/TJ,z. On this reduced space the 
symplectic form and hamiltonian of the geodesic vector field become 

p 

Qj = aApa + Y^PiAdP0i +1^2liAdP7i +PyiaApi, 
i=l iel 

and 
p 

where notation is abused and the coordinates on the symplectic quotient Sj/TJ,z are 
identified with the coordinates on the unreduced cotangent bundle. 

An inspection of the reduced geodesic vector field XHJ reveals that the functions 
pp. for j £ J are all first integrals of the reduced geodesic vector field. The torus TJ'y 

whose action generates these momenta acts freely on the common level set SJJ := 
^j€j{P(3j = cst} and so it is possible to symplectically reduce the level 5J,J by means 
of the torus T*7'^. 

By repeating the above computations it is clear that the second symplectic quo- 
tient Sj,j/TJ,y is symplectomorphic to T*(r/\'Hp/) with its standard symplectic form 
where pl = #1 and I" = T/Gjyj fl T where GJJ is the subgroup of T-Lp whose right 
action on T*Q has the momemtum map (ppj,p^j)jej. The reduced hamiltonian HJ,J 

is equal (up to a constant) to the hamiltonian of the natural geodesic vector field on 
this cotangent bundle. By the induction hypothesis, then, the reduced flow on this 
symplectic quotient has zero topological entropy. By Bowen's theorem, the topologi- 
cal entropy of (ftlsj 1S zero- Because the collection of such J's is finite the topological 
entropy of (ft on the critical point set {p7i = 0 : some i} is zero. 
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The only case that remains to be considered is < pp,p<y >= 0,pa = 0. On 
this set pa is identically zero along the geodesic flow and so, therefore, is x and all 
ppj. Reduce the submanifold {< P/3,p7 >= 0,pa = 0} in T*Q by the action of the 
torus Tp c^ Z(1-LP)/Z(T) on T*Q. On this reduced space the geodesic vector field is 
projected to 

{Pa 

whose flow is a translation on a torus. Consequently, its topological entropy vanishes 
and so therefore does the topological entropy of the geodesic flow on the unreduced 
space. □ 

The author would like to thank Oleg Bogoyavlenskij, Leo Jonker and Dan Offin 
for their comments; and the National Sciences and Engineering Research Council of 
Canada for its financial support. 
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