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A NOTE ON THE ASYMPTOTIC SPECTRA OF FINITE 
DIFFERENCE DISCRETIZATIONS OF SECOND ORDER ELLIPTIC 

PARTIAL DIFFERENTIAL EQUATIONS* 

STEFANO SERRA CAPIZZANQt 

Abstract.   We consider Finite Difference discretizations of an elliptic second order PDE as 

— £\        ^7 laij(x)-rp—u(x) j = b(x) over (0, l)d with Dirichlet boundary conditions, where the 

dxd matrix A{x) = (aij(x)) is symmetric, uniformly positive definite and whose entries are Riemann 
integrable. We choose the discretization so that the resulting matrices {An(A)}n form a sequence of 
Hermitian positive definite matrices. The eigenvalue distribution has been studied and characterized 
[23] in terms of weighted multidimensional Szego formulas. Here by using some tools introduced 
in a preceding paper [17] we analyze the spectral behaviour of the preconditioned matrix sequences 
{An1{B)An{A)}n so that B(x) is symmetric positive definite and with Riemann integrable entries. 
Some issues on efficient preconditioning strategies are discussed as well. 

1. Introduction. Let A(x) = (0'i,j{x))i --^ be a dxd matrix of functions defined 

over the hypercube f^ = [0, l]d and let us consider the differential problem 

(11)    (Lu)(x) = -Y*ij=1g;(aij(x)7&;u(x))=b{x)    if   xen°d = (0,l)d, 

4-       Dirichlet boundary conditions. 

If o denotes the componentwise Hadamard product [5], then the preceding equation 
can be conveniently rewritten as follows 

(     . -eT(A(x) o Hu(x))e + first order terms      =    b(x)    if   x G Q0
d = (0, l)d, 

^ ' ' +        Dirichlet boundary conditions 

where Hu(x) is the Hessian matrix of u evaluated at x G fid and eT = (1, • • •, 1) G Rd. 
The discretization of (1.1) by finite differences (FD) over equispaced d-dimensional 
grid-sequences Q leads to a sequence of multilevel linear systems [27] whose sequence 
of coefficient matrices is denoted by 

(1.3) {An(A,F,g)}. 

Here each An(A, J7, Q) has dimension iV(n) x iV(n) with n = (ni,..., n^) and N{n) — 

m • • • nd. The grid sequence G is given by {£ni x £n2 x • • • x Gnd}n, gn  = \ — I 
lnj + 1Ji=i 

and J7 is a "symbolic" dxd matrix whose entry Tij denotes the FD formula used for 

the discretization of the operator — dx
d
dx.. Finally we must specify the ordering of the 

unknowns and of the equations. The discretized equation of (Lu)(x) = b(x) preceeds 
the discretized equation of (Lu)(x) = b(x) for x and x belonging to Qn ii x < x. 
Accordingly, the unknown u(y) preceeds u(y) for y and y belonging to Qn if y < y. 

Here we say that z < z for z, z G Qn C fid if and only if ]Cj=i zj Y{k=jink + 1) < 

X]j=i Zj X[k=j(nk + 1)- ^n other words, z < z iff there exists the minimal index 
j G {1,..., d) such that Zj ^ Zj and, in this case, it holds that Zj < Zj. 
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Due to the "shift invariance" property that characterizes any differential operator 
D with constant coefficients, it is customary to represent a FD formula 0 over a 
sequence of n-sized equispaced grids as a sequence of Toeplitz matrices {Tn(D,(f))} 
related to some (polynomial) symbol. 

Here we give the formal definition of multilevel Toeplitz sequences generated by 
a multivariate symbol. 

DEFINITION 1.1. Let f be ad variate complex-valued integrable function, defined 
over the hypercube Qd, with Q = (—7r,7r) and d>l. From the Fourier coefficients of 

f 

™>{Qa} JQd 

with (j,s) = Ylk=iJkSk, n = (wij---j^d) and N(n) — ni'—rid, the sequence of 
Toeplitz matrices {Tn(f)} is defined, where Tn{f) ={fj-i}lJ=eT £ CN^xN(<n\ eT = 

(1,..., 1) G Nd is said to be the Toeplitz matrix of order n generated by f (see [27]^. 

For D — -^ and a consistent formula </> of precision 2 involving three contiguous 
discretization points {u (xi) = (u(xi+i) — u(xi-i))/2h + 0(h2), u € C2, xt = th + xo) 
we have 2(n + l)-1!^!},^) =Tn(q(s)) where q(s) = -e~is + eis is the generating 
function [9] in the sense of Definition 1.1 with d = 1, /-i = — 1, /i = 1, and fj = 0 
for any |j| ^ 1. Among all the possible consistent formulas we choose those such that 
q(s) = —q(s) (antisymmetric formulas according to the terminology of [21]) and such 
that the points, where we discretize u (x) or where u(x) is evaluated, belong to the 
same equispaced grid sequence. According to the analysis in [22] these requirements 
will imply that the resulting FD matrix A^A^T^G) is nonnegative definite for any 
multiindex n whenever A(x) is nonegative definite for any x. 

Suppose now that 3ai,a2,.. • ,«<* € N-1" such that rij + 1 = vaj with v"1 being 
the "finesse" parameter. For D = dx

d
dx. and by considering a formula 0 obtained by 

composition of unidimensional formulas, we infer that v~2Tn(D,(f)) = Tn{q{s)) with 
s = (si,..., Srf), n = (ni,.. •, nd) with nj + 1 = vaj and 

q{su ..., so) = -aiajp{si)p{sj) 

where p(st) = — p(5t) is the generating polynomial of a formula for T^-. We observe 

that, taking the half step formula i.e. u (2^4.1/2) — {u(xi+i) — u{xi))/h + 0(h2) we can 

reduce the bandwidth of the Toeplitz matrices discretizing D = -jjfez for i — 1,..., d, 

but the discretization of JD = d°.dx. for j 7^ i would be such that the function u is 
evaluated on the wrong half step grid sequence. 

Of course from the definition of multilevel Toeplitz matrices is is easy to see that 
Tn(/i(«i)-/2(«2) •••/d(^))=rni(/i(8i))®rni(/2(s2))®--.0Tnd(/d(5d)). Therefore 
for the operator D obtained from (1.1) with A{x) = Id we have 

(1.5)    D = eTHue => (j)     g($i,...,Sd) = -e1 (p{si)p(sj))        o Wa 

where the matrix Wa = (01,... ,ad)T(ai,... ,0^) is the nonnegative definite dyad 
constructed by using the weight numbers aj related to the stepsizes in the different 
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directions. Here 0 g(5i,..., Sd) means that the formula </> is equivalently repre- 

sented by the polynomial q(si,..., Sd) and D = eTHue ==^ (j) means that </> is one 
possible formula discretizing the operator D. 

Owing to (1.5), it is clear that the matrix sequence {An(A,!F,G)} considered 
in (1.3) can be equivalently represented as {An(i4, P, Wa)} where (P o Wa)ij = 
aiajp(si)p(sj) is the polynomial of the variables si and Sj uniquely associated to 

the formula !Fij discretizing the operator — dx
d
dx. over the (sub)sequence of grids Q 

with nj + 1 = ajV. 
An interesting and nice correspondence between the differential equation (1.2) 

and the sequence {An(A, P, Wa)} is given in the following result. 

THEOREM 1.2. [23] Let aij be Riemann integrable for any i and j. Suppose that 
the multi-index n = (ni,... ,nd) is such that nj 4- 1 = vctj and aj E N+ for any j. 
For any continuous function F with bounded support it holds 

N(n) 

3=1 

(1.6) ^^ l^/d^ [A(X) 0 P(S) 0 ^^ dXdS> 
x e nd = [0, l]d, seQd = (-7rJ7r)d. 

We write in short {An(^, P, Wa)}n ~<7 \eT [A (x) o P(s) o Wa] e|. 

Notice that the "discrete operator" eT [A (x) o P(s) o Wa] e formally adheres to 
the continuous operator — eT [A (x) o Hu] e given in (1.2) since P(s) o Wa is a finite 
difference (functional) representation of the matrix operator — Hu. 

If A(x) is symmetric, then we arrange the choice of Pij so that P(s) is a Her- 
mitian, nonnegative definite dyad of functions (notice that Hu = [V • V]Tu is a sort 
of dyad with respect to composition of operators): we observe that the nonnegativity 
of the dyad P(s) is a consequence of the choice of antisymmetric formulas for the 
discretization of the first derivatives (refer to [22]). Consequently, in the light of the 
analysis in [23], formula (1.6) can be also stated in the sense of the eigenvalues. 

We proceed as follows. We leave the differential operator in divergence form as 
in (1.1) and for any derivative appearing in the differential operator we use the same 
finite difference formula [21] over q contiguous equispaced points belonging to the 
mesh {xt = th,t G N, h = (n + l)-1}. 

Let Eij be the dyad obtained as the product of the z-th vector of the canonical 
basis times the transpose of the j-th vector of the canonical basis. Then the discretized 
matrix An(A,P, Wa) can be written as 

d 

(1.7) An(A,P,W&) = v2 J2 AniaijEijiPijEijiCLiajEij) 

where An(B, P, Wa) denotes the discretization of the operator 

d 

-£|:(M*)^)) 
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for B(x) = (bij(x))i .  j, bij : Qd -* R- and suitably scaled by v~2. 
By [22], the following facts are true: 

r - ]T . 

F2. The matrix An(ai^Ei^, Pi^E^i^afE^i) is symmetric semidefinite if a^ > 0 and 
the matrix ^(a^jE^i, P*,*^^, afE^i) is a positive definite multilevel Toeplitz 
matrix generated by a nonnegative polynomial a||p(5i)|2 if a^ is the constant 
function 1 (see Theorems 3.4 and 3.6 of [21]). 

F3. The operator An(^ P, W*) is positive in the sense that it maps nonnegative defi- 
nite matrices of functions A(x) into nonnegative definite matrices An(A,P, Wa) 
(see the dyadic decomposition of An(A, P, Wa) proved in [22]). 

THEOREM 1.3. [23] Let A(x) = (cLij(x))^.1 be symmetric and let a^j be Rie- 
mann integrable for any i and j. Suppose that the multi-index n — (n\,..., n^) zs such 
that Uj + 1 = vdj and aj G N+ for any j and suppose that any derivative appearing 
in the differential operator (1.1) is discretized by using the same finite difference for- 
mula over q contiguous equispaced points. Then for any continuous function F with 
bounded support it holds 

N(n) 

^ JFUA £ Ffaiv-tAniA^WJ)] = v->-oo Is in) '—^ 

(L8) mJO \ nax [        F{eT[A(x)oP(s)oWai]e)dxds, 

xend = [o, i]d, s e Qd = (-TT, 7r)d. 

We write in short {An(A, P, Wa)}n ~A eT [A (x) o P(s) o Wa] e. 

REMARK 1.1. In Theorems 1.2 and 1.3 we have supposed the Riemann integra- 
bility of each aij. The statement still holds if, for any m < M real numbers and any 
i and j, the functions max{min{ajj,M},ra} are Riemann integrable. However, in 
order to have (regular) solution to the differential problem (1.1), it is convenient to 
recall that we must require more regularity for the coefficients of the matrix A(x). 

REMARK 1.2. When we deal with systems of PDEs with k equations (the solution 
u is a fc-dimensional vector and for any x each entry of the block Hermitian matrix 
A(x) is k x k), the case of constant coefficients leads to multilevel block Toeplitz 
matrices generated by Hermitian matrix-valued polynomials so that the ergodic results 
proved in [26] can be used to build up a theory for multilevel block Locally Toeplitz 
sequences. In that case, denoting by An[fc](A, P, Wa) the corresponding discretization 
matrix, the statement will read as follows: for any continuous function F with bounded 
support it holds 

kN(n) 

3= 
k 

(1.9) / £ F (At (E
T [A (x) o P(s) ®IkoWa® h] E)) dx ds, 

JndxQd t=1 

x e O* = [0,l]d, seQd = (-K,n)d 
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where E is e (8) /&. 

Suppose now that the differential problem is defined over a bounded subset fi, 
of Rd with fi   Peano-Jordan measurable [12, Jordan, pp.   28-29], not necessarily 
hyperrectangular. Without loss of generality we can always suppose that Q, C fid. If 
it is not the case a linear change of coordinates leads to the desired inclusion. 

Given A(x) defined over Q,' we consider its extension A(x) over Qj in the following 
way: A(x) = A(x) if x G ft  and zero otherwise. 

With these premise it is easy to see that An(A,P, Wa,Q ) is a submatrix of 
dimension dn(Q ) x dn(fi, ) of An(A, P, Wa) while the other rows and columns are 
zero since the function A(x) vanishes outside ft . As proved in [23] the following 
formula holds true: 

J&S^f)   E  F[*j(v->An(A,P,Wa,n'))] = 

^rW} L xQ/
(|eT [A {x) 0 P{s) 0 W*] e|) dxds 

xen\ seQd = (-7T,7r)d. 

REMARK 1.3. These results have a theoretical interest in its own in order to 
understand the spectral behaviour of the considered matrix-sequences and its rela- 
tionships with the properties of the continuous problems (1.1). However another 
important aspect is of practical nature. The considered analysis provides a theoreti- 
cal tool in order to devise and to analyze optimal and superlinear preconditioners for 
the numerical solution of linear systems arising from the discretization of PDEs as 
(1.1) by preconditioned conjugate gradient methods (for more details concerning spe- 
cial instances of (1.1) see [16, 21, 17]). Some aspects of the general case are analyzed 
and discussed in the following. 

What the previous discussion revealed is that the operator An(-,P, W8i)= An(-) 
is linear and positive. The linearity is evident. The positivity stated in F3 is in the 
sense of the partial ordering defined over the real space of the Hermitian matrices. 
If fact if A > B that is A = A(x) and B = B(x) are d x d Hermitian matrices of 
functions and A — B is nonnegative definite for any x 6 fid then An(A) > An(B) in 
the same sense and for any n. 

The second keystone is the "distributional" property. If fact in light of Theorem 
1.3 we know that the matrix sequence {An(A)}n is spectrally distributed as the symbol 
[27] G(A) = eT [A(x) o P(s) o Wa] e. 

Now we are ready for stating the new results that are proved in this paper. More 
specifically, we deduce localization and distribution results for the spectra of the 
preconditioned matrices by using tools developed in [17]. 

DEFINITION 1.4. Let B(x) be a symmetric nonnegative definite matrix of 
Riemann integrable functions. The preconditioned matrix Pn(A,B) is defined as 
A+(B)An(A) where the preconditioner An(B) is Hermitian and nonnegative defi- 
nite and X+ denotes the usual pseudo-inverse of Moore-Penrose [13, 15] of a generic 
matrix X. 

In the following section, we will prove the following results. 
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1. Let kei(X) be the null space of a matrix X. If ker(I?(#)) = Kx C ker(^4(a:)), 
then each nonzero eigenvalue of Pn(A,B) is contained in the set [r,i?] with 

r=  inf X^MBKK^r'ix^AKK^ix)) 

and 

R= sup Amax((B|(iiri)-L)-1(a;)(A|(^x)-L)(a!)). 

Here (J5|(i(ra;)-
L)(a;) (resp. (AKifaj)"1*)^)) denotes for any x the projection of 

JB(X) (resp. A(x)) over the orthogonal to the kernel of B(x). 
2. If the assumption in 1. is violated, then at least one of the values r and R is 

unbounded. 
3. If the functions G(B) is sparsely vanishing (sv) i.e.   m{(x,s) G fi.d x Qd • 

G(B)(x,s)    =    0}    =    0,   then   the   sets   of  the   eigenvalues   {An}n, 

An = {^1   }i<i<iV(n) of the matrices {Pn(A,i?)}n satisfy the subsequent 
ergodic formula: 

for any function F 6 Co(R), it holds 

i   iv(n) 1 r 
(1.10)     lim —- Y F(A^)) = —— —T / F(G(A)/G(B))dxds. 

v^ooN{n)f^    Kl rn{ndxQd}JQdXQd 
}l 

The interesting fact is that we start with the families of matrices {.An(74)} and 
{An{B)} where G(A), G(B) are Riemann integrable and we obtain a formula for 
the family of preconditioned matrices involving ^f^j which is measurable but may 
fail to be Riemann integrable and even Lebesgue integrable. However, the right-hand 
side of the proved relation (1.10) makes sense because F(G(A)/G(B)) is Lebesgue 
measurable and bounded and consequently it belongs to ^(ftd x Qd). 

The paper is organized as follows. In Section 2 we derive the main results and in 
Section 3 we discuss some related preconditioning strategies. 

2.  Main results. 

2.1. Localization results. The following Lemma 2.1 is a preparatory result for 
Theorem 2.2. 

LEMMA 2.1. [17] Let A and B be two nxn Hermitian matrices with B nonnegative 
definite and u be a nonzero vector of Cn. Let us denote by ker(X) the null space of 
a matrix X. The following three statements hold true. 

1. IfuHBu = 0, then u eker(S). 
2. In general, from equation nHAu = 0 does not follow that u Eker(^4). 
3. If there exists r G R such that, for any xG Cn, rxHBx < K

H
AJC and u^^lu = 

u^u = 0, then u Gker(^). 

THEOREM 2.2. Let r and R be two constants such that A(x) — rB(x) is nonneg- 
ative definite for any x and A(x) — RB(x) is nonpositive definite for any x. Each 
nonzero eigenvalue ofPn{A,B) belongs to [r, i?]. In addition ifr and R are finite, then 
the kernel of the matrices A+ (B) and An (B) is contained into the kernel of An (A). 
Finally if0<r<R<oo then the kernels of An(A) and An(B) coincide. 
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Proof. Let us consider u G Cn. Then, by the assumption we infer that 

rvLHAn{B)M < MHAn{A)M < Ru11'An(B)u. 

From this the claimed thesis follows as in Theorem 3.1 of [8]. 
If An(B) is invertible then each eigenvalue of the preconditioned matrices belongs 

to [r,R]. □ 
REMARK 2.1. If B(x) is invertible for any x, then it is easy to give a characteri- 

zation of the best constants r and R. Indeed, by using the Sylvester inertia law, we 
have A(x) - rB(x) nonnegative definite iff B~1/2(x)A(x)B~1^2(x) —rl nonnegative 
definite. The latter is clearly equivalent to require that the minimal eigenvalue of 
B-1^{x)A{x)B-1^{x) is not less than r for any x. Since B-1/2{x)A{x)B-1/2{x) is 
similar to B~1{x)A{x) it follows that best constant r is infxGQd \inin{B~1{x)A{x)). 
Analogously the best constant R is sup^^ Amax(^_1(^)^(^))- 

REMARK 2.2. If B{x) is not invertible for some x the characterization of r and 
i2 is a bit more complicated. 

First assume that 3x such that B(x) is singular and 3v = v(x) for which B(x)v = 
0, ||v||2 = 1 and t(x) = vHA(x)v < 0. Then r = -co. The proof is obvious: the 
statement "3r £ Rso that A(x)—rB(x) > 0" is contradicted by vH(A(x)-rB(x))v = 
t(x) < 0. 

Of course, if t(x) > 0 then the conclusion is that R = oo. 

From the point of view of the applications (in particular the numerical solution 
of the linear systems arising in the discretization [1, 11] of the given PDE), in light of 
Theorem 2.2, it is evident that we are interested in the case where r and R are finite 
(more specifically finite and strictly positive). In this case the application of the PCG 
method [3] with An(B) being the preconditioner [3] that we suppose invertible leads 
to an iterative method converging to the solution within a preassigned accuracy in a 
number of steps independent of n [4]. Therefore, by recalling Remark 2.2 and Lemma 
2.2 in [17], we have to impose that for any x the relation ker(B(x)) C ker(A(x)). By 
using these preliminary remarks the following result holds 

THEOREM 2.3. Assume that Kx = keY(B(x)) C ker(A(x)) for any x. Then each 
nonzero eigenvalue of Pn{A,B) is contained in the set [r,R] with 

and 

r=  inf Amin((B|(Xx)
±)-1(a:)(^|(^)X)(x)) 

R= sup Amax((^|(Kx)-
L)-1(x)(A|(^)±)(a;)). 

xettd 

Here (B\(Kx)
±)(x) (resp.   (A\(KX)-L)(x)) denotes for any x the projection of B(x) 

(resp. A(x)) over the orthogonal to the kernel of B(x). 

Proof Let y be a generic nonzero vector of Cd and let us write y as v + w where 
v G Kx and w G K^. Let TV be the d x q matrix with q = dim(K^) whose columns 
constitute a basis for K^- so that w = iVw (for a certain w G Cd). Then it holds that 

yH(A(x) - rB(x))y = wH(A(x) - rB(x))w 

= wHNH(A(x) - rB(x))Nw 

= wH{NHA(x)N - rNHB(x)N)w. 
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Therefore, by using the same argument as in Remark 2.1, the claimed thesis is proved. 
D 

2.2. Ergodic and distribution results. Now we localize (asymptotically and 
up to o(N(n)) elements) the position of the eigenvalues of An(A). 

LEMMA 2.4. Let us suppose that A(x) is symmetric for any x and 

(2.1) m{(x,8) eflaxQ*'' G(A){x}8) = z   or G{A)(x,s) = *} = 0. 

Then the number N(z,t,ri) of eigenvalues of An(A) belonging to (z,t), z < t, is 
asymptotical to c(z,t)N(n) with c(z,t) = m{(x, s) G ti,d x Qd ' G(A)(x,s) € (z,t)}. 
The same is true if the special cases (z, t) = (—oo, 0) or (z, t) = (0, oo) are considered. 

Proof Since {An(A)}n ^^ G(A), it follows that the claimed thesis is equivalente 
to consider equation (1.6) with F being the characteristic function of [z^i\. But F 
is not continuous so that relation (1.6) is not automatically satisfied. However the 
function F can be approximated in Ll norm by continuous symbols and, under the 
assumption (2.1), the eigenvalues of {An(A)}n cannot cluster at z neither at t: the 
latter remark ends the proof. D 

For the main results (Theorems 2.9 and 2.10) about the distribution of the eigen- 
values of the preconditioned matrix we need some definitions and the preliminary 
Lemma 2.8. 

DEFINITION 2.5. A function f G M(ftd x Qd) is sparsely vanishing (sv) if the 
set of its zeros has zero Lebesgue measure [7]. Here M{£ld x Qd) is the space of the 
measurable functions of Q.d x Qd- 

DEFINITION 2.6. Let A andB be two symmetric matrices of measurable functions 
with nonnegative definite B. Let us define S(A] B) as the set of the simple real valued 
functions of the form 

]PaiC7i(/i),   Zi.U G R,   Zi < U, 
i€K 

Ii = (zi,ti)   or Ii = [zi,ti)   or U = (zi,ti]   or Ii = [zi,ti] 

where K is a finite set of indices, Ch(X) denotes the chacteristic function of the setX 
andmiix.s) G ndxQd : G(A)/G(B) = z^ = m{x G a*xQd : G(A)/G(B) = U} = 0. 

DEFINITION 2.7. Let A and B be two symmetric matrices of measurable functions 
with nonnegative definite B. The symbol R(A; B) indicates the topological closure with 
respect to the infinity norm of the simple functions S(A;B). 

LEMMA 2.8. [17] Let A andB be twonxn Hermitian matrices with B nonnegative 
definite and whose null space has dimension k. Let us denote by No(X), N+(X) 
and N-(X) the number of zero, positive and negative eigenvalues of the matrix X, 
respectively.  The following two statements hold true. 

1. The matrices B+A and (I?+)1/2^4(i?+)1/2 have the same spectrum (the same 
eigenvalues with the same algebraic multiplicities). 

2. The matrices B+A and A have "almost" the same inertia (if k C n): more 
precisely, N^A) < N0{B^A) < N0{A) + k, N+(A)-k < N+(B+A) < N+(A) 
and N-{A) -k< N-{B+A) < N-{A). 
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THEOREM 2.9. Let us assume that the function G(B) is nonnegative and sparsely 

vanishing, then the eigenvalues {An}n, An = {X\n }i<i<N(n) 0f the matrices 
{Pn(A, B)}n enjoy an ergodic formula, i.e, for any simple function F G S{A\B), 
it follows 

i    N{n)                     i r 
(2.2)      lim -f— Y F^) = -— —^ / F(G(A)/G(B))dxds. 

Proof. Since F is a finite linear combination of characteristic functions and both 
the left-hand and right-hand sides of (2.2) are linear with respect to the argument F, 
we can prove the result for a single characteristic function Ch(z,t) with z < t. In 
addition, we have 

Ch(z,t) = Ch(z:oo) - Ch([t,oo)) 

and m{(x,s) € ftd x Qd • G(A)/G(B) = t} = 0, therefore it is enough to prove the 
result for the characteristic functions of the half-lines like (z, oo). Notice that, due to 
the boundedness of Ch(z, oo), it follows that the right-hand side of (2.2) is well defined 
and makes sense. Therefore we have to prove the equality of the two quantities. 

First let us consider F = Ch(z,oo). Then 

N(n) 

£nAin)) = #{Mn)>4. 
i=l 

Because the function G(B) is nonnegative and sv, in the light of Lemma 2.4 and 
by virtue of the positivity of the matrix operator An(-), it follows that the precon- 
ditioner An(B) is nonnegative definite and its null eigenvalues are at most o(N(n)). 
Consequently, by part I of Lemma 2.8, we deduce that Pn(A, B) = A+(B)An(A) and 
(A+(JB))1/2An(A)(A+(B))1/2 have the same characteristic polynomial and therefore 
this is true for 

Pn(A,B)-zI   and   Tz = (A+(5))1/2An(A)(A+(5))1/2 - zl, 

with / = Jjv(n) being the identity matrix of order N{n). Now by part II of Lemma 

2.8, the matrices Tz and Yz = Al/2(B)TzAn (B) have the same inertia up to within 
an error of o(N(n)) eigenvalues. Since 

Yz = P(An(A) - zAn(B))P, 

where the orthogonal projector P equals An (B)(A'^(B))1^2, again by the combined 
application of part I and part II of Lemma 2.8, we infer that Yz and An(A)-zAn(B) 
have the same "asymptotical" inertia. To summmarize, up to within an error of 
o(N(n)) eigenvalues, the matrix An(A) — zAn(B) has the same inertia as the matrix 
Pn{A, B) — zl. In other words, counting the eigenvalues of the preconditioned matrix, 
which are greater than z, is equivalent, up to within an error whose magnitude is 
o(iV(n)), to count the positive eigenvalues of the matrix An(A) — zAn{B). Now we 
use the linearity of the matrices An(A) with respect to A and then, up to within an 
error of o(iV(n)), the number of positive eigenvalues of Pn{A, B) — zl coincides with 
the number of positive eigenvalues of 

An{A-zB). 
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Nowm{{x1s)endxQd: G(A)-zG(B) = 0} = m{(x,s) e ndxQd : G(A)/G(B) = 
z} + m{(a;,5) G fid x Qd : G(A) = G(B) = 0} and, by the assumptions, m{(a;,s) € 
Qd x gd : G(A) = G(B) = 0} = 0 (0(5) is sv) and m{a: <E fi : G(A)/G(B) = z} = 0 
since, by definition of 5(^4; J5), z does not belong to the set where the image-measure 
via G(A)/G(B) accumulates. Finally, we find that 

m {(*,*) e nd x Q
d : G(A) - zG(B) = 0}=0 

and, in the light of Lemma 2.4, we have that the number iV(0, oo, n) of the positive 
eigenvalues of 

An(A-zB) 

is asymptotical to c(0, oo)N(n) with c(0, oo) = m{(x, s) € SI a x Qd : G(A) - zG(B) > 
0}. This fact, in formulas, is equivalent to write 

#{i:\\n)>z}    =    m{(x,s)endxQd:  G(A)-zG(B)>0}N(n) 
+o(N(n)) = 

=   m{(x, s)eQdxQd: G(A)/G(B) > z}N(n) 
+o(N(n)). 

Finally, by recalling that F = Ch(z,oo), it is trivial to recognize that the latter 
equation is equivalent to the claimed thesis 

1     N{n) 1 f 
lim ^FTT Y i?(Ain)) =     ro      ^i   / F(G{A)IG{B))dxds. v-^Nin)^    Vi m{QdxQd}JQdXQd 

n 

THEOREM 2.10. Under the assumptions of the preceding theorem, the eigenvalues 
X\n^ of the matrices {Pn(A,B)}n satisfy a more genereral ergodic formula, i.e, for any 
function F G R(A',B), we have 

i    iV(n) i r 
(2.3) lim -f- Y F(x[n)) = -— —rr / F(G(A)/G(B))dxds. v     ;     v->ooN(n)^Kl m{ndxQd}JQdXQd 

Proof. By definition of R(A; B), it follows that F can be approximated in infinity 
norm, by simple functions belonging to the set S(A;B). More specifically, for any 
positive e there exists a finite collection of indices Ie and points zi < U so that 

(2.4) m{(x, s) E nd x Q
d : G{A)/G(B) = zfi = 

m{(x, s)endxQd: G(A)/G(B) = U} = 0 

and Fe = J^ieh aiCh(zi,ti) with 

WF-F^Ke. 

From the crucial equation (2.4), it follows that we do not find clusters of eigenvalues 
around the points zt or U. Therefore 

N(n) N(n) 

v   /    i=l v   /   2=1 
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with |/in(e)| < €. Moreover, since ||F — F^loo < e, it simply follows that 

r0 \ ndx (        (F~F€)(G(A)/G(B))dxds  < 
miild x Qa} JndXQd 

—PT; -p^pr / edxds = e. 
m{ndxQd} JQdXQd 

which completes the proof. □ 

Some remarks are needed: 

REMARK 2.3. Concerning the assumption that G(B)(x,s) is sv in Theorems 2.9 
and 2.10 we observe that G(B)(x,s) vanishes at (x,0) for any x G fid due to the 
consistency condition of the underlying FD formulas. Moreover if B(x) is sv in the 
sense that its minimal eigenvalue is sv according to Definition 2.5, then it is really 
trivial to check that G(B)(x,s) is sv since 

G(B)(x, s) > Xmin(B(x))eT(Id o P(s) o Wa)e 
d 

= Amin(5(a;))^aJ
2|pj(5j-)|2. 

On the other hand, surprisingly enough, the former assumption on B(x) can be sub- 
stantially relaxed. Indeed we only suppose that the maximal eigenvalue of B{x) is sv 
and we call v(a:) the corresponding normalized eigenvector that is X^=i |vj(a:)|2 = 1 
almost everywhere. Then 

G{B)(x, s) > \m^(B(x))eT(v(x)vT(x) o P(s) o Wa)e 

= Amax(5(x)) 
3 = 1 

2 

,d 2 

Since 0(x1s) = Ylj=i ajvj(x)Pj(sj) ls a not identically zero multivariate trigono- 
metric polynomial for almost every x G fi^, it follows that each section of the zeros 
of 0(x,s), with respect to almost every x, is an algebraic manifold in the variable 
s £ (—7r,7r)d and consequently has zero Lebesgue measure in (—7r,7r)d. The applica- 
tion of the Fubini-Tonelli Theorem (see e.g. [10, Theorem A, p. 147]) on multivariate 
integration yields the claimed thesis. Therefore we can conclude that the assumptions 
of the above mentioned Theorems 2.9 and 2.10 are in reality very mild. 

REMARK 2.4. If d = 1, then A(x) = a(x), B(x) = b(x): and the matrix sequence 
{Pn(A)B)}n distributes as the function 77 = a/b which depends only on the variable 
x 6 fid. Conversely, if d > 2, then the matrix sequence {Pn(A, B)}n distributes as 
the function 77 = G(A)/G(B) which depends on the variables s G Qd as well except 
when A(x) = 6(x)B(x) with 0(x) scalar function. 

REMARK 2.5. All the ergodic results for Toeplitz sequences like the Szego formula 
[9] and its extensions [2, 14, 30, 27, 28, 24] are stated by assuming F continuous with 
bounded support. Actually all the results are still valid if no assumptions are made 
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on the support of F but we suppose that F is continuous and with finite limits at 
+00 and at — oo. In this way we require that JP G C(R) where R is the two points 
compactification of R (observe that jR^ji?) D C(R) for any pair (A,B)). Notice 
that this is a bit less general than the assumptions on the test functions given in 
[26] where the author proved ergodic formulas concerning multilevel block Toeplitz 
sequences with F being uniformly continuous and bounded. 

3. Applications to the preconditioning. Suppose that A(x) is elliptic that 
is 3r, R with 0 < r < R < oo for which rid < A(x) ^ Rid uniformly over Qj. 

The idea is to approximate A(x) by a matrix-valued function B(x) such that the 
corresponding FD coefficient matrix An(B) is easy to invert. If the ratio y/R/r is 
not too large the convergence theory of the PCG method [3, 4] and Theorems 2.2-2.3 
suggest one that the multilevel symmetric and positive definite matrix A^Id) is a 
good preconditioner (B(x) = Id). On the other hand this basic approximation can 
be improved: see [16, 21] for other proposals and the comprehensive survey [6] for 
efficient PCG-based Toeplitz solvers. 

For notational simplicity we first assume that A(x) = a(x)Id where a{x) is a 
scalar function whose range is contained in [r,i?]. 
Consider a value e > 0 small enough and N = Ne — [^T

21
] • Construct the piecewise 

constant approximant ae(x) = r + (j + 1/2)N~1 if a: € {a(x) G [r + jN~1
1r + (j + 

IjAT-1]} for j = 0,..., N - 1. Therefore we have 

r + jN-1 ^ a  ^ r+tJ + ^JV-1 

mm       ——, .^ „r  ., < — <      max      ——„ .^ ^  , 
j=o,...,iv-i r + (j + 1/2)N-1 - ae - j=o,...tN-i r + (j + 1/2)N-1 

where 

^ r+jW-1        _ JV-V2 N-1/2_ 
> r + (j + l/2)iV-i -        r + (j + i/2)jV-i - r      "  minW 

r + 0- + l)iV-i    _ Ar-V2 ^V2-,      (e) 
1 <r + 0-+ 1/2)^-1 -1+r + a + l/2)iV-i Si+     R     -Cmax^- 

Therefore the spectral condition number of A~1(aeId)An(A) is bounded by 
Cmax(e)/cmin(e) which tends to 1 as e tends to zero. 

Now the spectral condition number of A~l{Id)An{aJd) is approximately the same 
as the one A~l{Id)An{A) so that the proposed preconditioning step seems useless. 
However, by Theorem 2.10, the sequence {A~1{Id)An{aeId)}n is spectrally distributed 
as the function ae i.e. 

(3.1) {4-HWnM«*)}n ~A ««. 

Since the range of a€ is constituted by N points it follows by the subsequent Propo- 
sition 3.3 that the sequence {A~l{Id)An{aeId)}n has exactly N subclusters [19] so 
that we expect that the PCG method applied to the preceding sequence converges in 
a number of steps proportional to N but substantially independent of the size n (see 

[4])- 
Finally, for the sake of completeness and in order to properly formulate Proposi- 

tion 3.3, we report the definition of clusters and subclusters and some relevant related 
properties (For a slightly different definition of subcluster see [29]). 

DEFINITION 3.1. [27] Consider a sequence of dn x dn complex matrices {An}n 

(with dn < dn-i) and a set M in the nonnegative real line. Denote by M€ the e- 
extension of M, which is the union of all balls of radius e centered at points of M. 
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For any n, let 7n(e) = ln{AmM,€) count those singular values of An that do not 
belong to Me. 

• Assume that, for any e > 0, 

7n(c) = o(dn),    n -t oo. 

Then M is called a general or weak cluster. 
• //, for any e > 0 there exists a constant c(e) so that 

7n(c) < c(c), 

then M is called a proper or strong cluster. 
• If M = {p} is a cluster then we say that {An}n is clustered at p. 
• When the matrices An are Hermitian then the set M is allowed to belong to 

the whole real line and the given definitions apply to the eigenvalues in place 
of the singular values. 

DEFINITION 3.2. [19] Let {An}n, M, M€ andjn(e) be as in the preceding defini- 
tion. 

• The set M is a subcluster if 

lim -—liminf 7n(e) = 
€-►0 an   n-xx) 

c<l. 

• If M = {p} is a subcluster then we say that p is subcluster point for {.An}n. 

With regard to the terminology of the preceding definitions, when the eigenval- 
ues/singular values of {P~1An — /}n, / = //v(n) are properly clustered at zero (and 
the minimal eigen/singular value of P~Mn does not go to zero too fast) or when the 
sequence of the spectral condition numbers /^(P~1^4n) of {P~1An}n is upperbounded 
by a constant independent of n, we know [4] that a constant number of iterations is 
required by the PCG method in order to solve a linear system with coefficient matrix 
An within a preassigned accuracy. In particular, if {P~1yln — I}n is properly clustered 
then the related PCG method is optimal and, after a suitable constant number of 
iterations, the convergence is of superlinear type (refer to [4] for more details). 

PROPOSITION 3.3. [19] Consider a sequence of dn x dn complex matrices {An}n 

and suppose that {^4n}n ~* f with f measurable function over a finite-measure 
domain K C Rd. Then p is a (singular value) subcluster point for {An}n iff 
m{x € K : \f(x)\ = p} > 0. If f is real-valued then p is a (eigenvalue) sub- 
cluster point for {An}n iff m{x £ K : f(x) = p} > 0. Here m{-} is the Lebesgue 
measure on Rd. Finally if f is piecewise constant then {An}n has a finite number of 
subcluster points. 

Since ae is piecewise constant and equation (3.1) holds true, it follows that the 
latter proposition proves that the sequence {A^1(I(i)An(aeI(i)}n possesses a finite 
number of subcluster points. 

Now we give some basic numerical evidences. We choose two simple examples 
namely equation (1.1) with d = 2, A(xi,X2) = (a + Xi + X2)/2, b(xi,X2) = 1 and 
ae{0,l}. 

The approximating matrix Ae(xi,X2) = ae(xi1X2)l2 is determined as follows: 

ae(a?i,a?2) = - sup       (a + xi+X2)+        inf        (a + Ei+o^) 
(xl,X2)eJiXJk (xi,X2)eJiXJk 
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Table 1: a = l,Xn = An(A)  and Pn = Anih) 

n = (n1,n2), N(n) (10,10),    100 (30,30),   900 
Nit 12 13 

Table 2: a = l,Xn = An(A)  and Pn = An(Ae) 

n = (ni,n2), iV(n) (10,10),    100 (30,30),   900 
NH 9 9 

for (xuX2) £JiX Jk, Jq € ((? - l)/4,2/4]n (0,1) and %,j,q= 1,2,3,4. 
The matrix An(A,P, W*) is obtained by leaving the operator in (1.1) in diver- 

gence form, by using the same double step formula for each first derivative (v (xi) = 
(v(xi+i) - v(xi-i))/2h + 0(h2), v e C2, xt = th + XQ) and by assuming that a = e. 
The same process is performed in order to define the matrices An(Ae,F, Wa) and 
;4n(J2,P,Wa). 

For any a G {0,1} we consider three tables. The first concerns the case where 
Xn = An(A,P, Wa) is preconditioned by Pn = An(I2,P, Wa). The second concerns 
the case where Xn = An(A, P, Wa) is preconditioned by Pn = ^4n(Ae, P, Wa) and the 
third is the case where Xn = >ln(Ae,P, Wa) is preconditioned by Pn = An(/25 P, Wa). 

All the experiments are done in MATLAB on a PC 486 and in all the tables 
we report the number of the P.CG iterations in order to reach a residual error whose 
Euclidean norm is bounded by 10~7 and in the case of ni = 712 = 10 and m = 712 = 30. 

Some remarks are useful. When a = 1 (Tables 1, 2 and 3), all the preconditioners 
are optimal because the related spectral condition numbers of the preconditioned 
matrices are bounded from above by absolute constants not depending on n = (ni ,712). 
To prove this, refer to Theorems 2.2-2.3 and to the following inequalities 

AC
(1)

 = «(P„(i4, J2)) < sui)K(A(x)) = 3, 

KW=K(Pn(A€j2))<K{1\ 

c(3) K(Pn(iM«))< K(1) 

where K(X) denotes the spectral condition number of a matrix X. 
Observe that, for large n, the condition number of Pn(A, Ae) is substantially less 

than the condition number of Pn(^4, h) and this explains why we have a lower num- 
bers of iterations. Conversely, the condition numbers of Pn(A, I2) and Pn(^4e,/2) are 
practically the same but we have again a substantial improvement. The explanation 
of this behavior relies in the fact that the sequence {Pn(Ae,l2)} has a finite number 
of subclusters that cover all its spectra since {Pn(Ae, J2)} ~A ae. The importance 
of the subcluster structure is even more evident in the case where a = 0 where a(x) 
vanishes at x = 0. Indeed, as shown by Tables 3, 4 and 5, the only case of "prac- 
tical optimality" is the one of {Pn(Ae, J2)} and this is explained by the presence of 
subclusters since 

sup 
00 {- lim 

(ni,n2)-J (00,00) 
K(Pn(i4eiJ2))>=00 }- 
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Table 3: a = 1, Xn = An{At)  and Pn = An{I2) 

513 

n- (ni.na), .iV(n) (10,10),    100 (30,30),   900 
Mt               1 9 9 

Table 4: a = 0, Xn = An{A)  and Pn = An(/2) 
n = (ni,n2), JV(n) 1 (10,10),   100 (30,30),   900 

Nit 21 38 
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