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ON THE PARITY OF RANKS OF SELMER GROUPS*

JAN NEKOVAR! AND ANDREW PLATER?

0. Introduction. Let f =3 -, a.(f)¢™ € Sk, (I'o(NV)) be a normalized new-
form of even weight kg > 2. Let F be the number field generated by the coefficients
of f and p a prime of F' lying above a rational prime p. There is a two-dimensional
representation V (f) of Gg = Gal (Q/Q) over F;, associated to f, characterized by the

conditions
Tr (Fr(e)geomlv(f)) = a'l(f)
det (Fr(£)geom|V (f)) = €571

for all primes ¢ { pN. The Tate twist Vi, = V(f)(ko/2) is self dual: there is a
skew-symmetric bilinear form

Vio X Vg — Fp(1)
inducing an isomorphism Vi, — V% (1) = Homp, (Vi,, Fp(1)).

The complex L-function Lo (f, s) = ZnZl an (f)n~? satisfies the functional equa-

tion s
vN
AOO(fv 3) = (—2%— F(S)Loo(f, S) = woo(f)Aoo(f7 ko — 3)7
where woo(f) = £1 = (—1)¢> for ecc = 0 or 1. Bloch and Kato [Bl-Ka] defined a
generalized “Selmer group” H(Q,Vi,) € H'(Q,Vi,) and conjectured that

? ..
ords=k,/2Loo(f,8) = dimp, H}(Q, Vio )-
We are interested in a (mod 2) version of this conjecture:

The Parity Conjecture for ranks of Selmer groups

Ords=k0/2Loo(f7 .S‘) = dimpp H} (Q, Vko ) (mod 2).

Assume that p > 3 and that f is ordinary at p, i.e. that ap(f) € Fy is a p-adic
unit. According to Hida’s theory, there is a p-adic family of ordinary modular forms
of varying weights containing f (we ignore the phenomenon of “p-stabilization” in
this Introduction). In concrete terms, this means that there is an integer ¢ > 0 such
that for every integer k > 2 satisfying k = ko (mod (p — 1)p°), there is an ordinary
newform fj of weight k on I'o(IN) such that fx, = f and

kE=k (mod (p—1)p"*°) implies fr = frr (mod p").

Let .
:{1 if pIIN, k=2, aq(f) =1,

0 otherwise.
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The value of €, indicates the presence of a trivial zero of a suitable p-adic L-function
[Ma-Ta-Te]. More precisely, for every weight k£ > 2, k = ko (mod (p — 1)p°), there is
a p-adic L-function L,(fx,s) depending on s € Z, such that

Ly(fusk/2) = @ ZEED ) 2 (R ().

Here, = means equal up to a non-zero elementary factor, 2 € R* is a real period of
f&, (Eulg) is an Euler factor satisfying

(Bulg) =0 & g =1
and
wp(fr) = £1 = weo(f) (—1)%*.

Moreover, there exists a two-variable p-adic L-function L,(k, s) defined for s € Z, and
k € ko + p°Zp, such that Ly(k,k — s) = wpLy(k, s), and, if £ = ko (mod 2(p — 1)p°),
k > 2 is an integer, then

L,(k,s) = CxLy(f, ) for some Cy # 0.
In particular, the value of
Wy (fr) = Weo (fr)(—1)%* = wp = (1)

does not depend on k (of course, e, = e + €k, (mod 2)). We shall consider Selmer
groups H} (Q, Vi) associated to Galois representations Vi, = V (fx)(k/2) and also “ex-
tended Selmer groups” sitting in exact sequences

0 — (F)** — H}Q Vi) — HX}Q Vi) — 0

(for technical reasons, it may be necessary to replace F, by a suitable finite extension
and V4, by the corresponding base change). Our main result is

THEOREM A. Let p > 3 and let f be ordinary at p. If ko = 2 (mod (p — 1)),
assume in addition that V(f) has an irreducible residual representation. Then there
is an integer n > ¢ such that

dimp, H}(Q Vi) = dimp, H}(Q Vi,) (mod 2)
whenever k > 2 and k = ko (mod 2(p — 1)p™).
It is known that

orde=g/2Lp(fi,8) = 0= H}(Q Vi) =0  ([Ka])
(*)

ord,—k/2Lp(fr,8) =1= dimp, H;(Q, Vi) =1 forptN,k>2  ([Ne2))
Recall a fundamental non-vanishing conjecture for the two-variable p-adic L-function.

GREENBERG’S CONJECTURE. The generic order of vanishing of L,(k,s) on the
line s = k/2 is equal to zero or one (and hence to e,).

In other words, the function of &k
Lp(ka s)
(5 - k/2)eP s=k/2

should not be identically zero. Theorem A and (x) immediately imply
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THEOREM B. Under the assumptions of Theorem A, Greenberg’s Conjecture im-
plies the parity conjecture

dimeH}(Q, Vio) = €p — €y = €00 (mod 2).

Consider the special case of kg = 2 and F' = Q. The form f then corresponds to
(the isogeny class of) a modular elliptic curve E over Q. The Selmer group associated
to Vi, = TpE ®z, Q, coincides with the usual Selmer group with Q,-coefficients; it
sits in an exact sequence

0— E(Q ©Q — Hi(QVi,) — LII(E/Q ®z,Q — 0.

In this case, Theorem B reduces to

THEOREM C. Let E be a modular elliptic curve over Q with ordinary reduction at
a prime p > 3. Assume that the p-torsion E,(Q) is an irreducible F,[Gg]-module and
that Greenberg’s conjecture holds for the two-variable p-adic L-function of E. Then

dimg (E(Q) ® Q) + corkz III(E/Q) = ords=1L(E,s) (mod 2).

See [Gr 3], [Ko 2] (resp. [Bi-St], [Gu], [Ko 1], [Mo]) for other conditional (resp.
unconditional) results in this direction. At present, Greenberg’s conjecture is known
only if E has complex multiplication and e, = 0 ([Gr 1], [Ro]).

There are several possible approaches to Theorem A, all of which use the exis-
tence of a “big Galois representation” T that interpolates suitable Galois invariant
lattices T, C V. In the most elementary approach, one studies a version of ﬁ} for
the discrete modules A; = Vi /T}j. It is relatively easy to show that the p™-torsion
subgroup ﬁ}(@, Ag)pn C FI} (Q, Ag) is locally constant as a function of k. The ex-
istence of generalized Cassels-Tate pairings on ﬁ} (Q, Ag)/div then gives the desired
parity result.

In fact, there is a stronger version of Theorem A. Classical modular forms in
(the primitive part of) Hida’s family containing f are parametrized by certain prime
ideals P in a suitable factor of the ordinary Hecke algebra. Denote by fp the form
corresponding to P; it has weight k(P) > 2 and character xp. For k(P) even there

is a well-defined choice of a square root X‘IP/ % of xp. The twisted modular form fp =

fr® x;/ ? has trivial character (i.e. lies in Sk(py(To(Np"™P) for some r(P)). The
Galois representation

Vip = V(fp)(R(P)/2) ® [x5'/*] = V(F»)(k(P)/2)

is two-dimensional over Fy(x») and self dual in the same way as Vj,. .

THEOREM A'. Under the assumptions of Theorem A, the parity of
dimp, (y»)H}(Q, Vp)) does not depend of P.

Together with (%), this implies

THEOREM B'. Let p > 3 be a prime not dividing N and f = -, ang" an ordi-
nary newform of even weight k > 2 and character x~2 on I'y(Np"), where cond(x) =
p® (necessarily with s = r, if x # 1). Then f = > 51 8nx(n)g™ is a newform of
weight k on To(Np2") (resp. To(Np")) if x # 1 (resp. x = 1). If the tame part of X2
is equal to w*~2, where w is the Teichmiiller character, assume that V(f) has an ir-
reducible residual representation. If Greenberg’s Congecture holds for the two-variable
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p-adic L-function of f, then
dimg, H}(Q, V (f)(/2)) = ords=t/a Loo(F, ) (mod 2).

The proof of Theorem A’ uses “big Selmer groups” associated to T and a suitable
big discrete module A. The ultimate explanation of this parity phenomenon relies
on the general duality formalism developed in [Ne 3]. What happens is that each
Selmer group fI} (Q, Ax) contains a “generic subgroup” H +(Q, Ak )&®" that is constant
in the whole Hida family. The duality results of [Ne 3] give a symplectic form on
the Pontryagin dual of H +(@Q Ae)/ H } (Q, Ar )", tensored with Q (i.e. on the infinite
part of the Selmer group!). This can be viewed as a non-classical generalization of
the Cassels-Tate pairing to big Selmer groups. Assuming Greenberg’s conjecture,
H} (Q, Ax )& has co-rank equal to e,. In the special case when the local component
of the Hecke algebra corresponding to the Hida family in question is equal to the
Iwasawa algebra, there is a more elementary argument that uses big Selmer groups
introduced in [P1].

This work was inspired by a lecture of R. Greenberg [Gr 3]. We are grateful to
K. Buzzard, F. Diamond, R. Taylor, J. Tilouine and A. Wiles for dispelling some -
but certainly not all — of our misconceptions concerning Hecke algebras.

1. Modular forms and Galois representations.

(1.1) Modular curves and modular forms. In this section we recall basic
notation and normalizations concerning modular curves and modular forms, following
the conventions of [KaN] and [Gro].

(1.1.1) For an integer N > 4, X;(IN) — Spec(Z[1/N])) is the complete modular
curve classifying pairs (E,a : uy < En), where E is a generalized elliptic curve
([De-Ra]) and the image of a meets every irreducible component in each geometric
fibre of E. We assume that N > 4 from now on.

(1.1.2) For a generalized elliptic curve 7 : E — S, let wg be the invertible
sheaf Lie(E™9)Y on S (wg = mQp g if  is smooth). For any Z[1/N]-algebra R,
the space of holomorphic modular forms of weight ¥ > 1 on I';(N) defined over R
is, by definition, equal to H® (X;(N)/g,w®"). One can interpret a modular form
f € H°(X1(N),r,w®*) as a rule assigning an element f(E,a) € w®* to each pair
(E,a: pny <> En) defined over an R-algebra R’, compatible with base change.

(1.1.3) The Tate curve E = G, /q” is an elliptic curve over Z[[g]][g~}] which
extends to a generalized elliptic curve over Z{[g]]. The exact sequence

0 — pN—2%Ey — Z/NZ — 0

gives the tautological embedding Idy : pny — En. Evaluation of a modular form
f € H° (X1(N)/r,w®) on the Tate curve gives the Fourier expansion F(f) € R[[q]]
of f:
dt\ &
f (@n /e 1ax) = F1)0) ()
where ¢ is the coordinate on Gp. The map F : HO (Xy(N)/g,w®*) — R[[q]] is
injective ([KaN, 1.6.1]).
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(1.14) f S — T is smooth and 7 : E — S is an elliptic curve, then the
Gauss-Manin connection

V: RIW*Q;;/S — (le*ﬂ};/s) ®Q§/T
and relative Poincaré duality
(o dan: (RmQps) x (RimQg/s) — BmQys 505
define the Kodaira-Spencer map
i wg — QlS/T
w®v (W, Vg

For the Tate curve, i ((d¢/t)®2) = dg/q. In fact, i extends to an isomorphism of
invertible sheaves on X;(N),

®2 5 Ok, (v (cusps).
(1.2) Hecke operators

(1.2.1) For a € (Z/NZ)*, the diamond operator < a > acts on X;(N) by
<a> (E,a) =(E,a-a) and on modular forms by

(<a>awp f)(E,a) = f(E,a-a),
(the covariant, or “Albanese,” action), and also by
(<a>pic f)(E,a) = f(E,a™ -a) = (<a™! >ap f) (B,a)
(the contravariant, or “Picard,” action). If x : (Z/NZ)* — R* satisfies x(—1) =
(-1)*, a modular form f € H (X;(N)/r,w®*) has character x if < a >an f = x(a)f
for all a € (Z/NZ)*.

(1.2.2) For integers n > 1 with (n, N) = 1, the Hecke operators T'(n) act on
modular forms by

TEanf) (Ba) == 3 N ((E, o)

TErief) (Bra) == Y wa(f(E, 5™ e00)

wE'—E
deg(p)=n

Ifn=4£tN is a prime and

=Y angd",  F(<>ap f)(@) =) bad",

n>0 n>0
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then a short calculation gives
(T(O)awf) (Gm/d",1dN)

=1 Gnta 10w () 4 1S 1 (Gnsa® 1 v (%)

Il_.q

(ek P bad™ + ) and” ) ( )®k

n>0 n>0
= (T(E)chf) ((Gm /q ,é . IdN) .

This means that the usual Hecke operator T'(f) on Fourier expansions of modular
forms corresponds to T'(€) a1 =< £ > T'(€)pic. Of course, if f has character x, then
b, = x(n)a, for all n > 1 prime to N.

(1.2.3) For a prime £ | N, one defines

COMmNEa)=7 3 N((E )

A:E—E!,deg()\)=¢,
Ker(A)NIm(a)=0

and T(£™) a1 = T(€)7,- The same calculation as in 1.2.2 shows that

ok
(T awf) (Gm/q% 1dn) = (Z aneq ) (dt) )
n>0

One defines T'(n)ap f for any n > 1 by requiring T'(mn)a, = T'(m)awT (n) s, when-
ever (m,n) = 1.

(1.2.4) A more geometric definition of T'(€) comes from Hecke correspondences.
For a prime £, let X;1(N;£) be the curve over Spec(Z[1/N]) classifying triples (E,a :
un = En,C), where (E,a) isasin 1.1.1 and C C E; is alocally free subgroup scheme
of rank £ such that Im(a) N C = 0 and Im(a) x C meets every irreducible component
of each geometric fibre of E. There are finite maps s,t : X;(N;£) — X;(N) given
over the affine curve Y; (V) = X;(N)—{cusps} by

(E,a) ¢~ (E,a,C) s (E' = E/C,d = Xoa),

where A : E — E/C is the degree ¢ isogeny associated to C. The maps s,t define a
correspondence

X1(NV;8)

) —O L xw

which acts on various cohomology groups, both covariantly: T(€)alp = t«os* (the
“Albanese action”) and contravariantly: T(£)p;c = s.ot* (the “Picard action”).

(1.2.5) Similarly, the diamond operators < a >: X;(N) — Xi(N), a €
(Z /NZ)*, act on cohomology by

< a>Aap=< a >y, <a>pie=<a>"=<a ' >.=<al>ap.
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(1.2.6) For modular forms of weight two, the Kodaira-Spencer isomorphism
2 HO (X1 (N),0®) 5 HO (X3(N), O, ) (cusps))

is compatible with the actions of T'(I)am, and < @ > on both sides (1.2.2 and 1.2.3
on the left hand side, 1.2.4 and 1.2.5 on the right hand side). The factor 1/n in the
formulas of 1.2.2 comes from the equality

(), X" (V) e = deg(N) (v, V')
valid for any isogeny A : E — E'.
(1.2.7) There are two definitions of the Weil pairing
ey =enEg:En X EN — un

which differ by a sign. We use the one normalized by ey, (¢, ¢'/"N) = ¢ for all ¢ € un
and all ¢*/N for the Tate curve E = G,, /q%.

(1.2.8) For a primitive N-th root of unity ¢ € py, the Fricke involution W¢ :
X1(N) — X1(N) (defined over Z[1/N, un]) is given on Yi(N) by W¢(E,a : pny <
En) = (F',B;), where E' = E/Im(a) and B¢ : pny < E' is characterized by

en,e(a(€), any lift of B¢(¢) to Enx) =¢.
For a € (Z/NZ)*, one has f(¢) = B¢a((*) = aB¢a(¢). Hence,
(1.281) We=<a>oWe, Weo<a>=<a>'oWe=We, asWZ=id
If g € Gal(Q(un)/Q) acts on pn by ¢ — (%, then
(1.2.8.2) goW¢ = Weaog = Weo < a > og.

For every prime ¢, there is an equality of correspondences on X;(IN), W¢oT'(€) =
T(£)*oW¢. this implies that the induced action on cohomology satisfies

(1283) T(E)pic = VVCOT(f)AlboW(
for all primes £.

(1.2.9) For integers d > 1, M, N > 4 such that dM | N, there are finite degener-
ation maps g : X1(N) — X;(M) given on Y7 (M) by
ma(E,a:puny = En) = (B' = E/a(pa), o' : py <= Ejy)
with 4
d « mo
o pm > pnja e pnfpa o Bla(pe) = B
In particular,
T (E,o: pny = En) = (E,a |uy,)

and
Td (Gm/qZ,IdN) = (Gm/(qd)ZaIdM) .

If (v € pun is a primitive N-th root of unity and (y = g/ M, then mgoWey =

WCM°7TN/dM~

(1.2.10) We now consider the induced action on cohomology. 7} commutes with
< a >ap (and therefore with < a >pjc too) for a € (Z/NZ)*, and commutes with
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T'(n)aw (and T'(n)pic too) for (n, N) = 1, and with T'(€) a1p for primes £ | M. The trace
operator 7y, commutes with < a >a1, (and hence with < a >p;c) for a € (Z/NZ)*,
and with T'(n)a, (and hence with T'(n)pic) for (n, N) = 1. Moreover, if £ | M is a
prime, then both squares in the commutative diagram

Xi(N) = Xi(Nif) 5 Xy(N)

m ™1 ™

Xi(M) &= Xi(M;0) S Xy (M)

are cartesian, which implies that s*omi. = T1408™, t* o1 = T140t™, and

T (£)picomx = Sxot™ ol = SyoMixolt™ = My,0840t”™ = T1aoT (£)pic
T(£)AlboT14 = ts08 oT14 = t4xoM1408" = Misot,o08™ = 10T (€) Alb-
In particular, if N = £M for a prime £ | M, then m;. commutes with both T'(£)a

and T'(£)pic, and 7. = We,, om10Wey commutes with both T'(€)pic = WeoT (€) aipoWe
and T(f)Alb = W(oT(f)picoW(.

(1.2.11) The Eichler-Shimura relation on X;(N) defined as in 1.1.1 has the fol-
lowing form: for every prime £{ N,

T(¢) = Fr(f)'+ < £> Fr(f) (mod ¢)

as a correspondence on X;(V),r,. This implies that the induced contravariant action
on étale cohomology H'(X1(N),,,Zp) (where p # £ and X1(N) = X;1(N) ®q Q)
satisfies

T(Z)Pic =¢- Fr(e)g—e{)m"' <t >Pic Fr(f)geom-

Consequently, Fr(£)geom is a root of X2 — T(£)aibX + £ < £ >ap=0.

(1.3) Galois representations

Fix algebraic closures Q (resp. @p) of Q (resp. @,), and embeddings is, : Q < C,
ip : Q = Q,, (for a given prime p).

(1.3.1) Let f =3,5; ang™ € Sk (T'1(IV), x) be a cusp form on I'; (V) of weight
k > 2 and character x : (Z/NZ)* — C*, defined over C. It is a normalized eigenform
if a; =1 and T(€)anf = Aef for all primes £ (necessarily with A\; = ay). A normalized
newform is a normalized eigenform such that the set of eigenvalues {A\; : £1 N} does
not occur for any eigenform of weight &£ on I'; (M), for any proper divisor M | N.

(1.3.2) Assume that f from 1.3.1 is a normalized newform. Let F' be a finite
extension of Q in Q containing all i3!(a,) and all values of iZ!ox. The embedding
ip induces on F' a prime p above p. Let S = {primes £ : £{ pN} U {oo}. The p-adic
Galois representation associated to f

p=psp: Gos — GLa(Fy)

(where Gg,s denotes the Galois group with restricted ramification; cf. 2.1.1 below) is
characterized by the conditions

Tr (P(Fr(e)geom)) = ip(ap)
det (P(Fr(e)geom)) = ip(X(f)Zk_l)
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for all £ ¢ S. It was constructed in [Ei],[Sh] for £ = 2 and [De] for £ > 2. Ribet [Ri
1, Thm. 2.3] showed that p is irreducible (hence absolutely irreducible, by the same
argument as in 1.5.3(3) below).

(1.3.3) Scholl [Sc] constructed a (Grothendieck) motive M = M (f) associated to
f, pure of weight k—1 and of rank two over F. Geometrically, M C h*~1(Z)®F, where
Z is a suitable smooth compactification of the (k — 1)-dimensional Kuga-Sato variety
over Y(N) (at least for N > 3). The p-adic étale realization M, C H*"1(Z, F®Q,)
of M is free of rank two over F @ Q, = Hvlp F,; its p-component M, gives the
representation pyp. By [La], [Ca] the L-series of the motive M agrees with

Loo(f,8) = 3 ann™ = [0 - aet=*) " T[(1 - art™* + x(p)+~1-2%)7
n21 N UN
even at Euler factors at bad primes £ | N.

(1.3.4) A suitably twisted Poincaré duality on Z gives a non-degenerate skew-
symmetric pairing

M, x My, — M, ®F, My — F,(1 - k) ®F, [x],

where [x] is the one-dimensional representation of Gg, s over F}, given by [X](Fr(£)geom)
= x(€), (£1 pN). In the special case when k is even and x = 1, then V = M,(k/2)
is pure of weight —1 and the above pairing defines a non-degenerate skew-symmetric
pairing

VxV —=VerV-— FQ1),

which induces an isomorphism V = V*(1) = Homp, (V, F,(1)).

(1.3.5) A normalized eigenform f from 1.3.1 is ordinary (with respect to i,
ip) if ip(ap) € Fp is a p-adic unit. In particular, a, # 0, which implies ([Mi, Thm.
4.6.17]) that either

(i) ord,(N) = ordp(cond(x))
or
i) pl|N, k=2, p1 cond(x), a% = x(p)-

Furthermore, the Galois representation M), restricted to Go, = Gal(Q,/Q,) is
reducible [Wi 1, Thm. 2.2.2] and there is an exact sequence of Fy[Gg,]-modules

(1.3.5.1) 0— FtMy, — M, — F"M, —0

with dim(F£M,) = 1 and F* M, unramified. The quadratic equation X2 — a,X +
x(p)p*~! = 0 has two distinct roots in F,: one of them, o, is a p-adic unit and the

other is s
p _{J—l—’”’a’; if ptN
=

0 if p| N.

The geometric Frobenius Fr(p)geom € Gq,/I, acts on F* M, by the scalar a;,. The
duality 1.3.4 gives

(1.3.5.1) F™M, = (F*M,)*(1 - k) ®[x]
(as Fp[Gq,]-modules).
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(1.3.6) Ifp{ N, then f° =3 -, ang™~Bp 3,5, @ng?" is a normalized eigenform
on I'; (Np) satisfying

TOanf’=af® if Ltp,  T(p)awf®=apf’.
One says that f° is the p-stabilization of f. By abuse of language, we shall call py,,

the Galois representation associated to fO.

(1.8.7) Assume that p ¥ N. A normalized eigenform f of weight £ > 2 on
I';(Np") is said to be an ordinary p-stabilized newform of tame level N if f is
ordinary, n > 1, and f is new at IV, i.e. the set of eigenvalues {a; : £{ Np} does not
occur for any newform of weight k on I'; (Mp™) for any proper divisor M of N and
m < n. Equivalently, f is ordinary and either a newform on I'; (Np") for some r > 1,
or is equal to the p-stabilization of a newform on I'; (V).

(1.4) Hida’s theory

Assume that p > 3. Fix a finite extension F, of Q, (in @p); let O = O, be its
ring of integers. Fix an integer NV > 1 not divisible by p.

(1.4.1) Hecke algebras

For £ > 2, and r > 1, let hx(T'1(Vp")) be the subring of End (Si(T1(Np")))
generated (over Z) by the Hecke operators T'(n) = T'(n)am, » > 1, and the diamond
operators < a >=< a >, (a € (Z/NZ)*). Put by, := hi(T1(Np")) ®z O. This is
free of finite rank over O; diamond operators give an O-algebra homomorphism

< >kt 0[(Z/NZ)X] —_— f)k,,-.

For fixed £ > 2 and s > r > 1, there are canonical homomorphisms bz s = h,r, given
by T(n) = T(n), < a >—< a >p (these are dual to the maps 7} from 1.2.10 acting
on cusp forms of weight k). The projective limit

br,co == lgt_nbk,r

is equipped with morphisms
< > Of[Z,]] = O[[ZN]] — bi,c0;
where Zy = lim(Z/Np'Z)* = Z x (Z/NZ)* and O[[Zn]] = lim O[(Z/Np"Z)*]. Put

I'={z €Z);:z=1 (modp)} and denote the canonical inclusion I' = O[[I']] <
O[[Zn]] by @.

(1.4.2) Ordinary projector e

For each 1 < r < oo, there is a decomposition by, = h7¢ x h%, such that hg?

(resp. b7’,) is the largest quotient of by, on which T'(p)ap is invertible (resp. T'(p)ab
is topologically nilpotent). More precisely,

hzt‘;'i = ebkﬂ" Zfr = (1 - e)bk,'ra
for Hida’s ordinary projector
e= lim T(p)Riy € br-

One defines the ordinary part of any by ,-module M to be M°™% = eM = h,‘gfr" ®p,.. M.
There is a bijection between the set of ordinary normalized eigenforms of weight k& > 2
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on I'1(Np") (r > 1) and O-algebra homomorphisms bgfrd — @p (given by Hecke
eigenvalues).

(1.4.3) PROPOSITION. (%) [Hi 1, Thm. 1.1] Forl > k > 2 there are canonical
isomorphisms h7d = h7d . We use them to identify all 73 (k > 2) with h¢ =
b3 -

(i) [Hi 2, Thm. 3.1] Consider h%2% as an O[[Zn]]-algebra via diamond operators < >,
acting on weight two cusp forms. Then h22¢ is finite and free over A = O[[T].

[ee)
(iii) [Hi 1, Thm. 1.2] The canonical maps h%¢ <— e — h"¢ induce isomorphisms
b fwrrbt 0, (k227 210)

where wg,r = z('y)”'_1 - fy(k_2)”r-1 for any fized topological generator v of I.

(1.4.4) Decomposition of hH7¢

It follows from Prop. 1.4.3 (ii) that h22¢ = [] R is a product of local rings, finite
and free over A. The local factors R are localizations of h27¢ at its maximal prime
ideals. They are not necessarily integral domains; to get a further decomposition one
must introduce denominators. We shall be interested only in the primitive part; let
L be the fraction field of A. Hida [Hi 2, p. 250, 252] constructed an idempotent
eprim € H%5¢ ®p L such that eprim (h35¢ ®4 L) = [[K is a product of fields (finite
extensions of £). Making a finite extension of F} if necessary, one may assume the
F, is equal to the algebraic closure of ) in K (i.e. “K is defined over F,” in the
terminology of [Hi 2, p.252]) for each K. As in [Hi 1, p.554], fix one of the factors K,
and put

h(K) = the image of h27¢ in K.
n

h(K) = the free A-closure of h(K) in K.
n
J (K) = the normalization of A in K.

Equivalently, §(K) is the intersection NpH(K)p C h(K) ®a L, where P runs through
height one prime ideals of A. Denote

prrim =[] b(K) c 7 = [[ 7 (K).
K K

(1.4.5) Fix a topological generator y of I'. For an integer k > 2 and a character
€: ' = O of finite order, we put

Pree =1(7) —e(n)v* 2 e A

We define an arithmatic point of any finite A-algebra A to be a prime ideal p € Spec(A)
lying above some prime ideal P = (Py,) € Spec(A). The set of arithmetic points of
A will be denoted by Xo7ith(A).

(1.4.6) PROPOSITION. (%) [Hi 1] The “restriction map” Spec(J) — Spec(hPrim)
gives a bijection X0Tith([7) =y xorith(pprim)
(i) [Hi 1, Cor. 1.4] For every P € Xorith(hPrim) and the corresponding P’ €
xorith(7) above P = (Py.) € Spec(A), the localization (h?"'™)p = Jp: is a dis-
crete valuation ring unramified over Ap.
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(ii1) [Hi 1, Cor. 1.8] For every arithmetic point P € X°7*h(hPr*™), the map O <
ppPrIm —y pPTI™ [P 4s an isomorphism and the homomorphism

bgd — bprim — hprim/p (’_V_ O

corresponds to an ordinary p-stabilized newform f of tame level N. Conversely, every
f arises in this way, for a unique P € X°rith(hprim),

Remark. (i) follows from the fact that
B(K) @1 Ap = h(K) ®r Ap = T(K) ®4 Ap

for every P = (Prc). The first equality holds because E(IC) /B(K) is a pseudo-null
A-module. The second follows from the proof of [Hi 1, Cor.1.4].

(1.4.7) In the notation of 1.3, let f be an ordinary p-stabilized newform on
T'1(Np") of weight ko > 2 and character x : (Z/Np"Z)* — O*. The homomorphism
hord — O corresponding to f factors through a unique local factor R of h27¢ and
through a unique simple factor K of eprim (R®a £). Replacing F}, by a finite extension
if necessary, we may assume that K is defined over F}, in the language of 1.4.4. Write

eprim(R®a L) = K x A, and define h(A) to be the image of R in A, and B(A) the free
A-closure of h(A) in A. Hida [Hi 2, p.253] defines the congruence module C = C(K)
by the exact sequence

0 — R — h(K) ®h(A4) — C — 0.
It is shown in [Hi 2, Thm. 3.6, Cor. 3.8] that C is a torsion A-module and C/P C
is finite (for all integers k > 2 and characters of finite order € : I' = O*).

Denote by w : (Z/pZ)* — Z, the Teichmiiller character and decompose xwhko=2 =

e into its tame, ¢ : (Z/NpZ)* — O, and wild, ¢ : T' — /T~ = OX, parts.
Denote by P € X°"**(h(K)) the arithmetic point corresponding to f (lying above
P = (P,.c) € Spec(A)) and by P € X°7%h(R) its preimage in R. Localizing the exact
sequence

0—R—pK)®h(A) — C' —0

(where C' C C is a subgroup of finite index) at P, we get
Rp 5 h(K) © h(A)p.

As h(K)z # 0, this implies that h(A)p = 0 (which also follows from the multiplicity
one statement of Prop. 1.4.6(iii)), hence Rp — h(K)5 is a discrete valuation ring,
unramified over Ap. One obtains in this way an embedding

hK) = Fc = { Zui(a: — ko) :u; € Fp,il_i)ncloordp(u,-) +ci= +oo} C Fy[[z — ko]]

i>0
for a suitable integer ¢ > 0 (cf. [Gr-St, 2.7]). The composite map
Zn < O[[ZN]] — H(K) = Fpl[z — Ko]]

is equal to
t — P(R)e()r(t)*> = x(B)w () k()" 2,

where & is the projection to the group of principal units 1 + pZ,,.



ON THE PARITY OF RANKS OF SELMER GROUPS 449

For k € ko + p°Z,, the evaluation map “z = k” evy : Fo — F}, is well defined. If
k=K' (mod p™t¢) for n > 0, then evy =evy (mod p™).

For every integer k > 2 satisfying k = ko (mod p°),
Py := Ker (b(IC) < fcﬂ)Fp)

is an arithmetic point of h(K) above (Py). It corresponds to a p-stabilized newform
fr on T';(Np") of weight k and character ywfo=*. If ¥’ > 2 is an integer satisfying
k=k' (mod p"*°) (for some n > 0), then the two morphisms

h(K) — b(K)/Pr =0,  bH(K) — b(K)/Pw =0
are congruent (mod p"), i.e. fr = fir (mod p").
(1.5) Big Galois representations
The assumptions are as in 1.4 (but we do not assume that F} is “big enough” as
in 1.4.4-7).
(1.5.1) Denote by Ji(M) = Pic®(X1(M)) the Jacobian of the modular curve

X1(M)/q (for M > 4). The degeneracy maps m : X1(Np™') — X;(Np") induce
maps on p-primary torsion

73t JI(NDP")(@Q)pee — J1(Np™1)(Q)pee.
The inductive limit

Joo = 1% (1 (NP")(@)p~) ®2, O

is an bz oo-module; denote by JU¢ = eJy its ordinary part, which is a module over
hore. Fix one of the local factors R of h2l¢ and denote by er € h27? the corresponding
idempotent. The “big Galois representation” we are most interested in is

T(R) = Homgp (GRJggd,,upco ®z, O) .
It is an R-module of finite type with a continuous R-linear action of Gg,s (with
S={€:£]| Np}U{oco}).

(1.5.2) PROPOSITION. (%) (FEichler-Shimura relation) For every prime £t Np,
the relation

T(€) A = Fr(£) goom + £ < £ >a1b Fr(£)geom
holds in Endg(T(R)).
(i) [Ma-Ti, Thm. 7] If T(R) has an irreducible residual representation, then R is a
Gorenstein ring and T (R) is free of rank two over R.
(i3) [T% 1, Sect.4] Let a € Z/(p— 1)Z be the ezponent such that (Z/pZ)* C Zn acts

on R by w®. Ifa #0,—1 (mod (p — 1)), then there is a canonical exact sequence of
R[Gq,]-modules

0— TR —TR) — TR —0
such that T(R)* — R and T(R)™ — wg := Homa (R, A) as R-modules, and the
inertia subgroup I, C Gq, acts trivially on T(R)™ and by Xcycd < Xcyc >Alb 01
T(R)*, where

Xeyel : Gg, = Gal(Q, (pp)/Qp) — Zy

is the cyclotomic character.

(1.5.3) A few remarks are in order.
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(1) As HY(X1(Np") ops bp=) = J1 (NP")(Q)pe=, the statement (i) follows from the
Eichler-Shimura relation 1.2.11.

(2) A residual representation of T'(R) is a representation p : Gg,s — GLa(R/m),
(where m is the maximal ideal of R) such that the characteristic polynomial of
ﬁ(Fr(Z)g‘elom) is equal to X2 — T(£)apX + £ < £ >ap (mod m) for all primes £{ Np.

(8) p is irreducible if and only if p is absolutely irreducible, because
p(complex conjugation) has two distinct eigenvalues +1 € R/m (recall that char(R/m)
=p#2).

(4) As R is finite and flat over the regular ring A, it is Cohen-Macaulay and
wr = Homy (R, A) is a dualizing module of R [Br-He, Thm. 3.3.7(b)]. In particular,
R is Gorenstein if and only if wg is free of rank one over R.

(5) The statement (iii) of Proposition 1.5.2 probably holds also for a =0
(mod (p —1)).

(1.5.4) PROPOSITION. In the notation of Proposition 1.5.2 (iii), assume that
a = 0 (mod (p — 1)) and that T(R) admits an irreducible residual representation.
Then the conclusions of Proposition 1.5.2 (iii) hold, with both T'(R)* free of rank one
over R.

Proof. By Prop. 1.5.2 (ii), T'(R) is free of rank two over R. By a version of 1.3.5.1
over R/m ([Ti 2, Thm. 3.2]), the inertia subgroup I, C Gg, acts on p by

w1+a *
(0" 3)

As a # —1 (mod (p — 1)), we have w'*® # 1, which means that p is “distinguished”
in the sense of [Ti 2, Def. 3.3], [Wi 2, p. 481]. Fix r > 1 and consider the quotient
T(R)/ws,T(R) as a module over R, = R/w,,R. It follows from [Ti 2, Theorem
3.4] and its proof and [Wi 2, Thm. 2.1, Cor. 1] that there is an exact sequence of
R,[Gq,]-modules

0 — FY — T(R) Jws, T(R) — F~ — 0

with Fi* free of rank one over R, and I, acting on F:f as in Proposition 1.5.2 (iii) (free-
ness of FiX follows from Nakayama’s lemma, because it holds (mod m). Asw!*2 #1,
F,f,_l map to F¥ under the canonical maps T'(R)/ws r+1T(R) — T(R)/w2,-T(R), and
hence we get in the limit the desired sequence

0 — lim F¥ — T(R) — lim F;” — 0.

(1.5.5) Assume that @ # —1 (mod (p — 1)) and that T(R) has an irreducible
residual representation. Let P € X°"*"(R) be an arithmetic point corresponding to
an ordinary eigenform g of weight k on I'; (Np"). It is not necessarily a newform, but
there is a unique newform f of weight k and character x on I'; (M) for some M | Np”
with the same set of Hecke eigenvalues {a; : £ { Np}. The quotient T(R)/PT(R)
is free of rank two over O' = R/P. Tensoring with the fraction field Fy of O’ we
get a two-dimensional representation of Gg,s over F, such that Fr(£),.,, satisfies the
equation

X?—a X+ 'x(0) =0

for all primes £ { Np. By the Cebotarev density theorem and irreducibility of Pt
it follows that the Galois representation (T'(R)/PT(R)) ®co F, is isomorphic to the
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base change — ®F, Fy of the dual of py,,, namely

Prp = Prp(k—1) @ [x7'].
In the notation of 1.3.5, (T(R)*/PT(R)*)®o F, corresponds to F* M, (k—1)®[x"].

(1.5.6) If @ # 0,—1 (mod (p — 1)), but without any assumptions on a residual
representation, let P € X°7*"(R) correspond to a p-stabilized newform f. Asin 1.4.6-
7, there is a unique simple component K of R ® L through which R — R/P factors.
Denote by P € X7k ((K)) the arithmetic point of h(K) corresponding to f. Then
P = pr~!(P), where pr : R — h(K) is the canonical projection. For every pair of
R-modules M, N one has

Tor?(M, N)p ~ Torf? (Mp, Np).
In particular, ‘

Supp(Tor?(R/P,wr)) C Supp(R/P) = {P,m}.

On the other hand, Rp is a discrete valuation ring (by 1.4.7), and hence (wg)p —
WRp = R1> and

E(P) ifi=0

0 if i >0.

It follows that Tor®(R/P,wg) is finite for i > 0 and wr/Pwr — R/P @ (finite). In
the exact sequence

Tor?(R/P,wr)p = {

Tor{%(R/P,T(R)‘)—a—éT(R)‘*/’PT(R)+ — T(R)/PT(R) — T(R)”/PT(R)- — 0

the second term is free over R/P, hence flat over O. The first term being O-torsion
by the previous discussion, we see that the map 0 must be zero. As a result, we get
an exact sequence

0 — T(R)*/PT(R)* — T(R)/PT(R) — T(R)"/PT(R)” — 0,

in which T(R)*/PT(R)™ is free of rank one over R/P = O’ and T(R)™/PT(R)™ is
the sum of a free rank one R/P-module and a finite group. As in 1.5.5, the Galois
representation (T'(R)/PT(R)) ®o F, is isomorphic to the base change of p} ,, where
[ is the p-stabilized newform corresponding to P. Similarly, T'(R)*/PT(R)* ®or Fy
corresponds to FEM,(k — 1) ® [x 1]

(1.6) Self duality of T'(R)

The results of this section are well known, but we were unable to find a good
reference that would cover all of them. The notation is as in 1.4.

(1.6.1) For every integer » > 1, put A, = (Z/Np"Z)*, and
X, == H'(X:(Np"),;, 0) = H (X, (Np"),4, Zp) ®z, O = Tp(J1(Np"))(=1) ®z, O.
Poincaré duality gives an O-bilinear skew-symmetric perfect pairing
(, )Pr: Xe X Xy — HL (X1 (Np"),,, 0) S0(-1),
which induces an isomorphism
X, = Homp (X, 0)(-1)
z— (y~(z,9)pr)
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of O[Gg]-modules. In other words, the Galois action satisfies
(9(2),9®)) pr = 9((,¥) P.r) = Xoyer (9)(Z, ) Prrs

where g € G, 2,y € X, and Xcya : Gg = Gal(Q(pp=)/Q) — Z is the cyclotomic
character given by the action on pye. In this section, we denote by

Xcycl,N - GQ — Gal(@(”’NP‘” )/Q) = Ag = @AT

the character taking into account also the action on uy.
(1.6.2) The pairing ( , )p, is functorial as follows:

Hecke operators:

(T(n)Alb(‘T)ay)P,r = (xsT(n)Pic(y))P,r (n > 1);
(1624 (<a>aw (2),9)pr = (2, <a>pic (¥))pr (@ €A).

Degeneration maps:

w1, mp : X1 (Np 1) = X1(Np") satisfy (mi(z),¥)pr = (2,77 (¥)) Prs1-
Fricke involutions:

Fix a compatible system of primitive Np"-th roots of unity {npr € pnp-, Cllifp" =
(npr> and put Wy := We,,_... Then (W, (z), W:(v))p,r = (Z,9)pPyr-

(1.6.3) We define a twisted pairing (depending on the choice of {npr)
(,)r:Xp x X, — O(-1),
(xay)‘l‘ = (‘IB, WT(y))PyT‘

This is again skew-symmetric and O-bilinear. The formulas (1.6.2.1) and (1.2.8.1,3)
imply

(T (n)a(2), y)r = (2, T(M)picWr () Pr = (2, WrT(n)an(y)) p,r

(1.6.3.1) = (z, T(n)an(y))r (n>1)

and (< a >aw (2),y)r = (z,< @ >a (¥))r, for a € A,. For g € Gg, we have (by
1.6.1 and (1.2.8.2))

Xc_ylc](g)(za Y)r = X;;:lcl(g)(w’ We(y))pr = (9(2), gW:(¥)) P,r

=(9(z), Wr < Xeya,n(9) >a1b 9(¥)) P,r = (9(%), < Xeyer,N(9) >a1b 9(¥))r-
Hence,
(1.6.3.2) (9(2), 9(¥))r = Xc_ylc](g)(mv < chcl,N(g) >X11b Y)r-

The Hecke algebra ha , = h(I'1(Np"), O) acts on X, by T(n)ap and < a >ap. The
formulas (1.6.3.1-2) can be reformulated by saying that the map

a, : X, — Homo(X,, 0)(-1)
z— (¥~ (z,9)r))
induces an isomorphism

(1.6.3.3) a, : X, = Homo(X,, 0)(-1) < -1 >
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of h2,[Gg]-modules. Here, the notation ¥ < n >, for an by [Gg]-module Y and
n € Z, means that the original Galois action by g € Gg on Y is multiplied by the
action of < Xcyel,N(9) >R1b€ b2,r-

Taking the limit r — oo

We know from 1.2.10 that the maps X, 41 =5X, and X,41¢—X, (i = 1,p) are
compatible (for r > 1) with the canonical maps b ,4+1 — ha . Note that, by 1.2.9,

(i (2),9)r = (mix(2), We () Py = (2, 7 We (9)) Pt
(1.6.3.4)
= (2, W17/ (W) Prt1 = (T, T (Y)) 41

This means that the isomorphisms ¢, induce in the limit an isomorphism of h2 «[Gg]-
modules

Qoo : Yng, = Homo (iny(Xr ®z, Qp/Z), O ®z, @y /Zp)(~1) < ~1>

(1.6.3.5)
= Homp(Jw, O ®z, QP/ZP) <-1>

(this is because the right hand side of (1.6.3.3) is canonically isomorphic to
Homo (X; ®z, Q@ /Z,,0 ®z, Qo /Zp)(-1) < =1 >).

(1.6.4) LEMMA. Let O be a commutative ring, A a finite group and X a left
O[A]-module. Let f € Homo(X,0), F € Homp(a]-1et(X, O[A]). Then
(i) The formulas (f *xa)(z) = f(az), (F *a)(z) = F(z)|a] (a € A, z € X ) define right
actions of A on Homp (X, 0) and Homo(a)—tese(X, O[A]).
(i) the formulas

@N)=) =) fla@)a™],  (T(F))(z) = pre(F(z)),
a€EA

define mutually inverse isomorphisms of right O[A]—modules

®
Homo (X, 0) 2 Homoaj-1ert (X, O[A])
¥

(here, pry(3_,cn Mala)) =y for b € A, and e € A is the identity element).
Proof. Straightforward calculation.

If A is commutative, the formulas in (i) can be used to define a left action of A :
a*f:= fxa,axF:= F+a, and (ii) will be an isomorphism of left O[A]-modules.

(1.6.5) Applying Lemma 1.6.4 to X = X, and A = A,, the formula defining
& gives yet another skew-symmetric pairing, this time with values in the group ring
O[A,]:
(,)a, : Xr x Xr — O[A;]
(z,9)a, = Z (z, < a >am y)-[a] .
a€A,
It satisfies
(T(n)aw(2),Y)a, = (@, T(n)an®))a. (R2>1)
(<a>am (2),9)a, = (&, <a>aw ¥))a, =[a){z,9)a, (a€A,)
(9(2), 9W))a, = Xeyet(9) ™ Dxeyer, v (9) Nz, 9)a, (9 € Go)-
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the induced map

Br: Xr — HomO[Ar](Xryo[Ar])(_l) <-1>
(1.6.5.1)
z— (¥ (2,9)a,)

is again an isomorphism of b, ,[Gg]-modules, equal to ®oc,.. The same is true of the
projection of 8, to the ordinary component:

B : eX, = Homoya,)(eXr, O[A,])(-1) < =1 >
(1.6.5.2)
z+— (y = (2,9)a,)

This is an isomorphism of h3¢[Go]-modules.

(1.6.6) LEMMA. Fizr > 1. Then
(i) m1x(eXry1) C p(eX,). Denote by %m* :eXrp1 — eX; the unique map satisfying
p (%7&*) = T1x-
(i) (%Wl*)owf =p oneX,.
(1ii) 77{0(1;771*) = ZaeF,/F,H < a > on eXry1, where T, =T77 .
(iv) T(p)Albo(%m*) = Tpx 0N eXry1.

Proof. See 1.6.11 below.

(1.6.7) COROLLARY. For z,y € eX,y1, (r > 1), the canonical projection
OAr+1] = O[A;] maps (2,Y)A,4 to (Tpx(2), 371 (Y))A, -

Proof. (x,y)A,,, maps to

> ( > (@ <b>an (y))r+1)[a_1]

a€EA, bEAL4q

b—a

=Y (= 7"{0(11_7771*) <a>am ¥)r+1[a™] (by (1.6.6.iii))
a€EA,

= ¥ (@), Cma) <a>an @hla™] by (163.4)
a€A,

=mm%mwm

as claimed.
(1.6.8) COROLLARY. The map

v =(v) iX=1£_£16Xr — ;%rieXr
(@r)rz1 = (T(0)A1 (@r))r21
is an isomorphism of h%54[Gg)-modules.
Proof. Follows immediately from Lemma 1.6.6 (iv).
(1.6.9) Combining the two corollaries, we obtain a skew-symmetric pairing on
X (, )X:gneX,‘x imeX, — A(-1) < —-1>
-

p*

given by {(z), () x = (2, T(®) 31 ¥)r)1r,)-
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THEOREM. ( , )x induces an isomorphism of h20¢Ggl-modules B : X —
Homyp (X,A)(-1) < =1 >, (Bo(2))(y) = (z,y)x. In particular, X is free of finite
rank over A.

Proof. Firstly, the ordinary part of aeo gives an isomorphism
aZf? : X =5 Homo(eJoo, O ®z, Q/Zy) < -1 >,

and we know that the right hand side is of finite type over h%%¢. A fundamental result
of Hida [Hi 1, Thm. 3.1] states that «f induces isomorphisms

eJi(Np)(@)pe = (eJeo)'  (r>1).

Dualizing — using (1.6.3.4) — we see that mp. induces isomorphisms Xr, — eX,.
Together with (1.6.5.2), this implies that 8« is an isomorphism.

(1.6.10) As in 1.5.1, fix a local component R of ho7%. Let X(R) = egX be the
R-part of X. Then o25¢ induces an isomorphism

X(R) = TR)(-1) < -1>
and (, )x defines a skew-symmetric pairing
(, )7y T(R)xT(R) — A1) < 1>
inducing an isomorphism of R[Gg]-modules T(R) — Homy (T'(R),A)(1) < 1 >.

Whenever 1.5.2 (iii) or Proposition 1.5.4 ‘apply, the pairing ( , )7(r) induces isomor-

phisms of R[Gg]-modules T(R)* — Homa (T(R)F,A)(1) < 1 >. The canonical map
of R-modules
Hompg(T(R),Homp (R,A)) — Homy (T'(R), A)

is an isomorphism, and hence the pairing ( , )7(r) induces an isomorphism of R[Gg]-
modules
T(R) = Hompg(T(R),wr)(1) <1 >

i.e. can be viewed as an R-bilinear pairing

T(R) x T(R) — wr(l) <1>.

(1.6.11) For the proof of Lemma 1.6.6, it will be convenient to use a group theo-
retic description of the Hecke operators. Let I' C SLy(R) be a discrete subgroup of the
form yI'y~1, where v € GL2(Q) and I' C SL2(Z) is a congruence subgroup. Denote
by X(I') = '\H* (where H* = HUP!(Q)) the corresponding complex modular curve
over C. Let H be a reasonable cohomology theory, say H°(X,Q!) or H (X ¢t,Z,);
put H(I') = H(X(T)).

Functoriality: v € GL3(Q) gives an isomorphism [y] : X(I') = X(yTy71),
which induces an isomorphism

(' =[N : HoDy™) = H(D).
Inclusion ¢ : ' < I" gives a finite map X(I') - X(I'), which induces i, :
H(T) — H(I"), and i* : H(I") — H(I).

Double cosets: For v € GLy(Q) and I'1,I's C GL2(R) of the above form, the
maps

i -1 i
01857, Nl 23,710,y A T 3T,
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induce the action of the double coset
i -1 .
[C19Ts] : H(Ty) 5 H(Ty Ty ) S B (y~1Tyy N Ty) 25 H(T).

In the coordinates on the upper half plane #, [I';yI's] corresponds to ). (ye;)*, where
a; € GLy(Q) arerepresentatives of (y~1T';yN'2)\I's (equivalently, I1yl's = | T1ya).

Example: I‘1=I‘2=I‘=I‘1(M),7=(é 2),withpprime. Then
10 3 1 4 p 0\ .
ron (g p)n(M)—.Engl(M)(o ) (vmon (b ) aiteta),
i€Z/p

where o, € SLy(Z), 0, = p 0 mod M). The action of [['4I'] on H(T) =
P P 0 »p

HO(X(T), ') gives the usual Hecke operator T'(p) = T(p)am on cusp forms of weight
two on I'y (M).

Proof of Lemma 1.6.6. Let
1 T - ‘ T T
7= (5 2) T=Tip) > TmTy = La(NpNLo(N5™) ST = Ly (V5™
where r > 1. Consider the maps
r

)
. -1 -
M paary-t D0 ipape®® L p
and their action on cohomology H(X) = H'(X,Z) ®z Z,. Each modular curve X
corresponding to T', I, or 'NyT'y~! has a model X /o, and hence H(X) = H!((X ,g®q
Q)et,Z,). By definition, we have
T1e = 104814 ° H(FI) g H(P)
Tpe = igu[y " Juiru : H(T') — H(T)
T(p)aw = [[T] = ds.[y '1ui3 : H(T) — H(T)
Denote [(TNyTy~)y(CNyCy~1)] : HCNyCy~t) — H(TNATy™1) also by T'(p) arb-
It follows from the definitions that the operator £ = [(T N YLy~ 1)AT] = is.[y 1. -
H({I NATy™ 1) — H(T) satisfies
§i; =T(p)aw  on H(T)
56 =T()aw  on HITNATy™)
This fact — due to Shimura — is at the basis of all Hida’s theory [Hi 1, Thm. 4.4].
Applying the ordinary projector e = limp_,0o T'(p)%};,, We see that 43 induces an iso-
morphism between the ordinary parts ([Hi 1, Cor. 4.5])
iy : eH(T) = eH(T NIy},

with inverse
@)™ = T ant = TP A
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As 42,15 = p, it follows that the map
(43)Yi1e : eH(I') — eH(T)

satisfies p(i%)~li1. = 42491« = 714, which proves Lemma 1.6.6 (i) and in fact shows
that 271, = (i3)'41.. The rest is easy:

1 * k=1 ek ek —1 %
(;7"1*) m} = (i3) Ml = p(i3) Ty = p on eH(I')

1 ey —1 .
T} (=m1a) = 6345(33) Vit = 111 = E <a>am on eH(I').
p a€l’ /T
™ r+41

The last equality here is because I'" is a normal subgroup of I'NyI'y~!, with quotient
equal to I, /T'r41. Finally,

1 . n—1s . .1
T(p)Alb(z—)rl*) = €igu(13) TVi1w = iy = 3. [Y site = mpe  on eH(IY).

This finishes the proof of Lemma 1.6.6.

(1.6.12) The arguments in the previous section show that all the statements of
Lemma 1.6.6 hold if eX, is replaced by the maximal direct summand of (X, ® Q)
on which T'(p)ayp is invertible (i.e. the sum of generalized eigenspaces of T'(p)ai, for
non-zero eigenvalues).

(1.6.13) Using the formula mpoW,41 = Wyom; (which follows from 1.2.9) and
(1.2.8.3), (1.2.10), we see that the map

W = (Wr) : (xr)rZI — (Wr(xr))’f‘zl

induces an isomorphism of O-modules
%’:r_ne*Xr = @eXr =X,
Tls e

where e* = lim,_,0o T'(p)3!. is Hida’s dual projector.
2. Selmer groups in families.
(2.1) Generalities on Selmer groups

(2.1.1) Notation. Let p be a rational prime, F}, a finite extension of Q, with
ring of integers O = Op, and m € O a prime element. Let K be a number field, S a
finite set of primes of K containing all archimedean primes and all primes dividing p,
and Kg the maximal extension of K unramified outside S. Let Sy C S be the subset
of non-archimedean primes. For v € Sy, fix embeddings K < K,. They induce maps
Gv = Gal(—l?,,/Kv) — GK = Gal(f/K) —> GK,S = Ga.l(Ks/K).

(2.1.2) Let T be an O-adic representation of Gk s (i.e. a free O-module of finite
rank equipped with a continuous O-linear action of Gk ,s). There is a tautological
exact sequence

05 T-5V254 0

with V =T ®0 Fy, A = V/T. All Galois cohomology groups with values in T or V
will be continuous cohomology ([Ta], [Ja]). Recall that H(G,V) = H(G,T) ®o F,
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and that H(G,T) coincides with the naive cchomology group
lim H'(G, T/"T)
n

for i <1 (resp. for all ¢ if G = G, or Gk,s). For G = G, or Gk,s, the O-modules
H{(G,T) (resp. H*(G, A)) are of finite (resp. co-finite) type.

(2.1.3) Recall Flach’s abstract treatment of Selmer groups [Fl]. Given Fj-
subspaces W, C H'(G,, V) for all v € S, the Selmer groups associated to W = (W,)
are defined by

S(K, A; W) = Ker |:H1(GK,5,A) — @Hl(Gv,A)/pr*(Wv)]
veS

S(K,V;W) = Ker [H‘(GK,S,V) - @HI(GU,V)/WU]
vES

They do not change if S is replaced by S’ O S with W, = H. (G,,V) = HY(G,/I,,V)
for v € S' — S (as pr«(HL.(Gy,V)) = HL.(Gy,A) for such v). The O-module
S(K,A;W) is of co-finite type and pr.(S(K,V;W)) coincides with its maximal p-
divisible subgroup S(K,A;W)aiv, ie. S(K,A;W)dgiv — (Fp/O)", where 1 =
dimpg, S(K,V; W), and the quotient III(K, A; W) := S(K, A;W)/S(K, A; W)qiy is fi-
nite.

(2.1.4) Duality. Put Zpy(1) = Impym, O(1) = O @z, Zy(1), T*(1)

Homo (T, O(1)), V*(1) = T*(1) ®o Fp, A*(1) = V*(1)/T*(1). For v € Sy, let W;- C
H'(G,,V*(1)) be the annihilator of W, under Tate’s local duality

H'(Gy, V) x H'(Gy, V* (1)~ H*(Gy, (1) = Fp.
For v{p, H. (Gy,V)* = HL (G,,V*(1)). Flach [FI] constructed a pairing
S(K,A; W) x S(K,A*(1); W) — F, /O

and showed that its left (resp. right) kernel is equal to
S(K,A;W)aiv (resp. S(K, A;W+)4iv). In other words, the induced pairing

(K, A; W) x (K, A*(1); W*) — F,/O
is non-degenerate.

(2.1.5) Let
(, W:VxV — F,(1)

be a Galois-invariant non-degenerate skew-symmetric bilinear form such that T' x T is
mapped to O(1). The formula a(z)(y) = (z,y)v defines an isomorphism of F,[Gk s]-
modules o : V - V*(1) which is skew-symmetric (i.e. a*(1) = —a) and such that
a(T) C T*(1). If the local conditions W are self dual in the sense that a.(W,) = W;-
for all v € S, then a induces a map

. S(K, A; W) — S(K, A*(1); W)

™ Flach  considered only Fp = Qp, but the generalization to Fp-representations is
straightforward.
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with finite kernel and cokernel. The induced pairing

S(K, A; W) x S(K, 4; W) B8 (K, 4;W) x S(K, A*(1); W) — F,/O
is skew-symmetric [F1].
(2.1.6) For v | p, Bloch-Kato [Bl-Ka, Sect.3] introduced subgroups H}(Gv,V) C
H}(G»,V) C H'(Gy,V) of a crystalline nature;
H}(G,,V) =Ker [H'(G,,V) — H'(G,,V ®q, Beris)]
H}(G,,V) =Ker [H'(Gy,V) — H'(G,,V ®q, Bar)]

(see [Bures, Exp. II] for more details on Fontaine’s rings Bcr;s C Bgr). Write D (V) =
H°(G,,V ®q, By), for * € {cris, dR}. If we define

W = { H! (Gy,V) veSsutp
Y H}' (Gvav) v | p
then the Selmer group S(XK,V; W) is usually denoted by H} (K,V). The basic prop-
erties of H; C Hy are as follows:

(i) If V is a de Rham representation of G, then Hy (G, V)/H}(G,,V) is dual
£6 Depss(V*(1))/(f — 1) ([BI-Ka, Prop. 3.8, Cor. 3.8.4]).

(ii) If V satisfies Panciskin’s condition at v ([Ne 1, 6.7]), i.e. if there is an exact
sequence of Fy,[Gy]-modules

0—V};,—V—0V, —0

such that FODgr(V,t) = Dgr(V,")/F°® = 0 (where F*Dgr(W) = H°(G,,W ®q,
Fil' D4R)), then
HYG,, V) ) — Hgl(G'v,V) — Hgl(Gv,Vv_)

is exact. If V,” is a semi-stable representation of G, then
H(Gy,Vy) = Hy(Go, V) = Deris(V, ) /(£ = 1)
(by weak admissibility and [Bl-Ka, Cor. 3.8.4]), which has dimension equal to that of
Deris(Vy ) =" = Deris (V)= N F°Dar(V;") = HO(G, V).
In particular, if H°(G,,V,”) = 0, then
H;(Gy,V) =Im [H' (G, V,) — HY(G,,V)].

(2.2) Selmer complexes

As observed in [Ne 3], a more satisfactory theory of Selmer groups is obtained
if one imposes local conditions on the level of complexes, rather than on cohomology
(as in 2.1.3). In this section we recall the basic setup of [Ne 3] for the coefficient ring
O. In what follows, if p = 2 and K is not totally imaginary, then most statements are
valid only modulo 2-torsion.

(2.2.1) Let G be a profinite group and M a topological G-module (i.e. such that
the action G x M — M is continuous). The complex of (non-homogeneous) continuous

cochains on G with values in M will be denoted C;,,,,(G, M); in degree q, C?,,..(G, M)
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consists of continuous maps G? — M. The cohomology of C;,,,;(G, M) will be denoted
by H*(G,M). If M has discrete topology, then

C;ont(G’ M) = I_iﬂ C;ont(G/Uv MU)’
U

with U running through all open normal subgroups of G.

(2.2.2) In the notation of 2.1.2, we consider M = T (with the p-adic topology)
and M =V =57 "T (with the inductive limit topology) as topological modules
over G = Gk, Gk,s, or Gy. In this case, C:,,.(G,T) = yﬂc;om(a, T/x"T) and

n

Cooni (G, V) = C20ns (G, T) ®0 Fy ([Ja, Thm. 5.15]) and

cont
0— C;ont(G’ T) l:’)cc.ont(G’ V)&)ct.:ont(Ga A) —0
is an exact sequence of complexes (as 7 is strict and pr admits a continuous section).

(2.2.3) In order to define Selmer complexes we need the following data: for each
v € Sy, complexes UE(T) of O-modules together with maps of complexes

Av : UI-II-(T) — Cc.ont(Ga T) — U{J_ (T)

such that A, defines a distinguished triangle in D’}t(C’)—mod) (the derived category
of cohomologically bounded complexes of O-modules, with cohomology of finite type
over O). Putting U (V) = UE(T) ®o0 F, and UE(A4) = Cone (UL (T) — UX(V))
(isomorphic to UE(T) ®% (F,/0) in D?(O-mod)), we get distinguished triangles in
D?(O-mod)
U:-(X) — C;ont(GaX) — Uv_(X)

for X =T,V, A. The Selmer complex with values in X € {T,V, A} associated to local
conditions A = (A,) is defined as

C;(Gr,s, X3 A) = Cone(Coons (G5, X) — €D Uy (X)) [-11.
vESy

The corresponding object of D?(O-mod) will be denoted by RT' +(Gk,s,X;A) and its
cohomology by H}(Gk,s,X;A)-

(2.2.4) Properties of Selmer complexes
(i) Rf‘f (Gk,s,X;A) for X =T (resp. X = A) is an object of Dg’ct(C’)-mod) (resp.

D'c’oft(O-mod)) i.e. the cohomology groups fI}(G k,5,X;A) are of finite type (resp.
cofinite type) over O.

(ii) There is a distinguished triangle
R} (Gk,s,T; A)-REf (Gk,s, V; A) ZSRE (G, s, A; A)

with
RL; (Gk,s5,V;A) = RU; (G5, T; A) @0 Fy

_ "~ L
Ry (Gk,s,A;A) — RU; (Gk,s,T;A) ®0 (F,/O)
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(iii) The cohomology sequence of the triangle in (ii) induces isomorphisms
HY(Gk,5,T; A)tors —Im [ﬁ;‘l (Gk,s,4;0) — HY(Gk,s,T; A)]
HY(Gr.s, 4 A I [pr. : B G5,V A) — HYGr.s,4:8)]

(iv) There is an exact sequence
o — @@ HTYG,, Uy (X)) — HY(Gk,5,X;A) — HY(Gk 5, X)
’UGS[
— P H(G, Uy (X)) — -+
vESy

(2.2.5) Duality
Local Tate duality can be reformulated as an isomorphism
R[(Gy,T*(1)) — RHome (RT(G,,T),0) [-2] (vt o00)
in D}t((’%mod), where RI'(G,,T) denotes the image of C2,.,(G,,T) in the derived

cont
category. Assume that, for each v € Sy, we are given local conditions

A1) UF(T*(1)) — Copne(Gy, T (1)) — Uy (T7(1))
and isomorphisms in D’}t((’)-mod),
U3 (T*(1)) = RHomo (U7 (T))[-2],

compatible with local Tate duality. One defines Selmer conditions for 7*(1), V*(1),
A*(1) using local conditions A*(1) = (A}(1)).

Examples: (i) If U} (T) = 0, then US (T*(1)) = C2,,.:(Gw, T*(1)).

({i) f0—-> T} —>T - T, — 0is an exact sequence of O[G,]-modules with
T, free over O and UF(T) = C2opi(Go, TiE), then UE(T) = C2pnt(Gv, T*(1)E), where
(1) = (TFH)*(D).

It is proven in [Ne 3] that there is a pairing
H}(Gxs, 4 8) x H(Gi.s5,A*(1);A%(1)) — F/O
vfth left kernel equal to ﬁ}(G K,S,A;A)giv (resp. right kernel equal to
H}(Gk,s5,A*(1); A*(1))div)-
(2.3) Big Galois representations

(2.3.1) Let R be a complete local noetherian ring containing (), with maximal
ideal m and finite residue field R/m. Let T be an R-module of finite type equipped
with a continuous (with respect to the m-adic topology) R-linear action of Gg,s.
Assume that, for each v | p, there is an exact sequence of R[G,]-modules

0—T)f —T—T, —0
with T, free over R.

(2.3.2) Specializations of T
Let X C Spec(R) be the set of prime ideals I C R such that
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(1) R/I is free of finite rank over O.
(ii) For all v | p, T, ®r Ry is free over Ry.

The same argument as in 1.5.6 shows that, for every I € X, Tor®(T;", R/I) is
finite and
0 — T,}F/ITS — T/IT — T, JIT, — 0

is an exact sequence of (R/I)[G,]-modules, with T.f /IT;} free over O (for all v | p).
Fix, once and for all, I € X. Let ¢y > 0 be the smallest integer such that 7¢ kills the
O-torsion of T, /IT,, for all v | p. Put

X(I) ={JeX:tko(T; [JT;)=1ko(T, /IT;) Vv |p, and (J, 7)) =(I, 7"}
X(Dp={J € X() : (J,n%t™) = (I,n%t")} (n>1)
(here, rko(M) = dimp, (M Q¢ Fy)).

(2.3.3) LEMMA. For every J € X(I), (i) tko(R/J) = tko(R/I).
(i1) tko(T/JT) = tko(T/IT).
(iii) There are canonical isomorphisms of O/ -modules
(T 19Ty ) ore — (T /ITS ), (for allv | p)
(T/ JT)tors l) (T/ I T)tors

Proof. (i) This follows from the isomorphism R/(J,7) — R/(I, ).

(ii) By (i) and freeness of T}, rko(T,f /JT}) = tko (T, /IT)) for all v | p. For
T, , the analogous equality hold by definition, proving (ii).

(iii) The exact sequence (for every v | p)

) /(I ao T — T/(I, 7™ — T, /(I 7% ™)T, — 0

is isomorphic to the corresponding sequence for J. The free parts of T, /IT, and
T, /JT, are isomorphic by definition and the torsion part of T, /IT, is killed by
w¢. This implies that the torsion parts of T, /IT, and T, /JT, are again isomor-
phic. As (T'/IT)sors injects into (T, /IT, )iors (and similarly for J), it is killed by
7%, The isomorphism T'/(I, 7% +)T = T/(J, m°*1)T together with (ii) imply that
(T/JT)tors l> (T/IT)tors-

(2.8.4) For J € X(I) and v | p, put
VJ=(T/JT)®OFP7 TJZIm(T/JT—) VJ)a AJZVJ/TJa (VJ)::z(TQ?:/JTj:) ®0Fpa

Tf=Tinf, @) =Im(Ts= (%)), (Anf=Wa)E/@)E.
There are exact sequences of O[G,]-modules
0— (X))F — X5 — (X5); —0

forallv|pand X € {T,V, A}. »
(2.3.5) LEMMA. IfJ € X(J)n for n > 1, then there are canonical isomorphisms
(for allv |p)

(A = (A0 ((A0)F) =5 ((4nF)

7w "

Proof. This follows from the definitions and Lemma 2.3.3.
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(2.3.6) Consider the following conditions on Vy, Ty, and Ay :
(C1) H%(Gk,Vy) =0 and (for all v € S§, v {p) H(Gy,Vy) =0.

(CY’) There exists ¢; > 0 such that 7®* H*(Gk, Ay) = 0 and (for allv € Sg, v { p)
7 HY(G,, Ay) = 0.

(C2) Vj is an absolutely irreducible F;{Gk]-module.

(C2') There exists ¢z > 0 such that 7?Endo(Ts) C Im (O[Gk] — Endo (T)).

(C3) There exists ay : Vj — V}(1), a skew-symmetric (a(1) = —ay) isomor-
phism of F,[Gk]-modules.

(C4) oy from (C3) induces isomorphisms (V)= = ((VJ)::)* (1) for all v | p.

We have (C1) <= (Cl’) and (C2) <= (C2'). Of course, the condition
H°(Gk,Vy) = 0in (C1) is superfluous if the set {v € Sy : v { p} is non-empty. Note
that (C1) implies that Hl (G,,Vs) =0 for all v € S¢, v { p. We shall consider Selmer
groups associated to local conditions

W—{O vE Sy, vip
"7 Ker (HY(Gy, V) = HY(Go, (V3)7)) vlp

and Selmer complexes corresponding to

0 v €Sy, vip
+ T;) =
U ={ g o) 18
_ Coont(Gy,Ty) v€ESf vip
T, = cont
Uv ( J) { C;ont(GW(TJ);) v |p

The exact sequence 2.2.4 (iv) then becomes
(236.1) 0— P H(Gy, (Vs);) — H}(Gk.s, Vi A) — S(K,Vi; W) — 0.
vlp

(2.3.7) THEOREM (“CONTINUITY PRINCIPLE”). Assume that Vi satisfies (C1)
and let ¢; > 0 be as in (C1'). If J € X(I)pte, withn > 1, then
(1) As satisfies (C1') with the same value of ¢1 (hence Vj satisfies (C1)).
(2) There is a canonical isomorphism

H}(Gk,5,A1;8)mn = HY(Gr,s, Ar; A)nn.

Proof. (1) This follows from Lemma, 2.3.5.

(2) For every m > 1, we define Selmer complexes for the finite Gk, s-modules
(Aj)zm by local conditions

U’l-l|- =0, Uv_ = C;ont(Gm(AJ)fr"')’ vE Sf"vfp;
US = Coont(Gor (AD)T)am), v p.

The local conditions are compatible with the isomorphisms of Lemma 2.3.5, which
means that the induced maps

H}(Gk,s,(A)gnter; ) =5 HHGK,s, (Af)gnter; A)
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are again isomorphisms. Applying RT #(GKk,sy — ;A) to all entries of the commutative
diagram

0 (AJ),rn — Ay Ay 0
U “TTn” U
0 (AJ)‘II'" - (AJ)‘A'""'CI -_— (AJ)‘/rcl — 0
l l l
“ﬂn”
0 (Ar)an — (AD)gnter — (Af)ger ——— 0
n n
-
0 (AI)N" Ar AI 0

we get a commutative diagram with exact rows (dropping Gk s and A from the
notation):

0

HY (4g) [7"

B} (A7) yn) — H} (Ag)

B

0 ——— HY((As)per) /T (“n?") — H} (A1) gn) — H} (A7) pnter) — O

0 —— HY((A)yer) /I(“7?") —= H} (AD)gn) — H} (A1) gnter) —— 0

Br

0

"2 (A7) /2 H} (A1) n) —= H} (A1)

It follows from the exact sequence 2.2.4(iv) that both arrows Gy and 8; in the diagram
above are isomorphisms, proving that

H} (A7) gn = H} (Aq) o

0

as claimed.
(2.3.8) LEMMA. Assume that Vi satisfies (C2) and let ¢ > 0 be as in (C2). If
J € X(I)pte, withm > 1, then
(1) T satisfies (C2) with the same value of c2 (hence V; satisfies (C2)).
(2) If n > 1+ ord;(2) and if Vi satisfies (C3), then Vj also satisfies (C3). If the

groups Homp, (g, ((VJ):: , ((VJ)::)* (1)) = 0 vanish for all v | p, then V; satisfies
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(C4).
Proof. (1) Put C; :=Im (O[Gk] — Endp (Ts)). Under the isomorphism

Endp(Ty)/n?*! = Endo(Ty/72+) = Endo(Tr/72+!) = Endo (T7) /2!

C; (mod 7°2*1) corresponds to Cr (mod 7°2*1). As 7*2Ende(Ty) C C; by assump-
tion, we have

7TC2EndO(TJ) cCCy+ 7Tc2+1EndO(TJ).

Nakayama’s Lemma then implies 7°2Endo(Ty) C Cj.
(2) As V7 satisfies (C2) and (C3), Hompjg,)(T1,T7(1)) is a free O-module of rank
one. In the exact sequence
0 — Homoya,)(Tr, T} (1)) /7™ —Homoyg,)(Tr/x™+2, T5 (1) /x"+2)
1r"+c
~Extb (T, TH ()= -+

the Ext! term is killed by 7° ([Cu-Re, Thm. 29.4]), and the same is true if T} is
replaced by Ty (by (1)). Using the isomorphism

7 : Homopyg,)(Tr /™12, T (1) /a"°2) = Homgpg, (Ty/m™re2 T3(1)/7™+e2)

we see that there is a non-zero element o0 € Hompyg,)(T7,T7(1)) such that 7°(ay
(mod 7™*2) corresponds to m°2(a (mod (7™*¢2) under the isomorphism v. As V;
satisfies (C2), o induces an isomorphism e : V; — V(1) such that a%(1) = eay for
€ = £1. Since aj(1) = —ay, the definition of a implies that € = —1 (mod 7™) = -1
(mod 27), hence ¢ = —1. If Homp,c,)(Vs)E, (V)E)*(1)) = 0 for all v | p (for
example, this is always true if (V;)F are of the form described in 2.1.6(ii) (“Pan&iskin’s
condition”)), then a; induces injective maps

oF, : (Vo)s = (VDI) (D).
Counting dimensions, we see that all maps afv are isomorphisms, which means that
V; satisfies (C4).
(2.3.9) LEMMA. Assume that Vy satisfies (C1'), (C2 ) and (C3). Then
1 H,, (Go, A7) =0, 7 (HY(Ge, 49)/Hyp (G, Ar)) = 0
for allv € Sy, v{p (where d = dimp, (V1) ).
Proof. H (G, Ay)/HL,.(Gy, Aj) is dual to

Fr(v)=1

H,,(Gy, T3(1)) = (T;(1)") /(Fr(v) = 1) = (43(1)") = H%(Gy, A5(1))

(as Fr(v) — 1 acting on V* < V¥(1)% is an isomorphism). Multiplying a;(T;) by a
constant, we may assume that o (Ty) C T7(1) and as(Ty) ¢ 7T;(1), which implies
that 7°2T5(1) C as(Ty). It follows that the module M defined by

0— M — A;25A4%51) — 0

is killed by 7°2. As 7¢ H%(G,, As) = 0, ne1*°2 kills H(Gy, A%(1)). Writing

0— Vi/rhk 5 A 5N, —0
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(with N, finite) and (again) using the fact that Fr(v) — 1 acting on V}* = V(1)
is an isomorphism, we get
H},(Gy, Ay) = A7 [(Fr(v) — 1) = Ny /(Fr(v) — 1).
This is an O-module of length equal to
fo (Nu/(Fr(v) — 1)) = £o (NE"=1) = bo (HO(Go, A1) < c1d,

hence killed by 7°1¢ as claimed.
(2.3.10) THEOREM. Assume that Vy satisfies (C1)-(C4) with constants cy,ca in
(CI'),(C2). Putd=dimp, (Vi) and let c3 > 0 be an integer such that w° kills

II(Gk,s, Ar; A) = H}(Gk,s, Ar; A) [or H} (G5, V13 A).

Let J € X(I)p, withn > (d+3)c1 +4ca +20rd,(2) +1+c3 and assume that V; satisfies
(C4). Then

dimp, H}(Gk,s,Vi; A) — HY(Gk,s, Vs A) > 0

is an even integer.

Proof. By Theorem 2.3.7 and Lemma 2.3.8, V; satisfies (C1)—(C3), with the same
constants ¢1, ¢z in (C1'),(C2'). Adjusting as as in the proof of Lemma 2.3.9, it follows
from the condition (C4) for V; that

(2.3.10.1) 7 (T)F) (O Cas (T)3)

for all v | p. The local conditions for M = Ker (ay : Ay = A%(1))

0 veESy vip
+ M) =
Uv ( ) { Céont(Gv’Mn (AJ);';-) v ,p'

define a Selmer complex RL* 7(Gk,s, M;A) sitting in a distinguished triangle
RT;(Gk,s,M;A) — RT; (G5, A7 A)“HRT; (G 5, A5(1); 4)

The dual local conditions A*(1) for T';(1) are given by

Cc.ont(Gv’TJ) vE Sf’ ’Ufp

Ceont(Go, (T7)0)"(1) v|p.
It follows from 2.3.10.1 that there is a distinguished triangle

UF(T3() = {

RT'f (G5, A5(1); A) — BT (G5, A5(1); A*(1) — €D Cione(Go, As) @ C°
ues,
vtp

with 7°2H?(C*) = 0 for all g. Combining the two triangles and using Lemma 2.3.9,
we deduce that the kernel (resp. cokernel) of the map
(ag)s : HHGrk,s,As; A) = HX (G5, A5(1); A*(1))

is killed by 7¢1t¢2 (resp. by w(d¢+leitez) The pairing 2.2.5 (non-degenerate up to
2-torsion)
II(Gk,s, As; A) x II(Gk,s,A7(1); A*(1)) = F, /O
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then induces via id x ()« a skew-symmetric pairing on I(Gk s, As; A), with kernel
killed by 2r(d+2)ert+dez Tt follows from the theory of symplectic spaces that there is
an exact sequence of finite O-modules

0—Y({J)— Z(J)® Z(J) — II(Gk,s,A5;A) — 0
with 4r(d+2eitdezy (J) = 0. Put r(J) := dimp, 171;, (Gk.,s,Vs;A). Then

F,/oy D & (Z(0) @ Z(J)) /Y (J)

H}(Gk,s, A5 Q)
A) = (F,/0)D e (2(I) e 2(1) /Y (1)
7,

H}(Gk.s,AnA)
In the isomorphism of Theorem 2.3.

HY(Gx,s5,47; A)gn-er == H} (G k5, A1; A) gn-cr,

=
=

the right hand side is isomorphic to
(Ofnn—e (’))T(I) ®K, 73K =0
and the left hand side is isomorphic to

(0/a=0)"™ " @ (Z(J) ® Z(1)/Y (1)) go-es -
This implies that
r(I) — r(J) = 2 x (number of generators of the O-module 4r{d+2e1tdcates 7( y)
is even as claimed.
3. Selmer groups in Hida families.
(3.1) The notation is as in 1.3; in particular, ¢, and i are fixed.

(8.1.1) Let f be a normalized newform on I’y (IV) of weight & > 2 and character
x- We assume that

e f is ordinary at p.

e k> 2is even.

e ptcond(x).

Under these assumptions, the two cases (i), (ii) of 1.3.5 boil down to

Case (I):p{ N.

Case (I): p|| N, k =2, a2 = x(p).

We say that we are in the exceptional case (a subcase of (1)) if p || N, k& = 2,
a, = x(p) =1.

(3.1.2) Let V be the two-dimensional Fy-representation V=M, (k/2) =V (f)(k/2)
of Gg,s (where S consists of primes dividing pNV and o0). As in 1.3.4, we have

AV S RO, Ve V.

(3.1.3) LEMMA. For every finite extension K/Q and every mon-archimedian

primevtp of K,
H. (G,,V)=0, HYG,,V)=HG,,V*(1)=0 fori=0,1,2.

Proof. V is pure of weight —1. This means that, for every v { IV, all eigenvalues of
Fr(v)geom On V have absolute values (Nv)~'/2, hence H%(G,,V) = H(G,,V*(1)) =
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0. If v | N, then results of [La], [Ca] imply that both spaces V', V*(1)% are either
zero or Fr(v)geom acts on them with weights less than zero, showing that H(G,,V) =
H°(G,,V*(1)) = 0. The rest follows from Tate’s local duality H*(G,,V*(1)) =
H?7%(G,,V)* and Euler characteristic formula ¥2_(~1)dim H¢(G,,V) = 0 (and
dim H. (G,,V) = dim H°(G,,V)).

(3.1.4) V is reducible as a representation of Gg,; we have a short exact sequence
(3.1.4.1) 0—=Vt—V—=V" —0

with V¥ = F£M,(k/2) in the notation of 1.3.5. Both Vi are crystalline represen-
tations of Gq,. The filtered module Dm-s(Vp*) = H O(GQP,Vpi ®q, Beris) is one-
dimensional over F},, with crystalline Frobenius f acting by the scalar a,p~*/? on
V* and B,p~%/? = x(p)oy'p*/>! on V~. We have griDar(Vi¥) # 0 if and only
if i = —k/2 for V¥ and i = k/2 — 1 for V7, so the exact sequence 3.1.4.1 satisfies
Pantigkin’s condition (2.1.6 (ii)).

(3-1.5) The subspace H}(Gq,,V) C H'(Ggq,,V) can be described fairly explic-
itly. Let us first analyse

Case (I): pt N.

This implies that V' is a crystalline representation of Gg,. In fact, for k& > 2,
every extension of A by B(k — 1) with A, B unramified (such as M, = V(—k/2)) is
automatically crystalline ([Bures, Exp. IV, Prop. 3.1]). If £ = 2, then V C V,,(J1(N))
and J; (N) has good reduction at p. Both a,p~*/2, 8,p*/? have absolute values p~1/2,
hence

(3.1.5.1) Deris(W)=! = Deris(W*(1))/=1 =0, W =V,VE

This is still true if Gq, is replaced by Gk, , for a finite extension K,/Qy. As a result,
we get from 2.1.6

H}(Gk,,V) = H,(Gk,,V) =Im[H'(Gk,,V,") - H'(Gk,,V)]
HO(GKu7W) = HO(GK::’W*(]')) = 0’ W= V7 ‘/1,):&'

(3.1.6) Case (I): p || N, k = 2, a2 = x(p).

In this case, V' C V,(Ji(N/p;p)P~™¢"), where Ji(N/p;p) is the Jacobian of
X1(N/p;p) and J1(N/p; p)P~ ™ is its quotient by the image of

(s,t") : 1(N/p) x J1(N/p) = J1(N/p; p).
It is known that J; (IV/p; p)?~"** has completely toric reduction at p ([De-Ra]), which
implies that V' is not crystalline. The quotient V" is unramified, with Fr(v)geom acting

by the scalar ap, and V;F — V,7(1) : in the exceptional case, Gg, acts trivially on
V, and V is a Kummer extension

0 — F,(1) —V —F, —0

with extension class ¢ € H'(Gq,,Fp(1)) = QF ®F, such that ¢ ¢ Z;‘@)Fp. For
example, if x = 1 and f has coefficients in Q, it corresponds to (the isogeny class of)
an elliptic curve E/Q with ordinary reduction at p. The exceptional case occurs iff
E has split multiplicative reduction at p, in which case ¢ = gr ® 1, where ¢ € Q¥
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is Tate’s multiplicative period of E/Q, : E(Q,) = @; /d%. In the exceptional case
(Vy- =V, (=1) = F), there is an exact sequence

0 — H°(Go,, Fy)-Q} 8F, 3 HY(Ga,, V) H) (Ga,, Fy) -5 H2(Ga,, Fy (1)
—H 92 (GQP’ V)
with 8(1) = q. The groups H} are defined in [Fo-PR, 1.3.3.3]; for a semistable rep-

resentation W this H} coincides with that of [Bl-Ka] and H;(Gg,, W) is dual to
Deris(W*(1))7=1. The dual extension

0— Fp(1) —V*(1) — F, — 0

has extension class equal to ¢~ It follows that the map Depis(Fy (1)) — Deris(V*(1))
is an isomorphism, hence H} (Gq,, V)= H}(Gg,, V) by 2.1.6 (i). The group Hz(Gqg,, V)
vanishes, as Deris(V*(1))/=! = Depis(Fp(1))/=' = 0. Both groups H}(Gq,,F;),
H}(Gq,,F,(1)) = H?*(Gq,,F;(1)) are isomorphic to F, ([Bl-Ka, Ex. 3.9]), which
implies that @ is an isomorphism and § = 0. Putting everything together, we obtain
an exact sequence

0 — F, — H'(Gq,,V,") — H}(Gq,,V) — 0.
If not in the exceptional case, then 3.1.5.1 holds again, which implies that
H}(Gq,,V) = Hy(Gq,,V) = Im[H'(Gy,, V,F) = H(Gq,, V)]
H%(Gq,, W) = H%(Gg,, W=(1)) =0, W =V,V}E

(3.1.7) The local calculations from 3.1.3-6 can be summed up as follows; for
K/Q finite, consider local conditions

Wv:{ H! (G, V) veSsuip
H{(G,,V) wvl|p
corresponding to H} (K, V) := S(K,V; W), resp.

0 vESsvtp
Coont(Gv, VF) vlp
Coont(Gv, V) v ESsutp
Coont(Gv, V) vlp

(S contains primes dividing pN and co0). Then W, = 0 for v { p. It follows from
(2.3.6.1) that,

In Case (1), H}(Gk,s,V;A) = H}(K,V).

In Case (II), in the exceptional case, there is an exact sequence

vz ) ={

vy )= {

0 — F, — H}(Go,s,V;A) — HHQV) — 0,
otherwise, ﬁ}(GQ,s, ViA)=HHQV).

(3.2) For the rest of Section 3, the notation is as in 1.4. In particular, p > 3
(with the exception of 3.4.1-3).
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(3.2.1) Let g be a p-stabilized ordinary newform of tame level IV, with trivial
character x = 1 and even weight ky > 2. Then either

Case (I): g = fO is the p-stabilization of a newform f on I';(N).

Case (II): g = f is a newform on I'y (Np), ko = 2,a, = £1.

(3.2.2) As in 1.4.7, g = g, is an element of a p-adic family of p-stabilized
newforms gy, of weight k on I'; (Np) for all k > 2, k = ko (mod p¢). Assuming that
F, is big enough in the sense of 1.4.4, each g; corresponds to an arithmetic point
Pr € Xo"t"(R) of a fixed local factor R of h37¢. The character of g is equal to
xx = xw*w™k = w*o~k In particular, for k = ko (mod (p — 1)p°), k > 2, we have
again either gr = (fx)? or gx = fr for a newform fj (the latter possible only if k = 2).
The tame part 9 (resp. the wild part €) of xw*® =2 is equal to ¥ = w¥o~2 (resp.
€ = 1). this implies that each Py lies above (P;) = (2(y) — v*~2) € Spec(A) and that
the invariant a € Z/(p — 1)Z from 1.5.2 (iii) is equal to a = kg — 2 (mod (p — 1)).

(3.2.3) Let T(R) be the big Galois representation of Gg,s from 1.5.1. In order
to apply 1.5.2,4 we need the following

Assumption. If kg = 2 (mod (p — 1)), then ps, has an irreducible residual
representation.

The action of a € ZX on T(R) satisfies < a >an= w(a)*~* < k(a) >4, where
& denotes the projection of Z to 1 + pZ,. Define a twisted Galois representation

T=“T(R)< -1/2>”

as follows: as an R-module, T = T'(R). The action of g € Gg such that xcyci(g) =
a € Z} is given by the action of g on T(R) followed by w(a)' =%/ < k(a)™/2 >,

(morally, this is “< a >;11b/ 2”). The skew-symmetric bilinear form

(, o) : T(R) xT(R) — A<1>(1)
defines a skew-symmetric pairing
(,yr:TxT— AQ1)
which induces an isomorphism
T = T*(1) := Homy (T, A) (1) = Hompg, (T, wg) (1).
It follows from 1.5.2,4 that there is an exact sequence of R[Gq,]-modules
0 —Tt—T—T" —0
with T# = “T(R)* < —1/2 >".

(3.2.4) For k = ko (mod (p — 1)p°), k > 2, let V(fi) be the Galois representa-
tion associated to fr. We know from 1.5.5 that the specialization of T'(R) at Py is
isomorphic to

(T(R)/PT(R)) ®0 Fp, — V(fi)* — V(fi)(k - 1).

Recall that we transform Dirichlet characters into characters of Gg by using geometric
Frobenius elements (1.3.4). This forces us to adopt the same convention for p-adic
characters, namely [k](Fr(€)geom) = %(£). This implies that xcyer = [£]7}{w]™?, since
chcl(Fr(e)geom) =¢1= ;g(l)—lw(é)"l,



ON THE PARITY OF RANKS OF SELMER GROUPS 471

As < k(a) >a= k(a)*~2 (mod Py) for all a € Z, it follows that the specializa-
tion of T' at Py, is isomorphic to

(TIPAT) @0 By 5V (fu) (k=1) ® [/ @ (27 =V (1) @ b/ 4] @ [s)
\ (ko—E)/2(p—1)
~V()(k12) ® W = V()2 m () |
In particular, for k£ = ko (mod 2(p — 1)p°),

(T/PrT) ®0 F, = V(fi)(k/2).

Similarly, the specializations (T*/P;T*) ®o F, are then isomorphic to the F,[Gg,]-
modules V£ from 3.1.4 (for f instead of f).

(3.3) Theorem A

(3.3.1) THEOREM A. Let fi be the family of newforms as in 3.2.2. If kg = 2
(mod (p — 1)), assume in addition that V(fr,) has an irreducible residual representa-
tion. Then there is an integer n > ¢ such that for every k = ko (mod 2(p — 1)p™),

dimg, H}(Go,5, V(fro) (k0/2); A) — dimp, H}(Gao,s, V (fr) (k/2); A) > 0

is even (where the local conditions are as in 3.1.7).

Proof. We apply Theorem 2.3.10 to the big representation T' of Gg,s and to its
specializations at I = Py,, J = Pr. We must check the assumptions: First of all,
T+ is free over R by Prop. 1.5.2(iii) and 1.5.4. The representation Vy = V (fx)(k/2)
satisfies (C1) by Lemma 3.1.3, (C2) by [Ri 1, Thm. 2.3], (C3) by 1.3.4. The condition
(C4) follows from Lemma 2.3.8 (2) (or from (1.3.5.2)).

(3.3.2) COROLLARY. Putey =1 if fy, is in the exceptional case, e = 0 otherwise.
Then

Eko + dimp, HF (Q, V (fxo) (ko/2)) = dimp, H} (Q, V (f)(k/2)) + &  (mod 2)
whenever k = ko (mod (2(p — 1)p™)).

Proof. Use 3.1.7.

(3.4) Theorem B and Theorem C

(3.4.1) p-adic L-functions

Recall the basic properties of p-adic L-functions of modular forms, after Mazur-
Tate-Teitelbaum [Ma-Ta-Te]: let f = > ., a.q" be a newform of weight k& > 2
and character € on I'1(INV). Fix a root a of X2 — a,X + e(p)p*~! = 0 satisfying
ordp(a) < k —1 (with the convention that e(p) = 0 if p | N). The p-adic L-function

x — LYTT(f.x)

constructed in [Ma-Ta-Te] is a function of continuous characters x : Z; — C
satisfying the following interpolation property:

Lya " (f,379)

a
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where j = 0,1,...,k — 2, ¢ is a Dirichlet character of conductor p”, G(¥) is the
Gauss sum associated to ¥, Loo(f,%,8) = D51 an¥(n)n™° and z : ZX < C) is the
inclusion map. -

Rather confusingly, this p-adic L-function has values in a certain module of pe-
riods, rather than in C,, as the value of the complex L-function is not divided by a
complex period. For s € Z, one often writes LM TT(f,x,s) for LM 'TT(f,xK*). The
case p = 2 is allowed in [Ma-Ta-Te] & then denotes the projection from Z3 to 1+4Z,.
If the form f is ordinary, there is only one choice of o, namely a = «;, in the notation
of 1.3.5; it is often omitted from the notation.

(3.4.2) Assume that k is even and ¢ = 1. In this case the p-adic L-function
satisfies a particularly simple functional equation [Ma-Ta-Te, Sect. 17]:

(3421)  LyIT(£,a2 71, 5) = wp (Y (- QK@) Ly T (£,*/2 1y —s),

where 9 is as above, w,(f) = %1 and @ denotes the largest positive divisor of N
prime to p. Putting

Apalf,s) = k(@) Ly (£,2*1 s ~ k/2),
the functional equation implies that
Apa(f,8) = wp(f)Ap,a(f k —5).

The value at the centre of symmetry of the functional equation is equal to

_ k/2—1 k/2—1
LMIT(f, gb11) (k)2 = 1)! (1_ e(p)p ) (1_;0 a )Loo(f,k/2)-

(—2mi)k/2-1 a

(3.4.3) We now restrict our attention to ordinary forms. Changing notation,
assume that p { N and let g be an ordinary p-stabilized newform of weight k¥ > 2
and character € on I';(Np"), 7 > 1. Then either g = f is a newform on I'y(Np"),
r > 1, or g = fO0is equal to the p-stabilization of a newform f on I';(/N). In either
case, ap(g) = ap(f). Greenberg-Stevens [Gr-St] use a slightly different normalization
of p-adic L-functions, namely

LMTT(f ¢Rs—1)
GS sy __ P )
Lp (g)'l)b"“’ ) - ngn(¢) )

f
with v as in 3.4.1 and suitable periods Q}E € C* of f. As before, the function on the
L.H.S. will be denoted by Lfs(g, ¥,s). If k is even and € = 1, put

Lﬂ(fr 3) = Lgr'S(g7wk/2—1 ’ S).

(3.4.4) Two-variable p-adic L-functions

Assume now that p > 3 and that we are in the situation of 3.2.2. There is a
two-variable p-adic L-function interpolating the p-adic L-functions of the forms fj
([Gr-St], [Ki]). In the notation of [Gr-St] (omitting the variables ®, ), this function
Lfs (k,v,s) depends on k € ko + p°Z, and %, s as in 3.4.3. Its main properties are
the following ([Gr-St, Thm. 5.15, Cor. 5.17]):

(1) L,C,’S(k, ¥, s) is analytic in (k, s) € (ko + p°Zy) X Zyp.
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(i) If k € ko +p°Z, is an integer, k > 2, then Lfs(k,d), s) = CkaS(gk,'gb, s) for
some Cy, € CJ.

(iii) LGS (k,v,s) = —up~H(=N)k(=N)*/2=2 LGS (k,who 24~ k—s), where u? =
wk°'2(—N).

Put
Ly(k,s) = LGS (k,w*/?71 5)
Ap(k,5) = K(N)*/*Ly(k, 5)

Then (iii) implies that
Ap(k,s) = wpAp(k,k—s)

with wp = 1. Comparing with (3.4.2.1) — with IV playing the role of Q — we see that,
for every integer k > 2, k = ko (mod (2(p — 1)p°)), we have

wp(fk) = Wp, Ly(k,s) = CxLp(f,s)

and
E/2 - 1)! Loo(fr,k/2 -
B k12) = O e B P, = e

- where the Euler factor is equal to

pk/2—1>bk - { 1 if gr=fr
ap(fs)) 2 if gr=(fr)°
It follows from [Ma-Ta-Te, Prop. 15] and 1.3.5 that the Euler factor Eul; vanishes

iff we are in the exceptional case (in the language of 3.1.1). The vanishing of Euly is
sometimes referred to as a “trivial zero "of L,(fx, s).

(Buly) = (1 -

The value of wy, is related to the sign in the archimedean functional equation

Aoo(fk:8) = Woo (fi) Ao (fr, k — 8)
by

—1 in the ezceptional case

wp(fe) = weol ) % {

ie. wp(fr) = Woo(fi)(—1)* ([Ma-Ta-Te, Sect. 18).
(3.4.5) Write w, = (—1)¢ with e, =0 or 1. It follows that the function

Lp(k, 5)
(s — k/2)er

1 otherwise

F(k) :=

s=k/2

is analytic for k € ko + p°Z,. A variant of conjectures formulated in [Gr 2] says the
following;:
GREENBERG’S CONJECTURE. The function F(k) is not identically zero.

Equivalently, for all but finitely many k € Z,k > 2, k = ko (mod (p — 1)p°), we
have ords—x/2Lp(fk,s) = ep. This conjecture is known when fp, is a modular form of

weight 2 corresponding to an elliptic curve E over Q with complex multiplication for
which e, = 0 ([Gr 1], [Ro]).
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(8.4.6) As before, let k = ko (mod 2(p — 1)p°), k > 2. We recall some of the
known results relating behaviour of L,(f, s) at the central point s = k/2 and Selmer
groups of Galois representations Vi := V(fx)(k/2).

(1) [Ne 2, Thm. C,D] Assume k > 2 (hence f, is a newform on I'g(N),pt N).
(i) If ords—g/2 Lp(fk,s) = 1 then dimeH}(Q, Vi) =1.

(i) If L,(fx,k/2) # 0 and if there is an imaginary quadratic field K = Q(v/'D)
with odd discriminant D < 0 such that all primes dividing pN split in K and

D
0rds=k/2LP(fk ® (—)73) =1

then H;(Q, Vi) = 0.

(2) [Ka] If Ly(fx,k/2) # 0, then H;(Q, Vi) = 0. In fact, Kato has announced a
proof of the inequality

dime H}(Q7 Vk) < 0rds=k/2LP(fk7 S)

even without the ordinarity assumption.
(3.4.7) THEOREM B. Under the assumptions of Theorem A, Greenberg’s Con-
jecture for Ly(k,s) implies that

dimp, H} (QViy) =ex (mod 2),

where s = €p + €, (mod 2) is such that woo (fr,) = (—1)%.

Proof. Choose k = ko (mod 2(p — 1)p™), k > 2,k € Z for big enough n. Green-
berg’s Conjecture together with 3.4.3 imply that

dimFyH}(Q7 Vk) = Ords:k/2LP(fk7s) = €p.
By Theorem A,
dimFyH}(Q, ng) = dimppH}(Q, Vi) + Eky = €p + Eky (mod 2)

(we have g = 0, since k > 2).

(3.4.8) THEOREM C. Let E be a modular elliptic curve over Q with ordinary
reduction at a prime p > 3. Assume that the p-torsion E,(Q) is an irreducible F, [Gg)-
module and that Greenberg’s conjecture holds for the two-variable p-adic L-function of

E. Then
dimg (E(Q) ® Q) + corkz III(E/Q) = ords=1Loo(E,s) (mod 2).

Proof. By modularity, E corresponds to a cusp form f of weight &y = 2 on
T'o(V) with rational coefficients. The form f is ordinary iff E has ordinary reduction

(possibly bad) at p. The p-torsion E,(Q) is a residual representation of Vi, = V,(E).
Apply Theorem B.

(3.4.9) The parity statement of Theorem C has been proved in the following
cases:

Unconditional results:

(1) E:y?=2%~Dxz (resp. E: 2°+y® = A), p = 2 (resp. p = 3) (Birch-Stephens
[Bi-St]).

(2) E is modular and ords=1Le(E,s) < 1; in this case dimg (E(Q) ® Q) =
ords—1 Loo(E, s) and III(E/Q) is finite (Kolyvagin [Ko 1]).
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(3) E has complex multiplication and ordinary reduction at p > 3 (Guo [Gu],
who also proves Theorem A for some modular forms of higher weight with complex
multiplication).

(4) E is modular and either p = 2, or E,(Q) is a reducible F,[Gg]-module
(Monsky [Mo]).

Conditional results:

(5) E is modular, p > 2, the Galois representation Go — Autogz,(Tp(E))
is surjective (where @ = End(E)) and the higher Heegner points satisfy a suitable
non-degeneracy conjecture (Kolyvagin [Ko 2]).

(6) E is modular with split multiplicative reduction at p > 3, weo = —1 and a
variant of Greenberg’s conjecture holds (Greenberg [Gr 3]).

(3.4.10) The results of Greenberg [Gr 1] and [Ro] on Greenberg’s Conjecture
for elliptic curves with complex multiplication and e, = 0 give one instance when
Theorem C gives an unconditional result. However, this case is already covered by (3)
above.

(3.5) Theorem A’ and Theorem B’

(3.5.1) In the situation of 3.2, we can also consider specializations of T' at more
general arithmetic points. Using the notation of 1.4.7, fix an arithmetic point P €
%9rith(h(K)) and denote by P = pr~(P) € X97*(R) its preimage in R. Alternatively,
we can forget P and simply fix P € X¥°"®*(R) containing the minimal prime ideal
q = Ker[R — h(K)] of R.

(3.5.2) Let us compute the Galois representation T/PT. First of all, P lies
above (Py,.) € Spec(A) for some integer k > 2 and a character of finite ordere : I' —
OX*. By 1.4.7, P corresponds to a p-stabilized ordinary newform fp of weight k£ and
character xp = ew® =%, As < k(a) >ap= e(a)k(a)*~2 (mod P), the same calculation
as in 3.2.4 shows that

Vip) 1= (T/PT) ®0 F, 5V (fp)" ® [6*/271 @ ['/26*/>71]
V() (k - 1) ® [xp w216l 2k /1)
= V(fp) @ o™/ 2k 4222
(as p # 2, /2 : T — O is well defined). If k is even, we have
Vip) = V(§p)(k/2) ® [w~F0)/2e71/2),

As (wk=k0)/2g=1/2)2 = =1 it makes sense to denote w(k=k0)/2g=1/2 by w1/ »
hence
(3.5.2.1) Vie) = V(f2)(k/2) ® (5% ).

If the Fourier expansion of fp is -5 an( fp)q” then »° 5, ¢ Xpl/ 27 (n )an( fp)q™ is
the Fourier expansion of a Hecke eigenform fp on some To(Np™) (i-e. Fp has trivial
character). The formula (3.5.2.1) then becomes

Vip) = V(fp)(k/2).

This representation is self-dual in the usual way: Vip] — V[’;,](l).
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(3.5.3) From now on, P is fixed and we assume that the weight & of fp is even.
We have the following Galois representations associated to T':

T* =Homa(T,A),  (T*)* =Homa(TF,A),  A* = Homo cont(T, Fy/O),
A =Homo cont(T*, Fp/0),  A* = Homo cont(T*)F, F,/O)
and also various specializations

Ty =T (T/PT — Vi), Ty =T*/PT* CTipy, ity =Ty 0 Fy C Vi,
Ap =Vim/Tie, Ay = Vi) /Ty

The isomorphism T -~ T*(1) defined by the pairing ( , )7 : T x T — A(1) induces
isomorphisms

(3.5.3.1) T =5 (THE(1), A A*(1).

As in 2.2, we consider Selmer complexes, this time for “big Galois representations”
X =T,A of Gg,s, where S = {£| pN} U {oo}. All cochains will be continuous with
respect to the m-adic topology on T',T*,T* and the discrete topology on A, A*, A*.
The local conditions will be given by

0 v#p, vESy
C;ont(GQp’X-'-) v=p

Identifying X*(1) with X as in (3.5.3.1), the dual local conditions become
C;Ont(GQ‘u’ X) VED,VE Sf
Czont(GQan+) v=p

(one can make the local conditions at v # p also self dual, but it is irrelevant for

our purposes). For the specializations X(p) = Tip), Arp), Vip) we use the same local
conditions

A vre =

AN UFX) = {

0 v#p,vESy
cc.ont(GQp?X['-'}-D]) v=p

In this case, the above formula for A}(1) will be true up to a finite error term.

(3.5.4) Recall that an R-module M of finite type is pseudo-null if Supp(M) has
codimension > 2 in Spec(R). As dim(R) = 2 and R/m is finite, this is equivalent
to M being finite. We shall ignore pseudo-null modules and work in the category
(R-mod)/(ps-null) which is obtained from (R-mod) by inverting all morphisms with
pseudo-null kernel and cokernel. Recall that, for every R-module of finite type with
P € Supp(M), there is a non-zero homomorphism M/PM — R/P.

(3.5.5) LEMMA. The canonical maps

Ay U (X)) = {

()  T*SrR/P — TH/PT* — T,
L

(27) TQrR/P — T/PT — Tip)
~ L ~ .

(i)  RU4(Gos,T;—)®rR/P — Rl;(Ge,s, Tipii—) (= = 4A,A%(1))

are isomorphisms in (i) D®(R-mod); (i), (iii) D®(R-mod)/(ps-null).
Proof. (i) T is free over R.
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(i) This was proved in 1.5.6.

(iii) Taking Cg,,;(G,—) commutes with tensor products with flat R-modules, for
a suitable definition of “cont” ([Ne3]). The statement then follows from (i), (ii) and
the fact that H*(G, M) is finite (and zero for i > 2) for G = Gq,s,Gq, and every
finite G-module M.

(3.5.6) Duality ([Ne 3])
Local duality: H (GQU ,T) e HomO,cont(Hz_i(GQu A (1))7 FP/O)

Global duality: _ .
(2) Homo cont(H:(Go,5,T5 A), Fp/0) = Hi {(Ggs, A*(1); A*(1))

(b) RT;(Go,s, T; A) — RHomg(RT;(Ggs, T*(1); A*(1)), wr)[-3] in
D'}t (R-mod) (this isomorphism being suitably skew-symmetric).
(3.5.7) PROPOSITION. The canonical map

H}(Gas,T;-)/P — H}(Gos, Tpis =) (= = A,A°(1)

is an isomorphism in (R-mod)/(ps-null).
Proof. Lemma 3.5.5 (iii) boils down to a spectral sequence

E2; = Torf(R/P,H;?(Go,s,T;-)) = H; " (Gq,s,Tip); ~)
in (R-mod)/(ps-null) which gives an exact sequence
(3.5.7.1) 0 — Ef _, — H}(Ga,s,Tip;;—) — Ef _3 — 0.
However, global duality 3.5.6 implies that

Homo cont (H(Ga,s5,T; =), Fy/0) <> HY(Ga,5, A*(1); (<)*(1)

is a subgroup of H%(Gg, A*(1)) = H°(Gg, A), which is dual to Ho(Gg,T). The
representation Vp) has weight —1, hence Ho(Gq,T)/P is finite and (E _3)p = 0. As
Supp(E} _3) C {P,m}, E} _; is pseudo-null. We conclude by (3.5.7.1).

(3.5.8) PROPOSITION. For every prime v € S, v # p,
H°%Gq,,T)=0,  H'(Gq,,T)p = H*(Gq,,T)» = 0.
Proof. Lemma 3.1.3 applies to Vjp| (as k is even), hence HO(GQU,T['p]) = 0,
and H°(Ggq,,T) = 0. By the same argument, the P-torsion in H°(Gg,, A*(1)) =
H%(Gq,, A) is finite, hence H*(Gq,,T)/P is finite by local duality. This implies that

H%*(Gq,,T)p = 0 (cf. the remark at the end of 3.5.4). For H', consider the spectral
sequence in (R-mod)/(ps-null)

B2, = Tot’(R/P, H™H(Gq,, T)) = H™9(Gg,, Tipy).-
In the exact sequence
0— Eg,—l — Hl(GQv,T['p]) — E'f’__2 — 0

the middle term is finite (again by Lemma 3.1.3), and so Ej _; = H*(Gq,,T)/P must
be finite, too.
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(3.5.9) CorROLLARY. The canonical map
Ry (Go.s,T; &) — Ry (Go,s5, T; A (1)
induces isomorphisms on localizations ﬁ}(GQ,S,T; A)p = ﬁ}(GQ,s,T; A*(1)p.
Proof. This follows from Prop. 3.5.8 and a distinguished triangle
RL';(Gg,s,T;A) — RT;(Gg,s,T;A*(1)) — P R(Gq, , T).

vESy
v#p

~ (3.5.10) The global duality 3.5.6 gives a spectral sequence in (R-mod) (with all
E3? of finite type over R)

E’;’j = Ext%(ﬁﬁ'j(GQ’s,T; A*(1)),wr) = f‘j?-j(GQ,S:T; A).

We shall localize this sequence at P. As Rp is a discrete valuation ring, there is
an isomorphism (wg)p = wg, — Rp, well-defined up to a unit in Rp (the exact
normalization is irrelevant). The localization gives an exact sequence (using Corollary

3.5.9)
0 — Extk, (Np, Rp)->+Np — Homp, (H}(Gq,s,T; A)p, Rp) — 0,

where N = ﬁ?(GQ,S,T; A). This is an R-module of finite type; denote its torsion
submodule by M = Torsg(N) (z € N-is torsion iff rz = 0 for some r € R which is
not a zero-divisor) and put @ = N/M. As Mp = Torsg, (Np), the exact sequence of
Ext’s associated to

0— Mp — Np —Qp —0

implies that the canonical map
EXt}%‘p (NP, R’P) - EXt}?‘p (M'Pa RP)

is an isomorphism (@7 is torsion free, hence free over Rp). This implies that a induces
an isomorphism

o' : Exty (Mp, Rp) — Torsg, (Np) = Mp.

The Rp-module M7 is killed by some r € Rp, r # 0. The sequence
0 — Rp~—Rp — Rp/rRp — 0

gives an isomorphism

Homp, (Mp, Rp/rRp) — Exty_ (Mp, Rp)
which, combined with o/, yields an isomorphism

Hompg, (Mp, Rp /rRp) — Mp
which is skew-symmetric, i.e. comes from a skew-symmetric bilinear form
Mp x Mp — Rp/rRp

(by skew-symmetry of the global duality isomorphism). The residue field of Rp has
characteristic zero, which implies that the form is alternating. Standard structure
theory of symplectic modules of finite length over discrete valuation rings implies that

Mp S XX
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for an Rp-module X of finite length.

(3.5.11) LEMMA. Let A be an integral domain and I C A a prime ideal such
that the localization Ay is a discrete valuation ring. If Y is a torsion-free A-module
of finite type, then

rkA/I(Y/IY) = rkA(Y)
(recall that tk4(Y) = dimg (Y ® 4 K), where K is the fraction field of A).

Proof. The localization Y7 is a torsion-free A;-module of finite type, hence free
of rank n. Then '

tka/ (Y/IY) = dimy, /14, (Y7/IY]) =n
dimK(Y ®A K) = dimK(Y1 D4, K) =n.

(3.5.12) PROPOSITION.

tkp/p(N/PN) =1kp/q(Q/9Q) (mod 2).
Proof. Recall that q = Ker [R — h(K)], R/q = h(K). We have
rkr/p(N/PN) = tkg/p(M/PM) + rtkg/p(Q/PQ),
as @Qp is free over Rp (of course, R/P = O). However,
rkR/p(M/'PM) = dimR—p/’PRp (Mp/pMp) =2 dimR,,/pR,, (X/PX)
is even and
rtkp/p(Q/PQ) = rkr/q(Q/4Q)
by Lemma 3.5.11 applied to A = R/q,I =P/q=P and Y = Q/qQ.

(3.5.13) THEOREM A'. In the notation of (3.5.1-2) — in particular, if ko = 2
(mod (p — 1)), assume that V (fx,) has an irreducible residual representation — for
every P € X7 (R) containing q and such that fp has even weight,

dimp, H}(Go,s, Vip); A) = rkryq(Q/aQ)  (mod 2),
hence the parity of the L.H.S. does not depend on P.
Proof. The dimension on the L.H.S. is equal to
corkoH}(Ga,s, Appy; A) = corko H}(Go,s, A™(1)p); A* (1))
(by almost self duality of the local conditions; cf. proof of 2.3.10)
=tkoH?(Go,s,Tip;;A)  (global duality 3.5.6)
=rko(N/PN) (Prop. 3.5.7)
Now apply Proposition 3.5.12.

(3.5.14) Let us compare the group I?}(GQ,S, Vipy; A) and the Bloch-Kato Selmer

group H}((Q), Vip)). First of all, Lemma 3.1.3 still holds for V' = Vjp, thus the local

conditions for both groups vanish at all primes v € Sf,v # p. As a representation of
Gq,, there is an exact sequence

0 —=V,f —V—V, —0,

with (V)" (1) = V¥ by self duality of V. Each V;E is a twist of a crystalline
representation by “X,—,ll 27 Note that “X;I/ 29 = y(k=ko)/2¢=1/2 ig ynramified iff
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“x;l/ ?» = 1 (which is equivalent to k = ko (mod 2(p — 1)) and € = 1). In this
case, results of 3.1.6-7 apply. Assume that “X,_,l/ 27 £ 1. Then neither of V;,:': is a
crystalline representation of Gg,, hence

Deris(ViE) = Deris(V) = HY(Gq,, ViE) = H%(Gq,,V) = 0.

The representation V' is potentially semistable (in fact is semistable over @y (up-) for

suitable 7), therefore de Rham. It follows from 2.1.6 and self-duality V = V*(1)
that

H}(GQP,V) = Hgl(GQp,V) = Im[Hl(GQP,V*‘) — HI(GQP,V)].
Combining with the results of 3.1.7, we obtain an exact sequence
(3.5.14.1) 0 — FEP) — HY(Go,s, Vipp; A) — HAQ,V) — 0,

in which £(P) = 1 in the exceptional case, and €(P) = 0 otherwise. The exceptional
case occurs iff k =2,e =1, k = ko (mod 2(p — 1)), and a,(fp) = 1.

(3.5.15) THEOREM B’. Letp > 3 be a prime not dividing N and f =), -, anq"
an ordinary newform of even weight k > 2 and character x~2 on I' (Np”),— where
cond(x) = p° (mecessarily with s = r, if x # 1). Then f= Y on>10nx(n)g" is a
newform of weight k on T'o(Np®") (resp. To(Np™)) if x # 1 (resp. x = 1). If the
tame part of x* is equal to w*=2, where w is the Teichmiiller character, assume that
V(f) has an irreducible residual representation. If Greenberg’s Conjecture holds for
the two-variable p-adic L-function of f, then

dimg H}(QV (f)(k/2)) = ordsmt s Loo(f, ) (mod 2).

Proof. Replacing ﬁp by a finite extension (and V(f) by its base change) we can
assume that F, contains all values of x. The form f - or its p-stabilization, if r = 0
— is then equal to fp and f to f‘p, for a suitable Hida family of the > type considered

in 3.5.1-2 and P € X" (R), P D q, “X1>1/2 " = . If x =1, then f is ordinary and
Theorem B applies. Assume that x # 1 (hence x is ramified at p). In this case

HYQV(f)(k/2)) = H}(Gq,s, V(f)(k/2); A)

by (3.5.14.1). Choose a p-stabilized newform fys corresponding to some P’ € Xo7ith(R)
containing q, of even weight k' > 2, with trivial character and such that e, =
ords=y /2Lp(fir, 8) < 1. It follows from Theorem A’ and 3.4.6 that

dimg H}(QV (f)(k/2)) = e, (mod 2).

It remains to show that wy( fkr) = (—1)° (the sign in the functional equation of

L,(f,8)) coincides with weof ), the sign in the functional equation of Lo (f ,s)
First of all, wy(fi') = wp = wp(f), by 3.4.4. The formula [Ma-Ta-Te, Sect. 17, Cor.2]
implies that

LYTT(f,a%270 x7,8) = ()" 2enx ™ (N)&(N) T LYTT (£, 24272, x 71, —s)

where ¢y is the eigenvalue of the Atkin-Lehner involution acting on f: f|Wn =
enXx 1(=N)f. Hence

wp(f) = (=2 enx ™ (=N).
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~

The archimedean sign we (f) is also equal to

Weo (f) = (1) %cnx ™ (=N)

by [Ma-Ta-Te, Sect.18, Rmk] (in their notation, ¢ = N, ¢' = p", ¥ = x, ¢ = x 7%,
=X, fy = f, 9=cnf). Theorem follows.

4. A-adic Selmer groups. In this section, we give an elementary approach to an
important special case of theorem A’, when the local component R of the Hecke algebra
is equal to the Iwasawa algebra A = O[[X]], using the A-adic Selmer groups and Tate-
Safarevi¢ groups introduced in [P1]. To a self dual A-adic Galois representation T, we
shall associate a A-adic Tate-Safarevi¢ group whose Pontryagin dual Misa finitely
generated torsion A-module, and prove the following result.

(4.0.1) PROPOSITION. Let p > 2. If T satisfies the assumptions of 4.1.1 below,

then there is a finitely generated torsion A-module X such that I is pseudo-isomorphic
to X X.

The corresponding result for specializations of T is a consequence of a generalized
Cassels-Tate pairing. We deduce the A-adic result by specializing at enough primes.

(4.1) A-adic Galois representations

(4.1.1) Let p be a rational prime, F, a finite extension of @, with ring of integers
O and prime element 7 € O. Let A = O[[X]] with maximal ideal m = (X, 7). Let T
be a free rank two A-module with a continuous A-linear Gg,s-action, where S is some
finite set of primes including p and infinity. We assume that T is ordinary at p, by
which we mean that T' sits in an exact sequence of A[Gg,]-modules

(4.1.1.1) 0—Tt—T—T" —0

with TF and T~ free rank one A-modules, and assume there is a skew-symmetric
Galois-invariant bilinear form

(4.11.2) (,)r : TxT — AQ1)
inducing an isorﬁorphism
T =5 T*(1) := Homy (T, A)(1), te (L, )7
and isomorphisms T* -~ (T*)*(1), where (T*)* := Homu (T'F, A).
We also assume that the following cohomology groups are trivial:

(4.1.1.3) H°(Q,,T) =0 for all v # p,
(4.1.1.4) H°(Q,,T*) = H*(Q,,T7) =0.

(4.1.2) Specializations

The height one primes of A are the prime (7) and primes ()\), where A € A is
an irreducible distinguished polynomial, i.e. A is irreducible and of the form \ =
X"+ an_1 X"+ 4 ao with 7 | a; for 0 <i <n—1. Let X = Spec(A) — {(n)}.
This agrees with the definition of X in 2.3.2 in this special case. For (\) € X, we
write Oy = A/(X) and T = T/AT = T @5 Oy, TE = TE/XT*. So O} is free of finite
rank over O and T (resp. Ti) is a free Oy-module of rank two (resp. one). We call
T the specialization of T at A.
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(4.1.3) Let G = Go,s or G, The continuous cohomology groups H"(G,T) are
finitely generated A-modules and the H™(G,T)) are finitely generated Ox-modules.
Let M = T,TT or T~. Taking cohomology of the short exact sequence

(4.1.3.1) 0— MM — My, — 0

as G-modules gives a short exact sequence of O)-modules

H™G, M)

— H™(G,M,) — H™(G, M)[\] — 0.

(4.1.4) In the special case when R = A = O|[[I']], and assuming the Assumption
of 3.2.3, the twisted Galois representation T' of 3.2.3 satisfies the conditions of 4.1.1. If
we identify O[[I']] with O[[X]] viay = 14+p — 1+ X (choosing v = 1+p as a topological
generator for I' — 1+ pZ,) then the arithmetic point (P.) € Spec(A) corresponds
to the height one prime ideal generated by Ax. = 1+ X —e(1+p)(1+p)*~2 € O[[X]).
We just need to check conditions (4.1.1.3) and (4.1.1.4); To check (4.1.1.3), it is enough
to specialize at any arithmetic point A\, where H°(Q,,T)) = 0 by Lemma 3.1.3. Then
4.1.3.2 gives

H°(Q,,T)
AH™(Qy,T)

and so H°(Q,,T) = 0 by Nakayama’s lemma. For (4.1.1.4) we do the same thing,
using 3.1.4, for any non-exceptional arithmetic point.

0— — H°(Q,,T») =0

(4.1.5) The exact sequence (4.1.3.2) allows us to compare specializations of A-adic
cohomology groups (the left hand term) with cohomology groups of the specializations
(the middle term). The right hand term is an error term which we handle using the
following simple lemma:

LEMMA. Let M be a finitely generated A-module. For X\ not in the support of M,
the groups M )] are finite of order bounded independently of \.

Proof. Without loss of generality we may take M to be A-torsion. By the structure
theory of finitely generated A-modules, M sits in an exact sequence of the form

T
A
O_’A_’M_’EBET_"B_’O’
i=1 " ?
where A and B are finite and the P; are the height one primes in the support of M.
So there is an exact sequence

0— AD] — M\ — é %[A}.

=1 " !

For X not in the support of M, the last term of this sequence is zero, and so M[}] is
finite, of order bounded by the order of A.

(4.1.6) For v € Sy and M = T,T" or T, the A-rank of H™(Q,, M) is equal
to the Oy-rank of H"(Q,,M,), for any A not in the support of Torsp H*(Q,, M)
or Torsp H"*1(Q,, M) (this is immediate from (4.1.3.2)). So the Oy-ranks of the
H™(Q,, M) are constant and equal to this “generic’rank outside of this explicit bad
set (which depends on v). Staying away from this bad set, we obtain A-adic Euler
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characteristic formulas:

0 v#Ep

> (1) rka HY(Q, M) = { —tka(M) v=p.

n=0
Using (4.1.1.2-4) we deduce the following:
veESpv#Ep: HYQ,T)=0 1kaHY(Q,,T)=0 1kaH?*(Q,,T)=0
v=p: HY(Q,T)=0 1kaH'(Q,,T)=2 1kaH?*(Q,,T) =0
HY(Qp,T*) =0 rtkaH' (@, T*) =1 1kaH*(Q,,T") =0
HO(QP,T“) =0 rkAHl(Qp,T_) =1 rkAH2(Qp,T_) =0
(4.1.7) Write Xpaq for the finite set of (A) € X in the support of Torsy H(Q,, T),
Torsp H(Q,,T~), or H(Q,,T) for some v € Sf,v # p, and let Xgood = X — Xbad-
For any (\) € Xgood we have H(Q,,Ty) = 0 for v € Sy, v # p, and H°(Q,,T) = 0.
Euler characteristic calculations then show that the Oy-ranks of the H*(Q,, M),
i=0,1,2, M = T,T%, are equal to the “generic” A-adic ranks of the H*(Q,, M) in

4.1.6. Combining this with (4.1.3.2), it follows that Xy,q already contains those A in
the support of Torsy H"(Q,, M), for allv € S§, n=0,1,2,and M =T, T+, T~.

(4.1.8) Local conditions

For a local ring R and a finitely generated R-module M and an R-submodule
N C M, we define the R-saturation of IV in M to be the set of m € M such that
rm € N for some non zero-divisor r € R (when R = O, the Oy-saturation is equal
to the Z,-saturation, because Oy is finite over Zp).

For each prime v € Sy, we define a A-submodule H}(Q,,T) € H'(Q,,T) as
follows.

For v € Sy, v # p: define H{(Q,,T) = H'(Q,,T).
For v = p: define
H}(Qy,T)° = Ker [H'(Q,,T) = H'(I,,T7)],

and define H}(Qy,T) to be the A-saturation of H}(Qy,,T)° in H'(Qp,T). Condition
(4.1.1.4) for T~ implies that

Ker [HY(Qp,T™) — H'(I,,T7)]
is A-torsion, hence H} (Qp,T) is also the A-saturation of

Ker [H'(Q,,T) - HY(Q,,T7)]
in H'(Qp,T). The A-rank of H}(Q,,T) is one.

We use the same local conditions to define Oy-submodules H} (Qy,T) C
HY(Q,,Ty) for the specializations at any (A) € Xgooa. For v € Sy, v # p: define
H}(QvaT«\) = Hl(@v;T,\)-

For v = p: define
H}(Q,T»)° = Ker [HY(Q, Tn) = H (I, Ty)] ,
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and define H}(Qy,T») to be the Ox-saturation of H}(QP,T,\)O in HY(Q,,T)). As in
the A-adic case, H} (Qp,T) is also equal to the Ox-saturation of

Ker [HY(Qy, T») - H'(Q, T5)]

in H'(Qp,T») and H}(Qy,,T) has Ox-rank one.
(4.1.9) LEMMA. For () € Xgood, v € Sy, specialization gives a homomorphism

H'(Q,T)
AHY(Qu,T)
which is injective, with cokernel that is finite and bounded independently of \.
Proof. This follows from (4.1.3.2) and Lemma 4.1.5, if we take A not in the support
of H?(Q,,T). However, for ()) € Xgood, both sides have Oy-rank two (resp. zero)

for v = p (resp. v # p), and so H%(Q,,T)[}] is finite. So the support of H2(Q,,T) is
already included in Xpaq-

_—)Hl(Qv’T'\)

(4.1.10) We now need the analogues of Lemma 4.1.9, both for the subgroups
H{(Qy,T) and for the quotient groups H*(Qy,T)/H}(Qp,T)-

LEMMA. For (M) € Xgooa, the image of H}(QP,T) in HY(Q,,T)) lies in
H}' (QpaTA)‘

Proof. It is clear from the definition that the image of H}(Q,,T)° lies in
HH(Qp,T5)% If (A) € Xgood , then the image of H}(Q,,T) contains a subgroup
of finite index in H}(Qy,T))° and has the same Oy-rank. So it is contained in the
Oj-saturation of H}(Qp,T»)° in H'(Qp,Tx), which is H}(Qp,T).

(4.1.11) The kernel of the map H}(Qp, T)—H}(Qp, Tr) is H}(Qp, T)NAH(Q,, T)
= /\H} (Qp,T), so specialization gives an injection

H}(Qp,T)
’\H}(@PaT)
Write Y for H'(Qp,T)/H}(Qp,T). So Y has A-rank one, for (\) € Xgo0a. Because

H } (Qp,T) is A-saturated in H*(Q,,T), Y is A-torsion free, and so we have a short
exact sequence

= H}(QP,T/\)

HNQ,T)  H(Q,T) Y
NHIQ,,T) Q) v %

The index of H}(Qy,T)/AH}(Q,,T) in its Ox-saturation in H'(Q,,T)/AH (Q,,T)
is equal to the order of the maximal finite Oy-submodule of Y/AY. By the structure
theory, Y sits in an exact sequence

0—wY—A—B—0

where B is finite, so the order of this finite submodule is the order of B[}],
which is bounded independently of A. Let Z be the inverse image of H }(Q,,,T,\)

in HY(Q,,T)/ \H'(Q,,T) under the inclusion

HI(QI-HT)

W‘—’HI(Q;:,TA).
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So Z is equal to the Ox-saturation of H}(Qy, T)/AH}(Qp, T) in H(Qp, T)/AH(Qp, T).
By the above, the index of H}(Q,,T)/AH}(Q,,T) in Z is finite and bounded for
A € Xgood- This implies the following lemma.

(4.1.12) LEMMA. For (X) € Xgood, the specialization map

HI(QP7T)/H}(QP7T) — Hl(QpaT/\)
AN (E(Q T/ENG,, 7)) HH@ T

is injective, with cokernel that is finite and bounded independently of A.
(4.1.13) LEMMA. For (X) € Xgooda, the specialization map

HY(Q,,T)
NHF(Q,, 1)

is injective, with cokernel that is finite and bounded independently of ).

— H}(Qp,Tx)

Proof. We already know that it is injective. We have a commutative diagram
with exact rows

HY(T) HY(T) HY(T)/H}(T)
0 — AT T NR@T) T XE@/HIT 0
l 1 {

0 — H}(T)‘) — Hl(T,\) — HI(T)‘)/H}(T,\) — 0

(dropping @, from the notation). By Lemmas 4.1.9 and 4.1.12, the kernels and coker-
nels of the vertical arrows are all finite and bounded for () € Xgo04, €xcept possibly
the cokernel of the first vertical arrow. This now follows from the snake lemma.

(4.1.14) Discrete modules

Write M := Homeont (M, Qp /Z,) for the Pontryagin dual of a A-module M. We
define a discrete dual A of T by A = Homeont(T,Qp/Zp(1)). Since T is a free A-

module, we have a canonical isomorphism A — T*(1) ®x A. Since T =5 T~ (1), this
is also isomorphic to T ®4 A (so there is no discrepancy with the notation of 3.5.3).
A is a (discrete) A-module with A-action (Ap)(t) := ¢(At) for ¢ € A,t € T. We have
a perfect pairing

AXT = Q,/Zy(1)

which induces perfect pairings (Tate local duality) for any v € Sy
HY(Q, 4) x H*7H(Q,,T) = @ /Zy
fori=0,1,2.

For the specializations at (A) € Xgo0a, we define Ay = Hom(Ty,Q,/Zy(1)). As
in the A-acLic case, because T is a free Oy-module, A, is canonically isomorphic to
T3 (1)®0, Oz, where Ty := Homo, (T, 0,) (and also to Tx®p, O, via T} (1) — T}).
Note that O, being a complete intersection, is a Gorenstein ring. Fixing a generator
for Homz,(Ox,Zy) as a free rank one Ox-module gives an isomorphism

Ox = Homz, (Ox,Z,) ®z, Qp/Zy > O ®z, Qp /Ly — Fy 1[0,
where F}, y = Oy ®z, Q, is the fraction field of Oy. So we also have

Ay = T;(].) R0, Fp,,\/O,\



486 J. NEKOVAR AND A. PLATER

(in the case where Oy is the ring of integers of Fj 5, this would have been called
A*(1)p) in 3.5.3). We can also canonically identify Ay with A[A]. With this identifi-
cation, we have an exact sequence

(4.1.14.1) 0— Ay — A4 — 0.

Local duality gives a perfect pairing
(4.1.14.2) HY(Qy, Ax) x H7H(Q,,T)) = Q/Zy
for i = 0,1,2.

(4.1.15) Local conditions for discrete modules

For any v € Sy, we define H} (Qy,A) to be the orthogonal complement to
H}(Qv,T) under the pairing (4.1.14.2), for ¢ = 1. In particular, for v # p, we get
HY(Qy,A) =0.

Similarly for the specializations at (\) € Xgood, we define H}(Q,,Ax) to be the
orthogonal complement to H;(Qy,T»). For v # p, H}(Q,,A4x) = 0.

(4.1.16) LEMMA. Let G = Gq,s or Gq, forv € S§. For (\) € Xgood, the natural
map

(4.1.16.1) HY(G,A)) = HY(G, A\

is surjective with kernel that is finite and bounded independently of .
Proof. Taking cohomology of (4.1.14.1) as G-modules gives an exact sequence

(4.1.16.1) HY(G, A)-HO(G, A) — H(G, A)) — HY(Q,, A)[\] — 0.

The lemma follows, for A not in the support of H°(G, A). For G = Gq,, this module
is equal to H?(Q,,7T) whose support is already included in Xp,g by Lemma 4.1.9
(alternatively for Q,, the lemma follows immediately from Lemma 4.1.9 and local
duality). For G = Gq,s, ) is in the support of H°(G, A) iff H°(G, A)[)] is infinite
which is true iff HO(G, A,) is infinite, which again implies that A is already included
in Xbad-
(4.1.17) LEMMA. Forv € Sf,(A) € Xgooa, the image of H}(Qy,Ax)

HY(Qy, A)[ lies in H}(Qy, A)[A]. The map

H}(Qy,Ax) = HH(Qy, A)[N]

has kernel and cokernel that are finite and bounded independently of A.

Proof. For v # p, both H}(@v,AA) and H}(QU,A) are zero, so the result is
trivial. For v = p, this is the dual of Lemma 4.1.12 (using Lemma 4.1.13).

(4.1.18) Selmer groups
We define the Selmer group S C H(Gg,s, 4) by

S = Ker [HI(GQ,S’ - @Hl g::A)]

vES f

Similarly for the specializations, define

Sa = Ker Hl(GQ,s,'A,\) - @

vES

H! (Qv ) A/\)
H}(Qv 3 A,\) .
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(4.1.19) LEMMA. For (\) € Xgood, the image of Sy in H(Gq,s, A)[\] under the
map (4.1.16.1) lies in S, and the map
(4.1.19.1) Sx — S\

has kernel and cokernel that are finite and bounded independently of A.
Proof. Apply the snake lemma to the diagram

0 — S/\ — Hl (GQ,SaA/\) — @vES Hl(@vyAz\)/H)l‘(vaAA)
A 2 A
0 — S — H'(Gos: AN — D,es H'(Qu, 4)/H}Qu, AN
We just need to know that the kernel of the maps

HI(QUaAA) _)Hl(QvaA
HYQ,4)  HjQ, 4

are finite and bounded, and this follows from dualizing Lemma 4.1.13.

)
) (Al

(4.1.20) Tate-Safarevi¢ groups

An Oy-module M is called m-divisible if #tM = M. A A-module M is said to
be m-divisible if mM = M. A co-finitely generated A-module M is m-divisible if and
only if Hom(M,Qy /Z,) is A-torsion free.

For any specialization Sy, we define a Tate-Safarevi¢ group by I, = S,/div(S,),
where div(S,) is the maximal 7-divisible submodule of S). So IIT, is finite and i a is
the torsion subgroup of S By analogy, for S itself, we define IIT = S/m-div(S), where
m-div(S) is the maximal m-divisible submodule of S. Equivalently, T = Tors,S is the
maximal A-torsion submodule of S.

Dualizing (4.1.19) gives a map §/ XS —» S, which restricts to a map
(4.1.20.1) /AT — 10,

(4.1.21) LEMMA. The map (4.1.20.1) has kernel and cokernel which are finite
and bounded independently of A, for () € Xéood, where we define X{ 4 = XpaaU{\ €
Supp(TorsyS)} and Xgood = X — Xpag-

Proof. If M is any finitely generated A module, then, for A not in the support of
Torsy M, the map Torsy M /ATorsy M — Torsz ,(M/AM) has kernel and cokernel that

are finite and bounded independently of A. Combining this fact with Corollary 4.1.19
proves the lemma.

00

(4.1.22) We shall now study the structure of S via its specializations. We fix an
irreducible distinguished polynomial A and write Ay = A+ 7*. For k sufficiently large,
Ak is also an irreducible distinguished polynomial. Also, for k sufficiently large, Ax
is not in any finite bad set that we might need to avoid and, in particular, is not in
X{aq- We shall write Ty for T, , Ay for Ay, , Si for Sy,, and I, for IIT,, .

By the structure theory of finitely generated A-modules, I = Tors, S sits in an
exact sequence

.
(4.1.22.1) O——)A—}@%}l—i—)ﬁ—-—)B—}O,

i=1 "
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where A and B are finite. Decompose the second term in this sequence as
™

A _—

@ _'ﬁﬁ’— =MeM
i=1 %
where M consists of those direct summands with P; = (A) for our fixed A, and consider
the composite map
M__ 1O S A
MM AT NS '

For k sufficiently large, Ax is not in the support of Tors,S and so the image of this
composite map is finite and therefore lies in ITI;. Lemma 4.1.21 now implies the
following lemma.

(4.1.23) LEMMA. For k sufficiently large, the map

M o~
_/\kM — II1,,

has kernel and cokernel that are finite of order bounded independently of k.

Remark. We do not need to assume that X itself is not in X _,, so there is no
restriction on A, since we study 7T via the specializations at A 4+ 7%, which are not in
X} aq for k sufficiently large.

(4.2) Alternating pairings

Recall the following classical result.
PROPOSITION. Suppose A is a finite abelian group equipped with a non-degenerate
alternating pairing
(,): AxA — Q/Z.

Then there is a group B such that A-—+ B® B.

Applying this proposition when { , ) is the Cassels pairing allows one to deduce
that the order of the Tate-Safarevi¢ group of an elliptic curve divided by its maximal
divisible subgroup is a square. In what follows, we shall consider certain Tate-Safarevic
groups as A-modules rather than just Z-modules, and so we shall now prove a version of
this result in the context of A/(g)-modules, where g € A is an irreducible distinguished
polynomial.

(4.2.1) Fix an irreducible distinguished polynomial f € A, and a A-module

A a1 A Qr .
M_(W> @®(W> with ny > > Ny

For k sufficiently large, f + m* is also an irreducible distinguished polynomial. Let
My, = M/(f + 7). So My is a finite Og-module, where O = A/(f + 7F).
(4.2.2) THEOREM. Suppose we have a non-degenerate alternating pairing

(,) : Mk XMk——)Qp/Zp
satisfying (rz,y) = (z,ry) for allT in O and all x and y in M. Then the a; are all
even.

Note that we only need the existence of ( , ) for any one fixed k£ to deduce the
result for M, and non-degenerate just means that the left and right kernels are both
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zero. Also, the condition (rz,y) = (z,ry) means that the isomorphism of abelian
groups
M, = Hom (M, Q, /Zy)
z — (z, .)

is an isomorphism of Oj-modules, where here the Oj-module structure on
Hom(My,Q, /Z,) is given by defining (r¢) (z) = ¢(rz).

(4.2.3) The proof of Theorem 4.2.2 consists of a series of reduction steps. Write
L, = A/(f™, f + %) (recall that k is fixed throughout). So we have

My = (Lp))™ © (L) ® - ®(L,,)" =A®B

where A = (Ly,,)*" and B = (Lp,)** ® -+ & (Ln,)"". We have f = —* in O, so
Lo = O/(f*) = Og/(n™).
(4.2.4) LEMMA. (, )|a is non-degenerate.

Proof. Suppose a € A is such that 7%a = 0. Then (a,b) = 0 for all b € B. To see
this, notice that we can find a’ € A such that a = n("1~1%q’ (this is easy to check).
So

(0,0) = (x V¥ b) = (o', 7™ 7DF) = (d,0) = 0.

Now suppose that a € A is non-zero and such that (a,z) = 0 for all z € A. Multiplying
a by some power of m we may assume that ma = 0 but a # 0. So

(a,z) = 0 forallzec A
and  (a,b) = 0 forall b€ B (since 7¥a = 0).
So (a,m) = 0 for all m € My, giving a contradiction.
(4.2.5) Lemma 4.2.4 tells us that
(,): AxA — Q/Z,
is non-degenerate, and so gives an isomorphism
A = Hom(4,Q,/Zy,)
a — (a, .)

of Og-modules. In particular, any map A — Q,/Z, can be written as (a, . ) for
some a € A.
(4.2.6) LEMMA. (, )|p is non-degenerate.

Proof. Suppose b € B is non-zero and such that (b,y) = 0, for all y € B.
Multiplying by a power of 7 if necessary, we may assume that b # 0 but 7b = 0. Now
consider the map

A — Q/zZ,
a — (b,a)

By Lemma 4.2.4, there is some a € A such that this map is given by (a, . ), i.e. such
that (b,a) = (a,a) for all @ € A. Also, #b = 0. So

(ra,a) = (a,ma) = (b,ma) = (mb,a) = 0

for all a € A. Therefore ma = 0, which implies that (a,y) = 0 for all y € B. So we
have a € A and b € B such that (a,y) =0 for all y € B, (b,y) =0 for all y € B, and
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(a,a) = (b,a) for all a € A, So (@ —b,m) =0 for all m € M. So @ — b = 0 which
implies that a = b = 0. This proves Lemma 4.2:6.

(4.2.7) Lemmas 4.2.4 and 4.2.6 allow us to reduce Theorem 4.2.2 to the case
where My —s (L,)*. The next step is to reduce to the case n = 1. For this, note
that we have isomorphisms of Og-modules

Ly = oYk and  L,/7*L, = L.
Also, the orthogonal complement to 7(*~Vk M. is 7% My, since

(r(n=Vkg ) =0 for all z <= (z,7(""V¥y) =0 for all z

— -1k

y=0
< there exists y' such that y = 7%y’
<< y € 7* M.

So we get a non-degenerate pairing

_ M,
=Dk x TF I, — Qp/Zy.
So we have reduced Theorem 4.2.2 to proving the following result.
(4.2.8) LEMMA. Let O = A/(f + n*,7*). Let M be a free Or-module of rank
a and
(,): M xM—Q/Z,

a non-degenerate alternating pairing satisfying (rz,y) = (z,ry) for all r in Oy and
all z andy in M. Then «a is even.

Proof. One can easily reduce to the case of fields where the result is well known,
but we give a direct proof by induction on a. Let X be any free rank one direct
summand of M and let N be any complementary direct summand. So M = X & N.
Let Nt ={z € M : (n,z) =0for all n € N}. It is easy to see that (, ) : X x N* —
Q,/Z, is non-degenerate. Now N-1 is a rank one direct summand of M, (in fact
M=Nt@X*t)andso(, ): Nt x Nt — Q,/Z, is zero (since (, ) is alternating).
So Nt C (NJ-)J' = N. Let L=NnNX". We claim that N = N+ @ L. To prove
this, let » € N and consider the map ( . ,n) : X — Q,/Z,. There is some y € N*
such that this map is given by ( . ,y), ie such that (z,n) = (z,y) for all z € X. So
(x,n—y) =0. Son—y € X*. Son = (n—y)+y withy € N* andn—y € X*NN = L.
Also,ify € N*NLtheny € Nt and y € X+, s0y € M+ = 0. This proves the claim.
So we have M = X @ N1 @ L. Finally, we claim that (, ) : L x L — Q,/Z, is
non-degenerate. This will be enough to finish the inductive proof of the lemma since
the rank of L is a — 2. For this, suppose that ! € L is such that (I,z) =0for all z € L.
Consider the map (I, . ) : Nt — Q,/Z,. There is some z € X such that this map is
given by (z, . ), i.e. such that (I,w) = (z,w) for all w € N+. So (Il — z,w) = 0 for all
weNL. Sol-z¢ (N'L)'L =N.Sowehavel e L=X*NN,z€ X,andl -z € N.
Soz e NNX =0.Soz=0. So (l,w) =0 for all w € N*. Also we havel € X~ so
we have (I,z) =0 forallz € X, (I,z2) =0 forall z € L, and {{,w) =0 for all w € N*.
So (I,m) =0 for all m € M. So ! =0, which proves the lemma.

(4.2.9) Theorem 4.4.2 allows us to study the structure of certain A-modules
at height one primes which are of the form (f) for some irreducible distinguished
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polynomial f. For completeness, we also need a version to treat the height one prime
(m). For this case, let

A \™ A\ .
f‘”(m) @'”@(W) With > >

Then for any k, X* 4+ 7 is an irreducible distinguished polynomial and we let M} =
M/(X* 4+ 7). So My, is an Og-module, where O = A/(X* + 7). We get the following
theorem.

(4.2.10) THEOREM. Suppose we have a non-degenerate alternating pairing

(,): My x My — Q,/Z,

satisfying (rz,y) = (z,7y) for all v in O and all z and y in My. Then the o; are all
even.

The proof of this is exactly the same as the proof of Theorem 4.2.2.

(4.2.11) The modules that arise in the application to Tate-Safarevi¢ groups need
not be of the standard form considered in 4.2.1, so we need the following generalization
of Theorem 4.2.2. Rather than proving Theorem 4.2.2 for modules which are only
pseudo-isomorphic to M (and non-degenerate pairings), we prove a version for M of
standard form, but where the pairing is only non-degenerate up to finite groups.

(4.2.12) THEOREM. Let M and My, be as in 4.2.1. Suppose for each k sufficiently
large we have an alternating pairing

(, o+ My x My — Q,/Z,

satisfying (rz,y)r = (z,7y)k for all v in O and all z and y in My, and such that the
left and right kernels are finite and bounded independently of k. Then the a; are all
even. J

Proof. The proof is essentially the same as that of Theorem 4.2.2, but taking
account of the finite bounded kernels. Let 7° kill the left and right kernels of (, )
for all k. We begin with the analogue of Lemma 4.2.4.

(4.2.13) LEMMA. For all k sufficiently large, w¢ kills the left and right kernels of
( ) )k‘A'

Proof. Suppose the lemma is false. Then for infinitely many k, there is a € A such
that (a,z); = 0 for all z € A but 7°a # 0. Multiplying by a power of 7 if necessary,
we may assume that 7°a # 0 but 7°*1a = 0. Choosing k > ¢ + 1, we have 7*a = 0.
So {(a,b)r = 0 for all b € B as in Lemma 4.2.4. So (a,m); = 0 for all m € M. So
w¢a = 0, which is a contradiction.

(4.2.14) LEMMA. For dall k sufficiently large, ©°¢ kills the left and right kernels
of (, )klB-

Proof. Suppose the lemma is false. Then for infinitely many k, there is b € B
with 72¢b # 0,72¢t1b = 0 and (b,y);, = 0 for all y € B. By Lemma 4.2.13, the right
kernel of ( , x| lies in the kernel of the map

A — Q/Z,
a — (b,7%)

so there is @ € A such that this map can be written as (@, . )i, i.e. such that
(a,a)r = (b,ma), = (7°b,a)y for all a € A. Also, for all a € A,

(7T a, a)g = (o, 7T a)y = (7°b, 7 a) = (7%°T1b, a)r = (0,a) = 0.
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So n2¢*1q = 0 by Lemma 4.2.13. Now take k > 2c+ 1, so 7*a = 0. So (o, y), = 0 for
all y € B asin Lemma 4.2.4. So (w°b—a, m); = 0 for all m € Mj. So 7¢(x°b—a) = 0.
So 7%°b = w°a = 0 which is a contradiction.

(4.2.15) We have now reduced Theorem 4.2.12 to the case My — (L,). The
arguments of 4.2.7 show that, if H is the orthogonal complement of 7(*~1D* M| then
7* My C H C w¥~¢M;, and so we deduce a pairing

_ M;,
a(=Dkpr x Y — Q/Z,,.

and reduce to the case n = 1 as before. Finally, we need the analogue of Lemma 4.2.8.
(4.2.16) LEMMA. With notation as in Lemma 4.2.8, suppose for all k sufficiently
large, we have an alternating pairing

(,) : M xM—Q/Z,

satisfying (rz,y) = (z,ry) for all v in Oy and all x and y in M, where Oy and M are
as in Lemma 4.2.8 (with o fized) and such that the left and right kernels of ( , ) are
killed by p° for some c independent of k. Then « is even.

Proof. We rewrite the proof of Lemma 4.2.8, keeping track track of the small
kernels involved. Briefly; since ( , ) is alternating, the left and right kernels are equal,
call them K. Also, write K; for the left kernel of

(,): X xN* —>Q/Z,

Then #K; < #K. Write M = X ® N as in Lemma 4.2.8. Then M = X1 + N1 and
X+NNL = K. Define L = (N+K;)NX*. Then one can show that L+ N+ C N+ K,
with index independent of k (explicitly, the index is < #K - p°®). So we can choose
a (N1) D N* with index < #K - p°® such that L + (N+)’ D N + K; and so
M =X+ L+ (Nt)'. Now one can choose direct summands A C L and B C (N*)'
of rank a — 2 and 1 respectively, such that M = X & A @ B, and such that the index
of Ain L and B in (N1)’ are independent of k. Finally one checks that

(,): AxA—Q/Zy.

has left and right kernels which are killed by p¢ for some new ¢’ (defined in terms of
¢ and a, but independent of k). This completes the proof.

(4.2.17) One can use variants of Lemmas 4.2.13-16 to treat the case of the
height one prime (7) of A, so that Theorem 4.2.12 holds in this case too (with My =
M/(X* + 7) as in 4.2.9). In this case, suppose the left and right kernels of { , ) are
finite and bounded independently of k; then there is some constant ¢ such that X°
kills these kernels, independently of k. Now proceed using this X¢ in place of the p°
in Lemmas 4.2.13-16. The proofs are essentially the same.

(4.3) Cassels-Tate pairings

(4.3.1) From now on, let p > 2. Returning to the situation of Section 4.1.1, if A
is any irreducible distinguished polynomial, then the specialization T is a free rank
two Oy-module and there is an Oy-bilinear skew-symmetric pairing

(4.3.1.1) Ty x T — O,\(l)

coming from specializing (4.1.1.2), giving an isomorphism 75 — Homo, (Tx, 0) (1).
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(4.3.2) We will work with pairings taking values in Z, rather than O,, and
so we recall how to switch between the two. Recall that any O, is Gorenstein and
that Homgz, (O, Z,) is free of rank one as an Oy-module. Now we have a canonical
isomorphism

Homop, (T, 0,) ®o, Homgz, (Ox,Zy) = Homgz, (T, Zyp) -
0® ¢ — ¢of
If we fix a generator for Homgz (Ox,Z;), this gives an isomorphism
Homo, (Th, Ox) — Homgz, (T, Z,)
and so the isomorphism T\—Home, (T,0,) (1) translates to an isomorphism
T\“Homgz, (T, Z,) (1), i.e. gives a pairing
(4.3.2.1) (,)x 2 Th x T — Zy(1)

satisfying (rz,y)x = (z,ry)x for all z,y € Ty and all r € O). The construction
of (4.3.2.1) from (4.3.1.1) is non-canonical, depending on a choice of generator for
Homgz, (Ox,Zp). Once we fix such a generator, this also fixes isomorphisms Ay =
T\ ®z, Qy/Z, and so we also have pairings

(4.3.2.2) (L a = Ax x Ay — Q/Z,(1)
satisfying (rz,y)x = (z,7y)\ for all z,y € Ay,7 € O,.

(4.8.3) The generalization by Flach [Fl] of the Cassels-Tate pairing gives the
following result.
THEOREM. For ()\) € Xgood, there is a non-degenerate alternating pairing

[,])\ : U_I)\ X U.I,\ —_— Qp/Zp

satisfying [rz,y)x = [z,ry]x for all z,y € III\ and allr € O,.
Proof. For (\) € Xgood, H'(Qp, Tx) has Ox-rank two and the subspace H}(Q,, T»)
has Oy-rank one and is its own orthogonal complement under the local duality pairing
HYQ,,Ty) x HY(Qp,T)\) — Zy

coming from (4.3.2.1) (we know that this is true after tensoring with the field of
fractions, but because we defined H} (Qp,T)) to be Oy-saturated, it is true at the
integral level too). So Flach’s construction gives a non-degenerate alternating pairing

[,])\ : HIA X HIA -_ QP/ZP'

One can easily check through the construction of the pairing using cocycles that the
relation (rz,y) = (z,ry)x on (4.3.2.2) implies the relation [rz,y]x = [z, ry]a.

(4.3.4) Dualizing this result, we deduce the existence of a non-degenerate alter-
nating pairing
(, )A : H_IA X H_I,\ — Qp/Zp,

depending upon our fixed choice of generator for the free module Homgz, (Ox, Zp)-

(4.3.5) We can now use the results of 4.2 to prove Proposition 4.0.1. We choose
a pseudo-isomorphism between III and a module of standard form as in (4.1.22.1).
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Fix any irreducible distinguished polynomial f (or f = =) in the support of I and
write this module of standard form as M @& M as in 4.1.22. So M can be written as

M= (%)@ @ (%) with  ny > >

We need to show that all the a; in this expression are even. Write My = M /A M
where A\, = f + 7% (or Ay = X* + 7 if f = 7). Then we know from Lemma 4.1.23
that we have maps

Mk — I/.ﬁk

with kernel and cokernel that are finite and bounded independently of k. If these
kernels and cokernels are trivial we can app/lz the results of 4.2; if we take M as
above, then the pairing of 4.3.4 on M; —» III; satisfies the conditions of Theorem
4.2.2 (or Theorem 4.2.10 in the case f = m) and we deduce that the o; are even. If
the kernels alu\i cokernels are non-trivial, we define a pairing on M}, as follows. Let
¢r : My — I be the maps of Lemma 4.1.23. Define a pairing

(,);c : Mk X Mk — Qp/Zp

by (z,9)} = (#x(2), $x(y))k, where (, )i = (, )», is the pairing on IIIj, of 4.3.4. The
left and right kernels of the pairings ( , )}, are finite and bounded independently of &,
as k — oo, and we can apply Theorem 4.2.12 (and 4.2.17). This proves Proposition
4.0.1.

(4.3.6) COROLLARY. For any (A\) € Xgood, we have

rko;S\,\ = rkA§ (mod 2).
Proof. From Lemma 4.1.19, we get

5 S Torsy (S)
rko, Sy = rkpAS + rko, —————
Ox>A A O ATors, (S)

=1k, S + 21ko, %
= rksS (mod 2).

(4.8.7) In the situation of 4.1.4, let P = (Pg.) € Spec(A) be any arithmetic
point. So P is the height one prime (A) = (Ag¢) of O[[X]] under the identification
A = O[[X]] of 4.1.4. If k is even and we are not in the exceptional case then the O)-
ranks of the H*(Q,, M) for M = T,T*+,T~, are equal to the “generic’ranks of 4.1.6
by 3.1.3-5, and so (A\) € Xgo0q. In this case, the local conditions are the same as those
defined by the Bloch-Kato subgroups H } (Qv, T\ ®z,Qp), again by the arguments of
3.1.3-5, and so S is equal to the Bloch-Kato Selmer group H}(Q, Ay).

(4.3.8) COROLLARY. With notation as in 4.3.7, if k is even and we are not in
the exceptional case, then

corko, HH(Q, Ay) =1kaS  (mod 2).

(4.3.9) This Corollary proves Theorem A’ in the special case when R = A (for
non-exceptional P). How often is R = A? In the notation of 3.2.2, this equality holds
if gk, is not congruent to any other normalized eigenform of weight ko on I';(Np)
(with respect to the embedding i,).
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For example, let E be a modular elliptic curve over Q of conductor N and let
f = " ang™ be the corresponding modular form of weight 2 on I'o(IN). Let p be a
prime satisfying the following assumptions:

(1) p does not divide 6N.

(2) E has ordinary reduction at p, i.e. p{ap.
(3) E,(Q) is an irreducible F,[Gg]-module.
(4) p does not divide ¢(N).

(5) p does not divide the degree of some modular parametrization Xo(N) — E
of E.

(6) pf(ap£1).

The first three conditions mean that the discussion in Sect. 3-4 applies to f. It
follows from (4) that all modular forms corresponding to arithmetic points of R have
trivial character modulo N. According to [Ri 2, Thm. 1.4] (cf. [Za, Thm. 3]), the
conditions (1) and (5) imply that f is not congruent (modulo a prime above p) to
any other normalized eigenform on I'g(N), and hence not even on I'y(N), by (4). It
follows from [Mi, Thm. 4.6.17] and (6) that there is no congruence between f and
a normalized eigenform on I';(Np) (cf. 1.3.5). This implies that R/(y — 1)R = Zy,
hence R = A = Z,[[X]], for all primes satisfying (1)-(6). Note that, if E has no
complex multiplication, the set of such p has density one.
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