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ON THE PARITY OF RANKS OF SELMER GROUPS* 

JAN NEKOVARt AND ANDREW PLATER* 

0. Introduction. Let / = X)n>i an(f)Qn € Sko (To{N)) be a normalized new- 
form of even weight fco > 2. Let F be the number field generated by the coefficients 
of / and p a prime of F lying above a rational prime p. There is a two-dimensional 
representation V(f) of GQ = Gal (Q/Q) over Fp associated to /, characterized by the 
conditions 

It (FWgeomW/)) =<*/(/) 
det(FV(^)geom|y(/)) = ^-1 

for all primes £ { piV. The Tate twist Vk0 = V(f)(ko/2) is self dual: there is a 
skew-symmetric bilinear form 

VkoxVko—>Fp(l) 

inducing an isomorphism V^o ""^ ^fc^1) = HomFp (VkQ,Fp(l)). 

The complex L-function L00(f, s) = ^2n>1 cin(/)^~s satisfies the functional equa- 
tion 

Aoo(/, s) := ( — J   r(s)L00(/, s) = Woo(/)Aoo(/, fco - 5), 

where w00(f) = ±1 = (—l)eo0 for eoo = 0 or 1. Bloch and Kato [BI-Ka] defined a 
generalized "Selmer group" Hj(Q,Vko) C i?1(Q, Vk0) and conjectured that 

ord^/aLooCf,*) = dimFpH}(Q, Vi0). 

We are interested in a   (mod 2) version of this conjecture: 

The Parity Conjecture for ranks of Selmer groups 

orda=ibo/2Loo(/,s) = dimFpif}(Q,^0)    (mod 2). 

Assume that p > 3 and that / is ordinary at p, i.e. that ap(f) 6 Fp is a p-adic 
unit. According to Hida's theory, there is a p-adic family of ordinary modular forms 
of varying weights containing / (we ignore the phenomenon of "p-stabilization" in 
this Introduction). In concrete terms, this means that there is an integer c > 0 such 
that for every integer k > 2 satisfying k = ko (mod (p — l)pc), there is an ordinary 
newform fk of weight k on ro(iV) such that /fc0 = / and 

.   k = k'    (mod (p - l)pn+c)    implies   /* = /*'    (modp"). 

Let 
AT, k = 2, ap(f) = 1, f 1   ifp\ 

\ 0    other otherwise. 
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The value of eu indicates the presence of a trivial zero of a suitable p-adic L-function 
[Ma-Ta-Te]. More precisely, for every weight k > 2, k = ko (mod (p - l)pc), there is 
a p-adic L-function Lp(fk,s) depending on s eZp such that 

Lp(fk,k/2) = (Eulk)L°o{f£k
k/2),       Lp(fk,k- s) = wp(fk)Lp(fk,s). 

Here, = means equal up to a non-zero elementary factor, ftk E Ex is a real period of 
/&, (Eulfc) is an Euler factor satisfying 

(EuU) = 0 ^ 6k = 1 

and 

Moreover, there exists a two-variable p-adic L-function Lp(k, s) defined for s e Zp and 
k € ko +pcZp, such that Lp{k,k — s) = wpLp(k,s), and, if k = ko (mod 2(p — l)pc), 
k > 2 is an integer, then 

Lp(k, s) = CkLp(fk, s)       for some C* ^ 0. 

In particular, the value of 

wp(fk) = wMX-iy* =Wp = (-I)6- 

does not depend on k (of course, e^ = eoo + ek0 (mod 2)). We shall consider Selmer 
groups Hj(Q, Vk) associated to Galois representations V* = V(fk)(k/2) and also "ex- 
tended Selmer groups" sitting in exact sequences 

0 -» (Fpy* -> fijiQiVk) —► H}(Q,Vk) —> 0 

(for technical reasons, it may be necessary to replace Fp by a suitable finite extension 
and T4Q by the corresponding base change). Our main result is 

THEOREM A. Let p > 3 and let f be ordinary at p. If ko = 2 (mod (p - 1)), 
assume in addition that V(f) has an irreducible residual representation. Then there 
is an integer n > c such that 

dimFp Hj (Q, Vk) = dimFp Hj (Q, Vko)    (mod 2) 

whenever k > 2 and k = ko (mod 2(p — l)pn). 

It is known that 

or&s=k/2LPUk,s) = 0 =» ^}(Q, T4) = 0       ([Ka]) 

(*) 
ord5=jfe/2Lp(/fe,5) - 1 ^ dimFpiJ)(Q,T4) - 1       forpfiV,* > 2       ([Ne 2]) 

Recall a fundamental non-vanishing conjecture for the two-variable p-adic L-function. 
GREENBERG'S CONJECTURE.   The generic order of vanishing of Lp(k,s) on the 

line s = k/2 is equal to zero or one (and hence to ep). 

In other words, the function of k 

Lp{k, s) 
(s - k/2)ep s=k/2 

should not be identically zero. Theorem A and (*) immediately imply 
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THEOREM B. Under the assumptions of Theorem A, Greenberg's Conjecture im- 
plies the parity conjecture 

dimFp Hj (<Q>, Vko ) = ep-ekQ= e^    (mod 2). 

Consider the special case of ko = 2 and F = Q. The form / then corresponds to 
(the isogeny class of) a modular elliptic curve E over Q. The Selmer group associated 
to VkQ = TpE ®Zp Qp coincides with the usual Selmer group with Qp-coefficients; it 
sits in an exact sequence 

0 —> E(Q) ® Qp -> H}(Q, Vko) —^ Tpm(E/Q) ®Zp Qp —> 0. 

In this case, Theorem B reduces to 
THEOREM C. Let E be a modular elliptic curve overQ with ordinary reduction at 

a prime p > 3. Assume that the p-torsion EP(Q) is an irreducible ¥p[GQ\-module and 
that Greenberg's conjecture holds for the two-variable p-adic L-function of E. Then 

dim® {E(Q) <g> Q) + corkzpIH(£/Q) = ords=iL00(E, s)    (mod 2). 

See [Gr 3], [Ko 2] (resp. [Bi-St], [Gu], [Ko 1], [Mo]) for other conditional (resp. 
unconditional) results in this direction. At present, Greenberg's conjecture is known 
only if E has complex multiplication and ep = 0 ([Gr 1], [Ro]). 

There are several possible approaches to Theorem A, all of which use the exis- 
tence of a "big Galois representation" T that interpolates suitable Galois invariant 
lattices T^ C T4. In the most elementary approach, one studies a version of Hi for 
the discrete modules Af* = T4/7V It is relatively easy to show that the pn-torsion 
subgroup Hj(Q,Ak)pn C Hj(Q,Ak) is locally constant as a function of k. The ex- 

istence of generalized Cassels-Tate pairings on Hj(Q, Ak)/div then gives the desired 
parity result. 

In fact, there is a stronger version of Theorem A. Classical modular forms in 
(the primitive part of) Hida's family containing / are parametrized by certain prime 
ideals V in a suitable factor of the ordinary Hecke algebra. Denote by f-p the form 
corresponding to V] it has weight k(V) > 2 and character xv- For k(V) even there 

1/2 
is a well-defined choice of a square root x-p of Xv • The twisted modular form f-p = 

fv ® Xv has trivial character (i.e. lies in Sk('p)(^o(Npr^) for some r(V)). The 
Galois representation 

Vfa = V(fv)(k(V)/2) ® [x;
1/2] = V(fr)(k(V)/2) 

is two-dimensional over Fp(xv) and self dual in the same way as Vk0. 
THEOREM A'. Under the assumptions of Theorem A, the parity of 

dimFp(Xv)Hf(Q, Vj-pj) does not depend ofV. 

Together with (*), this implies 
THEOREM B'. Letp > 3 be a prime not dividing N and f = ^2n>1 anqn an ordi- 

nary newform of even weight k > 2 and character x~2 on ri(Npr), where cond(x) = 

ps (necessarily with s = r, if x ¥" 1)- Then f = ^2n>1 dnXi^Q71 ^s a newform of 
weight k on To(Np2r) (resp. To(Npr)) if x i1 1 (resp. x — IJ- If the tame part of x2 

is equal to ujk~2, where u is the Teichmuller character, assume that V(f) has an ir- 
reducible residual representation. If Greenberg's Conjecture holds for the two-variable 
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p-adic L-function of f, then 

dim^HJiQ, V(f)(k/2)) = ord^wLMs) (mod 2). 

The proof of Theorem A' uses "big Selmer groups" associated to T and a suitable 
big discrete module A. The ultimate explanation of this parity phenomenon relies 
on the general duality formalism developed in [Ne 3]. What happens is that each 
Selmer group Hj(Q,Ak) contains a "generic subgroup" Hj(Q^Ak)gen that is constant 
in the whole Hida family. The duality results of [Ne 3] give a symplectic form on 
the Pontryagin dual of H}(Q, Ak)/H}(Q, Afc)ger\ tensored with Q (i.e. on the infinite 
part of the Selmer group!). This can be viewed as a non-classical generalization of 
the Cassels-Tate pairing to big Selmer groups. Assuming Greenberg's conjecture, 
Hf(Q, Ak)gen has co-rank equal to ep. In the special case when the local component 
of the Hecke algebra corresponding to the Hida family in question is equal to the 
Iwasawa algebra, there is a more elementary argument that uses big Selmer groups 
introduced in [PI]. 

This work was inspired by a lecture of R. Greenberg [Gr 3]. We are grateful to 
K. Buzzard, F. Diamond, R. Taylor, J. Tilouine and A. Wiles for dispelling some - 
but certainly not all - of our misconceptions concerning Hecke algebras. 

1. Modular forms and Galois representations. 

(1.1) Modular curves and modular forms. In this section we recall basic 
notation and normalizations concerning modular curves and modular forms, following 
the conventions of [KaN] and [Gro]. 

(1.1.1) For an integer N > 4, Xi(N) —> Spec(Z[l/iV]) is the complete modular 
curve classifying pairs (E, a : /ZAT M- EN), where E is a generalized elliptic curve 
([De-Ra]) and the image of a meets every irreducible component in each geometric 
fibre of E. We assume that N > 4 from now on. 

(1.1.2) For a generalized elliptic curve TT : E —> 5, let LUE be the invertible 
sheaf lAe(Ere9)s/ on 5 (a;^ = ^*^E/S ^ ^ 1S smooth). For any Z[l/iV]-algebra R, 
the space of holomorphic modular forms of weight k > 1 on Fi (N) defined over R 
is, by definition, equal to H0 (Xi(N)/R,Lj®k). One can interpret a modular form 
f € H0 (Xi(N)/R,w®k) as a rule assigning an element f(E,a) € a;ffc to each pair 
(E, a : JJLN 

c-^ EN) defined over an jR-algebra R', compatible with base change. 

(1.1.3) The Tate curve E = Gm/qz is an elliptic curve over Z^Jfor1] which 
extends to a generalized elliptic curve over Z[[q]]. The exact sequence 

0 —► VN^+EN —+ Z/NZ —> 0 

gives the tautological embedding Idjv : fJ>N ^ EN- Evaluation of a modular form 
/ € H0 (XICAO/JR,^

0
*) on the Tate curve gives the Fourier expansion F(f) e R[[q]] 

off: 

/(G«/«z
>MJV)=F(/)(g)^J 

where t is the coordinate on Gm. The map F : H0 (X1(N)/R,uj^k) —> R[[q]] is 
injective ([KaN, 1.6.1]). 
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(1.1.4) If S —> T is smooth and TT : E —> S is an elliptic curve, then the 
Gauss-Manin connection 

V : M ft^E/s —^ (^ 'K^E/S ) ® ^S/T 

and relative Poincare duality 

( , )dR : (^TTME/S) x (M1^*^^) —^ ^TTME/S^OS 

define the Kodaira-Spencer map 

i  : ^l2 —^ ^S/T 

For the Tate curve, i ((dt/t)®2) = dg/g. In fact, i extends to an isomorphism of 
invertible sheaves on Xi(iV), 

^2 J^n^^ (cusps). 

(1.2) Hecke operators 

(1.2.1) For a G  (Z/iVZ)*, the diamond operator < a > acts on Xi(iV) by 
< a > (E, a) = (E, a • a) and on modular forms by 

(<a>Aib/)(£,a) = /(E,a-a), 

(the covariant, or "Albanese," action), and also by 

(< a >pic /) (E,a) = f{E,a-1 • a) = (< a"1 >Aib /) (B,a) 

(the contravariant, or "Picard," action). If x '• (Z/iVZ)* —> Rx satisfies x(—1) = 
(-1)*, a modular form / G H0 (Xi(N)/R,Li®k) has character x if < a >Aib / = x(a)f 
for all a € 

(1.2.2) For integers n > 1 with (n,N) = 1, the Hecke operators T(n) act on 
modular forms by 

(T(n)W) (£,«) = -    E    A* (/(£', Aoa)) 
AtB ►E' 
deg(A) = n 

(T(n)Picf)(E,a) = -    ^    ^{/(E'^^oa)) 
71 

H-.E' *■£ 

If n = £ {iV is a prime and 

^(/Jte) - E a^n>    ^ (< * >Aib /) (?) = E 6^n, 
n>0 n>0 
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then a short calculation gives 

= ]f(Gm/qaJ-IdN) UJY' + J J2f(Gm/q'Z,ldN) (f 

\ n>0 n>0 / 

= (T(e)PiCf){Gm/qz,e-idN). 

This means that the usual Hecke operator T(£) on Fourier expansions of modular 
forms corresponds to T(£)A\b =< i >Aib T(£)piC. Of course, if / has character x, then 
bn = x(^)^n for all n > 1 prime to N. 

(1.2.3) For a prime I \ N, one defines 

TOW) (E, a) = j J2 A*(/(E''Aoa)) 
Ker(A)nim(Q)=0 

and T(£m)Aib = ^(^Aib* ^e same calculation as in 1.2.2 shows that 

(T(t)Aibf)(Gm/qZ,IdN) = l^antqA (f)^- 

One defines T(n)A\bf for any n > 1 by requiring T(mn)Aib = ^(^)Aib^,(^)Aib when- 
ever (ra,n) = 1. 

(1.2.4) A more geometric definition of T(£) comes from Hecke correspondences. 
For a prime £, let Xi(N;£) be the curve over Spec(Z[l/iV]) classifying triples (E,a : 
UN «->• EN, C), where (E, a) is as in 1.1.1 and C C Ei is a locally free subgroup scheme 
of rank £ such that Im(a) fl C = 0 and Im(a:) x C meets every irreducible component 
of each geometric fibre of E. There are finite maps s,t : Xi(N;£) —> Xi(N) given 
over the affine curve Yi(N) = Xi(N)—{cusps} by 

(E, a) ^ {E, a, C) ^ {E' = E/C, a' = Aoa), 

where A : E —> E/C is the degree £ isogeny associated to C. The maps s,£ define a 
correspondence 

Xi(N) ^  X1(N) 

which acts on various cohomology groups, both covariantly:   T(£)A\b — t*os* (the 
"Albanese action") and contravariantly: T(£)p[C = s*ot* (the "Picard action"). 

(1.2.5) Similarly, the diamond operators <  a >: Xi(N)  —> Xi(N),   a E 
(Z/NZ)X, act on cohomology by 

< a >Alb=< a >*,        < a >pic=< a >*=< a~l >*=< a"1 >Aib • 
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(1.2.6) For modular forms of weight two, the Kodaira-Spencer isomorphism 

i: H0 (XtiN),!*?2) ^ H0 (Xx(AT),n^(iV)(cusps)) 

is compatible with the actions of T(Z)Aib and < a >Aib on both sides (1.2.2 and 1.2.3 
on the left hand side, 1.2.4 and 1.2.5 on the right hand side). The factor 1/n in the 
formulas of 1.2.2 comes from the equality 

{\*(u),\*(Vv'))$R = deg(A)(i/, Vi/>& 

valid for any isogeny A : E —¥ E'. 

(1.2.7) There are two definitions of the Weil pairing 

CAT = e-NiE ' EN X EN —> VN 

which differ by a sign. We use the one normalized by ejv,£;(C> Q1^) — C for all C £ UN 
and all q1^ for the Tate curve E = Gm/gz. 

(1.2.8) For a primitive iV-th root of unity C € MJV, the Fricke involution W^ : 
Xi(N) —> XxiN) (defined over Z[l/N,iiN]) is given on Yi(iV) by Wc{E,a : fjiN ^ 
EN) = (E'ifc), where E' = E/Im(a) and fc : /JLN ^ E' is characterized by 

BNA^O^Y lift of/?C(C) to EN) = C 

For a G (Z/iVZ)x, one has /3C(C) = ^{C) = a/V(C)- Hence, 

(1.2.8.1) ]¥<; =< a > oWCa,        W^o < a >=< a >-1 oWc = W^,        as W* = id. 

If g € Gal((Q)(/Zjv)/Q) acts on ^N by C *-> Ca
5 then 

(1.2.8.2) goW^ = W^og = WQO < a > og. 

For every prime £, there is an equality of correspondences on Xi(N), W^oT(£) = 
T^YOWQ. this implies that the induced action on cohomology satisfies 

(1.2.8.3) T(£)pic - WSOTWAKOWC 

for all primes £. 

(1.2.9) For integers d > 1, M, N > 4 such that dM \ N, there are finite degener- 
ation maps Kd ' Xi (N) —> Xi (M) given on Yi (M) by 

7rd(E, a : VN M- EN) = (E1 = E/a{fjLd), a' : ^M *-* E'M) 

with 
, d ,       oc mod /id . 

a : JUM *->• /z^v/d ^j- /Xiv/Md      *->      E/a{fid) = E . 

In particular, 
miE^aifjiN^ EN) = {E,a |MM) 

and 
VTd (Gm/gZ,IdJv) = (Gm/(qd)Z,IdM) ■ 

If CAT G /iiv is a primitive iV-th root of unity and CM = CiV
/   , then 7rdoW^N  = 

W^MoTTN/dM- 

(1.2.10) We now consider the induced action on cohomology. TTJ commutes with 
< a >Aib (and therefore with < a >piC too) for a G (Z/iVZ)*, and commutes with 
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T(n)A\b (and T(n)piC too) for (n, iV) = 1, and with T(£)Aib for primes £ \ M. The trace 
operator TTI* commutes with < a >A\b (and hence with < a >pic) for a G (Z/iVZ)x, 
and with T(n)Aib (and hence with T(n)piC) for (n,iV) = 1. Moreover, if £ \ M is a 
prime, then both squares in the commutative diagram 

XxiN)    *i-    Xi(N;t)    A    XtiN) 

Xi(M)    ^-    Xi(M;£)    -^    Xi(M) 

are cartesian, which implies that s*o7ri* = TTI^OS*, t*oiru — 7ri*o£*, and 

^(^Pic071*!* — <S*ot*o7ri* = SifOiri^ot* = TTi^oS^o^* = 7r;L*oT(^)pic 

^(^AlboTTl* = ^*o5*o7ri* = £*o7ri*oS* = TTi^o^o^* = 7ri*oT(^)Alb- 

In particular, if N = £M for a prime £ \ M, then TTI* commutes with both T(£)Aib 
and T(£)piC, and TTI* = W^OTTI^OW^ commutes with both T(^)piC = W^oT(£)Aib0Wc 
and T{£)Aib = ^oT^pico^. 

(1.2.11) The Eichler-Shimura relation on Xi(N) defined as in 1.1.1 has the fol- 
lowing form: for every prime £ { N, 

T(£) = ¥!(£)*+<£>Fr(£)    (mod £) 

as a correspondence on Xi(N)/¥e. This implies that the induced contravariant action 

on etale cohomology ^{X^Oet^p) (where p ^ £ and Xi(N) = Xi(N) OQ Q) 
satisfies 

T(£)pic = £ • Fr(^)-e
1
om+ < £ >pic PV(£)geom. 

Consequently, Fr(£)geom is a root of X2 - T(£)Aib-X" + £ < £ >A\b= 0. 

(1.3) Galois representations 

Fix algebraic closures Q (resp. Qp) of Q (resp. Q^), and embeddings ioo : Q t->- C, 
ip : Q M> Qp (for a given prime p). 

(1.3.1) Let / = Yln>i anQn € 5^ (ri(iV),x) be a cusp form on ri(JV) of weight 
k > 2 and character x : (Zt/NZ)* ->• Cx , defined over C. It is a normalized eigenform 
if ai = 1 and T(£)A\bf — A^/ for all primes ^ (necessarily with A^ = a^). A normalized 
newform is a normalized eigenform such that the set of eigenvalues {A^ : £ f N} does 
not occur for any eigenform of weight k on Ti(M), for any proper divisor M \ N. 

(1.3.2) Assume that / from 1.3.1 is a normalized newform. Let F be a finite 
extension of Q in Q containing all i^iun) and all values of i^ox. The embedding 
ip induces on F a prime p above p. Let 5 = {primes £ : £ f pN} U {oo}. The p-adic 
Galois representation associated to / 

P = Pf,P '• GQ,s —► GL2(Fp) 

(where GQ,S denotes the Galois group with restricted ramification; cf. 2.1.1 below) is 
characterized by the conditions 

Tr(p(Fr(£)geom))=ip(ai) 

det(p(Fr(£)seom)) = ip(x(£)£k-1) 
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for all £ $ S. It was constructed in [Ei],[Sh] for k = 2 and [De] for k > 2. Ribet [Ri 
1, Thm. 2.3] showed that p is irreducible (hence absolutely irreducible, by the same 
argument as in 1.5.3(3) below). 

(1.3.3) Scholl [Sc] constructed a (Grothendieck) motive M = M(f) associated to 
/, pure of weight k—1 and of rank two over F. Geometrically, M C ft*""1 (Z)<8)F, where 
Z is a suitable smooth compactification of the (k — l)-dimensional Kuga-Sato variety 
over Y{N) (at least for N > 3). The p-adic etale realization Mp C Hk-1(Zet,F®Qp) 
of M is free of rank two over F 0 Qp — Ylv\pFv; its p-component Mp gives the 
representation pf^. By [La], [Ca] the L-series of the motive M agrees with 

n>l t\N e\N 

even at Euler factors at bad primes £ \ N. 

(1.3.4) A suitably twisted Poincare duality on Z gives a non-degenerate skew- 
symmetric pairing 

Mp x Mp —► Mp 0Fp Mp —y Fp(l - k) ®Fp [x], 

where [x] is the one-dimensional representation of GQ^ over Fp given by [x](I1^(^)geom) 
= xC0> (^ t pN)* In the special case when k is even and x = 1, then V = Mp(k/2) 
is pure of weight —1 and the above pairing defines a non-degenerate skew-symmetric 
pairing 

VxV —>V®FpV —>Fp(l), 

which induces an isomorphism V —>► V*(l) = HomFp(Vr,Fp(l)). 

(1.3.5) A normalized eigenform / from 1.3.1 is ordinary (with respect to Zoo, 
ip) if ip(ap) G Fp is a p-adic unit. In particular, ap ^ 0, which implies ([Mi, Thm. 
4.6.17]) that either 

(i) ordp(iV) = ordp(cond(x)) 

or 

(ii) p || N, k = 2, p\ cond(x)7 a2
p = x(p)- 

Furthermore, the Galois representation Mp restricted to GQP = Gdl(Qp/Qp) is 
reducible [Wi 1, Thm. 2.2.2] and there is an exact sequence of Fp[GQp]-modules 

(1.3.5.1) 0 —y F+Mp —> Mp —> F'Mp —> 0 

with dim(F±Mp) = 1 and F+Mp unramified. The quadratic equation X2 — apX + 
xip)Pk~1 = 0 has two distinct roots in Fp: one of them, ap, is a p-adic unit and the 
other is 

0 ifp\N. 

The geometric Probenius Pr(p)geom € GQP/IP acts on F+Mp by the scalar ap. The 
duality 1.3.4 gives 

(1.3.5.1) F-Mp -^ (F+Mp)*(l - k) ® [x] 

(as Fp[GQp]-modules). 
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(1.3.6) If p \ N, then /0 = 5^n>i anQn-l3p Zln>i anQpn is a normalized eigenform 
on Ti (Np) satisfying 

rCUib/0 = a,/0        if   lip,        T(p)Alhf
0 = apf

0. 

One says that /0 is the ^-stabilization of /. By abuse of language, we shall call p/?p 
the Galois representation associated to /0. 

(1.3.7) Assume that p f N. A normalized eigenform / of weight k > 2 on 
ri(Npn) is said to be an ordinary p-stabilized newform of tame level iV if / is 
ordinary, n > 1, and / is new at N, i.e. the set of eigenvalues {a£ : £ f Np} does not 
occur for any newform of weight k on ri(Mpm) for any proper divisor M oi N and 
m <n. Equivalently, / is ordinary and either a newform on Ti(Npr) for some r > 1, 
or is equal to the p-stabilization of a newform on ri(iV). 

(1.4) Hida's theory 

Assume that p > 3. Fix a finite extension Fp of Qp (in Qp); let O = Op be its 
ring of integers. Fix an integer N > 1 not divisible by p. 

(1.4.1) Hecke algebras 

For k > 2, and r > 1, let f)k(r1(Npr)) be the subring of End(5jb(ri(iVpr))) 
generated (over Z) by the Hecke operators T(n) — r(n)Aibj n > 1? and the diamond 
operators < a >=< a >k, (a e (Z/NZ)X). Put l)ktr := l)k(T1(Npr)) ®z O. This is 
free of finite rank over O; diamond operators give an (9-algebra homomorphism 

<>,:Op/iVZ)x]-^(),,r. 

For fixed k > 2 and s > r > 1, there are canonical homomorphisms l)k,s -^ ^k,r, given 
by T(n) H-> T(n), < a >A;M'< a >A; (these are dual to the maps Trjf from 1.2.10 acting 
on cusp forms of weight k). The projective limit 

hk,oo '= Ijm f)fc,r 
r 

is equipped with morphisms 

< >k: 0[{Z;]] -»• ^[[ZJV]] -* ^.oo, 

where ZN = Um(Z/iVprZ)x = Z* x (Z/iVZ)x and Opjv]] = \imO[(Z/NprZ)><]. Put 
r r 

V = {x e Z* : x = 1 (mod p)} and denote the canonical inclusion F «-> 0[[r]] <->• 
©[[ZJV]] by i. 

(1.4.2) Ordinary projector e 

For each 1 < r < oo, there is a decomposition fyj^r = ^r x ^Ifr such t':iat W^r 
(resp. ^s

r) is the largest quotient of J)&)r on which r(p)Aib is invertible (resp. T(p)Aib 
is topologically nilpotent). More precisely, 

C* = eW,      W!r = (i-e)r>ik>r, 

for Hida's ordinary projector 

e = lim r(p)S!
lb € f>ifeir. n—>cx) 

One defines the ordinary part of any fj^-module M to be Morrf = eM = f}^0f)fc>r M. 
There is a bijection between the set of ordinary normalized eigenforms of weight k > 2 
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on ri(i\rpr) (r > 1) and 0-algebra homomorphisms f)^ —> Qp (given by Hecke 
eigenvalues). 

(1.4.3) PROPOSITION, (i) [Hi 1, Thm. 1.1] For I > k > 2 there are canonical 
isomorphisms tfg -^ ()^.   We use them to identify all f)^ (k > 2) with t)Zd = 
hord 
M2,oo- 

(ii) [Hi 2, Thm. 3.1] Consider \)0^d as an 0[[ZV]]-algebra via diamond operators < >2 
acting on weight two cusp forms. Then ()££d zs finite and free over A = 0[[r]]. 
(Hi) [Hi 1, Thm. 1.2] The canonical maps {f^f ^- f)^ -> \)0^ induce isomorphisms 

WflukX'^+W,?,        (fe>2,r>l) 

where ujk,r = til)^     — j(k~2)pr     for any fixed topological generator 7 ofT. 

(1.4.4) Decomposition of f)££d 

It follows from Prop. 1.4.3 (ii) that J)££d = Yl R is a product of local rings, finite 
and free over A. The local factors R are localizations of [)££d at its maximal prime 
ideals. They are not necessarily integral domains; to get a further decomposition one 
must introduce denominators. We shall be interested only in the primitive part; let 
C be the fraction field of A. Hida [Hi 2, p. 250, 252] constructed an idempotent 
eprim € f)S£d <S>A £ such that eprtm {^d ®A C) — H^ is a product of fields (finite 
extensions of £). Making a finite extension of Fp if necessary, one may assume the 
Fp is equal to the algebraic closure of Qp in K (i.e. "/C is defined over Fp" in the 
terminology of [Hi 2, p.252]) for each /C. As in [Hi 1, p.554], fix one of the factors /C, 
and put 

f)(/C) = the image of ^ in K. 

n 
f)(/C) = the free A-closure of l)(/C) in /C. 

n 
J(K) — the normalization of A in /C. 

Equivalently, ^(/C) is the intersection flp fy(K>)p C \){K) 0A £, where P runs through 
height one prime ideals of A. Denote 

^^^jj^/oc j=n^w- 

(1.4.5) Fix a topological generator 7 of P. For an integer k > 2 and a character 
e : P -> Ox of finite order, we put 

P*,e = »(7) - e(7)7fc-2 € A. 

We define an arithmatic point of any finite A-algebra A to be a prime ideal p G Spec(^4) 
lying above some prime ideal P = (Pk,e) £ Spec(A). The set of arithmetic points of 
A will be denoted by Xarith(A). 

(1.4.6) PROPOSITION,  (i) [Hi 1] The "restriction map" Spec(J) —► Spec(\)prirn) 
gives a bijection Xarith(J) -^ xarith(^rim). 
(ii) [Hi 1, Cor. 14] For every V G Xarith{\)prim) and the corresponding V G 
Xarith(J) above P = (Pkie) G Spec(A), the localization (l)Prim)v = Jp, is a dis- 
crete valuation ring unramified over Ap. 
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(in) [Hi 1, Cor. 1.3] For every arithmetic point V E Xarith(f)Prim), the map O <-► 
yprim —^ yprim i<p ^ an isomorphism and the homomorphism 

<uord  v uprim  .  uprim /<p .~    ssy 

corresponds to an ordinary p-stabilized newform f of tame level N. Conversely, every 
f arises in this way, for a unique V £ Xar'lth{Yr'lrn). 

Remark, (i) follows from the fact that 

*j(/C) 0A Ap = l)(/C) ®A Ap = J(K) ®A Ap 

for every P = (Pk,e)- The first equality holds because ^(/C)/f)(/C) is a pseudo-null 
A-module. The second follows from the proof of [Hi 1, Cor. 1.4]. 

(1.4.7) In the notation of 1.3, let / be an ordinary p-stabilized newform on 
T1(Npr) of weight fo > 2 and character x • (Z/NprZ)x -» Ox. The homomorphism 
^d ~^ O corresponding to / factors through a unique local factor R of J)££d and 
through a unique simple factor /C of eprim(R®h £)- Replacing Fp by a finite extension 
if necessary, we may assume that K, is defined over i^, in the language of 1.4.4. Write 
eprim(R®A C) = IC x A, and define ^(.4) to be the image of R in A, and t)(A) the free 
A-closure of f)(A) in A. Hida [Hi 2, p.253] defines the congruence module C = C(/C) 
by the exact sequence 

0 —■> R —> ft(/C) e})(A) —> C —+ 0. 

It is shown in [Hi 2, Thm. 3.6, Cor. 3.8] that C is a torsion A-module and C/Pk^C 
is finite (for all integers k > 2 and characters of finite order e : F —> O*). 

Denote by a;: (Z/pZ)x -> Z^ the Teichmiiller character and decompose x^ko^2 = 

ipe into its tame, </> : (Z/NpZ)x -> C^, and wild, e : T -)- T/F^"1 -> 0X, parts. 
Denote by V 6 Xartth(t)(K)) the arithmetic point corresponding to / (lying above 
P = (Pk0le) ^ Spec(A)) and by V 6 £arith(R) its preimage in i?. Localizing the exact 
sequence 

0 —► R —► f)(/C) 0 lf(A) —> C —> 0 

(where C C C is a subgroup of finite index) at V, we get 

As ^(/C)^ 7^ 0, this implies that t)(A)v = 0 (which also follows from the multiplicity 
one statement of Prop. 1.4.6(iii)), hence Rv —> t)(lC)p is a discrete valuation ring, 
unramified over Ap. One obtains in this way an embedding 

f)(/C) M> !Fc = \ Y^Ui(x - fco)2 : ui 6 Fp, Jim oidp{ui) + d = -hoo > C Fp[[x - fo]] 
^ i>0 } 

for a suitable integer c > 0 (cf. [Gr-St, 2.7]). The composite map 

ZN <-> 0[[ZN)] —> f,(K) -+ Fp[[x - ko]] 

is equal to 

t ^^ il>{t)e{t)K{t)x-2 = x(t)"{t)ko~2K(t)x~2, 

where /« is the projection to the group of principal units 1 + pLp. 
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For k E ko +pcZp, the evaluation map "x = k" evk ' Tc —> Fp is well defined. If 
k = kl (mod pn+c) for n > 0, then ev^ = evv (mod pn). 

For every integer k > 2 satisfying k = ko (mod pc), 

Vk := Ker (l}(/C) -> ^c^Fp) 

is an arithmetic point of J)(/C) above {Pk^e)- It corresponds to a p-stabilized newform 
fk on Ti(Npr) of weight fc and character x^0-*- If fc' > 2 is an integer satisfying 
k = k' (mod pn+c) (for some n > 0), then the two morphisms 

f)(/C) -> m/Vk = O,       [)(/C) —> f)(/C)/^ - o 

are congruent   (mod pn), i.e. /^ = fk' (mod pn). 

(1.5) Big Galois representations 

The assumptions are as in 1.4 (but we do not assume that Fp is "big enough" as 
in 1.4.4-7). 

(1.5.1) Denote by Ji(M) = Pic0(Xi(M)) the Jacobian of the modular curve 
XI(M)/Q (for M > 4). The degeneracy maps m : X^Np^1) -+ X1(Npr) induce 
maps on p-primary torsion 

TT* : Ji(Npr)mp~ —> Ji(iV^+1)(Q)poo. 

The inductive limit 
Joe = lim (Ji(iVpr)(Q)p0o) 0Zp O 

^r 
is an ^2,oo-module; denote by J££d = eJoo its ordinary part, which is a module over 
[)££rf. Fix one of the local factors R of f)££d and denote by CR G f)^ the corresponding 
idempotent. The "big Galois representation" we are most interested in is 

T(JR) = Homo {eRJZd^p~> ®zP O). 

It is an iZ-module of finite type with a continuous i?-linear action of Gqys (with 
S = {£ : £ | A^p} U {oo}). 

(1.5.2) PROPOSITION. ^ (Eichler-Shimura relation) For every prime £ { Np, 
the relation 

T(£)Aib = Fr^)"1^ + £ < £ >Aib Fr(^)geom 

/io/c?5 tnEndi^TCR)). 
(ii) [Ma-Ti, Thm.  7] IfT(R) has an irreducible residual representation, then R is a 
Gorenstein ring and T(R) is free of rank two over R. 
(Hi) [Ti 1, Sect.4] Let a G ^/(p- 1)Z be the exponent such that (Z/pZ)x C Z^ acts 
on R by uja. If a ^ 0, —1 (mod (p — 1)), then there is a canonical exact sequence of 
R[GQp]-modules 

0 —¥ T{R)+ —> T(R) —y T(R)- —■> 0 

such that T(i?)+ —> R and T(R)~ —> UR := HomA(jR,A) as R-modules, and the 
inertia subgroup Ip C GQP acts trivially on T(R)~ and by Xcyd < Xcyci >Aib on 
T(R)+, where 

Xcyd : GQP -> Gal(Qp(iip~)/Qp) ^ Z* 

is the cyclotomic character. 

(1.5.3) A few remarks are in order. 
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(1) As J?1(Xi(iVpr)ct,/ipoo) = Ji(A/pr)((Q))poo, the statement (i) follows from the 
Eichler-Shimura relation 1.2.11. 

(2) A residual representation of T(R) is a representation p : GQ,S -> GL2(R/ra)J 

(where m is the maximal ideal of R) such that the characteristic polynomial of 
^(Fr^)"1^) is equal to X2 - T{£)MbX + £<£ >Aib   (mod m) for all primes £ \ Np. 

(3) p is irreducible if and only if p is absolutely irreducible, because 
^(complex conjugation) has two distinct eigenvalues ±1 G R/m (recall that char(i?/m) 
= p^2). 

(4) As R is finite and flat over the regular ring A, it is Cohen-Macaulay and 
UR = HomA(iZ, A) is a dualizing module of R [Br-He, Thm. 3.3.7(b)]. In particular, 
R is Gorenstein if and only if UJR is free of rank one over R. 

(5) The statement (hi) of Proposition 1.5.2 probably holds also for a = 0 
(mod (p— 1)). 

(1.5.4) PROPOSITION. In the notation of Proposition 1.5.2 (Hi), assume that 
a = 0 (mod (p — 1)) and that T(R) admits an irreducible residual representation. 
Then the conclusions of Proposition 1.5.2 (Hi) hold, with both T(R):k free of rank one 
over R. 

Proof. By Prop. 1.5.2 (ii), T(R) is free of rank two over R. By a version of 1.3.5.1 
over R/m ([Ti 2, Thm. 3.2]), the inertia subgroup Ip C GQP acts on p by 

fu1+a    *\ 
v o   i; 

As a 7^ —1 (mod (p — 1)), we have uj1+a i=- 1, which means that p is "distinguished" 
in the sense of [Ti 2, Def. 3.3], [Wi 2, p. 481]. Fix r > 1 and consider the quotient 
T{R)luj2,rT{R) as a module over Rr = R/uj2,rR' It follows from [Ti 2, Theorem 
3.4] and its proof and [Wi 2, Thm. 2.1, Cor. 1] that there is an exact sequence of 
jRr[GQp]-modules 

0—>F+—> T(R)/uj2,rT(R) —» F- —> 0 

with F^ free of rank one over Rr and Ip acting on 2^ as in Proposition 1.5.2 (iii) (free- 
ness of i*^ follows from Nakayama's lemma, because it holds (mod m). As u1+a ^ 1, 
F^ map to F* under the canonical maps T(R)/uj2}r+iT(R) -> T(R)/u;2JrT(R), and 
hence we get in the limit the desired sequence 

0 —► limFr
+ —► T(R) —> limF" —> 0. 

r r 

(1.5.5) Assume that a ^ — 1 (mod (p - 1)) and that T(R) has an irreducible 
residual representation. Let V E 3iarith{R) be an arithmetic point corresponding to 
an ordinary eigenform g of weight k on Yi{Npr). It is not necessarily a newform, but 
there is a unique newform / of weight k and character x on Ti (M) for some M \ Npr 

with the same set of Hecke eigenvalues {ai : £ \ Np}. The quotient T(R)/VT(R) 
is free of rank two over O' = R/V. Tensoring with the fraction field F^ of O' we 
get a two-dimensional representation of GQ,S over Fj, such that Fr(^)~eom satisfies the 
equation 

x2-aix + ik-1x(e)=p 
for all primes £ f Np. By the Cebotarev density theorem and irreducibility of p/^, 
it follows that the Galois representation (T(R)/VT(R)) ®o' Fp is isomorphic to the 
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base change — <S>FV Fp of the dual of p/^, namely 

P/,P^P/,P(*-1)®[X"
1
]- 

In the notation of 1.3.5, (T(R)±/VT(R)±)®o<F{i corresponds to F±Mp(k-l)^[x~1]. 

(1.5.6) If a ^ 0, —1 (mod (p — 1).), but without any assumptions on a residual 
representation, let V € Xar7'th(R) correspond to a p-stabilized newform /. As in 1.4.6- 
7, there is a unique simple component K of R 0A £ through which R -> R/V factors. 
Denote by V G Xarith(t)(]C)) the arithmetic point of f)(/C) corresponding to /. Then 
p = pr~1('P), where pr : R -> f)(/C) is the canonical projection. For every pair of 
jR-modules M, JV one has 

Torf (Af, N)<p ~ Torf * (Mv, Nv). 

In particular, 
Supp(Torf (R/V,u>R)) C Supp(i?/P) = {P,m}. 

On the other hand, RT> is a discrete valuation ring (by 1.4.7), and hence (L>R)-P -^ 
WRp = R-p and 

Torf(W^={;   .;.>o 

It follows that TOY?(R/V,UR) is finite for i > 0 and UR/VUJR -^> ii/P © (finite). In 
the exact sequence 

Torf (R/V,T(R)-)-^T(R)+/VT(R)+ —> T(R)/VT(R) —-* T(R)-/VT(R)- —+ 0 

the second term is free over iJ/T^, hence flat over O. The first term being (D-torsion 
by the previous discussion, we see that the map d must be zero. As a result, we get 
an exact sequence 

0 —► T{R)+/VT{R)+ —> T(R)/VT(R) —> T{R)-/VT{R)- —> 0, 

in which T(R)+/VT(R)+ is free of rank one over R/V = O' and T(R)-/VT(R)- is 
the sum of a free rank one R/V-module and a finite group. As in 1.5.5, the Galois 
representation (T(R)/VT(R)) Qo1 F^ is isomorphic to the base change of p** p, where 
/ is the p-stabilized newform corresponding to V. Similarly, T(R)±/VT(R)± ®o' F^ 
corresponds to F±Mp(k — 1) 0 [x-1]. 

(1.6) Self duality ofT(iJ) 

The results of this section are well known, but we were unable to find a good 
reference that would cover all of them. The notation is as in 1.4. 

(1.6.1) For every integer r > 1, put Ar = {Z/Np'Z)*, and 

Xr := H1(X1(Npr)eV0) = H^X^Np^Zp) 0zp O = Tp(J1(iV^))(-l) 0Zp O. 

Poincare duality gives an (9-bilinear skew-symmetric perfect pairing 

( , )p,r : Xr x Xr —»■ Hlt{X^NW)eV0)^0{-l), 

which induces an isomorphism 

Xr-^Homo(Xr,0)(-l) 

xi—>   (y\-> (x,2/)p,r) 
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of (9[GQ]-modules. In other words, the Galois action satisfies 

(9(x),9(y))p,r = 9((x,y)ptr) = x7jc\(9)(x>y)p,r, 

where g G GQ, x,y G Xr, and Xcyd : GQ -> Gal(Q(//p0o )/Q) -^4 Z£ is the cyclotomic 
character given by the action on fipoo. In this section, we denote by 

Xcyci,jv : GQ —> Gal(Q(^iVpoo)/Q) -^> Aoo = lim Ar 

r 

the character taking into account also the action on /J,N> 

(1.6.2) The pairing ( , )pjr is functorial as follows: 

Hecke operators: 

(T(ri)A\b(x),y)p,r = (z,T(n)piC(2/))p,r        (n > 1), 
(1.6.2.1) 

(< « >Aib (a?),y)p,r = (a?, < o >Pic (y))p,r        (a € Ar). 

Degeneration maps: 

7ri,7rp : Xi(JVpr+1) -> Xi(iVpr) satisfy (iri+(x),y)ptr = (a:,<(2/))p,r+i. 

Fricke involutions: 

Fix a compatible system of primitive Npr-th. roots of unity CiVp1- € ^iVp*-, C^r '■+1 ~ 
Civp-, and put Wr := WCjVpr. Then (Wr(a?), Wr(j/))p,r = (x,y)pir. 

(1.6.3) We define a twisted pairing (depending on the choice of C;vy) 

(, )r : Xr x Xr —> C7(-l), 

(a?j2/)r = (^^r(2/))F,r 

This is again skew-symmetric and (9-bilinear. The formulas (1.6.2.1) and (1.2.8.1,3) 
imply 

(T(n)Aib(x),y)r = (x,T{n)picWr(y))P,r = (x,WrT(n)Alh(y))P,r 

(1.6.3.1) 
= (a:,r(n)Aib(y))r        (n > 1) 

and (< a >Aib (x),y)r = (x, < a >Aib (2/))r> for a G Ar. For g G GQ, we have (by 
1.6.1 and (1.2.8.2)) 

x£c\(9)fay)r = Xcyci(9)(x,Wr(y))p,r = ^(a:),pWr(2/))p,r 

= (9(x)>Wr < XcyclMg) >Alb fl(l/)>P,r = (fl(a?), < Xcycl,jv(fl) >Alb 5f(2/))r. 

Hence, 

(1.6.3.2) (g(x),g(y))r = x7yc\(9)(x> < Xcyc\,N(g) >Mb y)r. 

The Hecke algebra t)2,r = t)(ri(Npr),0) acts on Xr by T(n)Aib and < a >Aib- The 
formulas (1.6.3.1-2) can be reformulated by saying that the map 

ar : Xr -^> Homo(Xr, 0)(-l) 

xi—>  (y*-> (x,y)r)) 

induces an isomorphism 

(1.6.3.3) ar : Xr -^ Homo(Xr, 0)(-l) < -1 > 
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of J)2,r[GQ]-modules.   Here, the notation Y < n >, for an J)2,r[GQ]-module Y and 
n G Z, means that the original Galois action by g G GQ on Y is multiplied by the 
action of < XcydMo) >AlbG ta.r- 

Taking the limit r ->• oo 

We know from 1.2.10 that the maps Xr_|_i-^Xr and Xr+i<-^-Xr (i = l,p) are 
compatible (for r > 1) with the canonical maps I)2,r+i ->• ^2,r- Note that, by 1.2.9, 

{ni*(x),y)r = {ni*{x),Wr(y)}pir = (x,7rZWr{y))p,r+i 
(1.6.3.4) 

= (x,Wr+iirl/i(y))pir+1 = faiTp/iiyVr+i. 

This means that the isomorphisms ar induce in the limit an isomorphism of ^2,00[GQ\- 

modules 

aoo : Um^r -^ Hom0(Hnj(Xr 0zp Qp/Zp),0 <g>Zp Qp/Zp)(-1) < -1 > 

(1.6.3.5) 
= Homo(Joo,C)0zpQp/Zp) < -1 > 

(this  is  because  the  right  hand  side of  (1.6.3.3)   is  canonically  isomorphic  to 
Eomo{Xr ®zpQp/Zp,0®zpQp/Zp)(-l) < -1 >)• 

(1.6.4) LEMMA. Let O be a commutative ring, A a finite group and X a left 
0[A]-module. Let f G Homc>(X,(9), F G Homo[A]_left(X,(9[A]). Then 
(i) The formulas (f*a)(x) = f{ax), (F*a)(x) = F(x)[a] (a G A, x G XJ rfe^ne right 
actions of A on Homo(X, O) and Hom^Aj-ieftP^j^lA])- 
(ii) the formulas 

(#(/))(*) = X) /W*))!0"1]' (*(^))W = Pre(F(z)), 
aGA 

define mutually inverse isomorphisms of right 0[A]-modules 

Homo(X, O) ^H Hom0[A]_left(X, 0[A}) 

(here, pr6(]Ca<EA ^a[«]) = rib for b G A, and e G A is the identity element). 

Proof Straightforward calculation. 

If A is commutative, the formulas in (i) can be used to define a left action of A : 
a */:=/* a, a * F := F * a, and (ii) will be an isomorphism of left (9[A]-modules. 

(1.6.5) Applying Lemma 1.6.4 to X = Xr and A = Ar, the formula defining 
$ gives yet another skew-symmetric pairing, this time with values in the group ring 
0[Ar} : 

( , )Ar : Xr x Xr —> 0[Ar} 

(x,y)Ar = ^2(x,<a >Aib y)r[a>]~1. 
aeAr 

It satisfies 

(T(n)Alb(x),y)Ar = (x,T(n)Alb(y))Ar        (n > 1) 

(< a >Aib (x),y)Av = (x,<a >Aib (y)}Ar = [a](x,y)Ar       (a G Ar) 

(9{x),9{y))Ar = Xcycl(p)"1[Xcycl,iv(^)"1](x,2/)Ar (p € GQ). 
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the induced map 

(3r:Xr^ Hom0[Ar](Xr,e>[Ar])(-l) < -1 > 

(1.6.5.1) 
x\—>(y\-> (x,y)Ar) 

is again an isomorphism of I)2,rlGq]-modules, equal to $oar. The same is true of the 
projection of /3r to the ordinary component: 

pord . eXr j^ Hom0[Ar](cXrjO[Ar])(-l) < -1 > 

(1.6.5.2) 
x\—►  (y*-> {x,y)Ar) 

This is an isomorphism of l}2^[^Q]"m0(lules. 
(1.6.6) LEMMA. Fixr > 1. Then 

(i) 7ri*(eXr+i) C p(eXr). Denote by ^TTI* : eXr+i -> eXr the unique map satisfying 

P'ifru) =7ri*- 
(ii) (^7ri*)o7rr = p on eXr. 

(Hi) ^0(^1*) = Eaerv/r^+i < a >Aib on eXr+lj where rr = T^"1. 

(iv) T(p)A\bo(fri*) = Kp* on eXr+i. 

Proof. See 1.6.11 below. 
(1.6.7) COROLLARY.    For  x, y € eXr+i,   (r > 1),   the   canonical  projection 

C?[Ar+i] -> 0[Ar] maps (X,2/>AP+1 to (^p*^), ^i*(y)>Ar. 

Proo/. (x,2/)Ar+1 maps to 

S (   I]   (^<6>Aib(y))r+i)[a"1] 

= V (ar,7rio(-7ri*) < a >Aib (2/))r+i[a"1] (by (1.6.6.iii)) 
aGAr ^ 

= Y, (^P*^)' (-^1*) < a >Aib {y))r[a-1] (by (1.6.3.4)) 
aGAr 

P 

= (7rp*(a:),-7ri*(y))Ar 

as claimed. 
(1.6.8) COROLLARY. The map 

sy = (7r) : X = lim eXr —> Hm eXr 

(a?r)r>l ' >■    (T(p)rA\b(Xr))r>l 

is an isomorphism of ^^[Gol-modules. 

Proof Follows immediately from Lemma 1.6.6 (iv). 

(1.6.9) Combining the two corollaries, we obtain a skew-symmetric pairing on 
X: 

{ , )x : limeXr x UmeXr —> A(-l) < -1 > 

given by <(arr),(2/r)>x = ((xr,T(p)r^(y)r)Hr). 
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THEOREM. ( , )x induces an isomorphism of ^^[Gql-modules P^ : X -^> 
HomA(X, A)(—1) < —1 >; {P00{x)){y) — (x,y)x- In particular, X is free of finite 
rank over A. 

Proof. Firstly, the ordinary part of aoo gives an isomorphism 

aZd :X ^Hpmo(cJoo,0®zpQ,/Zp) < -1 >, 

and we know that the right hand side is of finite type over f)££d. A fundamental result 
of Hida [Hi 1, Thm. 3.1] states that TT* induces isomorphisms 

eJi(Npr)mpoo -^ {eJoof*        (r > 1). 

Dualizing - using (1.6.3.4) - we see that TT^* induces isomorphisms Xrr -^> eXr. 
Together with (1.6.5.2), this implies that Poo is an isomorphism. 

(1.6.10) As in 1.5.1, fix a local component R of f)^d. Let X(R) = eRX be the 
iJ-part of X. Then a££d induces an isomorphism 

X{R)-^T{R)(-1)<-1> 

and ( , )x defines a skew-symmetric pairing 

( , )T{R) : T(R) x T(R) —^ A(l) < 1 > 

inducing an isomorphism of i?[GQ]-modules T(R) —> HomA(T(i?), A)(l) < 1 >. 
Whenever 1.5.2 (iii) or Proposition 1.5.4 apply, the pairing ( , )T(R) induces isomor- 
phisms of i^GQJ-modules T(i?)± —> HomA(T(JR)=F, A)(l) < 1 >. The canonical map 
of i?-modules 

liomR(T(R)7B.omA{R, A)) —-> HomA^^), A) 

is an isomorphism, and hence the pairing ( , )T(R) induces an isomorphism of JR[GQ]- 

modules 
T(R) ^ TlomR(T(R),uR)(l) < 1 > 

i.e. can be viewed as an ii-bilinear pairing 

T(R) x T(R) —> UJR(1) < 1 > . 

(1.6.11) For the proof of Lemma 1.6.6, it will be convenient to use a group theo- 
retic description of the Hecke operators. Let F C SL2(M) be a discrete subgroup of the 
form 7r/7~1, where 7 G GZ^Q) and F' C SLziJj) is a congruence subgroup. Denote 
by X{r) — T\H* (where H* = Ti U P1(Q)) the corresponding complex modular curve 
over C. Let H be a reasonable cohomology theory, say H0(X, ft1) or iJ1(Xet,Zp); 
put H(T) = H(X(r)). 

Functoriality: 7 G GI/2(Q) gives an isomorphism [7] : X(r) -> X(7r7~1), 
which induces an isomorphism 

[7]* = [7-1]* : HW-r1) ^ H(T). 

Inclusion i : F c-> Tf gives a finite map X(T) -> Xfi'), which induces z* : 
H(T) —» H(r'), and t* : H(r) —+ H(T). 

Double cosets: For 7 G GL2(Q) and Fi,^ C GL2(M) of the above form, the 
maps 

Fi^Fi n7r27"1^-^7~1ri7nr24r2 
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induce the action of the double coset 

pr^ra]: ff(ri)-^ff(ri n7r27"1)[2:^^(7"1ri7nr2)^if(r2). 

In the coordinates on the upper half plane U, [T1JT2] corresponds to ^^T01*)*? where 
ai € GL2(Q) are representatives of (7~1ri7nr2)\r2 (equivalently, 1^7^ = Uri7ai)- 

Example:     Fi = ^ = T = Fi (M), 7 = ( 0       ), with p prime. Then 

ri(M)(o   p)ri(M)=   H   ri(M)(i    *)     (uri(Jf)(j   j)^ifpfM), 

where ap € 312(1), ap = ( PQ J   (mod Af).   The action of ^F] on H(T) = 

iiir0(X(r), n1) gives the usual Hecke operator T(p) = T(p)Aib on cusp forms of weight 
two on ri(M). 

Proof of Lemma 1.6.6.     Let 

7 = (0 J) '   r = riiNpr) D rWT1 = ri(Npr)nr0(Npr+1) Dr' = ^(iv^1), 

where r > 1. Consider the maps 

22 

r' c—%X r n 7r7-1 n-i 7-^7 n rc^- 

and their action on cohomology H(X) = if^X^Z) (g)z Zp. Each modular curve X 
corresponding to F, Tr, or rn7r7~1 has a model X/Q, and hence H(X) = iJ1((X/Q(g)Q 
Q)ct,Zp). By definition, we have 

TTI* = i2*ii*: ^(r') —► ff(r) 

^ = ts*^"1]**!*: ^(r') —> # (r) 
T(p)Aib = [r7r] - isoh'1]^ : ff(r) —> J-r(r) 

Denote [(rn7r7-1)7(rn7r7-1)] : iJ(rn7r7-1) —> Him-yr-y-1) also by T(p)Alb. 
It follows from the definitions that the operator f = [(F n 7r7~1)7r] = ^s*^-1]* : 
if(rn7r7-1) —> if(r) satisfies 

61 = T(p)Aib       on H(T) 

i*2Z = T(p)Alb       onHiTnjT^-1) 

This fact - due to Shimura - is at the basis of all Hida's theory [Hi 1, Thm. 4.4]. 
Applying the ordinary projector e = \imn^00T(p)7^lbj we see that i^ induces an iso- 
morphism between the ordinary parts ([Hi 1, Cor. 4.5]) 

i*2 : eH(T) -^ etf (F fl 7r7-1), 

with inverse 
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As 22*^2 = Pi it follows that the map 

(ftyUu : eH(r') —> eJE?(r) 

satisfies p^)""1*!* = ^2*^1* = ^i*, which proves Lemma 1.6.6 (i) and in fact shows 
that ^TTI* = (iD^h*. The rest is easy: 

-TTI* ) TTJ = (^r^'i*^ = P^S)"1^ =P       on eH(T) 
P     ) 

7rJ(-7ri.) = zJz5(i$)"1ii* =ijii# =      Y^      < a >Aib        on eiJ^'). 
» z—' a€rr/rr+i 

The last equality here is because F' is a normal subgroup of Ff^^-1, with quotient 
equal to rr/rr+i. Finally, 

r(p)Aib(-^i*) = ^2*(^2)~1*'i* = ^1* = ^♦[T
-1

]**!* = *>     on efrjr). 
p 

This finishes the proof of Lemma 1.6.6. 

(1.6.12) The arguments in the previous section show that all the statements of 
Lemma 1.6.6 hold if eXr is replaced by the maximal direct summand of {XT ® Q) 
on which T(p)Aib is invertible (i.e. the sum of generalized eigenspaces of T(p)Aib for 
non-zero eigenvalues). 

(1.6.13) Using the formula 7rpoWr+i = WTOTTI (which follows from 1.2.9) and 
(1.2.8.3), (1.2.10), we see that the map 

W = (WT) : (xr)r>i ^   (Wr(:rr))r>i 

induces an isomorphism of O-modules 

Hm e*Xr -^> Hm eXr = X, 

where e* = limn-^oo T(p)p!
ic is Hida's dual projector. 

2. Selmer groups in families. 

(2.1) Generalities on Selmer groups 

(2.1.1) Notation. Let p be a rational prime, Fp a finite extension of Qp with 
ring of integers O = Op, and TT G O a prime element. Let if be a number field, 5 a 
finite set of primes of K containing all archimedean primes and all primes dividing p, 
and Ks the maximal extension of K unramified outside 5. Let 5/ C 5 be the subset 
of non-archimedean primes. For v € 5/, fix embeddings K M> Kv. They induce maps 
Gv = Gal(Kv/Kv) ^GK = Gal(K/K) -> G^s = GQ1{KS/K). 

(2.1.2) Let T be an O-adic representation of GK,S (i-e. a free O-module of finite 
rank equipped with a continuous (9-linear action of GK,S)' There is a tautological 
exact sequence 

0 -> T-^V^A —¥ 0 

with V = T ®o Fp, A = V/T. All Galois cohomology groups with values in T or V 
will be continuous cohomology ([Ta], [Ja]). Recall that fP(G,F) = fP(G,T) ®o Fp 
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and that Hl(G,T) coincides with the naive cdhomology group 

hmWiG.T/^T) 
n 

for i < 1 (resp. for all i if G = Gv or GK,S)- For G = Gv or GK,S, the (9-modules 
iJz(G,T) (resp. i7*(G, A)) are of finite (resp. co-finite) type. 

(2.1.3) Recall Flach's abstract treatment of Selmer groups [Fl]. Given Fp- 
subspaces Wv C Hl{Gv, V) for all v € 5, the Selmer groups associated to W = (Wv) 
are defined by 

S(K,A;W) = Kei H^GK^A) -+@H
1
(GV,A)/I>L(WV) 

ves 

S(K, V; W) = Ker HHGK^V) -> 0H1(Gt„y)/^ 
v€5 

They do not change if S is replaced by 5' D S with Wv = H*r(Gv,V) = Hl{GvIIv, V) 
for v e S' - S (as pr*(^r(Gv, V)) = Hlr(Gv,A) for such v). The O-module 
^(iir, A;W) is of co-finite type and pr*(S(K, V;W)) coincides with its maximal p- 
divisible subgroup S^A^W)^, i.e. S(K, A; W)div -^ (Fp/0)r, where r = 
dimFp^(X, F; TV), and the quotient m(lir, A; W) := S(lir, A; W)/S(K, A; W)dW is fi- 
nite. 

(2.1.4) Duality.     Put    Zp(l) = jpn/v,    ^C1) = 0 ®Zp Zp(l),    r*(l)  = 

Hom0(r,0(l)), F*(l) = T*(l) 0o Fp, A^l) = F*(l)/T*(l). For t; G 5/, let Wj- C 
^(Gy, V*(l)) be the annihilator of Wi, under Tate's local duality 

tf^TO xH^Gy^il^^H^G^F^l)) ^Fp. 

FOTV\P1 H^iGy.V)1- = H^r(Gv,V*(l)). Flach [Fl] constructed a pairing(1) 

S(K,A; W) x S^A^l);^-1-) —► Fp/O 

and showed that its left (resp. right) kernel is equal to 
S(K, A; W)div (resp. S(K, A; W1-)^). In other words, the induced pairing 

m(K,A; W) x m(K,A*(l); W^ —> Fp/0 

is non-degenerate. 

(2.1.5) Let 
(, )v:VxV—►Fp(l) 

be a Galois-invariant non-degenerate skew-symmetric bilinear form such that T x T is 
mapped to 0(1). The formula a(x)(t/) = (x1y)v defines an isomorphism of Fp[GK,S]- 

modules a : V -^» V'*(l) which is skew-symmetric (i.e. a*(l) = —a) and such that 
a(T) C r*(l). If the local conditions W are self dual in the sense that a*(Wv) = W^ 
for all v E 5, then a induces a map 

a* : S(ir,A;W) —> 5(iir,A*(l); W^) 

Flach    considered    only    Fp  = Qp,    but    the    generalization to    Fp-representations is 
straightforward. 
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with finite kernel and cokernel. The induced pairing 

S(K,A;W) x SfaAiW) (^) S{K,A;W) x S{K,A^l)'^) —» Fp/0 

is skew-symmetric [Fl]. 

(2.1.6) For v | p, Bloch-Kato [Bl-Ka, Sect.3] introduced subgroups Hj(Gv,V) C 
Hg(Gv, V) C Hl{Gv, V) of a crystalline nature; 

F}(GV5y) = Ker [H^G^V) -^ H1(Gv,V^Qp Bcris)] 

Hl(Gv,V) = Ker [H\GV,V) —> JT1^, V 0QP B^)] 

(see [Bures, Exp. II] for more details on Fontaine's rings BcriS c J3dji). Write D*(V) = 
H0(GV, V ®QP B*), for * G {ens, di?}. If we define 

p   _ / HuAGv 
I Hf(Gv, V)     v\p 

then the Selmer group 5(iir,y;T/F) is usually denoted by Hj(K,V). The basic prop- 
erties of Hj C if* are as follows: 

(i) If V is a de Rham representation of Gv, then Hg(Gv,V)/Hj(GVlV) is dual 
to ^criS(^*(l))/(/ - 1) ([Bl-Ka, Prop. 3.8, Cor. 3.8.4]). 

(ii) If V satisfies Panciskin's condition at v ([Ne 1, 6.7]), i.e. if there is an exact 
sequence of ^[G^]-modules 

0 -+ Vv
+ —► v —»• v- —»• 0 

such that F0£>dfl(V+) = DdR{V-)IF0 = 0 (where F^^) = ^(G^W OQ, 

Fil^dfl)), then 
Hl(Gv,V+) —^ ^(G^F) —»• ^(G,,V7) 

is exact. If V^"" is a semi-stable representation of Gv, then 

^(G^vr) = ^(C K") = Dcruiv-yv - 1) 
(by weak admissibility and [Bl-Ka, Cor. 3.8.4]), which has dimension equal to that of 

DcrisiV-)^1 = DcrisiV-)'-1 CiFODdRiV-) = H\GV,V-). 

In particular, if H0(GV,V~) = 0, then 

Hl(Gv,V)=lm[H1(Gv,Vv
+)^H1(Gv,V)] . 

(2.2) Selmer complexes 

As observed in [Ne 3], a more satisfactory theory of Selmer groups is obtained 
if one imposes local conditions on the level of complexes, rather than on cohomology 
(as in 2.1.3). In this section we recall the basic setup of [Ne 3] for the coefficient ring 
O. In what follows, if p = 2 and K is not totally imaginary, then most statements are 
valid only modulo 2-torsion. 

(2.2.1) Let G be a profinite group and M a topological G-module (i.e. such that 
the action G x M —> M is continuous). The complex of (non-homogeneous) continuous 
cochains on G with values in M will be denoted C'ont(G, M); in degree q, Clont{G, M) 
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consists of continuous maps Gq -¥ M. The cohomology of C'ont(G, M) will be denoted 
by iiP(G,M). If M has discrete topology, then 

C-cont(G,M) = lunC-cont(G/U,Mu), 

with U running through all open normal subgroups of G. 

(2.2.2) In the notation of 2.1.2, we consider M = T (with the p-adic topology) 
and M = V = \Jn>Q 7r~nT (with the inductive limit topology) as topological modules 
over G = GK, GK,S, or Gv.   In this case, CZont(G,T) = ljmC9

cont{G,T/irnT) and 

C'contiG, V) = C-ont(G,T) ®o Fp ([Ja, Thm. 5.15]) and 

0 —► C-ont(G,r)-^C-ont(G, F)^C-on,(G, A) -> 0 

is an exact sequence of complexes (as i is strict and pr admits a continuous section). 

(2.2.3) In order to define Selmer complexes we need the following data: for each 
v G 5/, complexes U^{T) of (9-modules together with maps of complexes 

A„ : U+(T) —► Clont{G,T) —► V;{T) 

such that Av defines a distinguished triangle in Dbft(0-mo&) (the derived category 
of cohomologically bounded complexes of 0-modules, with cohomology of finite type 
over O). Putting U±(V) = U±(T) 00 Fp and U±(A) = Cone(U±(T) —»■ U±(V)) 
(isomorphic to Uf(T) igig, (Fp/O) in £>6(C-mod)), we get distinguished triangles in 
Db(0-mod) 

U+iX) —»• Cc-ont(G,X) -+ 17-(X) 

for X = T1V1A. The Selmer complex with values in X 6 {T, V", A} associated to local 
conditions A = (A^) is defined as 

C;(GK,S,X; A) = Cone(c-cont(GK,s,X) -+ 0 U;(XJ)[-1]. 
veSf 

The corresponding object of Db(0-mod) will be denoted by MT/ (GK,S, X; A) and its 
cohomology by H^GK^S, X; A). 

(2.2.4) Properties of Selmer complexes 

(i) if/ (G/cs, X; A) for X = T (resp. X = A) is an object of Db
ft(P-mod) (resp. 

-D^t((9-mod)) i.e. the cohomology groups Hl
f(GK,s,X] A) are of finite type (resp. 

cofinite type) over O. 

(ii) There is a distinguished triangle 

Wf (GK,S,T; A)-^Hf / (GK,S, V; A)^Wf (GK,S, A; A) 

with 

RT/ (GK.S, V; A) -^ M5/ (Gjf.s, T; A) ®o Fp 

lRf/(Gic,5,^; A) -^ lf/(GK,s,T; A) ®0 (Fp/C») 
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(iii) The cohomology sequence of the triangle in (ii) induces isomorphisms 

H}(GK,S,T; A)tors ^Im [fl*"1 (G^.s, A; A) —> H}(GK,S,T; A)] 

H}(GK,S,A; A)div ^Im [pr* : Hj(GK,s,V;A) —► ^(G^S.A; A)] . 

(iv) There is an exact sequence 

 > 0 H'-HG^U^X)) —> H}(GK,S,X;A) —> F«(GK,S,X) 

_>0^(Gfl,!7-W)->--- 

(2.2.5) Duality 

Local Tate duality can be reformulated as an isomorphism 

ir(Gv,T*(l)) -^KHomo(Kr(Gv,r),0)[-2]       (vfoo) 

in jD^(O-mod), where Mr(Gv,r) denotes the image of C'ont(Gv,T) in the derived 
category. Assume that, for each v G Sy, we are given local conditions 

A;(l) : y+(T*(l)) -> C'^CG^T^l)) -► t/-(T*(l)) 

and isomorphisms in Z)^(O-mod), 

£/±(T*(l)) ^ Wlom0{U?(T))[-2], 

compatible with local Tate duality. One defines Selmer conditions for T*(l), V*(l), 
i4*(l) using local conditions A*(l) = (A;(l)). 

Examples: (i) If U+(T) = 0, then f/+(T*(l)) = C-cont(Gv,T*(l)). 

(ii) If 0 -4 T+ -> T -4 T~ -4 0 is an exact sequence of (^[G^-modules with 
T- free over O and C/±(T) = C'cont(Gv,T±), then f/±(T) = Cc'orif(G„,r*(l)±), where 
T*(l)± = (T^)*(l). 

It is proven in [Ne 3] that there is a pairing 

H}(GK,S,A;A) x H}(GK,S,A*(1);A*(1)) —> Fp/0 

with   left   kernel   equal   to   Hf(GK,s,A; A)div    (resp.     right   kernel   equal   to 

tf}(Gtf,s,^(l);A*(l))div). 

(2.3) Big Galois representations 

(2.3.1) Let ii be a complete local noetherian ring containing 0, with maximal 
ideal m and finite residue field R/xn. Let T be an ii-module of finite type equipped 
with a continuous (with respect to the m-adic topology) i2-linear action of GK^S- 

Assume that, for each v \ p, there is an exact sequence of ii[Gv]-modules 

0 —> T+ —y T —► T~ —> 0 

with T,t free over R. 

(2.3.2) Specializations of T 

Let X C Spec(ii) be the set of prime ideals / C R such that 



462 J. NEKOVAR AND A. PLATER 

(i) R/I is free of finite rank over O. 

(ii) For all v \ p, T~ <S)R RI is free over Rj. 

The same argument as in 1.5.6 shows that, for every I e X, Torf (T~,R/I) is 
finite and 

0 —> T+/IT+ —> T/IT —» T'/IT- —> 0 

is an exact sequence of (R/I)[Gv]-modules, with T+/IT+ free over (9 (for all v \p). 
Fix, once and for all, I € X. Let CQ > 0 be the smallest integer such that 7rCo kills the 
0-torsion of T'/IT-, for all v \ p. Put 

X(I) ={JeX:iko(T-/JT-)=iko(T-/IT-) V v | p, and (J,7rCo+1) = (/,7rCo+1)} 

X(/)n = {J € X(7)  :  (J,7rc^) = (J,7rc°+")} (n > 1) 

(here, rko(M) = dim^ (Af <g>o Fp)). 
(2.3.3) LEMMA. For every J € X(J), ^ rko(R/J) = rk0(ii/J). 

^;rko(T/jr)-rko(T//T). 
(^m^ T/iere are canonical isomorphisms of O/ir00 -modules 

(T-/JT-)tors -^ (T-/7r-)tors        (for all v \ p) 

(Tl JT)tors -^ (T//T)tors 

Froo/. (i) This follows from the isomorphism i?/(J,7r) -^ R/(I,ir). 

(ii) By (i) and freeness of T+, rk0(T+/JT+) = rko(T+//T+) for all v | p. For 
T~, the analogous equality hold by definition, proving (ii). 

(iii) The exact sequence (for every v \ p) 

r+/(J,7rc°+1)T+ -> TI{IX0+l)T —> T-/(I,*<*+1)T- —> 0 

is isomorphic to the corresponding sequence for J. The free parts of T'/IT' and 
T~/JT~ are isomorphic by definition and the torsion part of T~/IT~ is killed by 
7rCo. This implies that the torsion parts of T~ /IT~ and T~/JT~ are again isomor- 
phic. As (T//T)tors injects into (T~/IT~)tOTS (and similarly for J), it is killed by 
TT

00
. The isomorphism r/(/,7rCo+1)T -^ T/(J,7rCo+1)T together with (ii) imply that 

(T/jr)tors ^ (T/JTW 

(2.3.4) For J € X(J) and v | p, put 

Vj=:(T/JT)®oFPl Tj = Im(T/JT-+Vj), AJ = VJ/TJ, (Vj)f = {T±/JT±) ®0FPl 

(Tj)t = Tjn (yj)t,      (Tj); = im (TJ -+ (Vj);),      (Aj)f = (v>£ / (Tj.)*. 

There are exact sequences of ©[G^J-modules 

o —► (Xjfi ^Xj-> (Xj); -^ o 

for all v | p and X G {T,V,A}. 
(2.3.5) LEMMA. If J E X(J)n forn > 1, ^en ^ere are canonical isomorphisms 

(for all v | p) 

(Aj)„n ^ (A,),. ,        ((^)±)     -^((^)     • 
\ / 7rn \ / 7rn 

Proof This follows from the definitions and Lemma 2.3.3. 
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(2.3.6) Consider the following conditions on Vj, Ij, and Aj : 

(Cl) H0(GKy Vj) = 0 and (for all veSf,v\p) H0(GV, Vj) = 0. 

(Cl') There exists ci > 0 such that <K
CI
H

0
(GKI AJ) = 0 and (for all veSf,v\p) 

7r^H0(Gv,Aj) = 0. 

(C2) Vj is an absolutely irreducible Fp[Gi<:]-niodule. 

(C2') There exists C2 > 0 such that 7rC2End0(rj) C Im (0[GK] -> Endo (Tj)). 

(C3) There exists aj : Vj -^ VJ(1), a skew-symmetric (a}(l) = —aj) isomor- 
phism of F|j[Gx]-modules. 

(C4) aj from (C3) induces isomorphisms (Vj)^ -^ [(Vj)^)   (1) for ^11 v \ p. 

We have (Cl) <^ (Cl7) and (C2) <^> {02'). Of course, the condition 
H

0
(GKI VJ) = 0 in (Cl) is superfluous if the set {v E 5/ : v \ p} is non-empty. Note 

that (Cl) implies that H^r(Gv,Vj) = 0 for all v 6 5/, v \p. We shall consider Selmer 
groups associated to local conditions 

f 0 veSf, v\p 
W i) ,.{ Keri&iGvM-miiG^iVjK))    v\p 

and Selmer complexes corresponding to 

u € 5/, ufp 

'cont(Gv,(Tj)t)     V\p 

U-(T ) =( Ccont(Gv,Tj) v e Sf, v\P 
v( J)    \C'cont{Gv,{Tj)-)   v\p 

The exact sequence 2.2.4 (iv) then becomes 

(2.3.6.1)     0 —> Qtf^GUVj)-) -* H}{GK,s,Vy, A) —)• 5(^,^5W) —> 0. 

(2.3.7) THEOREM ("CONTINUITY PRINCIPLE"). Assume thatVj satisfies (Cl) 
and let Ci > 0 be as in (Cl1). If J € X(I)n+Cl with n > 1, £/ien 
^ ^4j satisfies (Cl1) with the same value of ci (hence Vj satisfies (Cl)). 
(2) There is a canonical isomorphism 

HJiGK&AjiAi^-Z+fijiGK&Ar,*)^. 

Proof. (1) This follows from Lemma 2.3.5. 

(2) For every m > 1, we define Selmer complexes for the finite G^s-modules 
(Aj)^^ by local conditions 

U+ = 0,        U- =C'cont(Gv,(Aj)^),       v£Sf,v\p, 

^± = C-0n((G„((AJ)±)7rm),        v\p. 

The local conditions are compatible with the isomorphisms of Lemma 2.3.5, which 
means that the induced maps 

HfrGKf, {Aj^n^; A) ^> SjiGjcs, (A/)ff»+c1; A) 
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are again isomorphisms. Applying IT/ (GK,S, - ; A) to all entries of the commutative 
diagram 

0 (Aj)„n 

(Aj), 

Aj Aj 0 

(A^^n+d    (Aj)^ 

(Al)^    (Arfnn+C! 

0 (Al)„n Ai 

(Ai),< 

At 0 

we get a commutative diagram with exact rows (dropping GK,S and A from the 
notation): 

0 ^SjiAj)/*" ■* Bf ((Aj)xn) " H) (Aj),.  0 

fa 

0  ^((^J/ImO'Trr) — fyiiAj)^) — tfUAj)^) 

0    flJ((A/)w01)/Im("<")   —   ^((A/)wn)   —   ^((il/)^.,) 

0 

0/ 

£0 (i4/) /7rn  „ ffl ((A/))rn)  „ ^1 ^j^ - o 

It follows from the exact sequence 2.2.4(iv) that both arrows /?/ and fij in the diagram 
above are isomorphisms, proving that 

^{Aj^^^iAj)^ 

as claimed. 
(2.3.8) LEMMA. Assume that Vi satisfies (C2) and let C2 > 0 be as in (C2!). If 

J € X(/)n+C2 with n > 1, then 
(1) Tj satisfies (C2') with the same value of C2 (hence Vj satisfies (C2)). 
(2) If n > 1 + ovd1T{2) and if Vj satisfies (C3), then Vj also satisfies (C3).   If the 

groups HomFp[Gv] ((Vj)^ , f (Vj)^ J   (1)J = 0 vanish for all v \ p, then Vj satisfies 
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(C4). 
Proof, (1) Put Cj := Im(0[G^] -> Endo (Tj)). Under the isomorphism 

Endo(rj)/7rC2+1 = Endo(Tj/7rC2+1) -^ Endo(T//7rC2+1) = Endo(r/)/7rC2+1 

Cj (mod 7rC2+1) corresponds to Cj (mod 7rC2+1). As 7rC2Endo{Ti) C Cj by assump- 
tion, we have 

TT^EndoCTj) C Cj +7rC2+1Endo(Tj). 

Nakayama's Lemma then implies 7rC2Endo(Tj) C Cj. 

(2) As Vj satisfies (C2) and (C3), Hom0[Gv](r/,T;(l)) is a free O-module of rank 
one. In the exact sequence 

0 -+Hom0[0.](r/,T;(l))/,rB+<» ->Hom0[G,](T//irn+c»,r;(l)/7rB+c») 

-^Ext^^T/.r/a))'"^... 

the Ext1 term is killed by 7rC2 ([Cu-Re, Thm. 29.4]), and the same is true if T/ is 
replaced by Tj (by (1)). Using the isomorphism 

7 : HomolG,](r//7rn+ca,r;(l)/7rn+C9) -=+ ILomo[Gv]{Tj/*n+e>,T}(l)/*n+'») 

we see that there is a non-zero element a G Hom0[Gu](Tj,Tj(l)) such that 7rC2(a/ 
(mod 7rn+C2) corresponds to 7rC2(a (mod (7rn+C2) under the isomorphism 7. As Vj 
satisfies (C2), a induces an isomorphism aj : Vj —^ VJ (1) such that Q;J(1) = eaj for 
e = ±1. Since aj(l) = —a/, the definition of a implies that e = — 1 (mod 7rn) = —1 
(mod 27r), hence e = ~1. If Homirp[Gv]((yj)^ ((T0)?)*(1)) - 0 for all v \ p (for 
example, this is always true if (Vj)^ are of the form described in 2.1.6(ii) ("Panciskin's 
condition")), then aj induces injective maps 

aiv:(Vj)t^((Vj)jni). 

Counting dimensions, we see that all maps aj v are isomorphisms, which means that 
Vj satisfies (C4). 

(2.3.9) LEMMA. Assume that Vj satisfies (Gl1), (CSf) and (CS). Then 

ire*dHUGv,Aj) = 0,        7rCl+C2 {Hl(Gv,AJ)/H1
ur(Gv,Aj)) = 0 

for all v € 5/, v ] p (where d = dim^p {Vj)). 

Proof. H1(Gv,AJ)/Hlr(Gv,AJ) is dual to 

Hlr(Gv,TS{l)) = (T}(1)^) /(Fr(v) - 1) ^ (A}(l)^)Fr(v)=1 = H0(GV, A}(1)) 

(as Fr(i') — 1 acting on VJ" -^ Vj(l)/v is an isomorphism). Multiplying aj(Tj) by a 
constant, we may assume that aj(Tj) C Tj(l) and QJ(TJ) <£ 7rTj(l), which implies 
that 7rC2Tj(l) C aj(Tj). It follows that the module M defined by 

0 —► M —> AJ^A*J(1) —> 0 

is killed by 7rC2. As nClH0{Gv, Aj) = 0,7rCl+C2 kills #0(Gy,,4}(l)). Writing 

0 —> Vr/>'/Tiv —* ^S" —+ ^v —+ 0 
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(with Nv finite) and (again) using the fact that Pr(t;) — 1 acting on Vjv -^> Vj(l)Iv 

is an isomorphism, we get 

Hl(Gv,Aj) = A'f/iFrlv) - 1) = ^/(Rr(t;) - 1). 

This is an O-module of length equal to 

to (Nv/(Fr(v) - 1)) = £0 (iVf W=1) = to (H0(GV, Aj)) < ad, 

hence killed by 7rCld as claimed. 
(2.3.10) THEOREM. Assume that Vj satisfies (C1)-(C4) with constants ci,C2 in 

(C1'),(CS!). Put d = &\mFp(yi) and let cs >0 be an integer such that TT
03
 kills 

miGK&Ar, A) := HJiG^s, Aj;L)IJ>UH}(GK.S>I\ A). 

Let J € X(I)n with n > (d4-3)ci + 4c2 + 2ord7r(2) +1 + C3 and assume that Vj satisfies 
(C4). Then 

dimFp^(G^s,V7;A)-^}(GK,5,K/;A) >0 

is an even integer. 

Proof. By Theorem 2.3.7 and Lemma 2.3.8, Vj satisfies (C1)-(C3), with the same 
constants ci, C2 in (C1/),(C2/). Adjusting aj as in the proof of Lemma 2.3.9, it follows 
from the condition (C4) for Vj that 

(2.3.10.1) ^({Tj)*y{l)Caj{{Tj)$) 

for all v I p. The local conditions for M = Ker(aj : Aj -> Aj(l)) 

0 v € 5/, v\p 
U"{M)      {C-cont(Gv,Mn(Aj)t)   v\p. 

define a Selmer complex WTf (GK,SI M] A) sitting in a distinguished triangle 

Bf / (GK,5, M; A) —)• if/ (GK,s,Aj; A)-%Hf, (GK,5, A}(1); A) 

The dual local conditions A*(l) for Tj(l) are given by 

U+(T*(1)) = i C'ont(G^Tj) v e Sf, v\p 
V    J \ciont{Gv,{{Tj)vni))   v\p. 

It follows from 2.3.10.1 that there is a distinguished triangle 

WfOBK&AW,*) -* ir/(G^S^}(l);A*(l)) —► 0 ClntiGvMQC 
v<=Sf 

with irC2Hq(C*) = 0 for all q. Combining the two triangles and using Lemma 2.3.9, 
we deduce that the kernel (resp. cokernel) of the map 

(aj). : H}(GK,s,Aj;A) -> H}(GK,s,A*j(l);A*(l)) 

is killed by 7rCl+C2 (resp.  by 7^+1)^1+C2)    ^g pairing 2.2.5 (non-degenerate up to 
2-torsion) 

m(GK9s,Aj;A) xm(G^5^}(l);A*(l)) ^ Fp/0 
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then induces via id x (aj)» a skew-symmetric pairing on IU.(GK,S, AJ; A), with kernel 
killed by 2n^d+2^Cl+iC2. It follows from the theory of symplectic spaces that there is 
an exact sequence of finite C-modules 

0 —» Y(J) —► Z(J) e Z(J) —»• m{GKts, Ay, A) —► 0 

with 47r(d+2)Cl+4c2r(J) = 0. Put r{J) := dimFpF}(GrK,s, Vj; A). Then 

H}{GK,s,AyA) = (Fp/0)riJ) © (Z(J) © Z(J)) /y(J) 

^(G^s, Ay A) S (Fp/0)r(/) © (Z(I) © Z(/)) /y(j) 

In the isomorphism of Theorem 2.3.7, 

the right hand side is isomorphic to 

(O/TT
71
-

01
 O)r{1) ®K,        7rC3 K = 0 

and the left hand side is isomorphic to 

(0/7rB-c'0)r(J) © ((Z(J) © Z(J))/y(J)),„_ei . 

This implies that 

r(7) - r(J) = 2 x (number of generators of the O-module 47r(d+2)Cl+4c2+C3Z(J)) 

is even as claimed. 

3.  Selmer groups in Hida families. 

(3.1) The notation is as in 1.3; in particular, ip and ioo are fixed. 

(3.1.1) Let / be a normalized newform on ri(iV) of weight k > 2 and character 
X- We assume that 

• / is ordinary at p. 

• k > 2 is even. 

• p{cond(x). 
Under these assumptions, the two cases (i), (ii) of 1.3.5 boil down to 

Case (I):pf N. 

Case (II):p||iV,* = 2,a2 = x(p). 

We say that we are in the exceptional case (a subcase of (II)) if p \\ N, k = 2, 
ap = x{p) = 1. 

(3.1.2) Let V be the two-dimensional Fp-representation V=Mp(k/2) = V(f)(k/2) 
of GQ,S (where 5 consists of primes dividing pN and oo). As in 1.3.4, we have 

A2V^Fp(l)®[x],        v^bc'l-Z+V^l). 

(3.1.3) LEMMA. For every finite extension K/Q and every non-archimedian 
prime v \p of K, 

H1
ur(Gv,V) = 0,        Hi(Gv,V) = Hi(Gv,V*(l)) = 0       for i = 0,1,2. 

Proof. V is pure of weight —1. This means that, for every v\N, all eigenvalues of 
JV^geom on V have absolute values {Nv)-1'2, hence H0{GV,V) = H0{Gv,V*(l)) = 
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0. If v | iV, then results of [La], [Ca] imply that both spaces VIv, V*(l)Iv are either 
zero or Fr(?/)geom acts on them with weights less than zero, showing that H0(GV, V) = 
H0(GV,V*(1)) = 0. The rest follows from Tate's local duality #'(<?*,V"^!)) -^> 
H^^Gy.Vy and Euler characteristic formula £^(-l)Mim#*(<?<,,F) = 0 (and 
dimHUGviV) = dimH0(Gv,V)). 

(3.1.4) V is reducible as a representation of GQP; we have a short exact sequence 

(3.1.4.1) o —► V+ —> V —» Fp- —> 0 

with VJ^ = F±Mp(k/2) in the notation of 1.3.5. Both V* are crystalline represen- 
tations of Gqp. The filtered module DcriaCV*) — H0(Gqp,V^ ®QP ^criS) is one- 
dimensional over Fp, with crystalline Frobenius / acting by the scalar avp~kl2 on 
y+ and ^-*/2 = x(p)<*p V72"1 on V". We have grjrJDdH(yp

±) ^ 0 if and only 
if % — —kfe for V^" and i = fe/2 — 1 for V~, so the exact sequence 3.1.4.1 satisfies 
Panciskin's condition (2.1.6 (ii)). 

(3.1.5) The subspace H^G^.V) C H1
{GQP,V) can be described fairly explic- 

itly. Let us first analyse 

Case {l):p\N. 

This implies that V is a crystalline representation of GQP. In fact, for k > 2, 
every extension of A by B(k - 1) with A,B unramified (such as Mp = V(—k/2)) is 
automatically crystalline ([Bures, Exp. IV, Prop. 3.1]). If k — 2, then V C V^(Ji(iV)) 
and Ji (iV) has good reduction at p. Both app~k/2,(3pp~~k/2 have absolute values p"1/2, 
hence 

(3.1.5.1) Dcris{Wy=l = DcrisiW^l))^1 = 0, ■      W = V, V^. 

This is still true if GQP is replaced by G^, for a finite extension Kv/Qp. As a result, 
we get from 2.1.6 

#} (GKV , 7) - #* (G^, V) = Im [if1 (GKV , V+) -> iJ1 (G^, F)] 

^0(G^, W) = H0(GKv, W(l)) = 0,        W = V, V*. 

(3.1.6) Case (II): p || iV, .* - 2, a2 = x(p). 

In this case, F C Vp(J1(N/p-Jp)P-new)1 where Ji(N/p;p) is the Jacobian of 
Xi(N/p;p) and Ji(N/p;p)p~new is its quotient by the image of 

(5*,r) : J^AT/p) x J^iV/p) -> MN/pip). 

It is known that Ji(N/p;p)p~new has completely toric reduction at p ([De-Ra]), which 
implies that V is not crystalline. The quotient V~ is unramified, with Fr(?;)geom acting 
by the scalar ap, and V+ -^> ^"(1) : in the exceptional case, GQP acts trivially on 
V~ and V is a Kummer extension 

0—+FP(1)—>V —>Ft p 

with extension class q € H1(G®p>Fp(l)) = Q*®Fp such that q £ Z*®Fp. For 
example, if x — 1 and / has coefficients in Q, it corresponds to (the isogeny class of) 
an elliptic curve E/Q with ordinary reduction at p. The exceptional case occurs iff 
E has split multiplicative reduction at p, in which case q = qE 0 1, where qE € O? 
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is Tate's multiplicative period of E/Qp : E(Qp) = Qp /gf. In the exceptional case 
(V~ = V+(-l) = Fp), there is an exact sequence 

0 —► F0(GQplFp)AQp
x®Fp^iJfl

1(GQp,^)AiIs
1(GQp,JFp)^H3

2(GQp,Fp(l)) 

^H2
g(Gqp,V) 

with 9(1) = q. The groups fl"* are defined in [Fo-PR, 1.3.3.3]; for a semistable rep- 
resentation W this Hg coincides with that of [Bl-Ka] and Hg(Gqp,W) is dual to 
^^^(l))^1. The dual extension 

0 —► Fp(l) —> y*(i) —^ Fp —* 0 

has extension class equal to qr1. It follows that the map DcriS(Fp(l)) —> DcriS(V*(l)) 
is an isomorphism, hence #1(GQP, V) = H1

f(GQp, V) by 2.1.6 (i). The group H2
g{Gq,p, V) 

vanishes, as D<**{}?*{l))^1 = DcriS(Fp(l))^=1 = 0. Both groups ^(Gq^Fp), 
Hg(G®p,Fp(l)) = H2(GQp,Fp(l)) are isomorphic to Fp ([Bl-Ka, Ex. 3.9]), which 
implies that dl is an isomorphism and /? = 0. Putting everything together, we obtain 
an exact sequence 

0 —► Fp —> tfHGQ,, V+) _» ^}(GQp, y) —>■ 0. 

If not in the exceptional case, then 3.1.5.1 holds again, which implies that 

H}(GQl>,V) - Hl(GQp,V) = Im[tf1(GQp,y+) -». H^GQ^V)] 

Ho(GQp,W) = Ho{Gqp,W*(l))=0,        W = V,V±. 

(3.1.7) The local calculations from 3.1.3-6 can be summed up as follows; for 
K/Q finite, consider local conditions 

Hl(Gv,V)   veSf,v\p 

,V)     v\p 

corresponding to Hj(K, V) := S(K, V; W), resp. 

vK        \C'cont(Gv,V+)   v\p 

u-(v) = ic'' 'cont(Gv,V) VeSf^vip 

cont(Gv,V-)     V\p 

(S contains primes dividing pN and oo).  Then Wv = 0 for v \ p.  It follows from 
(2.3.6.1) that, 

In Case (I), H}(GK,S,V;&) = H}(K,V). 

In Case (II), in the exceptional case, there is an exact sequence 

0 —► Fp -*■ H}(GQ,S,V;A) —»• H}(Q,V) —»■ 0, 

otherwise, H}(GQ,s,y; A) = HjiQV). 

(3.2) For the rest of Section 3, the notation is as in 1.4.  In particular, p > 3 
(with the exception of 3.4.1-3). 
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(3.2.1) Let g be a p-stabilized ordinary newform of tame level iV, with trivial 
character x = 1 and even weight ko > 2. Then either 

Case (I): g = f0 is the ^-stabilization of a newform / on Ti(N). 

Case (II): g = f is a newform on ri(iVp), ko = 2,ap = ±1. 

(3.2.2) As in 1.4.7, g = gk0 is an element of a p-adic family of p-stabilized 
newforms gk of weight k on Tx^Np) for all k > 2, fc = fco (mod pc). Assuming that 
Fp is big enough in the sense of 1.4.4, each #& corresponds to an arithmetic point 
Vk € Xartth(R) of a fixed local factor R of l)££d. The character of gk is equal to 
Xk = XUkow~k = ujko~k. In particular, for k = ko (mod (p — l)pc), k > 2, we have 
again either gk = (fk)0 or gk = fk for a newform /& (the latter possible only if k = 2). 
The tame part ^ (resp. the wild part e) of x^fco~2 is equal to ip = Ljko~2 (resp. 
6 = 1). this implies that each Vk lies above (P*;) = (2(7) - T^"2) G Spec (A) and that 
the invariant a G ^/{p— 1)Z from 1.5.2 (hi) is equal to a = Aro — 2 (mod (p — 1)). 

(3.2.3) Let T(i?) be the big Galois representation of GQ,S from 1.5.1. In order 
to apply 1.5.2,4 we need the following 

Assumption. If ko = 2 (mod (p — 1)), then pf^ has an irreducible residual 
representation. 

The action of a G Z^ on T(R) satisfies < a >Aib= ^(a)*0-2 < /s(a) >Aib> where 
K, denotes the projection of Z£ to 1 -f pltp. Define a twisted Galois representation 

T= "T(R)<-l/2>" 

as follows: as an jR-module, T = T(R). The action of g G Gq such that Xcyci(^) = 
a G Zp is given by the action of g on T(R) followed by ^(a)1"^/2 < ^(a)""1/2 >Aib 

— 1 /2 
(morally, this is "< a >Aib ")• T^16 skew-symmetric bilinear form 

( , )T{R) : T(R) x r(i2) —> A < 1 > (1) 

defines a skew-symmetric pairing 

( , }T : T x T —► A(l) 

which induces an isomorphism 

T -^ r*(l) := HomA (T, A) (1) -^ EomR (T,uR) (1). 

It follows from 1.5.2,4 that there is an exact sequence of iJ^Qj-modules 

0—>r+—>T—>T- —>0 

with T* = "T^)111 < -1/2 >". 

(3.2.4) For k = ko (mod (p - l)pc), k > 2, let ^(/ife) be the Galois representa- 
tion associated to fk- We know from 1.5.5 that the specialization of T(R) at Vk is 
isomorphic to 

(T(R)/VkT(R)) ®o Fp -^ Vifk)* -^ F(/,)(A: - 1). 

Recall that we transform Dirichlet characters into characters of GQ by using geometric 
Frobenius elements (1.3.4). This forces us to adopt the same convention for p-adic 
characters, namely |X|(Fr(£)geom) = KW' This implies that Xcyci = M"1^]"1? since 
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As < /c(a) >Aib= ^(a)*-2 (mod Vk) for all a G Zp, it follows that the specializa- 
tion of T at Vk is isomorphic to 

(T/VkT) 0O Fp ^V{fk)(k-1) 0 [u^2-1] 0 [/c*/2-1] = F(/ib) 0 [a;fco/2-&] 0 [z.-^2] 

In particular, for k = ko (mod 2(p — l)pc), 

(r/nT)(8)0Fp-^y(/fc)(*/2). 

Similarly, the specializations (T±/Vk^) 0o -Fp are then isomorphic to the ^[GQJ- 

modules V^1 from 3.1.4 (for fk instead of /). 

(3.3) Theorem A 
(3.3.1) THEOREM A. Let fk be the family of newforms as in 3.2.2. If ko = 2 

(mod (p— 1)), assume in addition that V(fk0) has an irreducible residual representa- 
tion. Then there is an integer n>c such that for every k = ko (mod 2(p — l)pn), 

dimi?,#}(GQ1s,n/*o)(V2); A) - dimFvH}{G^s,V{fk){kl2); A) > 0 

is even (where the local conditions are as in 3.1.7). 

Proof. We apply Theorem 2.3.10 to the big representation T of GQ,S and to its 
specializations at / = Vko, J = Pk- We must check the assumptions: First of all, 
T+ is free over R by Prop. 1.5.2(111) and 1.5.4. The representation Vj = V(fk){k/2) 
satisfies (Cl) by Lemma 3.1.3, (C2) by [Ri 1, Thm. 2.3], (C3) by 1.3.4. The condition 
(C4) follows from Lemma 2.3.8 (2) (or from (1.3.5.2)). 

(3.3.2) COROLLARY. Putek — 1 if fk is in the exceptional case, Ek — 0 otherwise. 
Then 

ekQ +dimJpp^}(Q,y(/fco)(fco/2)) = dimFpi/}(Q,y(/,)(A:/2)) + ek    (mod 2) 

whenever k = ko (mod (2(p— l)pn)). 

Proof. Use 3.1.7. 

(3.4) Theorem B and Theorem C 

(3.4.1) p-adic L-functions 

Recall the basic properties of p-adic L-functions of modular forms, after Mazur- 
Tate-Teitelbaum [Ma-Ta-Te]: let / = Sn>i an^n ^e a newform of weight k > 2 
and character e on Ti(N). Fix a root a of X2 — apX + s(p)pk~1 = 0 satisfying 
ordp(a) < A: — 1 (with the convention that e(p) = 0ifp\N). The p-adic L-function 

constructed in [Ma-Ta-Te] is a function of continuous characters x '• ^p  —> C^ 
satisfying the following interpolation property: 

OL   J   {-2myG{^) \ a J \ a    J 
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where ,; = 0,1,... , k — 2, ip is a Dirichlet character of conductor p", G(ip) is the 
Gauss sum associated to tp, L^f^ip.s) = J2n>i a>nil){n)n~s and x : Z* c-)- C^ is the 
inclusion map. 

Rather confusingly, this p-adic L-function has values in a certain module of pe- 
riods, rather than in Cp, as the value of the complex L-function is not divided by a 
complex period. For s G Zp one often writes L^T(fiX9s) for ^JT{f^XKS)' The 
case p = 2 is allowed in [Ma-Ta-Te]; K then denotes the projection from Z2 to 1 + 4Z2. 
If the form / is ordinary, there is only one choice of a, namely a = ap in the notation 
of 1.3.5; it is often omitted from the notation. 

(3.4.2) Assume that k is even and e — 1. In this case the p-adic L-function 
satisfies a particularly simple functional equation [Ma-Ta-Te, Sect. 17]: 

(3.4.2.1)    *#"■(/, s^-V,*) = ^(/^-^-gXQJ-L^ax*/2-1^-1,-*), 

where ^ is as above, u>p(/) = ±1 and Q denotes the largest positive divisor of iV 
prime to p. Putting 

Ap,a(/,*) = ^QY^L^U,^'2-1,'- */2), 

the functional equation implies that 

AP,Q(/, S) = wp(f)APiQ(f, k-s). 

The value at the centre of symmetry of the functional equation is equal to 

4r(/,*->=m^ I1 - ^ 0 - ^ ^-^ 
(3.4.3) We now restrict our attention to ordinary forms. Changing notation, 

assume that p \ N and let g be an ordinary p-stabilized newform of weight k > 2 
and character e on Ti(Npr)J r > 1. Then either g = / is a newform on ri(iVpr), 
r > 1, or g = f0 is equal to the p-stabilization of a newform / on Fi^iV). In either 
case, ap(g) = ap(f). Greenberg-Stevens [Gr-St] use a slightly different normalization 
of p-adic L-functions, namely 

Losi(j ^ _ Ljrrjf,**-1) 

with ip as in 3.4.1 and suitable periods fi^ G Cx of /. As before, the function on the 
L.H.S. will be denoted by LpS(g,tp,s). If k is even and e = 1, put 

Lp(f,8)=L°s(Jgtu,k'*-1,8). 

(3.4.4) Two-variable p-adic L-functions 

Assume now that p > 3 and that we are in the situation of 3.2.2. There is a 
two-variable p-adic L-function interpolating the p-adic L-functions of the forms /& 
([Gr-St], [Ki]). In the notation of [Gr-St] (omitting the variables $,«), this function 
Lp

s(k,ip,s) depends on k G ko + pclip and ip,s as in 3.4.3. Its main properties are 
the following ([Gr-St, Thm. 5.15, Cor. 5.17]): 

(i)   Lp
s(k,ip,s) is analytic in (k,s) € (fco +pc'^p) x %p. 
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(ii)  If k € fco + pcZp is an integer, A: > 2, then L^s(k,ip, s) = CkL^igk^, s) for 
some Ck e C£ . 

(iii) L^s{k^,s) = -u^-l{-N)K{-N)k^-sL^s(k,ukQ-2^-\k-s),wheieu2 = 

Put 

Then (iii) implies that 

Lp(fc,5) = L^5(fc,a;fco/2-1,3) 

Ap(fc,5) = ^(Ar)s/2Lp(fc,3) 

Ap(fc, 5) = WpAp(k, k — s) 

with Wp = il. Comparing with (3.4.2.1) - with JV playing the role of Q - we see that, 
for every integer k > 2, k = ko (mod (2(p — l)pc)), we have 

Wp(fk) = ^p,        ip(fe, 5) = CkLp(fk,s) 

and 

^^^=gfc(^Vfc/l2)-i(Eulfc)Loo(^fc/2)'  (±=("i)*/a"1) 

where the Euler factor is equal to 

It follows from [Ma-Ta-Te, Prop, 15] and 1.3.5 that the Euler factor Eul* vanishes 
iff we are in the exceptional case (in the language of 3.1.1). The vanishing of Eul* is 
sometimes referred to as a "trivial zero "of Lp(fk,s). 

The value of Wp is related to the sign in the archimedean functional equation 

Aoo(/fc,s) =Woo(/*)Aoo(/*,fc--s) 

by 
f — 1    in the exceptional case 

Wpifk) =Woo{fk) x < 
{ 1      otherwise 

i.e. Wp(fk) = WooiMi-iy* ([Ma-Ta-Te, Sect. 18). 

(3.4.5) Write Wp = (-l)ep with Cp = 0 or 1. It follows that the function 

Ltp^Kj s) 
F(k):= 

(s - k/2yp =k/2 

is analytic for k G ko + pcZp. A variant of conjectures formulated in [Gr 2] says the 
following: 

GREENBERG'S CONJECTURE.  The function F(k) is not identically zero. 

Equivalently, for all but finitely many A;GZ,A;>2, k = ko (mod (p — l)pc), we 
have ords=^/2-^p(/fc}5) = ep. This conjecture is known when fkQ is a modular form of 
weight 2 corresponding to an elliptic curve E over Q with complex multiplication for 
which ep = 0 ([Gr 1], [Ro]). 
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(3.4.6) As before, let k = ko (mod 2(p — l)pc), k > 2. We recall some of the 
known results relating behaviour of Lp(fk, s) at the central point s = k/2 and Selmer 
groups of Galois representations Vk := V(fk)(k/2). 

(1) [Ne 2, Thm. C,D] Assume k > 2 (hence fk is a newform on ro(N),p\ N). 

(i) Ifords=k/2Lp(fk,s) = 1 then dMiFpH}(Q,Vk) = 1. 

(ii) If Lp(fk,k/2) ^ 0 and if there is an imaginary quadratic field K = Q(\/D) 
with odd discriminant D < 0 such that all primes dividing pN split in K and 

oids==k/2Lp(fk O ( — j, s) = 1 

thenil}(Q,14) = 0. 

(2) [Ka] If Lp(//fc, fc/2) ^ 0, then #}(Q, V*) = 0. In fact, Kato has announced a 
proof of the inequality 

dimJpp^}(Q,1^) < ords=k/2Lp{fk,s) 

even without the ordinarity assumption. 
(3.4.7) THEOREM B. Under the assumptions of Theorem A, Greenberg's Con- 

jecture for Lp(k, s) implies that 

dimFp H) (Q, VkQ) = eoo    (mod 2), 

where 6^ = ep + sko (mod 2) is such that Woo(/fco) = (-l)eo0 • 

Proof. Choose k = ko (mod 2(p — l)pn), k > 2, k G Z for big enough n. Green- 
berg's Conjecture together with 3.4.3 imply that 

dimFpiJ}(Q, Vk) = ords=k/2Lp(fk,s) = ep. 

By Theorem A, 

dimJP, F) (Q, Vib0) = dimFp H) (Q, Ffc) + ^0 = ep + £fco    (mod 2) 

(we have ek = 0, since k > 2). 
(3.4.8) THEOREM C. Le£ E be a modular elliptic curve over Q with ordinary 

reduction at a prime p > 3. Assume that the p-torsion EP(Q) is an irreducible F^GQ]- 

module and that Greenberg's conjecture holds for the two-variable p-adic L-function of 
E. Then 

dimq (E{Q) 0 Q) + corkZpm(£/Q) = ords=iL00(£;) s)    (mod 2). 

Proof. By modularity, E corresponds to a cusp form / of weight ko = 2 on 
FQ (N) with rational coefficients. The form / is ordinary iff E has ordinary reduction 
(possibly bad) at p. The p-torsion EP(Q) is a residual representation of Vko = VP(E). 
Apply Theorem B. 

(3.4.9) The parity statement of Theorem C has been proved in the following 
cases: 

Unconditional results: 

(1) E : y2 = x3-Dx (resp. E : x3+y3 = A), p = 2 (resp. p = 3) (Birch-Stephens 
[Bi-St]). 

(2) i£ is modular and ords=iLoo(E,s) < 1; in this case dimQ (E(Q) 0 Q) = 
ords=iLooiE.s) and m(E/Q) is finite (Kolyvagin [Ko 1]). 
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(3) E has complex multiplication and ordinary reduction at p > 3 (Guo [Gu], 
who also proves Theorem A for some modular forms of higher weight with complex 
multiplication). 

(4) E is modular and either p = 2, or EP(Q) is a reducible ¥p[GQ]-module 
(Monsky [Mo]). 

Conditional results: 

(5) E is modular, p > 2, the Galois representation GQ —> Auto®zp(Tp(E)) 
is surjective (where O = End(E)) and the higher Heegner points satisfy a suitable 
non-degeneracy conjecture (Kolyvagin [Ko 2]). 

(6) E is modular with split multiplicative reduction at p > 3, WQQ — — 1 and a 
variant of Greenberg's conjecture holds (Greenberg [Gr 3]). 

(3.4.10) The results of Greenberg [Gr 1] and [Ro] on Greenberg's Conjecture 
for elliptic curves with complex multiplication and ep = 0 give one instance when 
Theorem C gives an unconditional result. However, this case is already covered by (3) 
above. 

(3.5) Theorem A' and Theorem B' 

(3.5.1) In the situation of 3.2, we can also consider specializations of T at more 
general arithmetic points. Using the jiotation of 1.4.7, fix an arithmetic point V e 
3earit/l(f)(/C)) and denote by V = pr""1^) ^ Xarith(R) its preimage in R. Alternatively, 
we can forget V and simply fix V G 3£arith(R) containing the minimal prime ideal 
q = Ker[i?—> f)(/C)] of 1?. 

(3.5.2) Let us compute the Galois representation T/VT. First of all, V lies 
above (Pk,e) € Spec(A) for some integer k > 2 and a character of finite order e : F —> 
Ox. By 1.4.7, V corresponds to a p-stabilized ordinary newform f-p of weight k and 
character xv = euko~k. As < ^(a) >Aib= e{a)K{a)k~2 (mod V), the same calculation 
as in 3.2.4 shows that 

V[v] := (T/VT) ®o Fp -^V(fvy <8> f^0/2"1] 0 [e1/2^/2"1] 

^V(fv)(k - 1) 0 [x^o;*0/2-W'2-1] 

= V(fv) 0 [LJ-WK-WE-
1
'

2
] 

(as p ^ 2, e1/2 : F —> Ox is well defined). If k is even, we have 

Vfa -^ V(fv)(k/2) 0 [JA-W/V1/2]. 

AS   (a;(^-fco)/2£-l/2)2   =:  ^-1^  it  makes sense t0 denote a;(fc-A:o)/2£-l/2   by   c^-1/2   ^ 

hence 

(3-5.2.1) Vfa -^ V(/p)(fc/2) ® ["Xv/2 "]• 

If the Fourier expansion of /p is X)n>i an{fv)qn, then X)n>i "X^1/2 " (n)an(fv)qn is 

the Fourier expansion of a Hecke eigenform /p on some ro(iVpr) (i.e. /p has trivial 
character). The formula (3.5.2.1) then becomes 

V[v] -^ V(fv)(k/2). 

This representation is self-dual in the usual way: Vp>] -^ Vrp](l). 
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(3.5.3) From now on, V is fixed and we assume that the weight k of /p is even. 
We have the following Galois representations associated to T: 

T* = HomA(r, A),        (T*)* = HomACr*, A),        A* = Homo,cont(r, Fp/O), 

A =.Homo,cont(T*,Fp/0),       A* = Romotcont((T*F,Fp/0) 

and also various specializations 

Tm = Im (T/VT -> V[v]),     T+j = T+/PT+ C T^,,     ^+ = T+, 0o Fp C V[v], 

Vl = V]/TP]'        Atv] = V[v)/T[vy 

The isomorphism T —> T*(l) defined by the pairing ( , )T : T x T —>> A(l) induces 
isomorphisms 

(3.5.3.1) T* A (r*)±(l),        A -^ il'(l). 

As in 2.2, we consider Selmer complexes, this time for "big Galois representations" 
X = T,A of GQ,S, where S = {£ | pTV} U {oo}. All cochains will be continuous with 
respect to the m-adic topology on T,!r*,T:t and the discrete topology on A,A*,A±. 
The local conditions will be given by 

A, Ut(X) = { ° v ^ P, v e Sf 

cont(G®P,X
+)     V=p 

Identifying X*(l) with X as in (3.5.3.1), the dual local conditions become 

(one can make the local conditions at v ^ p also self dual, but it is irrelevant for 
our purposes). For the specializations Xp?] = Tp>], -Ap?], Vf^j we use the same local 
conditions 

A,: ^(XOT)=     C.^(GQp)x+)    v=p 

In this case, the above formula for A*(l) will be true up to a finite error term. 

(3.5.4) Recall that an .R-module M of finite type is pseudo-null if Supp(M) has 
codimension > 2 in Spec(i?). As dim(i?) = 2 and R/m is finite, this is equivalent 
to M being finite. We shall ignore pseudo-null modules and work in the category 
(i£-mod)/(ps-null) which is obtained from (i?-mod) by inverting all morphisms with 
pseudo-null kernel and cokernel. Recall that, for every .R-module of finite type with 
V G Supp(M), there is a non-zero homomorphism M/VM —> R/V. 

(3.5.5) LEMMA.  The canonical maps 

(0 T+®RR/V —> T+/VT+ —> T+j 

(«) T®RRIV —> T/VT —> Ifa 

(m) IT/ (GQ>S, T; -)®RRIV —»• IT/ (CJQ.S, T^J ; -) (-=A,A*(1)) 

ore isomorphisms in (i) Db(R-mod); (ii), (in) Db (R-mod)/(ps-null). 

Proof, (i) T+ is free over R. 
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(ii) This was proved in 1.5.6. 

(iii) Taking C'ont(G, —) commutes with tensor products with flat iJ-modules, for 
a suitable definition of "cant" ([Ne3]). The statement then follows from (i), (ii) and 
the fact that Hl(G,M) is finite (and zero for i > 2) for G = GQ,S,GQV and every 
finite G-module M. 

(3.5.6) Duality ([Ne 3]) 

Local duality: H^GQ^T) -^ Homo^ont^-^GQ,,, A*(l)),Fp/0) 

Global duality: 
(a) Hom0,Co„t(H)(GQ,s,r; A),Fp/0) -^ ^-

£
(GQ,S, A*(l); A*(l)) 

(b) Bf/(GQ,s, T; A) ^ WiomR(Wf(GQ,s, T*(l); A*(l)), u>R)[-3} in 
Dbft(R-mod) (this isomorphism being suitably skew-symmetric). 

(3.5.7) PROPOSITION. The canonical map 

H2
f(Gq<s,T- -)/V —»■ fijiGQ&Tpy, -)        (- = A, A*(l)) 

is an isomorphism in {7Z-mod>)/(ps-null). 

Proof. Lemma 3.5.5 (iii) boils down to a spectral sequence 

El = Torf (R/P,HJj(Gq,s,T; -)) =► HJ^iGQ^T^y, -) 

in (i?-mod)/(ps-null) which gives an exact sequence 

(3.5.7.1) 0 —> ^,2 —> ^(GQ^,^; -) —> E^s —> 0. 

However, global duality 3.5.6 implies that 

Komo,cont(H3
f(GQ,s,T;-),Fp/0) ^ H^GQ^A^I); (-)*(!)) 

is a subgroup of H0
{GQ,A*(1)) = H

0
(GQ,^)7 which is dual to HO(GQ,T). The 

representation Vj-pj has weight —1, hence HQ(GQ,T)IV is finite and (E^ ^-p = 0. As 
Supp(^_3) C {^,m}, E? _3 is pseudo-null. We conclude by (3.5.7.1).' 

(3.5.8) PROPOSITION. For every prime v e Sf, v ^ p, 

H0(GQv,T) = 0,        H^GQ^V - H2(GQv,T)v = 0. 

Proo/. Lemma 3.1.3 applies to Vp?] (as fc is even), hence H
0
(GQV^T[VJ) = 0, 

and fr0(GQv,T) = 0. By the same argument, the P-torsion in #0
(GQV,,4*(1)) = 

H
0
(GQV,A) is finite, hence H2

(GQV,T)/'P is finite by local duality. This implies that 
£r2(GQv,T)7> = 0 (cf. the remark at the end of 3.5.4). For H1, consider the spectral 
sequence in (i?-mod)/(ps-null) 

El = Tar?(JR/7>,.ff-''(GQ.,T)) => H-^^GQ.,^])). 

In the exact sequence 

0 —> ^o.-i —> & (GQV,T['P]) —> Ei-2 —> 0 

the middle term is finite (again by Lemma 3.1.3), and so EQ _]_ = H1 (GQV ,T)/V must 
be finite, too. 
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(3.5.9) COROLLARY.  The canonical map 

HT/ (GQ.S,T; A) —> IT/ (GQ,S,T; A*(l)) 

induces isomorphisms on localizations ^(GQ}S,T; A)?? -^ HUGQ^IT; A*(l))'p. 

Proo/. This follows from Prop. 3.5.8 and a distinguished triangle 

Wf(GQ,s,T;A) -♦Hf/(C7Q,s,r;A'(l)) —> 0 Kr(GQ,>r). 

(3.5.10) The global duality 3.5.6 gives a spectral sequence in (i?-mod) (with all 
E2J of finite type over R) 

E? = Ex4(^-J'(GQ,s,r; A*(l)),u;fi) =» F}+J'(GQ>S,T; A). 

We shall localize this sequence at P. As R-p is a discrete valuation ring, there is 
an isomorphism (a;^)^ = UJRV -^ R-p, well-defined up to a unit in R-p (the exact 
normalization is irrelevant). The localization gives an exact sequence (using Corollary 
3.5.9) 

0 —► Ext^iNviRv^N-p —► HomRriHftGQ&Ti&ivtRv) —> 0, 

where A/" = H^GQ^S^T; A). This is an i^-module of finite type; denote its torsion 
submodule by M — TorsR(N) (x G iV-is torsion iff rx = 0 for some r e R which is 
not a zero-divisor) and put Q = N/M. As M-p = Tors/^iVp), the exact sequence of 
Ext's associated to 

0 —> M-p —> Nv —>Q<p —► 0 

implies that the canonical map 

Ext^(Nv, Rv) -^ Ext^ {M-p, Rv) 

is an isomorphism (Q-p is torsion free, hence free over Rv)- This implies that a induces 
an isomorphism 

a' : Ext^iM-ptRv) -^ ToTSRr(Nv) = Mv. 

The i?p-module M-p is killed by some r G Rv, r ^ 0. The sequence 

0 —> Rv-^Rv —> Rv/rRv —> 0 

gives an isomorphism 

EomRv(Mv,Rv/rRv) -^ Ext^M^i^) 

which, combined with a', yields an isomorphism 

KomRv(Mv, Rv/rRv) —> Mv 

which is skew-symmetric, i.e. comes from a skew-symmetric bilinear form 

Mv x Mv —> Rv/rRv 

(by skew-symmetry of the global duality isomorphism). The residue field of Rv has 
characteristic zero, which implies that the form is alternating. Standard structure 
theory of symplectic modules of finite length over discrete valuation rings implies that 

Mv -^ X 0 X 
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for an .R-p-moduIe X of finite length. 
(3.5.11) LEMMA. Let A be an integral domain and I C A a prime ideal such 

that the localization Aj is a discrete valuation ring. If Y is a torsion-free A-module 
of finite type, then 

rkA//(y/7y) = rk^(y) 

(recall that rk^Y) = dimi^Y ®A K), where K is the fraction field of A). 

Proof. The localization Yj is a torsion-free .4/-module of finite type, hence free 
of rank n. Then 

X\LA/I{YIIY) = dim^/jAtiYj/IY!) = n 

dimK(Y <g)A K) = dim^Y/ 0.4/ K) = n. 

(3.5.12) PROPOSITION. 

vkR/v(N/VN) = TkR/q(Q/qQ)    (mod 2). 

Proof. Recall that q = Ker[i? —> f)(/C)], R/q = l)(/C). We have 

vkR/v(N/VN) = vkR/v(M/VM) + rkH/p(Q/PQ), 

as Qp is free over i?p (of course, i?/P = O). However, 

rkR/v{M/VM) = dimRv/VRv{Mv/VMv) = 2dimRv/VRT(X/VX) 

is even and 
rkR/v(Q/VQ) = ikR/q(Q/qQ) 

by Lemma 3.5.11 applied to A = R/q, I = p/q = V and Y = Q/qQ. 
(3.5.13) THEOREM A'. In the notation of (3.5.1-2) - in particular, if ko = 2 

(mod (p — 1)), assume that V(fk0) has an irreducible residual representation - for 
every V G Xar'lth(R) containing q and such that f-p has even weight, 

dimFpH}(GQ,s, Vlv]; A) = rkR/c{(Q/qQ)    (mod 2), 

hence the parity of the L.H.S. does not depend on V. 

Proof. The dimension on the L.H.S. is equal to 

corkoi^(GQ,5, Vi;A) = cork<i)#}(GQ,s, ^(1)^; A*(l)) 

(by almost self duality of the local conditions; cf. proof of 2.3.10) 

= rk0£^(C?Qfs,T[v]] A)        (global duality 3.5.6) 

= iko{N/VN) (Prop. 3.5.7) 

Now apply Proposition 3.5.12. 

(3.5.14) Let us compare the group i^(GQ,S5 V^y, A) and the Bloch-Kato Selmer 
group Hj(Q, Vj-pj). First of all, Lemma 3.1.3 still holds for V = Vjpj, thus the local 
conditions for both groups vanish at all primes v G 5/, v / p. As a representation of 
GQP , there is an exact sequence 

o _> v+ —> v —> v- -> 0, 

with (V^)* (1) -^> V^ by self duality of V.   Each V^ is a twist of a crystalline 

representation by "xp1/2 "•   Note that ux^1/2 " = ^-ko)^^!^ is unramifie(i iff 
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 -j    Icy 

"X-p " = 1 (which is equivalent to k = ko (mod 2(p — 1)) and e = 1). In this 

case, results of 3.1.6-7 apply. Assume that "x-p " ¥" 1- Then neither of V^ is a 
crystalline representation of Gqp, hence 

DcrisiV?) = Dcris(V) = ^0(C?Qp, Vf) = tf0(GQp, V) = 0. 

The representation V is potentially semistable (in fact is semistable over Qp (/jLpr) for 
suitable r), therefore de Rham. It follows from 2.1.6 and self-duality V -^» V*(l) 
that 

H}(GQp, V) = H](GQp, V) = ImiH1 (GQp, V
+) —> H1 (GQp, V)]. 

Combining with the results of 3.1.7, we obtain an exact sequence 

(3.5.14.1) 0 —► F^ —► SjiG^s, Vm;A) -* H}(Q, V) —>• 0, 

in which e(V) = 1 in the exceptional case, and s(V) = 0 otherwise. The exceptional 
case occurs iff k = 2, e = 1, k = ko (mod 2(p — 1)), and ap(fv) = 1. 

(3.5.15) THEOREM B'. Le^p > 3 &e a prime not dividing N and f = X)n>i anQn 

an ordinary newform of even weight k > 2 and character x~2 on ^i{Npr), where 

cond(x) = ps (necessarily with s = r, if x ¥" IJ- Then f = ]Cn>1 
anX(n)^n zs a 

newform of weight k on ro(Np2r) (resp. To(Npr)) if x ^ 1 (Ve5p. x — l)- If the 
tame part of x2 is equal to ujk~2, where u is the Teichmiiller character, assume that 
V(f) has an irreducible residual representation. If Greenberg's Conjecture holds for 
the two-variable p-adic L-function of f, then 

dim^ff^Q, V(7)(*/2)) = ovd^/tLoods) (mod 2). 

Proof Replacing Fp by a finite extension (and V(f) by its base change) we can 
assume that Fp contains all values of x- The form f - or its p-stabilization, if r = 0 
- is then equal to f-p and / to /p, for a suitable Hida family of the type considered 
in 3.5.1-2 and V G Xarith(R), V D q, "Xp1/2 " = X- ^ X = 1, then /is ordinary and 
Theorem B applies. Assume that x 7^ 1 (hence x is ramified at p). In this case 

H)(Q, V(/)(A/2)) = ^(GQ^, V(/)(A/2); A) 

by (3.5.14.1). Choose a p-stabilized newform fw corresponding to some Vf G Xarith(R) 
containing q, of even weight k' > 2, with trivial character and such that ep = 
ords=:k'/2Lp(fk', s) < 1. It follows from Theorem A7 and 3.4.6 that 

dimPpH}(Q,V(f)(k/2))=ep    (mod 2). 

It remains to show that Wp(/&') = (—l)ep (the sign in the functional equation of 
Lp(fk',s)) coincides with «;oo(/)> the sign in the functional equation of L00(/,s). 
First of all, wp(fk>) = wp = wp(f), by 3.4.4. The formula [Ma-Ta-Te, Sect. 17, Cor.2] 
implies that 

where CN is the eigenvalue of the Atkin-Lehner involution acting on /: f\WN = 
wrM-N)/- Hence 

Wp(f) = (-l)k/2CNX-1(-N). 
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The archimedean sign w00{f) is also equal to 

uU/) = (-l)k/2cNx-l(-N) 

by [Ma-Ta-Te, Sect.18, Rmk] (in their notation, q = N, q' = pr, ip = x, e = X~2
5 

^> = x, /^ = /, g = CJV/). Theorem follows. 

4* A-adic Selmer groups. In this section, we give an elementary approach to an 
important special case of theorem A', when the local component R of the Hecke algebra 
is equal to the Iwasawa algebra A = 0[[X]], using the A-adic Selmer groups and Tate- 
Safarevic groups introduced in [PI]. To a self dual A-adic Galois representation T, we 
shall associate a A-adic Tate-Safarevic group whose Pontryagin dual III is a finitely 
generated torsion A-module, and prove the following result. 

(4.0.1) PROPOSITION. Letp > 2. IfT satisfies the assumptions of 4-l>l below, 
then there is a finitely generated torsion A-module X such that III is pseudo-isomorphic 
to xex. 
The corresponding result for specializations of T is a consequence of a generalized 
Cassels-Tate pairing. We deduce the A-adic result by specializing at enough primes. 

(4.1) A-adic Galois representations 

(4.1.1) Let p be a rational prime, Fp a finite extension of Qp with ring of integers 
O and prime element TT £ O. Let A = £>[|X]] with maximal ideal m = (X,ir). Let T 
be a free rank two A-module with a continuous A-linear GQ^-action, where S is some 
finite set of primes including p and infinity. We assume that T is ordinary at p, by 
which we mean that T sits in an exact sequence of A[GQp]-modules 

(4.1.1.1) 0—-+T+—>T—>T-—>0 

with r+ and T~ free rank one A-modules, and assume there is a skew-symmetric 
Galois-invariant bilinear form 

(4.1.1.2) ( , )T  : T x T —> A(l) 

inducing an isomorphism 

T -^ r*(l) := HomA(T, A)(l),        t ^ (t, . )T 

and isomorphisms T* -^> (r*)±(l), where (T*)* := HomA^, A). 

We also assume that the following cohomology groups are trivial: 

(4.1.1.3) H0(QV,T) = 0 for all v £ p, 

(4.1.1.4) H0(QP,T+) = #0(Qp,r-) = 0. 

(4.1.2) Specializations 

The height one primes of A are the prime (TT) and primes (A), where A G A is 
an irreducible distinguished polynomial, i.e. A is irreducible and of the form A = 
Xn + an-iX71"1 + • • • + oo with TT I ai for 0 < i < n - 1. Let X = Spec(A) - {(TT)}. 

This agrees with the definition of X in 2.3.2 in this special case. For (A) G X, we 
write Ox = A/(A) and Tx = T/XT = T®AOx, T± = T±/Xr±. So Ox is free of finite 
rank over O and Tx (resp. Tf) is a free ©A-module of rank two (resp. one). We call 
Tx the specialization of T at A. 
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(4.1.3) Let G = GQ,5 or GQV. The continuous cohomology groups Hn(G1T) are 
finitely generated A-modules and the Hn(G,T\) are finitely generated C^-inodules. 
Let M = T,T+ or T". Taking cohomology of the short exact sequence 

(4.1.3.1) 0 —■» M-^M —)- MA —> 0 

as G-modules gives a short exact sequence of 0\-modules 

(4.1.3.2) 0 -> w«(G?M) ~^ Hn(G'M^ ^ Hn+1(G,M)[X} -». 0. 

(4.1.4) In the special case when R = A = 0[[r]], and assuming the Assumption 
of 3.2.3, the twisted Galois representation T of 3.2.3 satisfies the conditions of 4.1.1. If 
we identify 0[[T]\ with 0[[X]] via 7 = 1-f-p i-> 1+-X" (choosing 7 = 14-p as a topological 
generator for F -^> 1 H-pZp) then the arithmetic point (Pft,e) G Spec(A) corresponds 
to the height one prime ideal generated by Xk,£ = 1 + X - €(1 +p)(l ^-p)*"2 € O^]]. 
We just need to check conditions (4.1.1.3) and (4.1.1.4); To check (4.1.1.3), it is enough 
to specialize at any arithmetic point A, where H0(QVyT\) = 0 by Lemma 3.1.3. Then 
4.1.3.2 gives 

and so H0(QV,T) = 0 by Nakayama's lemma.  For (4.1.1.4) we do the same thing, 
using 3.1.4, for any non-exceptional arithmetic point. 

(4.1.5) The exact sequence (4.1.3.2) allows us to compare specializations of A-adic 
cohomology groups (the left hand term) with cohomology groups of the specializations 
(the middle term). The right hand term is an error term which we handle using the 
following simple lemma: 

LEMMA. Let M be a finitely generated A-module. For A not in the support of M, 
the groups M[X] are finite of order bounded independently of X. 

Proof. Without loss of generality we may take M to be A-torsion. By the structure 
theory of finitely generated A-modules, M sits in an exact sequence of the form 

0-^A^M-^($-^->B->0, 

where A and B are finite and the Vi are the height one primes in the support of M. 
So there is an exact sequence 

0-+A[\)-+M[\]^®±[\]. 

For A not in the support of M, the last term of this sequence is zero, and so M[A] is 
finite, of order bounded by the order of A. 

(4.1.6) For v € 5/ and M = T,T+ or T", the A-rank of Hn(Qu,M) is equal 
to the C^-rank of Hn(Qv,M\), for any A not in the support of TorsA#n(Qv,M) 
or TorsAHn+1(Qv,M) (this is immediate from (4.1.3.2)). So the CVranks of the 
Hn(Qv,M\) are constant and equal to this "generic"rank outside of this explicit bad 
set (which depends on v).  Staying away from this bad set, we obtain A-adic Euler 
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characteristic formulas: 

f 0 
-rkA(Af)    i;=p. 

2 r r\ -L 

n=0 *>       1 

Using (4.1.1.2-4) we deduce the following: 

v G Sf,v ? p :      H0(®V,T) = 0      rkA^HQ^T) = 0 rkAff2^^) = 0 

v=p:                   Ho(Qp,T) = 0      rkAH1(Qp,T) = 2 rkAH2(Qp,T) = 0 

^O(QP,T
+) = 0    rkAH1(Qp,T+) = l ikAH2(QPiT+)=0 

H0(QpjT-)=0   rkAH1(Qp,T-) = l TkAH2(Qp,T-) = 0 

(4.1.7) Write Xbad for the finite set of (A) G X in the support of TorsA-ff1 {Qp, T
+), 

TorsA-ffHQp)11")* or H^Qy.T) for some v G Sf,v ^ p, and let Xgood = X - Xhad. 
For any (A) G Xgood we have H0(Qv,Tx) = 0 for v G Sf,v ^p, and H0{QP,T±) = 0. 
Euler characteristic calculations then show that the C^-ranks of the Hl(Qv,M\), 
i = 0,1,2, M = TjT1*1, are equal to the "generic"A-adic ranks of the if^Q^M) in 
4.1.6. Combining this with (4.1.3.2), it follows that Xbad already contains those A in 
the support of TorsA#n(Qt;, Af), for all v G 5/, n = 0,1,2, and M = T, T+, T". 

(4.1.8) Local conditions 

For a local ring R and a finitely generated .R-module M and an fl-submodule 
N C M, we define the i?-saturation of A^ in M to be the set of m G M such that 
rm G N for some non zero-divisor r € R (when R — 0\^ the C^-saturation is equal 
to the Zp-saturation, because 0\ is finite over Zp). 

For each prime v G 5/, we define a A-submodule .fiT^(Q,,,T) C iJ1(Qv,T) as 
follows. 

For v G 5/, v ^p: define il}(Qv,T) = fr1(QIMT). 

For v = p: define 

H}(QPJT)0 = Ker [^(Qp.T) -> H1^-)} , 

and define JJ}(Qp,T) to be the A-saturation of #}(Qp,T)0 in tf^Q^.T). Condition 
(4.1.1.4) for T- implies that 

KerfHHQp^-)^^1^^-)] 

is A-torsion, hence Hj(QpyT) is also the A-saturation of 

Ker[F1(Qp,r)^if1(Qp^")] 

in i^OQ^T). The A-rank of iJ}(Qp,r) is one. 

We use the same local conditions to define OA-submodules Hl(Qv,T\) C 
ff1(Qv5^A) for the specializations at any (A) G Xgood. For v € Sf, v ^ p: define 
H}(Ql„rA) = jff1(Q„TA). 

For v — p: define 

^/(QP.TA)
0
 = Ker [tf^Qp,^) ^ H1^,?!)], 
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and define H}(Qp,Tx) to be the Ox -saturation of Hj(Qp,Tx)0 in ^(Qp.Tx). As in 
the A-adic case, Hj(Qp,Tx) is also equal to the C>;\-saturation of 

Kerl&iQ^Tx) ^ H^Qp^)] 

in if^Q^Tx) and Hj(Qp,T) has 0A-rank one. 
(4.1.9) LEMMA. For (A) € Xgood? v € 5/, specialization gives a homomorphism 

AfP(a,r)~'ff(a'rA) 

wWc/fc 25 injective, with cokernel that is finite and bounded independently of A. 

Proof. This follows from (4.1.3.2) and Lemma 4.1.5, if we take A not in the support 
of H2{Qv,T). However, for (A) G Xgood, both sides have ©A-rank two (resp. zero) 
for v = p (resp. v ^ p), and so H2{QV, T)[A] is finite. So the support of H2(QV, T) is 
already included in Xbad- 

(4.1.10) We now need the analogues of Lemma 4.1.9, both for the subgroups 
HJiQp.T) and for the quotient groups JH

rl(Qp,r)/i?)(Qp,T). 
LEMMA. For (A) e Xg00d, the image of Hj(QP)T) in ^(Qp^Tx) lies in 

HJiQpiTx). 

Proof. It is clear from the definition that the image of Hj(Qp,T)0 lies in 
Hf(Qp,T\)0. If (A) G Xgood , then the image of ^(Q^T) contains a subgroup 
of finite index in Bj(Qp,T\)0 and has the same Ox-Tank. So it is contained in the 
CVsaturation of H}(QP,TA)

0
 in H^Qp^Tx), which is #}(Qp,rA). 

(4*1.11) The kernel of the map HjiQp, T)->iJ}(Qp, Tx) is HjiQp, TJnAJBr1^, T) 
= XHj(Qp^T), so specialization gives an injection 

Write Y for ^(Qp.^/HjiQp^T). So Y has A-rank one, for (A) € Xg0od. Because 
Hf(Qp,T) is A-saturated in iir1(Qp,r), Y is A-torsion free, and so we have a short 
exact sequence 

The index of #}(Qp,r)/Ai7}(Qp,:r) in its e>A-saturation in H^Qp^/X^iQp^) 
is equal to the order of the maximal finite CVsubmodule of Y/XY. By the structure 
theory, Y sits in an exact sequence 

0 —► Y —» A —» B —► 0 

where B is finite, so the order of this finite submodule is the order of B[X], 
which is bounded independently of A. Let Z be the inverse image of Hj(Qp,T\) 

in tf^Qp^/AifHQp,?1) under the inclusion 

XW(QP,T) 
HHQ^Tx). 
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So Z is equal to the 0A-saturation of E) (QP7 T)j\R) (Qp, T) in if1 (Qp, T)/Aif1 (Qp, T). 
By the above, the index of iI}(Qp,T)/A#}(Qp,T) in Z is finite and bounded for 
A G -ATgood- This implies the following lemma. 

(4.1.12) LEMMA. For (A) G Xgood? £Ae specialization map 

HHQP,T)/H}(QP,T) HH^Tx) 
\(HI(®P,T)/H}(QP,T)) H}(QP,TX) 

is injective, with cokemel that is finite and bounded independently of X. 
(4.1.13) LEMMA. For (A) e Xg00d, the specialization map 

A1)(CT)        
/(Qp' A) 

Z5 injective, with cokemel that is finite and bounded independently of A. 

Proo/. We already know that it is injective. We have a commutative diagram 
with exact rows 

U ^      AH}(T) ^      Aif1^) \Hl{T)/H){T) ~^     U 

o  _>  fri(TA)  —^  fri(TA)  —► H^TxynjiTx)  —> o 
(dropping Qp from the notation). By Lemmas 4.1.9 and 4.1.12, the kernels and coker- 
nels of the vertical arrows are all finite and bounded for (A) G Xgood, except possibly 
the cokernel of the first vertical arrow. This now follows from the snake lemma. 

(4.1.14) Discrete modules 

Write M := Homcont(M,Qp/Zp) for the Pontryagin dual of a A-module M. We 
define a discrete dual A of T by A = HomCont(^Qp/Zp(l)). Since T is a free A- 
module, we have a canonical isomorphism A —t T*(l) 0A A. Since T ^» T*(l), this 
is also isomorphic to T 0A A (so there is no discrepancy with the notation of 3.5.3). 
A is a (discrete) A-module with A-action (A0)(£) := (f)(Xt) for </> G A,t G T. We have 
a perfect pairing 

AxT^Qp/Zp(l) 

which induces perfect pairings (Tate local duality) for any v G 5/ 

#•(<&,, A) x #2-'(Qv,T) -4 Qp/Zp 

for i = 0,1,2. 

For the specializations at (A) G Xgood, we define Ax = Hom(T\,Qp/Zp(l)). As 
in the A-adic case, because T\ is a free CVniodule, Ax is canonically isomorphic to 
rA*(l)0oxOA, where TA* := HomoA(rA,0A) (andalsotorA0oAOA viaTA*(l) -^ TA). 
Note that Ox, being a complete intersection, is a Gorenstein ring. Fixing a generator 
for Homzp(0A,Zp) as a free rank one Ox -module gives an isomorphism 

Ox = Homzp(e>A,Zp) 0zp Qp/Zp -^ OA 0Zp Qp/Zp -^ FP9x/Ox, 

where Fp)A = OA 0zp Qp is the fraction field of Ox- So we also have 

AX ^ T;(I) ®OA FP,A/OA 
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(in the case where Ox is the ring of integers of Fp,\, this would have been called 
j4*(l)p>] in 3.5.3). We can also canonically identify Ax with A[X]. With this identifi- 
cation, we have an exact sequence 

(4.1.14.1) 0 —► Ax —► A^A —■> 0. 

Local duality gives a perfect pairing 

(4.1.14.2) H'iQ^Ax) x H^iQ^Tx) -> Qp/Zp 

for i = 0,l, 2. 

(4.1.15) Local conditions for discrete modules 

For any v 6 S/, we define iJ^Qt,,^.) to be the orthogonal complement to 
Hf(Qv,T) under the pairing (4.1.14.2), for i = 1. In particular, for v ^ p, we get 
fr}(Q„,4)=0. 

Similarly for the specializations at (A) G Xgood? we define Hj(Qv,Ax) to be the 
orthogonal complement to Hj(Qv,Tx). For v ^p, Hj(Qv,Ax) = 0. 

(4.1.16) LEMMA. LetG = GQ,S orGqv forv e Sf. For (A) G ^good; ^e natural 
map 

(4.1.16.1) ^(G, AA) -► ff^CilJIA] 

is surjective with kernel that is finite and bounded independently of A. 

Proof. Taking cohomology of (4.1.14.1) as G-modules gives an exact sequence 

(4.1.16.1) H0(G,A) A#0(G, A) -4 ^(G^A) —^ H^Qu.A^X] —^ 0. 

The lemma follows, for A not in the support of H0(G,Af. For G = GQ^, this module 
is equal to H2(QV,T) whose support is already included in Xb&d by Lemma 4.1.9 
(alternatively for Qv, the lemma follows immediately from Lemma 4.1.9 and local 
duality). For G = GQ,S, A is in the support of H0(G,Af}S H0(G,A)[X] is infinite 
which is true iff HQ(G, Ax) is infinite, which again implies that A is already included 
in Xbad. 

(4.1.17) LEMMA. Forv € 5/, (A) € Xg0od, the image of H^{Qv,Ax) in 
Hl{Q.v,A){\} lies in Hj(Qv, A)[A].  The map 

#}(QV,AA)^ #}((&,,4)[A] 

has kernel and cokernel that are finite and bounded independently of X. 

Proof For v ^ p, both Hj(Qv,Ax) and Hj(Qv,A) are zero, so the result is 
trivial. For v — p, this is the dual of Lemma 4.1.12 (using Lemma 4.1.13). 

(4.1.18) Selmer groups 

We define the Selmer group § C ^(GQ^A) by 

Similarly for the specializations, define 

lx = Ker HiGQ'S'Ax)^fsH}(Qv,A>) 
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(4.1.19) LEMMA. For (A) e Xg0od, the image ofS\ in ^(GQ^S, A)[\] under the 
map (4.1.16.1) lies in 8, and the map 

(4.1.19.1) S\ —-¥ S[A] 

has kernel and cokernel that are finite and bounded independently of X. 

Proof Apply the snake lemma to the diagram 

0    —v     SA     —►     Hl(Gq,s,Ax)     -+    ®veSH1(Qv,Ax)/H}(Qv,Ax) 

0    —>   s[A]    —»■    HHGQ,S,A)[\}    —►    e^sHHQv^/Hji^AM. 
We just need to know that the kernel of the maps 

H}(QV,AX)        H}(Qv,Ay J 

are finite and bounded, and this follows from dualizing Lemma 4.1.13. 

(4.1.20) Tate-Safarevic groups 

An (9;\-niodule M is called 7r-divisible if TTM = M. A A-module M is said to 
be m-divisible if mM = M. A co-finitely generated A-module M is m-divisible if and 
only if Hom(M,Qp/Zp) is A-torsion free. 

For any specialization §A, we define a Tate-Safarevic group by HI* = §A/div(§A)> 
where div(§A) is the maximal 7r-divisible submodule of §A- SO IIIA is finite and DIA is 
the torsion subgroup of §A- By analogy, for S itself, we define III = S/m-div(S), where 
m-div(§) is the maximal m-divisible submodule of S. Equivalently, fil = TorsA§ is the 
maximal A-torsion submodule of S. 

Dualizing (4.1.19) gives a map S/AS —> §A which restricts to a map 

(4.1.20.1) m/xm—>mx. 

(4.1.21) LEMMA. The map (4-1.20.1) has kernel and cokernel which are finite 
and bounded independently of X, for (A) E ^good> where we define X£ad = XbadU{A G 

Supp(TorsA§)} and X'goM = X- X^. 

Proof If M is any finitely generated A module, then, for A not in the support of 
TorsAM, the map TorsAM/ATorsAM -> Torszp(M/AM) has kernel and cokernel that 
are finite and bounded independently of A. Combining this fact with Corollary 4.1.19 
proves the lemma. 

(4.1.22) We shall now study the structure of § via its specializations. We fix an 
irreducible distinguished polynomial A and write A^ = A + TT*. For k sufficiently large, 
Afc is also an irreducible distinguished polynomial. Also, for A: sufficiently large, A& 
is not in any finite bad set that we might need to avoid and, in particular, is not in 
X;ad. We shall write Tk for TA,, Ak for Axk, Sk for §Afc, and 111* for mAfc. 

By the structure theory of finitely generated A-modules, III = TorsA§ sits in an 
exact sequence 

(4.1.22.1) o^A^^^r-^m-^B-^O, 
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where A and B are finite. Decompose the second term in this sequence as 

where M consists of those direct summands with Vi = (A) for our fixed A, and consider 
the composite map 

M m S - 

For k sufficiently large, A^ is not in the support of TorsA§ and so the image of this 
composite map is finite and therefore lies in Hlfc. Lemma 4.1.21 now implies the 
following lemma. 

(4.1.23) LEMMA. Fork sufficiently large, the map 

has kernel and cokernel that are finite of order bounded independently of k. 

Remark. We do not need to assume that A itself is not in X^ad, so there is no 
restriction on A, since we study T\ via the specializations at A + TT*, which are not in 
X^ for k sufficiently large. 

(4.2) Alternating pairings 

Recall the following classical result. 
PROPOSITION. Suppose A is a finite, abelian group equipped with a non-degenerate 

alternating pairing 
( , >   :  A x A  —»  Q/Z. 

Then there is a group B such that A -^> B 0 B. 

Applying this proposition when ( , ) is the Cassels pairing allows one to deduce 
that the order of the Tate-Safarevic group of an elliptic curve divided by its maximal 
divisible subgroup is a square. In what follows, we shall consider certain Tate-Safarevic 
groups as A-modules rather than just Z-modules, and so we shall now prove a version of 
this result in the context of A/(^)-modules, where g G A is an irreducible distinguished 
polynomial. 

(4.2.1) Fix an irreducible distinguished polynomial / G A, and a A-module 

'   A   > 

,(/ni). 

A   \ai (   A   \ar 
M=(77^T)     0""0V77^)) With        ni>--->nr. 

For k sufficiently large, / + TT* is also an irreducible distinguished polynomial.  Let 
Mfc = M/(/ + TT*). So Mk is a finite Ok-module, where Ok = A/(/ + TT*). 

(4.2.2) THEOREM. Suppose we have a non-degenerate alternating pairing 

(, )   :  Mk   xMk^Qp/Zp 

satisfying (rx,y) = (x,ry} for all r in Ok and all x and y in Mk. Then the a* are all 
even. 

Note that we only need the existence of ( , ) for any one fixed k to deduce the 
result for M, and non-degenerate just means that the left and right kernels are both 
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zero.   Also, the condition (rz, y) — {#, ry) means that the isomorphism of abelian 
groups 

Mk ^>Hom(Mfc,(Qp/Zp) 

x  i—>   (a:, . ) 

is an   isomorphism   of   Ofc-modules,   where   here   the C^-module   structure   on 
Hom(MA;,Qp/Zp) is given by defining (r</>) {x) = (j)(rx). 

(4.2.3) The proof of Theorem 4.2.2 consists of a series of reduction steps. Write 
Ln = A/(/n, f + 7rk) (recall that k is fixed throughout). So we have 

Mk -Z> (Lni)
ai © (Ln2)

a2 © • • • 0 (Lnr)
0r = A © B 

where A = {Lni)
ai and B = (Lno)

a2 © • • • © {Lnr)
ar. We have / = -TT* in Ok, so 

Ln = Ok/(n £ Ok/(nnk). 
(4.2.4) LEMMA.  ( , )|A is non-degenerate. 

Proof. Suppose a G A is such that irka = 0. Then (a, b) — 0 for all b e B. To see 
this, notice that we can find a' £ A such that a = TT^

1-1
^^ (this is easy to check). 

So 
(a, b)  =  (TT^-^V^)  = (a'^-Wb)  = (a',0) = 0. 

Now suppose that a € A is non-zero and such that (a, x) = 0 for all x £ A. Multiplying 
a by some power of TT we may assume that yra = 0 but a ^ 0. So 

(a, re)  = 0       for all x E A 

and        (a, 6)  =0        for all b G B   (since 7rka = 0). 

So (a, m) = 0 for all m € M^, giving a contradiction. 

(4.2.5) Lemma 4.2.4 tells us that 

( , )  :  A x A  —► Qp/Zp 

is non-degenerate, and so gives an isomorphism 

A  -^> Hom(A,Qp/Zp) 

a i—>•  (a, . ) 

of Ok-mod\iles.  In particular, any map A —> Qp/^p can be written as (a,  . ) for 
some a £ A. 

(4.2.6) LEMMA. ( , )\B is non-degenerate. 

Proof. Suppose b G B is non-zero and such that (b,y) = 0, for all y G B. 
Multiplying by a power of TT if necessary, we may assume that 6^0 but irb = 0. Now 
consider the map 

A —► Qp/Zp 

(6, a) 

By Lemma 4.2.4, there is some a G A such that this map is given by (a, . ), i.e. such 
that (6, a) = (a, a) for all a G A. Also, nb = 0. So 

(7ra,o)  =  (a,7ra)  =  (6,7ra)  =  (7r6,o)  = 0 

for all a G A. Therefore ira = 0, which implies that (a,y) = 0 for all y G B. So we 
have a G A and 6 G B such that (a, y) = 0 for all y G JB, (6, y) = 0 for all y E B, and 
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(a, a) = (6, a) for all a e A, So (a - b,m) = 0 for all m € M*. So a - b = 0 which 
implies that a = b = 0. This proves Lemma 4.2:6. 

(4.2.7) Lemmas 4.2.4 and 4.2.6 allow us to reduce Theorem 4.2.2 to the case 
where Mk —> (Ln)a. The next step is to reduce to the case n = 1. For this, note 
that we have isomorphisms of Ok -modules 

Li -^ n^-^Ln       and       Ln/7rkLn -^> Li. 

Also, the orthogonal complement to 7r^n~1^kMk is 7rkMk, since 

{n^-^x^y) = 0 for all x ^^ {x^n-1)ky) = 0 for all x 
nin-Vky = 0 

there exists t/ such that y = ^y' 

ye^Mk. 

So we get a non-degenerate pairing 

7r("~1)fcM*x ^ -♦ ^/z- 

So we have reduced Theorem 4.2.2 to proving the following result. 
(4.2.8) LEMMA. Let Ok = A/(/ + 7rk,nk). Let M be a free Ok-module of rank 

a and 
( , )   :   M  xM —>qp/Zp 

a non-degenerate alternating pairing satisfying {rx, y) = (x, ry) for all r in Ok and 
all x and y in M.  Then a is even. 

Proof One can easily reduce to the case of fields where the result is well known, 
but we give a direct proof by induction on a. Let X be any free rank one direct 
summand of M and let N be any complementary direct summand. So M = X 0 iV. 
Let N1- = {x e M : (n, x) = 0 for all n G N}. It is easy to see that (, ) : X x N-1 —► 
Qp/Zp is non-degenerate. Now N1- is a rank one direct summand of M, (in fact 
M = N-1 © X-1) and so ( , ) : N1- x N-1 —► Qp/Zp is zero (since ( , ) is alternating). 

So N1- C (N^1- = N. Let L = N n X^. We claim that TV = N-1 0 L. To prove 
this, let n G N and consider the map ( . ,n) : X —>> Qp/Zp. There is some y G iV"1 

such that this map is given by ( . ,y), ie such that (x,n) = (x,y) for all x G X. So 
(x^n-y) = 0. Son-y G X-1. Son = (n-y)+y with y G ^andn-y G X^fW = L. 
Also, if y G Af-1 fl L then y G A7"-1 and y G X-1, so y G M-1 = 0. This proves the claim. 
So we have M = X 0 A/^ 0 L. Finally, we claim that ( , ) : L x L —► Qp/Zp is 
non-degenerate. This will be enough to finish the inductive proof of the lemma since 
the rank of L is a - 2. For this, suppose that I G L is such that (/, 2) = 0 for all z G L. 
Consider the map (Z, . ) : N1- —> Qp/Zp- There is some x G X such that this map is 
given by (re, . ), i.e. such that (l,w) = (:r,w) for all w G A/"-1. So {I — x,w) =0 for all 

wG AT1. SoZ-zG (AT-1)1 =N. So we have Z G L = X±nN, x G X, and Z-x G N. 
So x £ N Pi X = 0. So rr = 0. So (Z, w) = 0 for all w € N-1. Also we have Z G X1 so 
we have (Z, x) = 0 for all # G X, (Z, z) = 0 for all z G i, and (Z, w) = 0 for all w G N-1. 
So (Z,m) = 0 for all m G M. So Z = 0, which proves the lemma. 

(4.2.9) Theorem 4.4.2 allows us to study the structure of certain A-modules 
at height one primes which are of the form (/) for some irreducible distinguished 
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polynomial /. For completeness, we also need a version to treat the height one prime 
(TT). For this case, let 

M -    7        ©•••©[■ 7  with       m > • • • > nr. 

Then for any &, Xk -V ir is an irreducible distinguished polynomial and we let M* = 
M/^.+ TT). SO Mfc is an O^-module, where Ok = A/{Xk + ir). We get the following 
theorem. 

(4.2.10) THEOREM. Suppose we have a non-degenerate alternating pairing 

(, )   :  Mk   xMk-+Qp/Zp 

satisfying (rx,y) — (x,ry) for all r in Ok and all x and y in M^. Then the ai are all 
even. 

The proof of this is exactly the same as the proof of Theorem 4.2.2. 

(4.2.11) The modules that arise in the application to Tate-Safarevic groups need 
not be of the standard form considered in 4.2.1, so we need the following generalization 
of Theorem 4.2.2. Rather than proving Theorem 4.2.2 for modules which are only 
pseudo-isomorphic to M (and non-degenerate pairings), we prove a version for M of 
standard form, but where the pairing is only non-degenerate up to finite groups. 

(4.2.12) THEOREM. LetM and Mk be as in 4-2.1. Suppose for each k sufficiently 
large we have an alternating pairing 

(, )*   :  Mk   x.Mk—>Qp/Zp 

satisfying {rx,y)k = (x,ry)k for all r in Ok and all x and y in Mk, and such that the 
left and right kernels are finite and bounded independently of k. Then the a* are all 
even. j 

Proof. The proof is essentially the same as that of Theorem 4.2.2, but taking 
account of the finite bounded kernels. Let 7rc kill the left and right kernels of ( , )k 

for all k. We begin with the analogue of Lemma 4.2.4. 
(4.2.13) LEMMA. For all k sufficiently large, TT

0
 kills the left and right kernels of 

( , )&U. 
Proof. Suppose the lemma is false. Then for infinitely many fc, there is a € A such 

that (a,x)k = 0 for all x G A but 7rca ^ 0. Multiplying by a power of TT if necessary, 
we may assume that 7rca ^ 0 but 7rc+1a = 0. Choosing k > c -f 1, we have 7rka = 0. 
So (o,6)jfe = 0 for all b e B as in Lemma 4.2.4. So {a,m}k = 0 for all m e Mk. So 
7rca = 0, which is a contradiction. 

(4.2.14) LEMMA. For all k sufficiently large, 7r2c kills the left and right kernels 
Of ( ,   )k\B' 

Proof. Suppose the lemma is false. Then for infinitely many k, there is b € B 
with 7r2cb ^ 0,7r2c+1& = 0 and (b,y)k = 0 for all y e B. By Lemma 4.2.13, the right 
kernel of ( , )k\A lies in the kernel of the map 

A —* Qp/Zp 

a i—¥  (6,7rca) 

so there is a G A such that this map can be written as (a, . )k, i.e. such that 
(a,a)fc = (6,7rca)fc = (7rcb,a)k for all a G A. Also, for all a G A, 

(7rc+1a,a)fc = (a,7rc+1a)& - <7rc&,7rc+1a)* = <7r2c+1M)fc = (0,a) = 0. 
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So 7r2c+1a = 0 by Lemma 4.2.13. Now take k > 2c + 1, so Trka = 0. So (a,y)k = 0 for 
all y e B as in Lemma 4.2.4. So {iTcb-a,m)k = 0 for all m e Mk- So 7rc(7rc&-a) = 0. 
So 7r2cb = 7rca = 0 which is a contradiction. 

(4.2.15) We have now reduced Theorem 4.2.12 to the case Mk -^ {Ln)a. The 
arguments of 4.2.7 show that, if H is the orthogonal complement of 7r(n_1^Mfc, then 
7rkMk C H C nk~cMk, and so we deduce a pairing 

7rkMk 

and reduce to the case n = 1 as before. Finally, we need the analogue of Lemma 4.2.8. 
(4.2.16) LEMMA. With notation as in Lemma 4'%-8, suppose for all k sufficiently 

large, we have an alternating pairing 

( , )   :  M  xM —>Qp/Zp 

satisfying {rx, y) — (x, ry) for all r in Ok and all x and y in M, where Ok and M are 
as in Lemma 4-2.8 (with a fixed) and such that the left and right kernels of ( , ) are 
killed by pc for some c independent of k. Then a is even. 

Proof. We rewrite the proof of Lemma 4.2.8, keeping track track of the small 
kernels involved. Briefly; since ( , ) is alternating, the left and right kernels are equal, 
call them K. Also, write Ki for the left kernel of 

(, )  . x  x^—^Qp/Zp. 

Then ##1 < ftK. Write M = X 0 N as in Lemma 4.2.8. Then M = X1- + N1- and 
X^L-DN1- = K. Define L = (N+K^nX^. Then one can show that L+N-1 C N+ld 
with index independent of k (explicitly, the index is < #K • pca). So we can choose 
a (N-L)' D N-L with index < #K • pcoc such that L + (AT-1)' D N 4- #1 and so 
M = X + L + (N^y. Now one can choose direct summands ACL and B C (N1-)' 
of rank a — 2 and 1 respectively, such that M = X 0 A © i?, and such that the index 
of yl in L and 2? in (N±y are independent of fc. Finally one checks that 

(, )  : A  xA-*Qp/Zp. 

has left and right kernels which are killed by pc for some new c' (defined in terms of 
c and a, but independent of k). This completes the proof. 

(4.2.17) One can use variants of Lemmas 4.2.13-16 to treat the case of the 
height one prime (TT) of A, so that Theorem 4.2.12 holds in this case too (with Mk = 
M/(Xk + TT) as in 4.2.9). In this case, suppose the left and right kernels of ( , )k are 
finite and bounded independently of fc; then there is some constant c such that Xc 

kills these kernels, independently of k. Now proceed using this Xc in place of the pc 

in Lemmas 4.2.13-16. The proofs are essentially the same. 

(4.3) Cassels-Tate pairings 

(4.3.1) From now on, let p > 2. Returning to the situation of Section 4.1.1, if A 
is any irreducible distinguished polynomial, then the specialization Tx is a free rank 
two 0A-niodule and there is an CVbilinear skew-symmetric pairing 

(4.3.1.1) Tx  x Tx  —> Ox(l) 

coming from specializing (4.1.1.2), giving an isomorphism T\ -^ Homc>A (Tx, Ox) (1). 
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(4.3.2) We will work with pairings taking values in Zp rather than Ox, and 
so we recall how to switch between the two. Recall that any Ox is Gorenstein and 
that Hom^ (0\7ZP) is free of rank one as an 0\-mod\i\e. Now we have a canonical 
isomorphism 

Homo, (TA, OX) ®OX HomZp {Ox, Zp) ^ EomZp (TA, Zp). 

0 ®(f) H> (f)08 

If we fix a generator for Homzp (Ox, Zp), this gives an isomorphism 

Hom^ (TA,OA) ^ HomZp (TA,ZP) 

and so the isomorphism Tx^Romox (Tx,Ox) (1) translates to an isomorphism 
TA^HomZp (TA}Zp) (1), i.e. gives a pairing 

(4.3.2.1) ( , )A   :  Tx  x TA   —+  Zp(l) 

satisfying (rx,y)x — {x,ry)x for all x,y € Tx and all r G CV The construction 
of (4.3.2.1) from (4.3.1.1) is non-canonical, depending on a choice of generator for 
Homz ((9A?Zp). Once we fix such a generator, this also fixes isomorphisms Ax —* 
Tx ®zp Qp/Zp and so we also have pairings 

(4.3.2.2) ( , )A   :  ^A -X  ^LA   —►  QP/Zp(l) 

satisfying (rx,y)x = (x,ry)x for all x,y £ Ax,r e Ox. 

(4.3.3) The generalization by Flach [Fl] of the Cassels-Tate pairing gives the 
following result. 

THEOREM. For (A) e Xgo0(i, there is a non-degenerate alternating pairing 

[ , ]x   :  HIA   x   IHA   —>  Qp/Zp 

satisfying [rx,y]\ = [x,ry]\ for all x,y G IIIA and all r G Ox- 

Proof. For (A) G Xgood, H1 (Qp, TA) has C^A-rank two and the subspace Hj (Qp, TA) 

has ©A-rank one and is its own orthogonal complement under the local duality pairing 

H^Qp.Tx)  x  H^QpiTx)  -* Zp 

coming from (4.3.2.1) (we know that this is true after tensoring with the field of 
fractions, but because we defined Hj(Qp,Tx) to be C^A-saturated, it is true at the 
integral level too). So Flach's construction gives a non-degenerate alternating pairing 

[ , ]A   :  mx  x IHA p> 

One can easily check through the construction of the pairing using cocycles that the 
relation (rx,y)x = (x1ry)x on (4.3.2.2) implies the relation [rx,y]x = [x,ry]x- 

(4.3.4) Dualizing this result, we deduce the existence of a non-degenerate alter- 
nating pairing 

< , >A   :  DIA   *  mA   —> Qp/Zp, 

depending upon our fixed choice of generator for the free module Homzp (Ox, Zp). 

(4.3.5) We can now use the results of 4.2 to prove Proposition 4.0.1. We choose 
a pseudo-isomorphism between III and a module of standard form as in (4.1.22.1). 
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Fix any irreducible distinguished polynomial / (or / = TT) in the support of III and 
write this module of standard form as M 0 M as in 4.1.22. So M can be written as 

M=(cF))  e"'e(cF))      with    "1>-'->n'- 
We need to show that all the ai in this expression are even. Write Mk = M/X^M 
where A^ = f + 7rk (or A* = Xk + TT if / = TT). Then we know from Lemma 4.1.23 
that we have maps 

Mk —>m, 

with kernel and cokernel that are finite and bounded independently of k. If these 
kernels and cokernels are trivial we can apply the results of 4.2; if we take M as 
above, then the pairing of 4.3.4 on Mk —> IH& satisfies the conditions of Theorem 
4.2.2 (or Theorem 4.2.10 in the case / = TT) and we deduce that the c^ are even. If 
the kernels and cokernels are non-trivial, we define a pairing on Mk as follows. Let 
<f>k : Mk —> HI*; be the maps of Lemma 4.1.23. Define a pairing 

(, >;   :  Mk  x  Mk  —>  Qp/Zp 

by (x,yyk = (<l>k(x),<l>k(y))k, where ( , )* = ( , )\k is the pairing on HI* of 4.3.4. The 
left and right kernels of the pairings ( , yk are finite and bounded independently of fe, 
as k -> oo, and we can apply Theorem 4.2.12 (and 4.2.17). This proves Proposition 
4.0.1. 

(4.3.6) COROLLARY. For any (A) e Xg00(\, we have 

rkoA§A = rkA§    (mod 2). 

Proof. From Lemma 4.1.19, we get 

TorsA(§) 
rkoA§.A = rkAS + rkoA- lATorsA(§) 

= rkA§ + 2rkoA-^ 

= rkA§ (mod 2). 

(4.3.7) In the situation of 4.1.4, let V = (Pk,e) € Spec(A) be any arithmetic 
point. So V is the height one prime (A) = (\kte) of ^[[-^]] under the identification 
A —> 0[[X]] of 4.1.4. If k is even and we are not in the exceptional case then the 0\- 
ranks of the ff^Q^M) for M = T,T+,T-, are equal to the "generic"ranks of 4.1.6 
by 3.1.3-5, and so (A) G ^good- In this case, the local conditions are the same as those 
defined by the Bloch-Kato subgroups Hj(Qv,Tx <g)zp Qp), again by the arguments of 
3.1.3-5, and so §A is equal to the Bloch-Kato Selmer group Hj(Q,A\). 

(4.3.8) COROLLARY. With notation as in 4-3.7, if k is even and we are not in 
the exceptional case, then 

coikox H) (Q, Ax) = rkA§    (mod 2). 

(4.3.9) This Corollary proves Theorem A' in the special case when R = A (for 
non-exceptional V). How often is R = A? In the notation of 3.2.2, this equality holds 
if gk0 is not congruent to any other normalized eigenform of weight ko on Ti(Np) 
(with respect to the embedding ip). 
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For example, let E be a modular elliptic curve over Q of conductor AT and let 
/ = Y^anQn be the corresponding modular form of weight 2 on To (AT). Let p be a 
prime satisfying the following assumptions: 

(1) p does not divide 6iV. 

(2) E has ordinary reduction at p, i.e. p\ap. 

(3) -Kp(Q) is an irreducible ¥p [GQ]-module. 

(4) p does not divide ^p{N). 

(5) p does not divide the degree of some modular parametrization Xo{N) —> E 
ofE. 

(6) pfCopil). 
The first three conditions mean that the discussion in Sect. 3-4 applies to /. It 

follows from (4) that all modular forms corresponding to arithmetic points of R have 
trivial character modulo iV. According to [Ri 2, Thm. 1.4] (cf. [Za, Thm. 3]), the 
conditions (1) and (5) imply that / is not congruent (modulo a prime above p) to 
any other normalized eigenform on ro(iV)5 and hence not even on ri(iV), by (4). It 
follows from [Mi, Thm. 4.6.17] and (6) that there is no congruence between / and 
a normalized eigenform on ri(Np) (cf. 1.3.5). This implies that R/ij — l)R = Zp, 
hence R = A = Zp[[X]], for all primes satisfying (l)-(6). Note that, if E has no 
complex multiplication, the set of such p has density one. 
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