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MODULI SPACES OF PC/(2)-MONOPOLES* 

ANDREI TELEMANt 

1. Introduction. The most natural way to prove the equivalence between Don- 
aldson theory and Seiberg-Witten theory is to consider a suitable moduli space of 
"non-abelian monopoles". In [0T5] it was shown that an 51-quotient of a moduli 
space of quaternionic monopoles should give an homological equivalence between a 
fibration over a union of Seiberg-Witten moduli spaces and a fibration over certain 
5pmc-moduli spaces [PT1]. 

By the same method, but using moduli spaces of P?7(2)-monopoles instead of 
quaternionic monopoles, one should be able to express any Donaldson invariant in 
terms of Seiberg-Witten invariants associated with the twisted abelian monopole equa- 
tions of [OT6]. In [Tl], [T2], we have shown that this idea can be further generalized to 
express Donaldson-type invariants associated with higher symmetry groups in terms 
of new Seiberg-Witten-type invariants. 

The strategy has a very general algebraic-geometric analogon, which we call the 
"Master Space" strategy. This procedure, developed by Ch. Okonek and the author 
[OT7], [OST] reduces the problem of the computation of certain numerical invariants 
of a GIT moduli space to similar computations on simpler moduli spaces. One "cou- 
ples" the given GIT problem to a simpler one (having the same symmetry group), 
and then studies the "Master Space" associated with the coupling as a C*-space. The 
fixed point locus of the C* -action consists of the original moduli space and a union 
of simpler ones. Then one can use the 51-quotient of the master space to define a 
homological equivalence between a projective fibration over the initial moduli space 
and a projective fibration over the other components of the fixed point locus. In the 
GIT-framework, as in the gauge theoretical one, the technical difficulty is the same: 
the master space can be singular. The present paper deals with this difficulty in the 
gauge theoretical situation. 

A program for proving the equivalence between Donaldson theory and Seiberg- 
Witten theory, which also uses moduli spaces of non-abelian monopoles, is due to 
Pidstrigach and Tyurin [PT2], and was already announced by Pidstrigach in a Con- 
ference at the Newton Institute in Cambridge, in December 1994. 

There are, however, several important differences between Pidstrigach-Tyurin's 
original approach, and the strategy developed by Ch. Okonek in collaboration with 
the author, which is the strategy we follow in the present paper. 

First, our equations have a gauge group of the form SU(E) and hence the moduli 
spaces which we construct are 51-spaces; in contrast, the Pidstrigach-Tyurin equations 
[PT2] have a gauge group of the form U{E). Whereas we fix the connection in the 
determinant line bundle, they only fix the curvature of this connection. If Hi (X, Z) = 
0, their moduli space is the 51-quotient of ours. On the other hand, the 51-operation 
plays a very important role in our strategy: The description of the ends around the 
abelian locus at infinity uses in an essential way the 51-equivariance of the local 
models. 
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Second, we do not follow Pidstrigach-Tyurin's program to prove generic regularity 
results. We show (see section 3.1) that the proofs of the transversality theorems which 
they use [PT2] to get generic regularity are incomplete, by indicating counterexamples 
to one of the statements on which these proofs are based1. 

It is interesting to notice that, in fact, any non-abelian solution of the equations 
in the Kahler case gives a counterexample to their statement. This same statement 
was also used by the authors in the their definition of the Spmc-polynomial invariants 
[PT1]. 

The transversality problem is very complicated, for the Pf7(2)-monopole equa- 
tions as well as for the non-abelian Spmc-equations. The difficulty is the same in 
both cases: in the non-abelian points with degenerate spinor component transversal- 
ity cannot be proved using only perturbations with 0-order operators. 

In [Tl] the author tried to use perturbations with first order operators, and 
proved that perturbations of this type lead to transversality at least away from the 
solutions which are abelian on a non-empty open set. However, in order to have a 
complete transversality result away from the abelian locus, one would need a unique 
continuation theorem which seems to be difficult to get because of the perturbed 
symbol. 

Another way to achieve transversality is to use an infinite family of "holonomy 
perturbations" [FL]. 

The present paper solves two fundamental problems concerning the moduli spaces 
of Pf/(2)-monopoles: generic regularity and compactification. 

First we prove an S1-equivariant generic-smoothness theorem: we define pertur- 
bations of the equations which lead to S1 -spaces which, for generic choices of the 
perturbing parameters are smooth, at least outside the "Donaldson locus" (the van- 
ishing locus of the projection on the spinor component) and of the abelian locus 
(Theorem 3.19). The proof of the generic-smoothness theorem is not a pure transver- 
sality argument; it combines a standard transversality argument with a new method 
to control the exceptions to transversality. 

Our result shows that one does get regularity for a generic choice of a system 
{g.a.ji.K), consisting of a metric, a compatible Spinu^ (4) -structure a and an order 
0- perturbation (/?, K) of the type considered in [PT2]. 

We also obtain generic regularity results for the normal bundles of the Donaldson 
locus and the abelian locus within the moduli space (Theorem 3.21, Proposition 3.22). 
Similar results, but obtained using quite different lines of reasoning, were obtained by 
Feehan [F] in a preprint distributed around the same time as the first version of the 
present paper. 

Therefore one can go forward towards a proof of the Witten conjecture (see for 
instance [OT5] for a detailed description of the strategy) using relatively simple equa- 
tions. 

Note however that the generic regularity results which we prove for the ASD- 
5pinc-equations, do not automatically solve the transversality problem needed in 
order to give sense to the 5pmc-polynomial invariants, and to use them effectively. For 
this purpose one needs a pure transversality argument for the ASD-5pinc-equations2. 

1This gap as well as the difficulty of the problem was pointed out by the author during the 
Workshop "4-dimensional manifolds", Oberwolfach, March 1996. 

2The point is that, in order to have well defined invariants, it is importants to have a smooth 
parameterized moduli space (see [DK], p 143, 149). Generic regularity is not enough. Moreover, 
the Kahlerian parameters are all non-generic in our sense; on the other hand, all the computations 
needed in order to get a proof of the Van de Ven conjecture using 5pmc-invariants, must be done in 
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Therefore, The theory of Spm^polynomials and the attempt to prove the Van de Ven 
conjecture using this theory [PT1], should be revised. 

We get our result in two steps. In a first step we prove that, using only the 
perturbations (/^if), one can prove the following partial transversality result: If the 
Seiberg-Witten map extended to the parameterized moduli space is not a submersion 
in a point (A, \I/,/3, jfif), then the spinor component ^ must be degenerate. This is 
very easy to see. 

In the second step we prove that, if we also let the Spinu^ (4)-structure (together 

with the metric) vary , then the moduli space VMx of solutions with non-trivial 
but degenerate spinor component in the enlarged parameterized moduli space M*x 
has infinite codimension in every non-abelian point. Using this, we can show (by 
"weakening" locally the degeneracy equation) that every non-abelian point [p] in 

VMx has a neighbourhood U[p] which is a closed analytic subspace of a manifold 
Vjp] which is Fredholm of negative index over the enlarged parameter space. Taking 
a countable subcover (VJP].)J€N, and using the fact that Fredholm maps are locally 
proper ([Sm]), we prove that the set of parameters for which there exists a non-abelian 
solution with non-trivial degenerate spinor component is of the first category . The 
desired set of "generic parameters" is then obtained by intersecting the complement 

of this set with the set of regular values of the projection of M*x \ VMx on the 
parameter space. 

We believe that this method is in fact a very general one; it can be summarized 
as follows: Prove first a partial transversality result using perturbations with 0-order 
differential operators, and show then that the space of solutions which are exceptions 
to transversality has infinite codimension if one introduces new variable parameters. 
Such a result is to be expected provided the "exceptional solutions" , the ones which 
are exceptions to transversality, solve an over determined elliptic system. 

In particular, the method can be applied to obtain generic regularity along the 
Donaldson and the abelian locus. More precisely, the moduli space of solutions (with 
non-vanishing spinor component) of the Dirac-ASD system of [PT1] becomes smooth 
of expected dimension for generic perturbations. The same property has the com- 
plement of the zero-section in the fibration of "normal infinitesimal deformations" 
over the subspace of abelian solutions associated with an abelian reduction of the 
5pmt/(2)(4)-bundle. 

In this way we obtain perturbed moduli spaces which are smooth except in 
the abelian points and in the Donaldson-points. These points remain exceptions to 
transversality, and in general, regularity (smoothness and expected dimension) cannot 
be achieved in these points by using 51-equivariant perturbations. 

The second purpose of the paper, the existence of an "Uhlenbeck compactifica- 
tion" for the perturbed moduli spaces, is achieved in section 4 (see Theorem 4.24). A 
different proof of the "Uhlenbeck compactification" can be found in [LT]. 

Our arguments follow the same strategy as in the instanton case [DK], which can 
be summarized as follows: 

Local estimates - Regularity - Removable Singularities - Compactification. 

Some care must be taken, since the monopole equations are only "scale invari- 
ant" , not conformal invariant as in the instanton case. On the other hand, many of 
the results in [DK] were obtained by cutting off the solutions and transferring the 

the Kahler case. 
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problem from the 4-ball to the 4-sphere, and then using the conformal invariance of 
the equations. 

Our proof uses the same method, but endows the sphere with a metric with 
non-negative sectional curvature which is flat in a neighbourhood of the north pole. 
With this choice, the corresponding first order elliptic operators (Jj), d* + d+, ...) 
are still injective. For the local computations we work with pairs whose connection 
component is in Coulomb gauge in the sense of [DK], so that all the results in [DK] 
about connections in Coulomb gauge apply automatically. Therefore, we do not use 
the Coulomb gauge condition for pairs which follows from the elliptic complex of the 
FC/(2)-monopole equations (compare with [FL]). 

A short version of our proof of the Uhlenbeck compactification appeared in [OT5], 
and a very detailed version of it can be found in [Tl]. The existence of an Uhlen- 
beck compactification for moduli spaces of non-abelian monopoles was predicted by 
Pidstrigach and Tyurin in [PT2]. 

Note that in order to prove the equivalence between the Donaldson and the 
Seiberg-Witten theories, it now remains only to give explicit descriptions of the ends 
of the moduli space along the abelian locus, and to calculate the corresponding con- 
tributions. 

My own strategy to study the ends of the moduli spaces of PC/(2)-monopoles 
is based on the analytical results in [T3]. The PC/(2)-monopole equations are not 
conformally invariant, so it is difficult to use the method developed in the case of 
instantons [DK] (which consists of identifying the solutions concentrated in a point 
with the solutions on the connected sum of X with 54). We use a new strategy 
[T4] which is still based on the gluing method. We obtain concentrated solutions by 
gluing (non-concentrated) solutions on X corresponding to lower topological data, 
with concentrated instantons on the tangent spaces, and then we deform the obtained 
almost-solutions into solutions. This last step makes use of the classical Fredholm Lp 

theory on X, as well as of the Fredholm Lp-theory on the tangent spaces (instead of 
5'4) which is developed in the quoted paper. 

Progress on this problem, using different methods, was also announced by Feehan 
and Leness. 

I would like to thank professor Ch. Okonek for encouraging me to write this 
paper, for the careful reading, and for his suggestions. I would also like to thank 
professor S. T. Yau for suggesting me to submit the paper to AJM. Finally I thank 
the referee for the very careful checking of the technical arguments and for his valuable 
observations. 

2. PC/(2)-monopoles. 

2.1. The Spinu^ group and Spm^^-structures. For a more detailed pre- 
sentation of the theory of Spin^^-structures we refer the interested reader to [Tl], 
[T2]. In these papers we also introduce the concept of Spm^-structures and G- 
monopole equations for quite general compact Lie groups G. 

The group Spinu^ is defined by 

Spinu(2) := Spin xZ217(2) . 

Using the natural isomorphism    ' 7z2 - PU(2) x 5\ we get the exact sequences 

1 _^ Spin —► Spin17^ JM^k PU{2) x S1 —► 1 
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1 —> U{2) —> Spin17^ JL+SO^I 

1 —► Z2 —► Spinu^  (^^det)> 50 x PC/(2) x 51 —> 1 . 

Let X be a compact manifold and Pu a Spinu^ -bundle over X. We consider 
the following associated bundles 

7r(Pu) := Pu x,, 50, 6{PU) := Fu x^ PC/(2), det(Pu) := Pu xdet 5
1, 

Go := Pu xAdo-5 5C/(2); 00 := Pu xado,- 5C/(2) , 

where Ad : PU(2) —► Aut(SU(2)), ad : PU(2) —> so(su(2)) are induced by the 
adjoint morphism SU(2) —> Aut(SU(2)), 517(2) —-+ so(su(2)). 

The group of sections Qo := r(X,Go) can be identified with the group of au- 
tomorphisms of Pu over 7r(Pu) Xx det(Fu). After suitable Sobolev completions it 
becomes a Lie group, whose Lie algebra is the corresponding completion of A0(®o). 

Let P be a 50 bundle over X. A Spinu^-structure in P is a morphism Pu —► 
P of type TT, where Pu is a Spinu^-bundle. Two Spinu(<2^-structures Pu —> P, 
P,u —> P in P are called equivalent if the bundles Pu, P'u are isomorphic over P. A 
5pmc/(2)(n)-structure in an oriented Riemannian 4-manifold (X,g) is a Sjnnu^(n)- 
structure in the bundle Pg of oriented coframes. 

We refer to [Tl], [T2] for the following classification result: 

PROPOSITION 2.1. Let P be a principal SO-bundle, P a PU(2)-bundle, and L a 
Hermitian line bundle over X. 

i) P admits a Spinu^ -structure Pu —> P with 

Pux-dPU(2)~P ,   PnxdetC-L 

if and only if W2(P) = W2(P) + ci(L), where ci(L) is the mod 2 reduction of ci(L) . 
ii) If the base X is a compact oriented 4-manifold, then the map 

pu _> ([ptf x_ pu^ [pn ><det qj 

defines a 1-1 correspondence between the set of isomorphism classes of Spinu^- 
structures in P and the set of pairs of isomorphism classes ([P],[L]), where P is a 
PU(2)-bundle and L an S1-bundle with W2(P) = W2(P) +ci(L). The latter set can 
be identified with 

{(p,c) G H4(X,Z) x H2(X,Z)\ p = (W2(P) + c)2 mod 4} 

D 
The group Spinu^ (4) can be written as 

Spinu^(4) = SUW+ x ^(2)- x t/(2)/z2 ) 

hence it comes with natural orthogonal representations 

ad± : SpinuQ\4) —»• so(su{2)), 
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defined by the adjoint representations of SU(2)±1 and with natural unitary represen- 
tations 

a± : Spinv^ (4) —> U(U± ®c C2) 

obtained by coupling the canonical representations of SU(2)± with the canonical 
representation of U(2). 

We denote by a,d±(Pu), E±(Pn) the corresponding associated vector bundles. 
The Hermitian 4-bundles Tt

±(Pu) are called the spinor bundles of Pu, and the sections 
in these bundles are called spinors. 

We refer to [T2] for the following simple result 

PROPOSITION 2.2. Let P be an SO{£)-bundle whose second Stiefel-Whitney class 
admits integral lifts. There is a 1-1 correspondence between isomorphism classes of 
Spinu(2)-structures in P and equivalence classes of pairs consisting of a Spinc{A)- 
structure Pc —> P in P and a U(2)-bundle E. Two pairs are considered equivalent 
if, after tensoring the first one with a line bundle, they become isomorphic over P. 

Suppose that Pu is associated with the pair (PC,E), and let E^ be the spinor 
bundles corresponding to Pc. Then the associated bundles Pux7TR

4, E±(PW), d(Pu), 
det(Pu), G(PU), Go(Pu) can be expressed in terms of the pair (PC,E) as follows: 

P^x^M4 =MS[/(£+,£-) , 

E±(Pw) = [E±]v0£; = E±®£;v0[det(Pu)], ~5(P
U
)~

P
E/SU ad±(Pw) = TO(E±) 

det(Pw) ~ dettPT1 ® (detiS?), Go(Pu) = SU{E), ^(Pu) = su(E) . 

Here we denoted by M5£/(E+, E~) the bundle of real multiples of C-linear isome- 
trics of determinant 1 from £+ to Ej. The euclidean structure and the orientation 
in this bundle are fibrewise defined by the Pauli matrices associated with a pair of 
frames (ef, ef) in E^, satisfying ef A ej = ejf A eJ. 

The data of a Spinu^ (4)-structure Pu —> P in an 50(4)-bundle P is equivalent 
to the data of an orientation preserving linear isometry 

7 : P x50(4) E4 —► Pu x, E4 = 15t/(E+,Ec-) C HomG^E+^E-fP")) 

which will be called the Clifford map of the structure. 
The Clifford map 7 induces isomorphisms 

r± : A2
±(P X50(4) M4) —► «i(E±) = ad±(P") , 

which multiply the norms by 2 ([DK] p. 77, [OT1]). 
The following simple remark will play a fundamental role in this paper: 

Suppose that A is a real oriented 4-bundle, and 7 : A —> Pux7rR
4: an orientation 

preserving linear isomorphism. Then 7 defines an Euclidean structure p7 on A such 
that 7 becomes the Clifford map of a Spinu^ (4)-structure in (A,p7). 
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2.2. The Pt/(2)-monopole equations. Let a : Pu —y Pg be a SpinuW(4)- 
structure in the oriented compact Riemannian 4-manifold (X^g). Fix a connection 
a G A(det(Pu)). Using the third exact sequence in (1), we see that the data of a 
connection A £ A(5(PU)) is equivalent to the data of a connection BA,a in Pu which 
lifts the Levi-Civita connection in Pg and the fixed connection a in det(Pu) (via 
the maps Pu —> Pg and Pu —> det(Pu) respectively). The Dirac operator 0A,a 
associated with the pair (A, a) is the first order elliptic operator 

0Ata : A0(E±(P1X)) ^^H ^(E^P*)) -^ A0(IF(PU)) 

Regarded as operator E+(Pti) © E-'(PU) —> £+(Pu) © i;-(Pw), the Dirac operator 
JpA^a is also selfadjoint. 

' We define the quadratic map S±(PW) —> ad+(Pu) O^o, * »—> (^)o by 

where pr^+(Pu)<sQo denotes the orthogonal projection 

Herm(E+(P^)) —* ad+(Pu) 00o • 

We introduce now the P[/(2)-Seiberg-Witten equations SW£ associated to the 
pair (cr7a), which are equations for a pair (.A,*!/) formed by a P[/'(2)-connection A G 
A(S(PU)) and a positive spinor # G A0(Z+(PU)): 

15    aj i   r(P+)    =    (^)o { 
The natural symmetry group of the equations is the gauge group QQ := T(XyGo). 

We denote by M* the moduli space 

M* := [A(S(PU)) x A0(E+(P«))]SH''/    > 

where [A(S(PU)) x ^40(E+(PU))] a denote the space of solutions of the equations 
{SW£). Using the well-known Kuranishi method one can endow M* with the struc- 

ture of a ringed space, which has locally the form ^ '/Q, where G is a closed subgroup 
of 517(2) acting on finite dimensional vector spaces H1, H2, and Z(6) is the real ana- 

lytic space cut-out by a G-equivariant real analytic map H1 D U —> H2 (see [OT5], 
[Tl], [T2] for details). 

3.  Smooth moduli spaces. 

3.1. The difficulty. Equations for pairs (A, \I>), where A is a unitary connection 
with fixed determinant connection and \I> a non-abelian Dirac spinor have been already 
considered [PT1]., [PT2]. For instance, the definition of 5pmc-polynomial invariants 
starts with the construction of the moduli space of solutions of the (ASD — Spin0)- 
equations 

in  - o. 
The proofs of the corresponding transversality results are incomplete. They are 

based on the following false statement ([PT2], [PT1]): 
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(A) Let Pc —> Pg be a 5pmc(4)-structure with spinor bundles S±(PC) on 
a Riemannian 4-manifold (X,g), E a Hermitian 2-bundle on X, and A a unitary 
connection in E. If the J0A-harmonic non-vanishing positive spinor ^ G J4

0
(E

+
(P

C
) 0 

E) is fibrewise degenerate considered as morphism Ev —> E+, then A is reducible. 

In the proof of this assertion ([PT1] p. 277) it was used that, in the presence 
of a 5jpmc(4)-structure, the Clifford pairing (a, a) i—> ^(a)a between 1-forms and 
positive spinors has fibrewise no divisors of zero. This is true for real 1-forms, but 
not for complex ones. 

Counterexamples are easy to find: 
Every holomorphic section in a holomorphic Hermitian 2-vector bundle £ on a 

Kahler surface can be regarded as a degenerate harmonic positive spinor in S+n (g)£, 
where E+n = A00 © A02 is the positive spinor bundle of the canonical 5pmc(4)- 
structure in X, if we endow £ with the Chern connection given by the holomorphic 
structure. Therefore any indecomposable holomorphic 2-bundle £ with H0(£) ^ 0 
gives a counterexample to the assertion (A). 

Note that these counterexamples occur precisely in the Kahler framework, where 
all explicit computations of moduli spaces and invariants were carried out. 

3.2. Partial transversality results. Let a : Pu —> Pg be a Spinu^(4)- 
structure on (X, g), denote by 

7: A1 —>Hom(£+,£-) 

be the associated Clifford map, and let Co be a fixed 50(4)-connection in Pu x^ 
50(4) ~ Pg (not necessarily the Levi-Civita connection). We fix again a connection 
a e A(det(Pu)). For any connection A € A(d(Pu)) we have an associated Dirac 
operator 

K,A = 7 * Vco,a,yi , 

where Vco.a.A : A0^*) —> A1(E+) is the covariant derivative associated with the 
connection in Pu which lifts the triple (Co, a, A). 

The role and the properties of these slightly more general Dirac operators will 
be cleared up in the next section, where Co will be a fixed C00-connection in the 
fixed bundle Pu x^ 50(4), but the metric g and the Clifford map 7 will be variable 
C^-parameters. 

Recall that one has a canonical embedding Pu x^ C4 C Hom(E+, E_), and that 
a defines an isomorphism A^ -^ Pu x ^ C4. We consider the following equations 

f#!U*)+ /?(*) =     0 
\ r(F+) = tf(**)o   ' 

which are equations for a system 

(A,9,P,K) eA(6(Pu)) x^0(S+) xA0(Pu x^ C4) x r(X,GL(ad+)). 

Complete the configuration space A := A(S(PU)) x ^40(E+) with respect to a large 
Sobolev norm Lf, and the parameter space 

Q := A0(PU x* C4) x r(X,GL(ad+)) 

with respect to the Banach norm Ck, k > /. 
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The perturbations (/?, K) were also considered by Pidstrigach and Tyurin in [PT2] 
in their attempt to get transversality for their version of non-abelian monopole equa- 
tions. 

An 517(2) x 517(2) x 5t/(2)-reduction of Pu over an open set U C X induces 
isomorphisms S±(Pw)|c/ ~ S± 0 E where S±, E are 5Z7(2)-bundles. A spinor * G 
£+(Pu) will be called degenerate in x G X if, with respect to an 5/7(2) x SU{2) x 
5C/(2)-reduction around ar, ^x G 5X 0 ^ = 5^ 0 ^ has rank < 1. ^ will be called 
degenerate on V C X if it is degenerate in every point of V. 

A pair (A, *) G .4((5(PU)) x yl0(i;+) will be called abelian if the connection A is 
reducible, and the spinor ^ is contained in one of the A-invariant summands of S+. 

If {A, \I>) G A(8(PU)) x ^40(U+) is an abelian pair, then # is clearly degenerate on 
X. However, the counterexamples in the previous section show that there exist non- 
abelian pairs with non-trivial Dirac-harmonic spinor-component which is degenerate 
onX. 

Let sw = sWgj(TiCo '- AixQk —> A0(Tl~)i-i x A0(ad+ 0go)/-i be the map defined 
by the left hand side of the equations above, and let 

-i/ 
jV-.:=[.4?xQ*]n«i;-1(0)/k 

be the moduli space of solutions with non-trivial spinor-component. Af* is the van- 
ishing locus of the induced section sw in the Banach bundle 

[At x Qk] xg,+1 [^(E-),-! x ^0(ad+ ®jo)j-i] 

over the Banach manifold B* := ^l x ^ /g      which is defined by sw. 

The purpose of this section is to prove the following partial transversality theorem 

THEOREM 3.1. If sw is not a submersion in a solution p = (A,SB,f3,K) G 
Af x Qk, then ^ must be degenerate on X. In particular, N* is smooth away from 
the closed subspace of solutions with globally degenerate spinor component. 

Proof Let ($, 5) G ^40(E~)/_i x .A0(ad+ 0flo)«-i a pair which is L2-orthogonal to 
im(dp). Using the perturbation (3 we get immediately that i?e(/?, $ 0 ^ vanishes for 
every variation $ of /?. With respect to any local SU(2) x SU(2) x 5C/(2)-reduction 
(S±,E) of Pu\u (U an open set) the contraction of $0$ with the Hermitian metric in 
E must vanish, which shows that pointwise 1$(v+)±$(v~) for every v± G 5^, u G U. 
If $ has rank 2 in a point x G X, then $ must vanish identically on a neighbourhood 
of x. 

Also, if \I> has rank 2 in x, then (^^o has rank 3 in x as map ad^ —>®o,x, 
hence the same argument as above shows that 5 must vanish on a neighbourhood of 
x. Therefore the pair ($,5) must be zero on a neighbourhood of x. 

We can assume that A is the Coulomb gauge with respect to a smooth connection 
AQ- Therefore, by Agmon-Douglis-Nirenberg's non-linear-elliptic regularity theorems 
(see for instance [B], p. 467, Theorem 41), it follows that (A, $) is a smooth pair (if 
the Clifford map A1 —> Pu x E4 had only class Ck, we would have got a Ck+1~£-paiv, 
which is enough to complete the argument). Using now variations (A, \I>), we see that 
($,5) must satisfy an elliptic system of the form 
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Here D\^ is the first derivative in (A, #) of the map 5w obtained by dividing by 2 

the second component of sw such that the symbol of D^ ^[D^ ^]* becomes a scalar, 
and Aronszajin's theorem applies. It follows that ($, S) = 0, because it vanishes on 
a non-empty open set. 

REMARK 3.2. The same result holds if Qk is replaced by any product Qk x 71 
of Qk with a Banach manifold R, and sw by a smooth map sw' : Ai x Qk x TZ 
whose restriction to any fibre At x Qk x {r} has the form sWgi(TiCo for a metric g, a 
Spinu(2)-structure a in (X,g), and an SO(4)-connection Co- 

An easy way to parameterize the space of pairs consisting of a metric and a 
Spinu^ (4)-structure will be given in the next section. 

3.3. P[/(2)-monopoles with degenerate spinor component. Generic reg- 
ularity. Let Pu be a Spinu^-bundle. Suppose that the spinor $ e ^40(E+) is de- 
generate on a whole neighbourhood of a point x G X but ^ ^ 0, and let A e S(PU)) 
be a PU(2)-connection. The pair (A,^) will be called non-abelian in x if the second 
fundamental form of the line subbundle L C E generated by ^ around x is non-zero 
in x. 

We recall that if Pu is associated with a pair (PC,E), where Pc is a Spinc(4) 
bundle Pc of spinor bundles E± and E is a £7(2)-bundle, then E* = [E±]v 0 E = 
Zf®Ev®det(Pu) andP^x^R4 = 15C/(E+,E-) c Hom(£+,E7) c Hom(E+,E-). 
The euclidean structure and the orientation in the real 4-bundle MSU{Ef, Ej") are 
fibrewise defined by the Pauli matrices associated with frames (ef, ef) of E^ satisfying 
et ^ et — el   ^ e2 ' 

DEFINITION 3.3. Let Pu be a Spinu^-bundle with Pu x^ M4 ~ A1. A Clifford 
map is an orientation preserving linear isomorphism 

7: A1 —^P^x^R4 =RSt/(E+,E7)cHom(E+,E-) . 

Every Ck Clifford map 7 : A1 —> Pu x^ R4 defines a Ck metric p7 on X which 
makes 7 an isometry, so that 7 : A1 —> Pu x^ R4 c Hom(E+,E~) becomes the 
Clifford map of a Spm^^-structure (J7 in (X,#7). 

This formalism will play an important role in this paper. The space 

Clif := iXXJso+tA1^ x,, R4)) 

of Clifford maps parameterizes the set of pairs consisting of a metric and a Spinu^ (4)- 
structure for that metric. Note that the metric determines a Spinu^-structure with 
a given bundle Pu only up to an 50(4)-gauge transformation of the cotangent bundle. 

As in the previous section fix a C00 50(4)-connection Co in Pu x^ 50(4). To 
any pair of connections (a, ^4) G ^4(det(Ptx)) x A{8{PU)) we associate a Dirac oper- 
ator tf^^A using the Clifford map 7 and the lift VCO^A • ^0(E+) —> Al(Y>+) of 
(Co,a,A): 

This Dirac operator does not coincide with the standard Dirac operator .07ja,yi associ- 
ated with {A, a) and the Spm^^-structure on (X,#T) defined by 7, because 7~1(Co) 
may be different from the Levi-Civita connection in (A1, <77); however, it has the same 
symbol as the standard one. The advantage of using these Dirac operators, is that 
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they depend in a very simple way on 7 and that they are operators with C*-coefficients 
if 7 is of class Ck. The coefficients of the Levi-Civita connection in (A1,^) are in 
general only of class Ck~1, and the coefficients of the induced Levi-Civita connection 
in Pu xn M4 are also of class C^-1, so that the coefficients of the standard Dirac 
operator J07,a„4 have a regularity-class smaller by 1 than the regularity class of 7. 

The use of these Dirac operators, whose coefficients do not contain the derivatives 
of the Clifford map, is essential in our proofs. 

REMARK 3.4.   There exists a section 3 = (3(7, Co) e Ck~1(Pu x^ C4) such that 

To see this, let C7 be the 50(4)-connection in Pu x^ E4 induced via 7 by the Levi 
Civita connection in (A1,#7). The difference a := Vc7,a,A — Vco,a,yi is an ad+-valued 
1-form of class C^-1, hence an element in 

C*-1(A1(ad+)) =C*-1(A10m(E+))) c Cfc-1(A1(End(S+))) 

which does not depend on (A, a). In local coordinates, a has the form a = Y^ul ® ^, 
with local sections a1 in sw(££). Its contraction with 7 has locally the form ^ 7(1^) o 
ai, and defines a CA;~1-section 0 in Hom(E+, Sj) = Pu xn C4. D 

Consider the following PC/(2)-monopole equations 

(SW) iKa,A*     =     0    _ 

for a triple (A, $,7) e A(S(PU)) x A0(X+) x Clif. The map 

r7 : A2 —> End(S+) C End(E+) 

is determined by 7 via the formula 

r7(u A v) = - (-7(ti)*7(v) + 7(w)*7(w)) 

and vanishes identically on Al >p<y, so that we could have written i7^97 instead of FA 

in the second equation. In the form above it will be easier to compute the derivative 
with respect to 7. 

Complete the configuration space A := A(S(PU)) x A0(E+) with respect to a large 
Sobolev norm L^ and the space of Clifford maps Clif with respect to the Banach norm 
Cfc, k > /. 

Before stating the main result of this section, we begin with two simple remarks 

REMARK 3.5. Let A, F be subspaces of a normed space H with F finite dimen- 
sional Then 

A+F=A+F. 

Indeed, A + F D A, and A + F D F, hence A + F D A + F. To prove the 
opposite inclusion, it is enough to notice that A 4- F D A + F and to prove that A + F 

is closed. Let q : H —> I A ^e ^e canonica^ projection. The right hand space is 

also normed, hence q(F) C / J is closed (being finite dimensional), and therefore 
q~l(q(F)) = A -h F is closed in iJ, since q is continuous. This proves the remark. D 
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REMARK 3.6. Let f : Hi —> H2 be a continuous operator with dosed image 
and finite dimensional kernel between Banach spaces , and let A C Hi be a closed 
subspace. Then f(A) is closed. 

Proof, f factorizes as Hi -^ Vker/ -^ /(#i) ^ -#2> where the middle arrow 
is an isomorphism by the Banach Theorem. Therefore it is enough to show that p{A) 
is closed, or equivalently that p~1(p(A)) = A + ker/ is closed. But this follows by the 
remark above. □ 

Let [At x Clifk]sw be the space of solutions (A, #, 7) of the equations above, and 
let [Ai x Clifk]uW be the subspace of solutions whose spinor component is degenerate 
on the open set U. 

The space [Ai x Clifk]uW is a closed real analytic subspace of the space [Ai x 
Clifk]sw, since it is the vanishing locus of the (real analytic) map 

At —+ J4
0
(E

+
)I -^ A0(det(Pw))z 

r-^ A^detiP^lu^ • 

We can now state the main result of this section. 

THEOREM 3.7. Let 6 = (A, #, 7) e [Ai x Clif*]^, and suppose that for a point 
u G U, one has \I>U ^ 0, and the pair (A, \I/) is non-abelian in u. Then the image of 
the Zariski tangent space TelAi x Clifk]uW under the projection 

Te[Ai x Clifk]sw —> T7(Clifk) = Ck(HomCA1,Pu x,, E4)) 

has infinite codimension. 

For the proof of the theorem, we need some preparations: 
Note first (using [DK], p. 135) that we may assume that the Sobolev connection 

A is in Coulomb gauge with respect to a smooth connection AQ and a fixed smooth 
metric go, i.e. 

<%;(A-Ao)=0. 

Put a := A — AQ , hence FA = GU0 a + a A a + FA0 . The differential operator r7 o GU0 -f 
d/0 is elliptic although the metrics go and <77 may be different, and it has coefficients 

of class Ck. Note also that r7 o dA0 + d^0 is an operator between C^-bundles. 
The Dirac operator -07)a^o = ^7)aj>l-7(a) has coefficients of class C*. Therefore, 

the pair (a, #) is a solution of the non-linear elliptic system 

T^dAoa + aAa + FA0)    =    (**)o 

<&« =   0    • 

Writing the left hand side as a function of a;-7', a*, ^j djak, dj^1 (with respect to 
a smooth chart and bundle trivializations), we see that this function has class Ck in 
this system of variables (in fact it is polynomial of degree 2 in the last four group 
of variables). It follows, by Agmon-Douglis-Nirenberg's non-linear-elliptic regularity 
theorems ([B], p. 467, Theorem 41) that a, \I>, hence also the pair (A, \I>), have class 
pk+i-e jt would have ciass £&+! if we had chosen a non-integer index k = [k] -fe, 
i.e. if we had worked with the Holder space C^,£. 

Let sw : Ai x Clifk —> yl0(E~)/_i x A0(a>d+ 0go)/-i be the map given by the 
left hand side of the equations (5W0), and put detu •= resjj o det. 
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The tangent space To[Ai x Clifk]uW is the space of solutions (^4, $,7) of the 
linear system 

f  ^^1,(^^ + ^1,(7)    =    0 
\ d*(det^)(*) =   0 . 

Denote by 

D? =: ker[d*(dett;)] C A0(E+)/ 

the Zariski tangent space at ^ to the space Vj^ := det^1(0) of Lj positive spinors 
which are degenerate on U. 

Theorem 3.7 can now be reformulated as follows 

PROPOSITION 3.8. The subspace 

(^la^>'»(^°)'*D<>) 
has infinite codimension in Cfc(Hom(A1,Pu x^ M4)). 

In order to prove Proposition 3.8 we start by giving explicit formulas for the 
partial derivatives above. 

The derivative with respect to 7, 

/dsw 

is given by 

|«) : Cfc(Hom(A\Pu x, M4)) —> i40(E-),_i x A0(ad+ ®go)«-i , 

Kdl    ) U(r-r(^))(7), 
The derivative with respect to the pair (A, \I>), 

IS 

(2) { dsw  \.) (A -P) - (       ^^* + 7(A)* 

The next two lemmata will translate the problem into a similar one which involves 
only Sobolev completions. 

Let jfLj be the compact embedding 

j/Li : Ck{Eom{A\Pu x^ M4)) —> A0{Kom(A\Pu x^ R4)),-! . 

LEMMA 3.9. 
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1. The linear operator (^pHfl) has a continuous extension to the Sobolev com- 

pletion A0(Hom(A1,Pw x^ E4
))/-I. More precisely, formula (1) defines a linear con- 

tinuous map 

ai^ : A0(Eom(A\Pu x^ M4))^ —> A0^")^ x ^0(ad+ ®go)/-i 

such that 

t dsw 
9) =a>i-i03i-i - 

\ ^7 

2, The space d?X%) \o (-^Mi x -Dp) «* c/oserf in 

A0(E-)z_i x ^0(ad+ ®jo)i-i. 

Proof 1. The first assertion follows easily, since Vco,a,A^ and FA have regularity 
class C*-^, and 7 has regularity class Ck. Therefore, working in local C00-coordinates, 
the expression 

(±rm(FA) = -ji Q[-7(«*)*7(^) + (I^T-YM^FA,^ (7) 

is a linear operator of order 0 with Ck~~€ coefficients in the variable 7. 

2. Decompose A1 ($0)1 x -40(S+)/ as 

A1 Mi x ,40(E+), - 0^^0)1+1] ©ker^,*)]* = im^,>i>) ©M^W 

where D%,A ^ are the differential operators in the fundamental elliptic complex asso- 
ciated with the pair (A, *) and the metric <77. The decomposition is L2

g -orthogonal. 
The subspace A1 ($0)1 x D^ C A1 ($0)1 x ^.0(S+); is closed, and contains the first 

summand im.D?A ^ by the gauge-invariance property of the degeneracy-condition. 
Using the fact that D}A ^ o D9A ^ = 0, we get 

dsw 
\e (A1 (to), x DY) = DlAt9) [(^(go), x Df) nker^^)*] = 

But Dl^l^no^). : kerfD^j)* —»• i40(E-)/_i x ^0(ad+ ®go)i-i is R-ed- 

holm and the subspace   (A1^); x D^) nke^JD?^^)*   of ker(D?A ^J* is closed, so 
that the assertion follows from Remark 3.6. 

LEMMA 3.10. // 

had finite codimension in Cfc(Hom(A1,Pu x^ M4)), then 
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would have finite codimension in ^40(Hom(A1,Pu x^ R4))/_i. 

Proof.   Suppose  there  exists   a  finite   dimensional  subspace F of the  space 
ek{Eom(A\Pu x,, M4)}, such that 

V + F = Ck{Eom(A\Pu x^ E4)) . 

Then we have 

3i-i(V) + jiAF) = jt1(C*(Hom(A1,Pu x, E4)) C A0(Eom(\1,Fu xn R4))^ , 

hence 

(4) tf-i(V) +Jt1(F) = A0(Eom{A\Pu xn M4))^! 

by the density property of smooth sections in any Sobolev completion. 
Therefore, under the hypothesis of the lemma, and using (4) and Remark 3.5, one 

gets 

(5) Jti(y)+3i-i(F) = AQ(Rom(A\Pu xw R4))^ . 

On the other hand, we know that ^-{o = aj-i ° jf-i- Therefore 

v = tf-1]-1(vl-1), 

which shows that jjf^iV) C Pz-i- But VJ-i is closed by Lemma 3.9., hence j/L^V) C 
Vi-i. From (5) it follows that 

W-! +jti(F) = A0(Rom(A\Pu xw R*))^ 

which proves Lemma 3.10. D 
The proof of Proposition 3.8 is now reduced to showing that VJ-i cannot have 

finite codimension in ^40(Hom(A1,Pu x^ M4 ))j_i. To prove this, we show that the 
sections in V/_i must fulfill a very restrictive condition, which is not of finite codi- 
mension. 

Let v € Vi-i. Then, by definition 

hence there exists a pair (A, \I/) G A1 (§0)1 x Df1 such that 

f 40 + 704)* =   "(Vcw*) 

^ T7(dAA) - [(*f)o + (*i)o]    =    ^(r7(JU))(t;) . 

Consider now small balls C/i, U2 centered in u such that Ui C U2 C U, and such 
that the following two conditions hold: 

1. ^ is nowhere vanishing on L^. 
Let S±, E be the trivial 5C7(2)-bundles associated with a 517(2) x 577(2) x 

5[7(2)-reduction of Pu\u2-  The connection Co induces C^-connections in S±^ and 
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the pair (A, a) induces a connection BA (with CA;+1_e-coefRcients) in E which lifts 

the connection A\u2 in 5(Pu)\u2 — /ci and the connection a\u2 in det(Pn)|t/2 = 

det(E). Since ^ has rank 1 in every point of U2 C ?7, it defines a C^^-splitting 
E = L 0 M with *|c/2 G ^0(5+ 0 L). 

2. The second fundamental form b G CA:+1~e(Aj:) of L with respect to the unitary 
connection BA (or, equivalently, with respect to ^4) is nowhere vanishing on U2. 

Let I, m be C^1'6 sections of E giving unitary frames in L and M. Then we can 
write *|[/2 = SQ ®l, where SQ is a nowhere vanishing CA;+1~£-section of 5+. Once we 
have fixed this trivialization of E, we can identify the connections with the associated 
connection matrices, and write BA = A + |aid 

Recall that b is defined by b := (V^Z,???.), and for any section (pi of L one has 
VBA (<pl) = VBL (pi) + ^0171, where BL (resp. BM) are the connections induced by 
BA in L (resp. M). 

By the Dirac harmonicity condition, one has, taking the component of ^ aA^! 
in 5" <g> M, 

7(6)(4) = 0. 

Denote by 5o the rank 1 subbundle of 5+ generated by the section SQ, and by SQ 

its orthogonal complement. Let ^ be a path of spinors with ^0 = * and det(1^t) = 0. 
Derivating it in 0, we get that the component of ^0 in SQ®M must vanish. Therefore, 
the restriction ^\ui of an element ^ G D]1 = X^DJ7) must have the form 

ier|c/i=<7+®Z + C4®m,   (7+€^(5+1^),   C€L?(I7i,Q. 

Take now the component in (S~ 0 M))^ of the restriction of the first equation 
to [/"i. Put VJBM(^) = A 0 m, where A is a C^-6" pure imaginary 1-form. 

One gets the following equation on Ui: 

(6) 0°(&+) + C7(A)(4) + 7m*+) + 7(i?)(4) = «(6)(4) • 

Here^ : A0(S+)s. —> A0(S~)s-i , s < k, stands for the Dirac operator associated 
with the Spin(4) structure on (t/2,^7) defined by 7 and the 50(4)-connection Co\u2 in 
M5C/(5+,S~). ^ is a first order elliptic operator with C^-coefficients. The complex 
1-form Ai is the component of A written in the matricial form with respect to the 
decomposition E — L 0 M. 

The idea to prove Proposition 3.8 is the following: 
By the properties 1., 2. above it follows that, varying v in the equation (6), one 

can get ah the L<i_l-sections of the rank-2 bundle (5~ 0 -&0|t/i- But on the left of 
the same equation one has a differential operator of order 1 with Ck~e coefficients in 
(£,cr+,^4f) which has a non-surjective symbol: only the complex valued function C, 
which is a section in a rank-1 bundle on ?7i, is derivated on the left. 

The problem comes down to showing that the map Lf —> L^ associated with 
such an operator, cannot have a range of finite codimension. 

We define the following operators: 

resu, :A0(Hom(A1,Pwx7rM
4))/_1 —>^0(Hom(A1,Pwx7rl

4)c/l)/_1 , 
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evbs+ : A0{Kom{k\Pu xn K4)^),-! —* A^S^u,),-! , v' .-> «'(&)(«+) , 

pr-1- : A0(5+|t/1),_2 —> A0^!^).^ • 

Here [0y]~ is the Dirac operator associated with the connection Co and the Clifford 
map 7- : A1 —> MSU(S~, 5+) given by 

7-(u) = -7(u)* . 

In general, the operator [0°]" is not the formal adjoint of ^, because 7_1(Co) 
can have non-vanishing torsion, but it has the same symbol as [0°]* and it is an 
operator with Ck-coefficients. The associated Laplacian [0^]" o]fi® has scalar symbol 
given by £ ^ -91(^0'lds+' 

LEMMA 3.11. 
1. The operators resu^ pr1- are surjective. 
2. The image of the operator [0^]~ : A0(S'm\u1)i-i —> ^0(5'"f'|c/1)/-2 has finite 

codimension. 
3. The operator evb s+ is surjective. 

Proof 1. The surjectivity of resut follows from the extension theorems for 
Sobolev spaces ([Ad], p. 83); the surjectivity of pr1- is obvious. 

2. The fact that the image of [0°]- : A0(S-'\u1)i-i —> A0(S+\u1)i-2 has finite 
codimension follows from the general theory of elliptic operators (see for instance 
[BB]); It can also be directly verified as follows: We may suppose that X is the 
4-sphere 54 and that S±\u1 are the restrictions to Ui of the spinor bundles S^ 
associated with a Spin(4)-structure on S4 whose Clifford map j' extends ^lui- We 
can also find a connection CQ in the associated 50(4)-bundle extending Col^. 

The image of [0^]~ contains the image of the composition res^ 0 [$y]~", where 
[JPy]" : A0(S'~)i-i —> A0(S,+)i-2 is the Dirac operator on the sphere associated 
with (7')"" and CQ. But res^ is surjective and [0y]~ is Predholm. 

Note that []?®]~ is in fact surjective, if Ui is sufficiently small. 
3. The surjectivity of evb s+ is the crucial point in which the fact that SQ and b 

are nowhere vanishing on U2 is used in an essential way. 
We begin by choosing a smooth Clifford map 

70 :A^—^P^x^E4 

such that 70(6) : S+ —> S~ is an isomorphism in every point u G U2. 
This can be achieved as follows: We know that 7(&)(SQ') = 0, so the determinant 

det(7(6)) of the induced morphism 7(6) : 5+ —> S~ must vanish. Therefore g^{b) = 
det(7(6)) = 0, hence the real forms Re(6), Im(6) have pointwise in U2 the same (non- 
zero !) <77-norm and are pointwise p7-orthogonal. It suffices to choose 70 such that 
Re(6), Im(6) are nowhere g7o-orthogonal on C/2. With this choice 7o(&)(so~) will be a 
nowhere vanishing section of S~ on C/2. 

Let now s' G A0(S~\u1)i-i be an arbitrary L^-negative spinor. 
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One can find a unique If^ section S E A0(]R5l7(5~,5~)|(/1))/_i, such that 
£(7o(&)(S(0) = s': To see this, one uses the bilinear bundle map 

msu(s-,s-)xs- —>5-. 

The section J is obtained by fibrewise dividing (in the quaternionic sense) 5' by the 
smooth nowhere vanishing spinor 7o(fr)(so") which is a Ck~£-section on U2 D Ui- 

One also has a bilinear bundle map 

i5C/(5+, 5-) x msu{s-, 5-) —> msu(s+, 5-) 

which in local coordinates looks like quaternionic multiplication. 
Now define the L^-morphism v' : A^ —► lS't/(5+|Lr1,5-|c/1) by 

A<*)i=S-[<i6(a)], VaeA^ . 

This morphism defines a section in 

40(Hom(Ak,P,V1 x^M4);.! =^0(Hom(A^1,15C/(5+,5-)|C/1)/_1 

which acts on complex 1-forms a by 

t/(a)(.) = %,(«)(•)]• 

In particular, ^(^(SQ") = £[7o(&)(so")] = s'. D 
After these preparations we can finally prove Proposition 3.8. 
Proof. We have to show that Vi-i has infinite codimension in 

^(HomCA^x.M4)),.! . 

Take v e Vi-x and apply \pr± o [0^]~] to both sides of (6). 
On the left, the only term containing second order derivatives of the sections 

(C,<7+,i?)is 

But, denoting by io the bundle inclusion Ui x C —>> 'S,+ |t/1, z '—>• ZSQ, one sees that 
the 2-symbol of the composition 

pH-o [[?)»]-o^»]oi0 

vanishes, since the symbol of the Laplacian [^]~ 0$^ is scalar. 
Therefore, applying [pr-1 o [0^]-] on the left, one gets an expression containing 

only first order derivatives of the Sobolev Z^ sections (C,<7
+
,J4I), hence an Lf^- 

section of SQ-. 

On the other hand applying [pr1- o [0°]~] on the right of (6), one gets precisely 

pr-1 o [0^]~ o evbiS+ o resuA (v) . 

Now consider the operator 

P := [pr-1- o [0»]- 0 evb^ o res^] : >l0(Hom(A1,P" x, t4)),-! —> ^0(5^|^)j-2 
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and the following exact sequence 

0 _> imCP)/^^ _, A0(S£),-2/m_^ _> coke^p) _, 0 . 

We have seen that P(VJ_i) is contained in A
0
(SQ)I-I, which has infinite codi- 

mension in A0
(SQ)I-2-

3 

Therefore ^ ^o )i-2jp,       . has infinite dimension. By Lemma 3.11 coker(P) 

has finite dimension, so that imv   '/p(y    \ must have infinite dimension.    But 

im(.Py js a qUOtient of 

A0(Hom(A1,Pux7rM
4)),_1/i/ 

so that the latter must also have infinite dimension. D 

Let JM*, VMU be the moduli spaces 

M* := [At x ciiffw°/g[+i j VMh := [A; x ciif%w<>/gi+i t 

where the upper script ( )* denotes the subspace with non-zero spinor component. 

COROLLARY 3.12. Letp = (.4, $,7) € [A^xClifk]^Wa such that for some u € U, 
^u zfz 0 and (A,1^) is non-abelian in u. Then the Zariski tangent space T^VM^ has 
infinite codimension in T[p]M*. In particular, T\pyDM*x has infinite codimension in 
T[p]M* for every solution p with non-abelian (A^)-component. 

Proof We have 

prT,(c«/»)(TwAO = ^  1[z^)(A1<j!,o)ixA0(£+);)]  , 

and the vector space .DL ^JA
1
(0O)/XA

O
(S

+
)/) has finite codimension in A0(S")/_iX 

A0{did+®®o)i-i- 
Therefore, also the image of T[p]M* under the projection to T7(C/2/&) has finite 

codimension. 
But, by Theorem 3.7, the image of T^VMx under the same projection has 

infinite codimension. This proves the first assertion. 
The second assertion follows from Aronszajin's unique continuation theorem and 

the fact that the vanishing locus of an harmonic spinor cannot separate domains [FU]. 
Alternatively, one can use the Unique Continuation Theorem for monopoles [FL] to 
see that a mnopole with non-vanishing spinor component, and which is abelian on a 
non-empty open set, must be globally abelian. 

Therefore in the condition of the proposition we can find a point x E X with 
tyx ^ 0 such that (A, ^ is non-abelian in x. U 

Using this result we can prove that for a generic Clifford map 7, the only degen- 
erate solutions in the moduli space M* ^Pcufkil) are the abelian ones. The idea is 
the following: 

3We used here the following simple remark: The space of tf_1 -sections in the space of Lf_2 

sections in a bundle has infinite codimension. Note that Lf_1 is nonetheless dense in Lf_2. 
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Let VMx C VM*X be the subspace of VMx consisting of solutions with non- 
abelian (^4, ^r)-component. We have proven that VMx has infinite codimension in 
M*. Since the projection VMx —^ Clifk has "index — oo", the generic fibre should 
be empty. There are of course two serious problems with this argument: 

1. VMx is not smooth. 
2. The restriction of the projection VMx —^ Clifk to the smooth part is not 

Fredholm. 
The idea to proceed is to weaken locally the equation defining VM0x, such that 

the resulting spaces of solutions become smooth manifolds which are Fredholm of 
negative index over Clifk. This can be achieved, since VM0x is embedded in the 
space M*, which, though possibly singular, is Fredholm over Clifk. 

In order to carry out this idea, we will need the following two general lemmata. 
Let / be a smooth map taking values in a Banach space, and denote by Z(f) its 

vanishing locus. For a point p E Z{f) define the Zariski tangent space to Z(f) in p 
by 

Tp(Z(/)):=ker(dp/). 

LEMMA 3.13. Let S be a Banach manifold, p G Y,, E a Banach space, and 
s : S —> E a smooth map such that s(p) =0. Suppose 

i) keidpS has a topological complement 
ii) imdpS is closed and has a topological complement 
Then there exists an open neighbourhood E' of p in S and a submanifold W o/S 

containing p, such that 
1. E7 n Z{s) is a closed subset ofW. 
2.Tp(Z(s))=Tp(W). 

Proof Put T := imdps, and denote by prT the projection on T associated with a 
topological complement of T. 

The composition prr ° s is a submersion in p, since its derivative in p is surjective 
and ker(dp(prT o s)) = kev(dps) has a topological complement by assumption. Let £' 
be an open neighbourhood of p such that prr o s is a submersion in every point of E'. 

Then 

E' fl Z(s) = E' fl Z(prT °s)n Z(s) = Z(prT o s\v)) n Z(s) . 

Therefore, taking W := Z(prT 0 sIsO)* claim 1. follows. Clearly 

Tp(W) = ker(dp{prT o s)) = ker( V) = Tp{Z{s)) . 

□ 
LEMMA 3.14. Let W be a Banach manifold, E a Banach space, p G W, and 

S : W —> E a smooth map such that kei(dp5) has infinite codimension in Tp(W). 
Then, for every n G N there exists an open neighbourhood W^ of p in W and a 
codimension n submanifold VnofW such that W^ fl Z(S) is a closed subset ofVn. 

Proof Since ker(Spd) has infinite codimension in Tp(W), it follows that im(dp5) 
has infinite dimension. Let Fn C im(dp6) be a subspace of dimension n, and prFn the 
projection associated with a topological complement of Fn in E. The composition 
prFn 

0S is a submersion in p. Indeed, the derivative in p is surjective and the kernel of 



MODULI SPACES OP PC7(2)-MONOPOLES 411 

the derivative is closed of finite codimension, hence it has a topological complement. 
Let Wn be an open neighbourhood of p such that prFn o S is a submersion in every 
point of W£. Then 

w; n z(S) = w^n z(prFn o 5) n z(5) = z(prFn o (j|Wi) n z((j). 

TakeFn:=Z(prFBo5|Wi). D 

LEMMA 3.15. Every non-abelian point \p] G PA^^ has a neighbourhood U^ 

which is a closed analytic subspace of a submanifold V[p] C l l x ^ yg sitcft 

i/iai ^fte projection Vjp] —» CH/fc is Fredholm of negative index. 

Proof. Put p = (0,7) with 0 E ^ and 7 G Clifk. Consider a slice 5^ C 
0-}-ker(jD$)* c A^ through 9 to the orbits of the ^+i-action, such that the restriction 

of the canonical projection to Sg defines a parameterization of the quotient    '/(?. 

around [0], 
Note first, that the image T of the differential dp{sw\sexciifh) ls closed and has 

finite codimension in the Hilbert space A0(E~)/_i x A0(ad-f <g>$o)z-i- 
Indeed, T contains the image of d?%%\ |p , which is the operator D^ associated 

with the deformation elliptic complex of the solution 0 = (A, \I>), and the image of JDj 
is already closed of finite codimension. 

Now put S := $0 x Clifki and note that the restriction 

of the canonical projection is a parametrisation of the Banach manifold 

[A* x Clif%l+1 around [p]. 

Claim: Put s := SW\J:. Then the projection 

TeSo x T^Clif*) D kei(dps) —* T^(Clifk) 

is Fredholm. In particular ker(dps) has a topological complement in the tangent space 
Tp(X) = TeSexT1{Clifk). 

Indeed, the kernel of this map is Hj and its image can be identified with the 

subspace (^M [imDj], whose codimension is at most dimIHl|. If A is a topolog- 

ical complement of Hj in TOSQ = ker(D$)* and F is a topological complement of 

(^) [imDl] in Ty(Clifk), then (A x {0}) 0 ({0} x F) is a topological complement 

of ker(dps) in ToSe x T7(Clifk). 

Applying Lemma 3.13 to the Banach manifold E and the map 5, we get a neigh- 
bourhood £' of p and a submanifold W such that E' n Z(s) is a closed subset of W 
and 

Tp(W)=Tp(Z(s))~T[p](M*). 

The restriction det \w of the determinant map det : E —>> ^40(det(Pn))/ satisfies 
the hypothesis of Lemma 3.14. 
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Indeed, 

kerdp{det \w) = ker(dp(det |E)) fl TP(W) 

= ker(dp(det |E)) n ker dp(sw\j:) - T\p](VM*x), 

which has infinite codimension in T^M*) c^ TP(W) by Corollary 3.12. 
Using now Lemma 3.14 we get, for any n e N, an open neighbourhood W^ of p 

in W and a codimension n submanifold Vn of W such that W^ fl Z(det \w) is a closed 
subspace of Vn. 

Let E^ C E' be an open neighbourhood of p in E such that 

w^ = x'nnw. 

Then we have 

Knq-HiVM**) = ZiswfrjDZidetlvJ 

= Z(prT o ^WIE;) D Z(5W;|E^) fl Z(det |E;) 

= W^ H Z^HE; ) H Z(det |E; ) = \W'n n Z(det Iw;)] n Z(«ti;|E;) . 

Therefore E^n^~1((PA//x) is a closed subspace of [W^nZ(det Iv^)]? which is closed 
in Fn. 

On the other hand we know that the projection 

TP{W) = ker(^s) —> r7C7K/* 

is Fredholm. Since being Fredholm is an open property, we may assume (taking E' 
small) that the projection of W on Clifk is Fredholm of constant index. 

Now choose n larger than the index of this projection, and put 

Vipj := q{Vn) , U[p] := ^(E^ fl q'^VM^)) = ^(E^) n PM^ . 

D 

COROLLARY 3.16. Tfte set 

{7 G Clifk\ VMx ^Prciifk^ contains a non — abelian pair} 

is a set of the first category in Clifk. 

Proof. Indeed, let again VMx be the open subspace of VM^ consisting of solu- 
tions with non-abelian (^4, ^-component. By Lemma 3.15 and the Lindelof Theorem 
([Ke], p. 49) we can find a countable cover (Ui)i oiVM0

x such that every Ui is a closed 

analytic subspace of a smooth submanifold Vi C '^ x ^   * i/g      which projects on 

the parameter space Clifk via a Fredholm map of negative index. Since Fredholm 
maps are locally proper [Sm], it follows that Wciifk(PM0

x) is a countable union of 
closed sets; each of these closed sets is contained in a set of the form V^cii^^Vi)^ 
which is of the first category, by the Sard-Smale theorem. D 

Corollary 3.12, Lemma 3.15, Corollary 3.16 hold for every family of order 0- 
perturbations of the equations which contains the perturbations of the Clifford map 
which we have studied above. We need the following particular case: 
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Define the space of parameters Vk by 

Vk ._ Ck^pu x^ ^ x c
k(GL(<id+)) x Clifk . 

Recall that a section (3 in the bundle 

Pu x^ C4 = Hom(E+, E") C Hom(SHh, S") 

defines an order 0-operator A0(S",") —^ A0(S"), commuting with the gauge action. 
Consider now the equations 

1    a) I r7(FA) =  K(**)o 

for a system 

(A, *,/?,#, 7) € ^ := ^(Pu))/ x ^0(E+), x ^ . 

Let [Ai xVk]s'Wa {[AiX,Pk]f/Va) be the space of solutions of the equations (SWa) 

(whose spinor component is degenerate on 17), and denote also by M* ipMu) the 
moduli space of solutions (whose spinor component is degenerate on U) with non- 
vanishing spinor component. 

PROPOSITION 3.17. Letp- (A, *,/?,!<:, 7) G [At x Vk}^a such that for some 

u €i [/, \I> 7^ 0 and (A, \I>) non-abelian in u. Then the Zariski tangent space T^VMJJ 

has infinite codimension in T^JM*. 

Proof. Consider the image of Tp([Ai x/Pk]f/
Wa) under the projection to the tangent 

space T(i3,K,>y)'Pk - This image has again infinite codimension. To see this it is enough 
to notice that the intersection of this image with the subspace {0} x {0} x T^Clifk 

has infinite codimension in {0} x {0} x T7Clifk. But this follows by precisely the 
same arguments as in Theorem 3.7; one just has to replace the equations (SWa) by 
their ((3, jFQ-perturbations. The left hand side in the crucial identity (6) will only be 
modified by the 0-order term C/3(SQ~). 0 

Using this result and the same arguments as above, we get 

COROLLARY 3.18. The set 

{p G Vk\ VMx H pr~fc (p) contains a non — abelian pair} 

is a set of the first category in Vk . 

We can state now our generic regularity result: 

THEOREM 3.19. There is a dense second category subset VQ ofVk such that for 
every p G VQ the moduli space Mt := M* npr~fc(p) is smooth away from the abelian 
locus. 

Proof. We know by Theorem 3.1 and Remark 3.2 that M* \ VMx 1S a smooth 
manifold. Applying the Sard-Smale theorem to the Predholm map 

M* \ VMx —> ^k 



414 A. TELEMAN 

it follows that there exists a first category subset Pf C Vk such that the moduli space 

[M* \ VJvCx]n Prpfc (P) is smooth for every p G Vk \ Vf. Let V^ be the first category 
set given by Corollary 3.18, and take Pfi := Vk \ (V^ \J Pi). U 

Finally consider the following parameterized ASD-5pmc- equations 

0o
ytatA9 + 0(9)    =   0 

r7(F^) =  o 

for a system (A, 9, fcj) G A(6(Pu))i x A0(E+)/ x Ck(Pu x7T0)x Clifk. 
Let M'* be the moduli space of solutions with non-trivial spinor component, 

and let P,k be the parameter space Ptk := Ck(Pu x^ C4) x Clifk. Denote also by 
VM'x the subspace of solutions with degenerate spinor component, and by M'^ the 
subspace of solution with reducible connection-component. 

Using the methods of section 3.2, one can prove the following partial transversality 
result 

PROPOSITION 3.20. Suppose that the base manifold is simply connected. Then 
the moduli space M'* is smooth away from the union VM'x U-^red* 

Proof Indeed, let p = (A, \I>,/J,7) be a solution with non-degenerate spinor 
component and non-reducible connection component, and suppose as in the proof of 
Theorem 3.1 that ($, S) is Is* -orthogonal on the image of the differential in p of the 

map cutting out the space of solutions. Using variations /3 of (3 one sees that $ must 
vanish on a non-empty open set. But using variations of 9, it follows that $ must 
solve a Dirac equation, hence by Aronszajin's unique continuation theorem, it must 
vanish on X. Then using variations 7 of 7 we get as in [DK], p. 154 that 5 = 0. It is 
enough to notice that A is p7-ASD, and that any variation of the metric g7 is induced 
by a variation of the Clifford map 7. □ 

In the proof of Theorem 3.7 we have only used the Dirac equation and the el- 
lipticity (modulo the gauge group) of the system . Therefore the same arguments as 
above give the following important 

THEOREM 3.21. 
1. There exists a first category subset P'k C P'k such that for every p G P'k \P,k 

the only solutions with degenerate spinor component in the moduli space .M^np^^p) 
are the abelian ones. 

2. If the base manifold X is simply connected, there exists a dense second category 
subset PQ C P'k such that for every p G P'k the Spin0-moduli space M1* Dp^jk (p) is 
smooth away from M'*^ r\p^}k(p). 

The results above are sufficient to go forward towards a complete proof of the Wit- 
ten conjecture. Moreover, one can use the same method to prove a generic regularity 
theorem along the abelian part of the moduli space. More precisely, let M^ C Mt be 
the abelian part of the moduli space Mt of solutions of the monopole equations asso- 

ciated with the perturbation parameter p. The space Mp* can be identified with the 
disjoint union of the 5pmc-Seiberg-Witten moduli spaces associated with the abelian 
reductions of Pu ([OT5], [OT7], [Tl]). 

Let [p] G Mffi be an abelian solution. The elliptic deformation complex Cp of p 
splits as the sum 
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where the first summand Cph can be identified with the elliptic deformation complex 
of p regarded as solution of the abelian monopole equations, and J\fp is the so called 
normal elliptic complex of p. 

The union Hi :=     (J     H1 (J\fp) is a real analytic space which fibres over MQ*, 
[pjeMf 

but in general is not locally trivial over .Mpb, and local triviality cannot be achieved 

in the class of 51-equivariant perturbations. 
Using the method from above one can prove 

PROPOSITION 3.22. For a generic parameter p eVk, the complement of the zero 
section in Tih is smooth of the expected dimension in every point. 

4.  The Uhlenbeck compactification. 

4.1. Local estimates. The essential difference between the anti-self-dual and 
the monopole equations is that the latter are not conformal invariant. Under a con- 
formal rescaling of a metric g \-> g = p2g on a 4-manifold X, the associated objects 
change as follows 

g* = p~2g* on 1 - forms;   volg = p4volg ;   Sg = p~2sg + 2p~2Ap 
£± = Y,f (as Hermitian bundles), 7 = p~17 ; f = p~2r ;   0g = p~i]figpi . 

A standard procedure used in proving regularity and compactness theorems for 
instantons is the following: restrict the equations on small balls in the base manifold, 
and then rescale the metric. In this way, using the conformal invariance of the equa- 
tions, one can reduce the local computations to the unit ball endowed with a metric 
close to the euclidean one. 

A similar procedure will be used in the case of PC7(2)-monopoles. The problem 
here is that the perturbed equations depend on a much larger system of parameters 
(data). Using constant rescalings of the Clifford map (and hence of the metric), we 
show first that one can reduce the local computations to computations on the unit 
ball endowed with a system close to a system of "standard data" (see Definition 4.4). 

First of all notice that if (A,*) G A{5{PU)) x A0(E+) is a solution of the non- 
perturbed P£/(2)-monopole equations SW* for the metric g with respect to the 
SpinuW (4)-structure a, and if p is a constant, then (A,/?-1^) is a solution of the 
monopole equations SW£ for g = p2g with respect to the Spinu^ (4)-structure a 
defined by the correspondingly rescaled Clifford map 7 = p~17. 

The case of the perturbed equations is more delicate. Fix a Spinu^ (4)-bundle 
Pu. To write down the general perturbed PC/(2)-monopole equations we considered, 
one also needs a system of data of the form p = (7, C, a, P,K), v\ lere 7 is a Clifford 
map (see Definition 3.3), C is an 50(4)-connection in Pu x^ E4, ^ is a connection in 
the line bundle det(FM), /? is a section in Pu x_ C4, and K is a section in End(ad+). 

The rescaling rule is: 

REMARK 4.1. // (A,*) e A(S(PU)) x A0(S+) solves the perturbed PU(2)- 
monopole equations associated with the data (7, C, a, P,K). Then (A.,/?-1^) solves 
the perturbed PU(2)-monopole equations associated with the data 

Let B be the standard closed 4-ball with interior B. Fix two copies B± of the 
quaternionic skew-field H regarded as right complex and quaternionic vector spaces 
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and consider the two trivial 5£/(2)-bundles SQ := B xM±. Let also EQ = B x C2 be 
the trivial Hermitian rank 2-vector bundle on B. 

Let PQ be the trivial Spinu^ (4)-bundle associated with 5^, £"0 via the morphism 
517(2) x SU(2) x U(2) -+ Spinu^(4:) (section 2.1, Prop. 2.2). 

A Clifford map for Pu is an orientation preserving linear isomorphism 7 : A^ —» 
Hom]Hi(5o",5()") = B x W. To every such a Clifford map 7, we can associate the 
constant Clifford jc given by the composition 

,    idX7|Ai 
A^ —* B x Aj % B x H 

Note that the corresponding metric g^c is flat. 
Denote by hr : B —> Br C B the homothety of slope r < 1. 

REMARK 4.2. Tfte Clifford maps 7r := r/i*(7|JBT,) converge in the C00-topology 
to 70, wtacft zs a Clifford map for the flat metric g^c. In particular the metrics 
gr := r~2h*(g) converge to the flat metric g^c. 

Indeed, one has 

7r(a:, A) = rj((hr)^(x,X)) = r7(rx,r~1A) = 7(rx, A) 

The data of a P£/(2)-connection A € A(S(PQ)) is equivalent to the data of a 
connection matrix, i.e. an element in A1(BjSu(2)). Similarly, the data of a 17(1)- 
connection in det(Poi) is equivalent to the data of a 1-form in A1(B,u(l)). 

REMARK 4.3. Let (A, 9) e AiSiPtf)) x A0(TI
+(P^)) be a pair which solves 

the monopole equations for the data (j^C^a^P^K). Then (ft*(;4),rft*(\I>)) solves the 
PU(2)-monopole equations for the data (7r,h*(C),h*(a),rh*(f5),h*{K)). 

Note that, as r ->» 0 , 

1. 7r —^ 7° (which is a Clifford map for the flat metric <77<=), 
2. rh*(/3) -» 0, h*(K) -> K(0), ft*(a) converges to the flat connection in B xC = 

det(P0"), 
3. h*(C) converges to the flat connection in B x H, and 
4. 7~1(/i*(C)) converges to the flat connection in (A^ — B x M4,gy), which is 

precisely the Levi-Civita connection for <77c). 

DEFINITION 4.4. A system of data for the bundle Ptf will be called a standard 
system, if it has the form (7o,Co,0,0,liTo); where: 70 is the standard identification 
Kl

B = B x R4 —> B x H, Co the flat SO {A)-connection in B x H, and KQ is a constant 
automorphism of the trivial bundle SU(SQ) = B X su(2)+. 

The metric associated with the standard identification A^ = B x E4 -» B x H is 
the standard Euclidean metric go on the ball. 

For any KQ £ End(sw(2)), let pK0 be the standard system of data on B defined 
bytfo- 

Let X now be 4-manifold, and Pu a Spinu^ (4)-bundle on it. Let XQ be a point 
in X and U an open neighbourhood of XQ. Fix an identification of Pu\u with the the 
trivial Spinu^ (4)-bundle on [/, i. e. with the Spinu^ (4)-bundle associated with 
the triple U x U±, U x C2 (see section 2.1). 

Given a system of data (7, C, a, /?, K) for Pw, we consider a parameterization 

Bro —> U C X around XQ such that /(0) = XQ and 7|AI O [/*]AJ is ^e standard 

identification Aj = E4 —> H. 
l0 
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REMARK 4.5. For any pair (A, \I>) solving the monopole equations for the data 
(7, C,a,/?,K), the pair ((/ o hr)*(A)jr(f o /ir)*(\I>)) sotoe tte monopole equations as- 
sociated with the system 

(/*(7)r, (/ o /ir)*^), (/ o M*(a),r(/ o M*C9), (/ ° ^)*(^)) • 

T/iz5 system converges to a system of standard data on the ball,   ,s r ->• 0. 

Therefore, as long as we are interested only in local computations, we can work 
on the standard ball and assume (via the transformation defined in Remark 4.5) that 
our system of data belongs to a small neighbourhood of a standard system. 

We recall now the following important ''gauge fixing" theorem (see Theorem 2.3.7 
in [DK]). 

THEOREM 4.6. (Gauge-fixing) There are constants £1, M > 0 such that the 
following holds: 

Any connection A on the trivial bundle EQ over B with \\ FA ||JL
2
< £1 is gauge 

equivalent to a connection A over B with 
(i) d^A = 0; where d^ is the normal adjoint of d with respect to the standard flat 

metric go. 
(ii) limr^.i Ar = 0 on S3, 
(iii)\\A\\q<M\\FA\\Li. 
The corresponding gauge transformation is unique up to a constant matrix. 

Using this result we can prove the following 

THEOREM 4.7. (Local estimates for data close to the standard data) There is a 
positive constant 62 = £2(^0) > 0 such that for any system of data p' on B which is 
sufficiently C2 -close to the standard system pKo, the following holds: 

For any solution (^4,^) of the PU(2)-monopole equation for the monopole equa- 
tions associated with p over the open ball B satisfying the conditions d^A = 0, 
|| (^4,^) HL

4
^ £2, and any interior domain D C B, one has estimates of the form 

II (4*)IIL?(Z»<<W II (A*) IU«, 

with positive constants Cj^/jj/, for all I > 1. 

Proof. First of all we identify the ball with the upper semi-sphere of 5 := 54 and 
we endow the sphere with a metric gs which extends the standard flat metric go on 
the ball, and which has non-negative sectional curvature4. 

We fix a 5pm(4)-structure on the sphere with spinor bundles 5^ given by a 
Clifford map 7S : A^ —> Home(5+,5j"), which, with respect to fixed trivializations 
5^1 B = B x M.±, extends the standard Clifford map 70 on the ball. Let also Cs be the 
Levi-Civita connection induced by 7$ in Hom!Hi(5^,57). Its restriction to the ball is 
the standard flat connection Co in B x EL Let finally Ks be an extension of KQ to an 
endomorphism Ks £ A0(End(su(S+))). 

4 Such a metric can be obtained as follows: consider a plane convex curve with symmetry axis 
Oy, which is horizontal in a neighbourhood of its upper intersection point with Oy. Then rotate this 
curve around the Cty-axis in the 5-dimensional space M4 x Oy . The hypersurface obtained in this 
way is also conformally flat, by a theorem of E. Cartan (see [GHL], p. 157, [Ch], Th. 4.2, p. 162) 
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We denote by Es the trivial .[/(2)-bundle over S, and by P? the Spinu^(4:)- 
associated with the triple (Sf,Es). P™ comes with an identification P^\B — PQ, 

induced by the fixed trivializations of Sf. 
The system (7^, Cs, 0,0, Ks) is an extension on the sphere of the standard system 

Ps '=■ (70? Co, 0,0, KQ). The point is now that any system p' of data which is close to 
pKo has an extension p which is close to ps. 

Put p = (7, C,a,/?, K) = (q,K). The system q defines two first order elliptic 
operators on the sphere 

0q :    A0(S?®ES)    —► A0(Si®Es) 
57:=d*s+T7od    :      ^1(5^(2))       —+    A0{su(2))1- 0 A0{su(S+) (g) su(Es)) 

The symbol d* means the adjoint of d : A0(su(2)) —> A1(su(2)) with respect to the 
fixed metric gs, and Jflq := J/)% + f3 + 7(f). 740(sw(2))-L denotes the L^-orthogonal 
complement of the 3-dimensional space of constant sections. 

These operators are injective in the special case q = qs := (7S,CS,0,0), by 
the Weitzenbock formula for the Dirac operator and because the cohomology group 
^DR(^) vanishes. Since the coefficients of both operators in local coordinates are 
algebraic expressions in the components of q, it follows by elliptic semicontinuity that 
the two operators remain injective if q is sufficiently C0-close to qs. Denote by Dq the 
direct sum of these operators. We get operator valued maps 

q^Dqe 

Iso [A0{Sf ®ES® A1(su{2)))k+1,A
0{S- ®ES® su(Sf) ® su{Es)k 0 A0{su{2))i] 

which are continuous with respect the C^-topology on the space of data q on the 
sphere. 

Therefore one has elliptic estimates 

(eh) II u \\L2+i < const(q) \\ Dqu \\L2 

where const(q) depends continuously on q w. r. t. the C^-topology. In a sufficiently 
small C2-neighbourhood of qs one has the following estimates with q-independent 
constants 

(el) ||ti||L2+i<con8*|| jDqfi||L2 

Since Dq is a first order operator, we have an identity of the form: 

(*) Dq(ipv) = (pDq(v) + Aq,dip(v) 

where Aq^ is an operator of order 0 depending on q and depending linearly on the 
first order derivatives of tp. 

The first step is an input-estimate for the Li(D)-norms: 
Denote by u the pair (A, \I/). Let ipi be a cut-off function supported in the open 

ball B which is identically 1 in a neighbourhood of D. Then ui := (p\u extends as 
section in the bundle h}(su(2)) 0 S+ 0 Es on the sphere. 

Taking into account that u solves the monopole equations associated with the 
data p', its connection component is in Coulomb gauge, and that p = {q,K) extends 
p7 one gets by ('*) 

(1) Dq(ui) = Aqid{px(u) + ip-i 
-7(A)* 

-T1(A^A)+K(^)0 

= Aqf^iu) + IP\B^K(V) 
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where B7iK is a quadratic map. 
Then by (eZ) we obtain an elliptic estimate of the form 

II tn ||Lj < c || Uqiix ||L2< c'dl u ||24 + || dtp \\L4 u ||L4) 

<^(l|t*IU4||ii||L; + II^IU*l|tiM 

where, for the second inequality we have used on the right the bounded Sobolev 
embedding Lf C L4. The constants c, c' can be chosen to depend continuously on p, 
so that we can assume that they are independent of p on a small neighbourhood of 
ps. We use now the standard rearrangement procedure described in [DK], p. 60, 62. 
For a sufficiently small (independent of D) apriori bound ^(i^o) of the norm || u \\L4, 
we get an estimate of the type 

II  ui ||L2< constD || u \\L4   . 

The constant constD in this estimate is independent of p in a sufficiently small neigh- 
bourhood of ps, but it depends on D via || dipi ||z,4. 

In a next step we estimate the L^-norms: 
Put U2 = <£>2^, where <p2 is identically 1 on D, but the support supp</?2 is contained 

in the interior of (f^1 (1). Then we can also write uo = </?2^i, and we have Aq^^ (u) = 

Aq,dv2{ui). 
We estimate first the Z/f-norm of the right hand side of the formula obtained by 

replacing ipi with <^2 in (1) • We find 

(2) || Dq(u2) \\L2< const \\ ^B^^iui) \\L2 +constD || m \\L2 , 

and again we can assume that the constants do not depend on q. The term ^2^7,^ (^i) 
can be written as B'l^itpzUi&ui), where B-y^K is the linear map defined on the tensor 
product (A1(sw(2)) © 5^ (8) EQ)      associated! with the quadratic map B7,K. 

In local coordinates we can write: 

di[B7jK{V2Ui ^ ui)] = di(B^K)^P2 ®wi) ®Mi+2?7j/r [0t(w*i) 0^1+^1 0 fadiUi)] 

= di(BliK)(<P2 0^1) <%) ui+B7iK [difaui) 0^1+^1 ®di((p2Ui)- ^((^2)^1 ®Mi] 

This gives an estimate of the form 

II B7iK((p2Ui ® ui) \\L2< const || U2 ll^jll m \\L4 +constD \\ ui \\4L4 , 

which together with (2) and (el) gives 

II u2 ||z,2< const || U2 \\L4\\ m \\L4 +constD{\\ uv \\L2 + || ui \\L4) . 

By the same rearrangement argument and using the existence of a bounded in- 
clusion Ll C Li, we get, for a sufficiently small, independent of D, apriori bound of 
|| u 11 £,4, an estimate of the form 

11^2 \\LI< constD \\u\\L4  . 

The estimates for the third step can be proved by the same algorithm, using the 
existence of a bounded inclusion L\ C L^ 
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Since L| is already a Banach algebra, the estimates for the higher Sobolev norms 
follow by the usual bootstrapping procedure using the estimates (elk). Note in partic- 
ular that we no longer need to use the rearrangement argument, so we do not have to 
take smaller bounds for || u \\L4 to get estimates of the higher Sobolev norms, so that 
a positive number €2 = s(Ko) (independent of / and D !) with the required property 
does exist. D 

Let V+, F Hermitian vector spaces of rang 2. One can easily check that there exists 
a universal constants e > 0, C, Ci > 0, C2 > 0 such that for every K G End(su(V+)) 
with \K — id I < e, and every * G V+ (8) F the following inequalities hold 

(3) Ci|*|2<|iir(*$)o|<C2|*|2 

(4) q#|4 < (#(**)(), (**)o) = (if(**)o(*), *) 

From now on we'll always assume the last component if of a system of data 
(7, Co, a, /?, K) satisfies in every point x the inequality \K(x) — idad+| < e. 

COROLLARY 4.8. (Estimates in terms of the curvature) There exists a constant 
e > 0, such that for any system p' of data on the closed ball which is sufficiently 
C2-close to a system of standard data (70, Co, 0,0, if0) with \Ko — id| < e the following 
holds: 

For any interior ball D € B and any I > 1 there exist a positive constants CQJW , 
^bi to' suc^ thut every solution (^4,^) of the PU(2)-monopole equations on B asso- 

ciated with p' satisfying \\ FA ||L
2
< £> *s gauge equivalent on B to a pair (A, *&) 

satisfying the estimates 

II A \\L2{D)< Cn^p, || FA \\L2 ,   || * ||L?(jD)< C'^p, \\ FA ||12   . 

Proof Note first that all the pairs (A, \I>) with || FA ||L
2
< ^1 are gauge equivalent 

to pair (A, SP) whose connection component is in the Coulomb gauge with respect to 
the trivial connection and such that 

(5) \\A\\L2<M\\FA\\Lz 

Since now the constant ifo is supposed to belong to the bounded set B(id, e) the 
conclusion of Theorem 4.7 holds for a constant 62 which can be chosen independently 
OIKQ. 

On the other hand, by the estimate (3) and the second monopole equation, one 
has 

(6) || # ||Lj , < -^ || IV (FA) Wl   = 4 II j£V \\l   < 4 II FA \\l 

Since 7' is supposed to belong to a small neighbourhood of 70 this gives an uniform 

estimate of || ^ ||£4 in terms of || F^ ||£2. Using the bounded inclusion L\ C L4, and 
the estimates (5), (6) we see now that the L4 norm of the pair {A^) can be made 
as small as we please by choosing e small, in particular smaller than the constant 82- 
With this choice the conclusion of Theorem 4.7 holds, and we get estimates of the 
Sobolev norms of the restrictions on smaller disks D cB in terms of || (A^) \\L4, 

1 

hence in terms of || F^ Wfa- 
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On the other hand, the same cutting off procedure as in the proof of Theorem 
4.7, gives on the sphere an identity of the form 

(d; + r7d)(<M) = A'q^(A) + v>[-r7(i A A) + (*i)o], 

which is similar to the identity (1) in the proof of the theorem. Using Theorem 4.7 to 
estimate the quadratic term on the right, it follows that the Z^-norm of A\D can be 
estimated in terms of the L^-norm of the restriction of A to a slightly larger disk 
Di £ B and || (A, ^ \\^4. Inductively we get an estimate of the L^-norm of A\r> in 
terms of the Lf-norm of A and of || (A, ty) \\2L4. But both terms can be estimated now 
in terms of || F^ \\L2. D 

i 
Note that the estimate in terms of || F^ ||£2 which we obtained by applying di- 

rectly Theorem 4.7, is in fact fully sufficient for our purposes. However it is interesting 
to notice that the Sobolev norms of the connection component A can be estimated as 
in the instanton case in terms of || F^ \\L2. 

COROLLARY 4.9. (Local compactness) There exists a constant e > 0 such that 
the following holds: 

For any pair system of data p which is sufficiently close to a system of standard 
data pKo on the ball with \Ko — id| < e , and any sequence (An^n) of solutions of 
the PU(2)-monopole equations forp with \\ FAn IU2^ £> there is a subsequence mn of 
N and gauge equivalent solutions (ATnn.tymn) converging in the C00-topology on the 
open ball B. 

□ 
We can prove now the following result, which is the analogon of Proposition 4.4.9 

p. 161 [DK]. 

COROLLARY 4.10. (Global compactness) Let Y be a compact ^manifold (with or 
without boundary), set ft = Y\dY and let Pu be a Spinu(<2\4)-bundle on fi such that 
A^ ~ Pu x^ M4 as oriented 4-bundles. Let p = (7, C,a,(3,K) be an arbitrary system 
of data for (0,PW) satisfying the condition \K(x) — idaci+| < e in every point x G ft. 

Let (An,^n) be a sequence of solutions of the PU(2)-monopole equations associ- 
ated with p such that every point x E ft has a geodesic ball neighbourhood Dx such 
that for all large enough n, 

j 
JDX 

\FAn\^vol^<^ 

where e is the constant in Corollary ^.P. Then there is a subsequence (ran) C N and 
gauge transformations un G Go such that un(Amn, \I>mn) converges in the C00-topology 
on ft. 

Proof. First of all note that every point has a geodesic ball neighbourhood 
D'x C Dx such that for a suitable subsequence (m£)n C N and suitable gauge transfor- 
mations 11% over D'x the sequence (Un{Amx |^, $m= {D'^TI converges in the C00 topol- 
ogy on D^. This follows from Remark 4.5, Corollary 4.9 and the conformal invariance 
of the L2-norm of 2-forms. 

Using now Corollary 4.4.8 p. 160 [DK] we get a subsequence (mn)n of N and 
gauge transformations un such that un(Amn) converges in the C^-topology on ft to a 
connection A. But using the first monopole equation we see that the convergence of 
the connection component together with the local L4-bound of the spinor component 
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(provided by the local L2-boundedness of the curvature) implies the local boundedness 
of the spinor component in any Lj-noim. D 

PROPOSITION 4.11. (Apriori C0-boundedness of the spinor) Let X be a compact 
oriented ^manifold, Pu a Spinu^ (4) -bundle on X with Pu x^ E4 ~ A^- as oriented 
4-bundles, and p = (7, C, a, /?, K) a system of data for the pair (X, Pu) satisfying the 
condition \K(x) — idad+| < ^ in every point x G X. 

1. If /3 = 0, and C is induced via 7 by the Levi-Civita connection in (A1, <77), then 
for any solution (A,#) G A(5(PU)) x ^0(E+(PU)) of the PU(2)-monopole equations 
associated with p, the following apriori estimate holds: 

supl*!^ < max ^C-'sM— + c|Fa
+|sj) 

Here s stands for the scalar curvature of g1, c is a universal positive constant, and C 
is the universal positive constant in (4) . 

2. In the general case one has an apriori estimate of the form 

sup 1*1^ < max ^C"1   s^(~+c\F+\lh) + a('y,C10)>\  , 

where a(C, /?, 7) depends continuously on the coefficients 0/7, C,/? with respect to the 
C2 xC1 xC1-topology. 

Proof We prove the second assertion. Using Remark 3.4, it follows that, mod- 
ifying /? if necessary, we may assume that C is induced via 7 by the Levi-Civita 
connection in (A1,^), so that the Dirac operator ^7}a)^ associated with C coincides 
with the standard Dirac operator $7,a,A- 

The Weitzenbock formula for coupled Dirac operators gives for any triple (^4, a, \I>) 
G A(S(PU)) x A(det(Pu)) x A0(E+(PW)) 

0U«* = VJU VA** + r7pk + ±Fa)
+* ]* + s-*- 

On the other hand 

If (^4, iyyr) solves the Pi7(2)-monopole equations for the system of data p, it most 
hold pointwise 

(VXaV^*, *) + (tfO^M*), *) + i(r7(F0)(*), *) 

+Jl*|2 + (7-Va^o/3(*),*)=0. 

Using the inequality (4), we get 

(7)    iA|*|2 = (A^a*,*)-|VAa*|2 

< -C|*|4 + (c|F+| - |)|*|2 + |(7 • Va^ o ^(*), *)| - |V^0*|2 . 

On the other hand 

7 • ^a,A o m) = 7 • [(Vc0)(*) + ^V^.a*] . 
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Therefore the term (7 • Va,^ ° /3(*), *) can be estimated as follows 

(8)       |(7V0,A o /*(¥), *)| < c' (|Vc(^)||*|2 + |^||VAo*||*|) 

<c' |Vc(^)||*|2 + |/3|(e|V^a*|2 + i|*|2) 

where d is a universal constant and e is any positive number. Choose now e \— 

2(c/su1 Iffl+i)? so ^^^ ^^ total coefficient 0f |VA,a*|2 in the expression obtained by 
replacing |(7* Va,>i 0/3(15), *)| in (7) with the right hand term of (8) becomes negative. 
Then we get an inequality of the form 

iA|*|2 < -q*|4 + sup (c|F+| + c'|Vc(/3)| - J) |*|2 + £^M|*|2 , 

and the assertion follows easily by the maximum principle. D 

COROLLARY 4.12.  //fi is compact, the condition " f |i^4n|^ volg^ < e2 for all 
DX 

sufficiently large n" in Corollary 4-10 can be replaced by the condition 

€ 2 

-ATT 19 vohi < TT f07* att sufficiently large n ". 

Proof. By Proposition 4.11 and the inequality (3), the pointwise norm \FA^ \ 
of the (77-self-dual component of the curvature is apriori bounded by a constant (de- 
pending on Sg^ and p) hence JD {F^ \2g can be made arbitrarily small, by replacing 
eventually Dx with a smaller ball. D 

4.2. Regularity. We begin with the following simple 

REMARK 4.13. Let X be a ^manifold and g, g' two metrics on X. Then the 
operator d* + d+9' ; A1 —> A0 ® A\ I is elliptic. If X is compact then the kernel of 

this operator is the harmonic space Mj. The image of its extension L^^ —> L\ is 
(A0)^- 0 {A\ t)k, where (A0)^ is the L2

g-orthogonal complement of E C (A0)*, and 

(A\ Jjjf- is the L2,-orthogonal complement o/H^/  C..(A+ ^k- 

Indeed, one checks easily that the symbol a of d* 4- d+^' is injective for non- 
vanishing cotangent vectors £. Indeed, if cr^a) = 0, then (£ A Q;)+ , = 0, hence 
f A a = 0. Therefore a has the form a = c £, c G M. Using now the A0-component of 
the equation cr^(a) — 0, we get c \^\2 = 0, i. e. c = 0. But A1, A0 0 A+ / have both 
rang 4, so a^ must be isomorphism. 

On compact 4-manifolds one has ker d",v = ker d. Therefore ker(c?* + d+s') — 
ker(d* + d) = IHIJ(X). The image of the L2

k+1 —> L2 extension of d* + d+^ is 
obviously contained in (A0)^ 0 (A+ ,)£. Therefore it must coincide with this space, 
because index(d* + d^V) = index(d* + d+9) = bi — b+ — 1. □ 

As in the section above we fix 5t/(2)-bundles Sf on the 4-sphere 5 such that 
Aij ^ WSU(S+ ,S~) = Home(5+,S'7) as oriented 4-bundles. The pairs consisting of 
a metric on the sphere and a Spin (4)-structure for that metric are parameterized by 
linear isomorphic Clifford maps 

7:A^HomH(Ss
+,Ss-). 
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We denote by Clif(S) the space of Clifford maps on the sphere. Let again Es be 
the trivial U(2) bundle on 5. 

We fix a Clifford map 7S : A^ —> Home(5^,57) such that gs := gla has non- 
negative scalar curvature, strictly positive in the south pole oo. Therefore the associ- 
ated selfadjoint Dirac operator lfils is injective, by the Weitzenbock formula. Denote 
by Cs the Levi-Civita connection induced by 7S in the 5(9(4)-bundle P* xn E4 = 
Home(Sf, S~) and denote by qs the system of data 

c\s := (7^^0,0) G Clif{S) x A(P? xn IR4) x A(det(P?)) x A0{P? x^ M4) , 

where we used as usually the identification A(det(PQ)) = ^41(w(l)). 
Denote by 

swp : A(5(P?)) x A0(S+ ®.E8) —> A0(S- 0 Es) x A
0(su(S+) 0 su(2)) 

the Seiberg-Witten map associated with a system of data p for the pair (S,Pg). 

PROPOSITION 4.14. (Regularity of L4-small L^almost solutions with connection 
component in Coulomb gauge) Let g be an arbitrary fixed metric on the sphere. There 
are positive constants a, JJ,, c (depending on g and js) such that for any system of 
data p = (c\,K) with q sufficiently close to qs and \K — i<l8U/s?)\ ^ c ^e following 
holds. 

Any pair u = {A, #) G L\(A}(su(2))) x L\(S^ 0 Es) satisfying: 
(i)d*9(A)=0, 
(ii) || u \\L

4
< OL, satisfies the inequality 

\\u\\L2<c  \\swp(u) \\L2   . 

//, moreover 
(Hi) || swp(u) ||i,2< A*> 
(iv) swp(u) is smooth, 

then u is also smooth. 

Proof. We use the method of continuity as in the proof of 4.4.13 [DK]. The 
essential fact used in the proof of that theorem is that the map 

B^(drB,F%) 

can be written as the sum of an injective elliptic first order operator and a quadratic 
map. By Remark 4.13, the map {d*g,swp) has the same property. Note that we do 
not require the metric g to be close to gla. 

As in the proof of Theorem 4.7, the system q = (7, C, a, /?) defines an elliptic first 
order operator on the sphere 

^q 

#q :    AQ(Sf®Es)    —> A0{S7®ES) 
© e e 

d! + r7od    :      Al(su{2))       —+    A0(su(2))^(&AQ(su{Sf)®su{Es)) 

Here^q stands for the Dirac operator $£ + /? + 7(f), and A0{su{2))1- for the L2
g- 

orthogonal complement of the 3-dimensional space of constant sw(2)-valued functions. 
By Remark 4.13 and elliptic semicontinuity, it follows that Dq is injective if q 

is sufficiently C0-close to q5. Moreover, the L|+1 —> L2
k extension of Dq is an 

isomorphisms depending continuously on q with respect to the C*1-topology. 
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We extend the operator d* on pairs by putting d*(B,$) := d*g(B).   With this 
convention note that the map d* + swp can be written as 

(d; + swp)(B,<f>) = Dq(B,$) + 
7(B)$ 

lri(BAB)-K^)o 
= Dq(B,*) + Bi,K{B,*), 

where B^^K is the quadratic map defined by the square bracket. 
Claim 1: If a is sufficiently small, there exists a constant c = c(g,js) such that 

for any Lf-pair v with d*v = 0,\\v ||L
4
< OL, one has the estimate 

(1) \\v\\Ll<c\\Sw(v)\\L2  . 

Indeed, the Coulomb gauge condition d*(v) = 0 implies 

(2) Dq(v) = -B7,K(v) + 8w(v) . 

This gives an estimate of the form 

II v \\L2< Cq || Dq(v) \\L2< CqC^K || v ||24 + || sw(v) \\L2< 

< CCqC^K || v IMI v \\L2 + || sw(v) \\L2 , 

Since q is assumed to be close to qs and K belongs to a bounded family, it follows that 
the constants Cq, C7JK can be chosen independently of p. The claim follows by the 
same rearrangement argument used in the proof of Theorem 4.7, taking a < 2CC

1
C—. 

This proves the claim and the first part of the theorem. 
Claim 2: If a is sufficiently small, then for any two Lf-sections Vi, V2 with d* (vi) = 

0? II vi \\L
4
< 

ai II v2 \\L
4
< 

a and sw(vi) = sw(v2) it follows Vi — V2. 
Indeed, let b7,K be the E-bilinear map associated with B7iK. One has 

Dqfa -V2) =b7,K((v2 -t;i),i;i) + 67jiir(T;i,(i;2 -vi)) , 

hence, by the injectivity of Dq, we get an estimate of the form 

II vi -V2 \\L*< C II vi -V2 \\L2< CCq || 67,A-((V2 - vi),vi) + b7,K(vi, (V2 -vi)) IU2 

< C,Cp(||t;i||L4 + 11^ ||L0IK"t;i||L4 

where Cp is a constant depending continuously of p with respect to the C0-topology. 
Therefore, we may suppose as above that Cp = Ci is independent of p.  Take a < 

1 
4ccr 

Claim 3:  If a is sufficiently small, then for any smooth pair v with d*g(v) = 0, 
II v \\L

4
< 

a one has estimates of the form 

II v ||LJ+1< Cp.fc II sw(v) \\Ll +Pp,fe(|| sw(v) \\LUi) , 

where Cp^ is a positive constant and Pp^ is a polynomial with positive coefficients 
and without constant term. 

To see this use again the rearrangement argument above to estimate the Zl and 
the L3 norms of v (compare with the proof of Theorem 3.7). For the higher Sobolev 
norms apply the usual bootstrapping procedure to the elliptic equation (2). 
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Claim 4: If a is sufficiently small, there exists a positive number ^ such that for 
every smooth section / 6 AQ{Sj ® Es © su(S+) 0 su(2)) with || / ||L2< fi, the 
equation 

*ti;(f;) = /> d;(t;) = 0 

has a smooth solution v satisfying || v \\L^< &. 
Indeed, choose first a such that the conclusions of Claims 1-3 hold. We use the 

continuity method to find a smooth solution of the equations sw(v) = /, d*(v) = 0 . 
Let (SW1) be the equation 

(SW*) (d*g+swp)(v)=tf. 

We have to find a smooth solution of (SW1) whose I/4-norm is bounded by a. Let N 
be the set 

N :={te [0,1]| (SW1) has a smooth solution v with  || v \\L4< a} 

The set N contains 0. We assert that, taking a smaller bound a if necessary, iV 
becomes an open set. We use the implicit function theorem. Let VQ be a solution of 
(SW*0) satisfying drg(vo) = 0, || VQ \\LA< a. We have 

— (d* + 8wp)(v) = Dq(v) + b^,K(v,v) + b^K^v) 

This shows that, for v = 0, the operator -^^(d* + swp) defines an isomorphism: 

L?(S+ (8) E8)     —+ L2(Si 0 Ea) 

L2
1(A1(su(2)))    —>   i2(fiti(2))-LeL2(«ti(5+)®«ti(S5)) 

If || v 11£4 is sufficiently small, then the Lf —► L2 extension of ^(d! + swp) 
is still an isomorphism. By the Fredholm alternative it follows that the Lg —> L| 
extension is an isomorphism, too. Therefore, there exists e > 0 and an L3 solution vt 
of (SW*) for any t G (£0 -£> ^0 +^) such that vt0 = vo- Using the usual bootstrapping 
procedure, it follows that vt must be smooth. 

We claim that A^ is closed, if the bound // of || / ||i,2 is sufficiently small. Indeed, 
if tn -> to, and if vn is a smooth solution of (SWtn) with || vn ||L

4
< ^5 then Claim 

3. shows that there is a subsequence (fnm)meN converging in the C^-topology to 
a smooth section VQ, which must solve the equation (5VF£o). Of course, it is not 
clear that the strict inequality || vnm ||L

4
< 

a is preserved at the limit. On the other 
hand, using the estimate (1) proved in Claim 1. and the boundedness of the inclusion 
L2 C i4, we see that, choosing /i sufficiently small, we can assure that 

11      n    ^ a 

II ^n \\L*<   g   ' 

Therefore VQ satisfies the stronger inequality || VQ ||L
4
^ f • Now the second assertion 

in the theorem follows immediately: If || u \\L*< ®, d*(u) = 0, || swp(u) ||L2< /i, 
and swp(u) is smooth, we can find a smooth solution v of the equations d*v = 0, 
swp(v) = swp(u) with || v \\L

4
< «• But, by Claim 2., this solution must coincide with 

u. □ 
COROLLARY 4.15. Mtft £/ie notations and assumptions of the theorem, the fol- 

lowing holds: There exists a positive constant ai (depending on (g,ls)) such that any 
L\-pair u = (A, \I>) with d*g(A) = 0, || w 11^2< ai and siyp(w) smooth, is also smooth. 
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4.3. Removable singularities. We notice first that Corollary 4.8 (Estimates 
in terms of the curvature) can be easily generalized to an arbitrary system of data 
p' = (q'jif7) for the pair (B,PQ), not necessarily close to a standard system. The 
only difference is that the constant e in the conclusion of the theorem will depend on 
p'. To see this it is enough to notice that the operator Dq constructed in the proof 
of Theorem 4.7 is always elliptic by Remark 4.13 (even if the metric g7 is not close 
to the metric gs). We can use in fact the standard constant curvature metric on the 
sphere for the Coulomb condition, as in [DK]. Dq will be in general non-injective, but 
the injectivity of this operator is not essential in the proof of 4.7: the corresponding 
elliptic estimates (el), (el)k will contain on the right the additional term || u \\L2, 

which can be estimated in terms of || u WL* using the volume of the sphere endowed 
with the metric g7. 

An alternative argument uses a division of the unit ball in small balls, the scale 
invariance of the equations (Remark 4.5), the original Theorem 4.7, and the patching 
arguments explained on p. 162 [DK] in the instanton case. 

Using this generalization of Corollary 4.8, we get the following analogon of Propo- 
sition 4.4.10 [DK]: 

LEMMA 4.16. Let ft be a strongly simply connected ^-raam/o/c? endowed with a 
SpinvW (4) -bundle P" with Pu x^E4 ~ Ajj, S(PU) -Qx PU{2). Fix a trivialization 
of the PU(2)-bundle 6(PU). Let p = (7, C, a, /?, K) be a system of data for the bundle 
Pu such that pointwise \K — id| < e. 

There exists a positive constant ep, and for every precompact interior domain 
Q' £ fi there exists a positive constant Mp^ such that any solution (A, Sfr) of the 
PU(2)-monopole equations for p with \\FA\\L* < £p is gauge equivalent over Q' to a 
pair (Af, $') satisfying 

WA'W^^KMP^WFAW^ . 

REMARK 4.17. Given a fixed system of data po, we can find constants so, MQ^ 

(independent of p) such that the conclusion of the theorem holds with these constants, 
for every p sufficiently close to po- Moreover, the statement is true if we use the fixed 
metric glQ to compute the Sobolev norms. 

We will need these results in the following particular case: 
Let A/", N' be the annuli 

M:= {xeB\l~< 1*1 < 1} ,   AT := {x € B\ | < |*| < \} . 

Denote by A/^, M'r the images of A/", N' under the homothety hr. We recall that 
we denoted by Ptf the trivial Spinu^ (4)-bundle on B, which is associated with the 
triple of 5C/(2)-bundles 5^ := B x M±, EQ := B x C2. 

LEMMA 4.18. Let p = (7, C, a,/3, if) be a system of data for the trivial 
Spinu(2) (4)-bundle Ptf on the ball B, such that pointwise \K — id| < t, and such that 
7|Ai : M4 —> M. = (PQ Xn R4)o is the standard identification. Then there exists 
constants e(Ko) > 0, M(KQ) such that for any sufficiently small r > 0 the following 
holds: 

Any solution (^4,^) of the PU(2)-monopole equations for p]^ with \\ FA ||L
2
(A/'T.) 

< e(Ko) is gauge equivalent over AT}, to a pair (A'^') satisfying 

\\A'\\L*m<M(K0)\\FA\\LHJtr)  . 



428 A. TELEMAN 

The constants e(Ko) > 0, M(Ko) are independent of r, and the Sobolev norms 
are computed with respect to the standard euclidean metric. 

Proof. We use the same argument as in Remark 4.5. Let 

K : (A^AO —> {KMr) 

the homothety of slope r. 
The pair (/i*(A),r/i*(\I>)) solves the monopole equations associated with the sys- 

tem of data (7r := r/i*(7),ft*(C),/i*(a),r/i*(/3),/i*(i;sr)), which converges to the stan- 
dard system p^ restricted to N, as r -> 0. 

The result follows now from 4.16, 4.17 and the conformal invariance of the L4- 
norm on 1-forms and of the L2-norm on 2-forms. □ 

We shall use the following notations 

fir := B \ B(r) ,   B* = B \ {0} ,   B%(R) = B(R) \ {0}  ,5#=5\{0}. 

LEMMA 4.19. Let p = ('y,C,a,l3,K) — {(\,K) be a system of data for the trivial 
bundle PQ on the ball B, and let {A, \I>) be a pair on Bm solving the monopole equations 
for P\B* such that 

/' 
\FA\2 < oo 

B* 

Then for any sufficiently small r > 0, there exist an SU(2)-bundle Er over B, a pair 
(^4r,^r) G A(Er) x ^40(5o" x Er) and an SU'(2)-isomorphism 

Pr ' Er\n(r)  > ^b(r) 

such that: 

i)p;{A,9) = {Ar,9r), 
ii) || swp(Ar, *r) \\L2(B)^ 0 as r -> 0. 

Proof. Let (p be a cut-off map ip : B —> [0,1] which is identically Ion B\B(^—e) 
and identically 0 on i?(| 4- e). 

Put (pr := (poh^1. Note first that, by the conformal invariance of the L4-norm on 
1-forms, the norm || d(pr ||^4 (computed with the euclidean metric) does not depend 
on r. 

Consider now the restriction of the pair (A, *) to J\fr. Since the total integral of 
IF^p on the ball is finite, it follows that for any sufficiently small r > 0 we have 

\\FA\\L2W<e(Ko), 

so that Lemma 4.18 applies. The conclusion of this Lemma can be reformulated 
as follows: There exists an 5C/(2)-trivialization A/J! x C2 ^H EQ]//^ such that the 
connection matrix of T*(A) (which we also denote by T*(A)) satisfies the estimate 

(1) II <(A) \\LHK)< M(K0) || FA \\Lwr) 

We define the 5{7(2)-bundle Er by gluing (over the annulus A/^) the trivial bundles 
Z?(0, ~) x C2, -Eblf^in) via the isomorphism rr. 

Let P" be the Spinu^ (4)-bundle associated with the triple (5^, Er). The system 
p can be also regarded as a system of data for the bundle P". 
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Now denote by u the initial pair u := (A, #), and by ur the pair 

ur eA(Er)x A0(S£®Er) , 

which coincides with u on f2((| — £)r) and with the cut-off (prT*(u) of T*(n) on 

The section sii;p(^r) vanishes identically on f^C^1), where ur coincides with u. 
Therefore, in order to prove ii) we only have to estimate the L2 norm of swp((prT*(u)) 
on B(0, ^■), where Er coincides with the trivial bundle B(0, ^ x C2. 

On J3(0, Y) ^^ Seiberg-Witten map swp can be written as a sum between a first 
order differential operator and a quadratic map: 

swp(B>^=lr%) + 7(tf)(*) 
r7(B A B) - K($$)Q 

= Tq(B^) + BJtK(B^) 

Since Tq is a first order operator, we have an identity of the form 

rq(/t;) = ^q(4f)(f;) + /Tq(t;)> 

where Aq (df) is a 0-order operator whose coefficients depend linearly on the first order 
derivatives of the real function /. 

Therefore 

swp(iprr;(u)) = Aq(dcpr)(T;(u))+iprTq(T;(u))+ip2
rBliK(T;(u)) 

= (prSWp(T*(u)) + Aq(d(pr)(T*(u)) + (^ - (pr)B^K(r*(u)) 

= Aq(dfpr)(r;(ti)) + (ip2
r - <Pr)By9K{T;(u)) . 

Therefore, taking into account that d(pr and (ipl — (pr) vanish outside jVJJ, we get 

II SWp(Ur) \\L2{B) = || SWptfiu)) ||L2(B(^)) 

< cq || Apr \\L4 r;(u) \\L<m) +c£ || r;(ti) \\2LHK) 

Since || difr ||L
4
 does not depend on r we have only to prove that || T*(U) WL

4
^) con- 

verges to 0 as r -> 0. But the estimate (1) shows that the L4-norm of the connection 
component of r* (u) converges to 0 as r -> 0. 

On the other hand, by the inequality (3) Section 4.1 and the second monopole 
equation, one has pointwise in A/^. 

|T;(*)|
4
 = |*|4 < [Cf1 |r7(^)|]2 . 

I 
This gives an estimate of || T*(\I>) UL

4
^) in terms of || FA W^tj^i)^ which obviously 

converges to 0 as r -» 0. D 
We recall from [DK] the following important 

THEOREM 4.20.   (Gauge fixing on the sphere 0) Let gc be the standard constant 
curvature metric on the sphere S4.   Then there are constants ec, Mc such that any 

5Note that in [DK] it is stated a slightly weaker form of this theorem (Proposition 2.3.13 p. 
63): The hypothesis requires that A can be joined to the flat connection by a path of connections 
with L2-small curvature . However, the second proof of this result, which is given in section 2.3.10, 
does not use this additional assumption. I am grateful to Peter Kronheimer for pointing me out 
this important detail. On the other hand, note that this second proof works only for the standard 
constant curvature metric, and can be generalized to conformally flat metrics with non-negative 
sectional curvature. Since our regularity theorem works for solutions whose connection component 
is in Coulomb gauge with respect to any metric, not necessary close to the metric defined by the 
Spinu(2)-structure, we don't need this generalization 
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connection A in the trivial SU{2)-bundle Es with \\ FA \\L
2
< 

ec is gauge equivalent to 
a connection A satisfying 

dl(A) = 0,   || A ||i;< Mc || FA \\L2  . 0 

We can prove now 

THEOREM 4.21. (Removable singularities) Let p = (c{,K) a system of data for 
the trivial Spinu^ (4) -bundle PQ on B and let u = (A, \I>) be a pair on the punctured 
ball solving the monopole equations for P\B» such that 

L \FAY < oo 

There exists an SU(2)-bundle F on the ball, and an SU(2)-isomorphism p : F\B» —> 
EO\B» such that p* (A, ty) extends to a global smooth solution of the monopole equations 
associated with p and the Spinu^ (4)-bundle defined by (S^F). 

Proof. We use similar arguments as in the proof of the "Removable singularities" 
theorem for the instanton equation (Theorem 4.4.12 [DK]). The only difference is that 
the Lf-bound of the approximate solutions we construct, does not follow directly from 
Theorem 4.20 (Gauge fixing on the sphere). 

Identify B with the upper hemisphere of the 4-sphere 5, and extend the system 
p to a system for the Spinu^ (4)-bundle Ps

n. The extended system will be denoted 
by the same symbol p, and we can assume that p has the form (q,^) with q close 
to the system qs constructed in the proof of Theorem 4.7, so that Theorem 4.14 and 
Corollary 4.15 applies. We shall use these results in the particular case g = gc; with 
respect to this metric connections with L2-small curvature can be brought in the 
Coulomb gauge, by 4.20. 

Step 1. For a sufficiently small positive number JR < 1 we use Lemma 4.18 to 
get a trivialization of EQ \j^t , such that the L4-norm of the corresponding connection 
matrix is controlled by || FA \\L2(AfR)' By the same gluing procedure we get a bundle 
ER on the punctured sphere 5*, trivialized on 5 \ B(^). We cut off the pair u this 
time towards the outer boundary of the ball, and we get a pair uR = (AR, 1$rjR). It 
holds 

(2) Urn || 8Wp(uR) \\L2= lim || FAR \\L2= Urn || 9R \\L*= 0 , 
xi—^U Jri—^U rt—>U 

The first two relations follow as in the proof of Lemma 4.19, since both maps swp(-), 
F. can be written as the sum of a first order operator and a quadratic map, hence the 
perturbations produced by of the two cut-off operations can be estimated in terms of 
the L2-norm of the curvature restricted to the corresponding annuli. 

To get the third formula, it is enough to notice that the pointwise norm of the 
spinor is invariant under bundle isomorphisms, and that the L4-norm of ^\B*(R) can 

i 
be estimated in terms of || FA\B.{R) Hj^- 

Suppose now that r < JR < 1 and use the same procedure (to modify the bundle 
and cut off the solution), but this time in both directions. 

We get 5(7(2)-bundles, ER on the sphere, which come with trivializations over 
B{^), S\B(^), and with an isomorphism 
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as well as cut-off pairs 

u? = {A?, *«) e A(E?) x A0(St 0 E?) . 

With this construction, it holds 

(3) lim || swpiu*) \\L2 = || 3Wp(uR) \\L2 ,   lim || FA? |U2=|| FAn \\L2 , 

Hmll^lUHl**!^   • 

Note that the double gluing-procedure we used could apriori give rise to a non- 
trivial 5?7(2)-bundle EriR on the sphere. But since the curvature F^H can be made 
as small as we please, it follows that all the bundles Fr?jR become trivial, if R is small. 

Step 2. Using (2), (3) and Theorem 4.20 it follows that, once R is small, there 
exists an SC/(2)-isomorphism 9^ : Es —> ER such that BR := 0* ^(Af) satisfies 

(4) <&(£?) = 0 ,   || B* \\L2< Mc || FAn \\L2 

Put *« := (flJ?)*(*J?), ^ := (B?,*?). 
Step 3. Using (2), (3), (4) and the boundedness of the embedding L^ C L4, it 

follows that, if JR is small enough, the L4-norm of the pair vR can be made smaller 
as the constant a in the Regularity Theorem 4.14, so that we get an estimate of the 
form 

(5) || v? ||L?< c || swp(v?) IUHI 8Wp(u*) IU,   . 

The relations (2), (3) imply now that , choosing R small, we can assure that 

(6) ll«fllL?<«l, 

where ai is the constant in Corollary 4.15. From this point the proof goes further 
like in the instanton case: We choose R sufficiently small such that all the mentioned 
properties are fulfilled, and we let r tend to 0. Using the Lf-boundedness obtained 
in (6) it follows that we can find a sequence r* —> 0 such that Vi = (Bi,$i) := v^. 
converges weakly in Lf to an Lf-pair v = (B, $). 

Step 4. We want to prove that v is smooth. The weak limit v must also satisfies 
II v IIL

2
^ 

ai by the weak-semicontinuity of the norm in reflexive Banach spaces. 
Therefore, by Corollary 4.15, we only have to prove that the L2-section sw(v) is 
smooth. 

But on any small ball D , D C 5*, the pairs vi = (Bi, $i) remain in the same gauge 
equivalence class. Recall now from [DK] that the Sobolev norms of any connection H 
in Coulomb gauge can be estimated in terms of the gauge invariant expressions 

II FH ||L- , || V^FH ||L3 , 

as soon as its L4-norm is sufficiently small. Using the estimate (4) and the scale 
invariance of the L4-norm on 1-forms, this condition will be also fulfilled (for all small 
balls £>), if R is sufficiently small. 

On the other hand one can easily bound the Sobolev norms of a spinor E in 
terms of the gauge invariant expressions || V^ H ||£,2 and the Sobolev norms of the 
connection H. 
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Therefore, taking a subsequence if necessary, we can assume that Vi converges in 
the Frechet C^-topology on 5*, so that sw(v) is smooth on the punctured sphere. 

But, by Lemma 4.19, lim || swp(vi\B(4R)) Hz,2-*' 0, so sw{v), which is the limit of 

sw(vi) in the distribution sense, vanishes in a neighbourhood of 0. 
On the other hand, for any ball D, D C jB*(^p), the isomorphism 6^. intertwines 

the connection matrices A, Bi, and Bi converges in the C00 topology on such a ball. 
Therefore a subsequence 9^. converges in the C00 topology on Bm(^) to a smooth 
bundle isomorphism 0, such that 

0*O4i£*(5£)) = BIB-C^) • 

Taking the limit of [^J^^l^^)^^^) = $*n l^^i^ for n -> oo, we 

also get 

0*(*IB.W) = *!*•(¥)) n 

4.4. Compactified moduli spaces. Let X be a closed oriented 4-manifold. For 
a SpinuW (4)-bundle Pu with Pu x^ M4 - A1 and a system of data p = (7, C, a, /?, K) 
for Pu denote by Mp{Pu) the moduli space of pairs (A, ^) G A{5(PU)) xyl0(E+(PG)) 
solving the P£/(2)-monopole equations associated with p. 

By Proposition 2.1, the data of a 5j»ny(2)(4)-bundle P,u_ on X with det(Pm) - 
det(Pti)LP

,t* x^ E4 ~ Pu xn M4 is equivalent via the map S to the data of PU(2)- 
bundle P, whose Pontrjagin class satisfies 

PxOP') = (W2(X) + c1(det(Pw)))2 mod 4 . 

For every number I EN we fix: 
1. A 5pmc/^2)(4)-bundle if with 

l=^(Pl(S(pn)-{pi(S(Pu))) 

2. Identifications 

(id) If x^ M4 -^ Pu x^ M4 ,   detiPf1) -^ det(Pu). 

These bundle isomorphisms allow us to identify the spaces of perturbations-data as- 
sociated with the bundles Pu, Pf. 

DEFINITION 4.22. An ideal PU(2)-monopole of type (Pu,p) is a pair 
([A', $'], {xij ...,xi}) consisting of an element {xi,... ,xi} in a symmetric power 
Sl(X) ofX and a monopole ^4,,#,] G Mpilf). 

We denote by IMp(Pu) the space of ideal monopoles of type (P^p). 

Let 5X be the Dirac measure associated with a point x e X. If p = (7, A, a, /?, K), 
we always use the metric g7 to compute the norms and to define (anti-)self-duality 
for 2-forms. 

LEMMA 4.23. The map F : IMp(Pu) —> [C0(X,M)]*, defined by 

1 

F([A',^},{x1,,..,xl}) = \FA,\2 + 87r2J2SXi , 
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is bounded with respect to the strong topology in the dual space [C0(X, E)]*. 

Proof. Let (p G C0(X,M) with sup|^| < 1. Then 
x 

m[A',n{*u-,*i}),<p)\< [iiFX>\\h-iiFZ>\\h]+2\\FX-\\h +8^ 

= -27r2p1Wi'u)) + 2C||$'|li4, 

where C is a universal positive constant. The assertion follows from the apriori C0- 
boundedness of the spinor component of a solution (Proposition 4.11). □ 

Let m' = ([A', #'],$') be an ideal monopole of type (Pu,p) with s' G S1'(X) 
and [A',1^'] G Mp(Pif). For a positive number e we define U(mf,e) to be the set of 
ideal monopoles m" = ([A",\I>"],s") of type {Pu,p) with s" C s', and which have the 
following property: 

There exists an isomorphism of Spinu^ (4)-bundles 

V : ^r'Uv —y pv \x\s> 

which is compatible with the identifications (id) such that 

di(v>*(A',*'),(A",*"))<e, 

where di is a metric defining the Frechet C^-topology in the product 

A{m,\X\s,))xA0(£+{Pl!,\x\s,))). 

Let M > 0 be a bound for the map F defined above. The weak topology in the 
ball of radius M in [C0(X,E)]* is metrisable (see [La], Theorem 9.4.2). Let cfe be a 
metric defining this topology. 

We endow IM,p(Pu) with a metric topology by taking as basis of open neigh- 
bourhoods for an ideal monopolem' of type (Pu.p) the sets of the form Uim'.e) fl 
F-1(Bd2(F(mf),e)),e>0. 

THEOREM 4.24. With respect to the metric topology defined above the moduli 
space Mp(Pu) C IMp(Pu) is an open subspace with compact closure Mp(Pu). 

Proof. The first assertion is obvious. For the second, we use the same argument 
as in the instanton case, but we make use in an essential way of the C0-boundedness 
of the spinor: 

Let mn a sequence of ideal monopoles. It is easy to see that we can reduce 
the general case to the case where mn = [i4n,$n] G Mp(Pu). By Lemma 4.23, the 
sequence of measures /in := F{mn) is bounded, so after replacing mn by a subsequence, 
if necessary, it converges weakly to a (positive) measure /i of total volume //(I) < M. 
The set 

Se :— {x G X\3n G N Vra > n (/xm(D) > e2 for every geodesic ball D 3 x)} 

contains at most ^ points, so it is finite for every positive number e. Choosing the 
constant e provided by the "Global compactness" theorem (Corollary 4.10), it follows 
by a standard diagonal procedure that there exists a subsequence (mnm)m and gauge 
transformations fm on X \ S£, such that /^l(mnm) converges to a solution (AQ, ^Q) of 
the monopole equations SWp restricted to X \ S£. By the "Removable Singularities" 
theorem, we can extend this solution to a global solution (AQ^Q) of the monopole 
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equations associated with p and a new Spinu^ (4)-bundle P,u, which comes with 
identifications 

p'u X7r M4 ^ pu X7r M4 ^   det(p/u) ^^ det(Pu). 

We have 

l^„|2 = l^ol2=M-8^EA^ 
xese 

with positive numbers A^.    It remains to prove that the A^ are integers.    Since 
F(mnrn) -> //, we have for small enough r > 0 

B(a;,r) 

= nH?oo8^    /    -IV(Fl.)+Tr^o)2+2(l(*"'"f"'")o|2-|(*0*o)012)   • 
B(x,r) 

As in the instanton case we get 

lim  FT m—>-oo OTT 
I   -TriFlj+TriF^f 

B(x,r) 

=  lim (r5(a.fr)(i4nm)-r5(a.,r)(io)) 

mod Z 

= Oin 

by the convergence f^l(Anrn \x\se) "^ A)U\5e- Here r5(jB) denotes the Chern-Simons 
invariant of the connection B on a 3-manifold S ([DK]). 

On the other hand, by the apriori C0-bound of the spinor component on the space 

of monopoles, the term    /    2 (|(1^nm*nm)o|2 - |(^o^o)o|2) can be made as small 
B(x,r)      V ' 

as we please by choosing r sufficiently small. This shows that the Xx are integers, and 
that 

xes£ 

which completes the proof. D 
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