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MODULI SPACES OF PU(2)-MONOPOLES*

ANDREI TELEMANT

1. Introduction. The most natural way to prove the equivalence between Don-
aldson theory and Seiberg-Witten theory is to consider a suitable moduli space of
"non-abelian monopoles”. In [OT5] it was shown that an S*-quotient of a moduli
space of quaternionic monopoles should give an homological equivalence between a
fibration over a union of Seiberg-Witten moduli spaces and a fibration over certain
Spinc-moduli spaces [PT1].

By the same method, but using moduli spaces of PU(2)-monopoles instead of
quaternionic monopoles, one should be able to express any Donaldson invariant in
terms of Seiberg-Witten invariants associated with the twisted abelian monopole equa-
tions of [OT6]. In [T1], [T2], we have shown that this idea can be further generalized to
express Donaldson-type invariants associated with higher symmetry groups in terms
of new Seiberg-Witten-type invariants.

The strategy has a very general algebraic-geometric analogon, which we call the
”Master Space” strategy. This procedure, developed by Ch. Okonek and the author
[OT7], [OST] reduces the problem of the computation of certain numerical invariants
of a GIT moduli space to similar computations on simpler moduli spaces. One ”cou-
ples” the given GIT problem to a simpler one (having the same symmetry group),
and then studies the ”Master Space” associated with the coupling as a C*-space. The
fixed point locus of the C*-action consists of the original moduli space and a union
of simpler ones. Then one can use the S'-quotient of the master space to define a
homological equivalence between a projective fibration over the initial moduli space
and a projective fibration over the other components of the fixed point locus. In the
GIT-framework, as in the gauge theoretical one, the technical difficulty is the same:
the master space can be singular. The present paper deals with this difficulty in the
gauge theoretical situation.

A program for proving the equivalence between Donaldson theory and Seiberg-
Witten theory, which also uses moduli spaces of non-abelian monopoles, is due to
Pidstrigach and Tyurin [PT2], and was already announced by Pidstrigach in a Con-
ference at the Newton Institute in Cambridge, in December 1994.

There are, however, several important differences between Pidstrigach-Tyurin’s
original approach, and the strategy developed by Ch. Okonek in collaboration with
the author, which is the strategy we follow in the present paper.

First, our equations have a gauge group of the form SU(E) and hence the moduli
spaces which we construct are S'-spaces; in contrast, the Pidstrigach-Tyurin equations
[PT2] have a gauge group of the form U(E). Whereas we fix the connection in the
determinant line bundle, they only fix the curvature of this connection. If H;(X,Z) =
0, their moduli space is the S!-quotient of ours. On the other hand, the S*-operation
plays a very important role in our strategy: The description of the ends around the
abelian locus at infinity uses in an essential way the S'-equivariance of the local
models.
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Second, we do not follow Pidstrigach-Tyurin’s program to prove generic regularity
results. We show (see section 3.1) that the proofs of the transversality theorems which
they use [PT2] to get generic regularity are incomplete, by indicating counterexamples
to one of the statements on which these proofs are based?!.

It is interesting to notice that, in fact, any non-abelian solution of the equations
in the Kahler case gives a counterexample to their statement. This same statement
was also used by the authors in the their definition of the Spinc-polynomial invariants
[PT1).

The transversality problem is very complicated, for the PU(2)-monopole equa-
tions as well as for the non-abelian Spin®-equations. The difficulty is the same in
both cases: in the non-abelian points with degenerate spinor component transversal-
ity cannot be proved using only perturbations with 0-order operators.

In [T1] the author tried to use perturbations with first order operators, and
proved that perturbations of this type lead to transversality at least away from the
solutions which are abelian on a non-empty open set. However, in order to have a
complete transversality result away from the abelian locus, one would need a unique
continuation theorem which seems to be difficult to get because of the perturbed
symbol.

Another way to achieve transversality is to use an infinite family of ”holonomy
perturbations” [FL].

The present paper solves two fundamental problems concerning the moduli spaces
of PU(2)-monopoles: generic regularity and compactification.

First we prove an S!-equivariant generic-smoothness theorem: we define pertur-
bations of the equations which lead to S'-spaces which, for generic choices of the
perturbing parameters are smooth, at least outside the ”Donaldson locus” (the van-
ishing locus of the projection on the spinor component) and of the abelian locus
(Theorem 3.19). The proof of the generic-smoothness theorem is not a pure transver-
sality argument; it combines a standard transversality argument with a new method
to control the exceptions to transversality.

Our result shows that one does get regularity for a generic choice of a system
(g9,0,8, K), consisting of a metric, a compatible SpinU? (4)-structure o and an order
0- perturbation (3, K) of the type considered in [PT2].

We also obtain generic regularity results for the normal bundles of the Donaldson
locus and the abelian locus within the moduli space (Theorem 3.21, Proposition 3.22).
Similar results, but obtained using quite different lines of reasoning, were obtained by
Feehan [F] in a preprint distributed around the same time as the first version of the
present paper.

Therefore one can go forward towards a proof of the Witten conjecture (see for
instance [OT5] for a detailed description of the strategy) using relatively simple equa-
tions.

Note however that the generic regularity results which we prove for the ASD-
Spin‘-equations, do not automatically solve the transversality problem needed in
order to give sense to the Spinf-polynomial invariants, and to use them effectively. For
this purpose one needs a pure transversality argument for the ASD-Spin®-equations?.

IThis gap as well as the difficulty of the problem was pointed out by the author during the
Workshop ”4-dimensional manifolds”, Oberwolfach, March 1996.

2The point is that, in order to have well defined invariants, it is importants to have a smooth
parameterized moduli space (see [DK], p 143, 149). Generic regularity is not enough. Moreover,
the Kéhlerian parameters are all non-generic in our sense; on the other hand, all the computations
needed in order to get a proof of the Van de Ven conjecture using Spin¢-invariants, must be done in
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Therefore, The theory of Spin¢-polynomials and the attempt to prove the Van de Ven
conjecture using this theory [PT1], should be revised.

We get our result in two steps. In a first step we prove that, using only the
perturbations (3, K), one can prove the following partial transversality result: If the
Seiberg-Witten map extended to the parameterized moduli space is not a submersion
in a point (A4, ¥, 3, K), then the spinor component ¥ must be degenerate. This is
very easy to see.

In the second step we prove that, if we also let the SpinU(?) (4)-structure (together
with the metric) vary , then the moduli space 15;\/4;( of solutions with non-trivial
but degenerate spinor component in the enlarged parameterized moduli space ./W}
has infinite codimension in every non-abelian point. Using this, we can show (by
"weakening” locally the degeneracy equation) that every non-abelian point [p] in
W} has a neighbourhood Ul which is a closed analytic subspace of a manifold
Vip) which is Fredholm of negative index over the enlarged parameter space. Taking
a countable subcover (V{,],)ien, and using the fact that Fredholm maps are locally
proper ([Sm]), we prove that the set of parameters for which there exists a non-abelian
solution with non-trivial degenerate spinor component is of the first category . The
desired set of ”generic parameters” is then obtained by 1ntersect1ng the complement
of this set with the set of regular values of the projection of M \DM x on the
parameter space.

We believe that this method is in fact a very general one; it can be summarized
as follows: Prove first a partial transversality result using perturbations with 0-order
differential operators, and show then that the space of solutions which are exceptions
to transversality has infinite codimension if one introduces new variable parameters.
Such a result is to be expected provided the ”exceptional solutions” , the ones which
are exceptions to transversality, solve an overdetermined elliptic system.

In particular, the method can be applied to obtain generic regularity along the
Donaldson and the abelian locus. More precisely, the moduli space of solutions (with
non-vanishing spinor component) of the Dirac-ASD system of [PT1] becomes smooth
of expected dimension for generic perturbations. The same property has the com-
plement of the zero-section in the fibration of ”normal infinitesimal deformations”
over the subspace of abelian solutions associated with an abelian reduction of the
Spin?(?) (4)-bundle.

In this way we obtain perturbed moduli spaces which are smooth except in
the abelian points and in the Donaldson-points. These points remain exceptions to
transversality, and in general, regularity (smoothness and expected dimension) cannot
be achieved in these points by using S!-equivariant perturbations.

The second purpose of the paper, the existence of an ”Uhlenbeck compactifica-
tion” for the perturbed moduli spaces, is achieved in section 4 (see Theorem 4.24). A
different proof of the ”Uhlenbeck compactification” can be found in [LT].

Our arguments follow the same strategy as in the instanton case [DK] which can
be summarized as follows:

Local estimates — Regularity — Removable Singularities — Compactification.

Some care must be taken, since the monopole equations are only ”scale invari-
ant”, not conformal invariant as in the instanton case. On the other hand, many of
the results in [DK] were obtained by cutting off the solutions and transferring the

the K&hler case.
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problem from the 4-ball to the 4-sphere, and then using the conformal invariance of
the equations.

Our proof uses the same method, but endows the sphere with a metric with
non-negative sectional curvature which is flat in a neighbourhood of the north pole.
With this choice, the corresponding first order elliptic operators (P, d* + d*, ...)
are still injective. For the local computations we work with pairs whose connection
component is in Coulomb gauge in the sense of [DK], so that all the results in [DK]
about connections in Coulomb gauge apply automatically. Therefore, we do not use
the Coulomb gauge condition for pairs which follows from the elliptic complex of the
PU(2)-monopole equations (compare with [FL]).

A short version of our proof of the Uhlenbeck compactification appeared in [OT5],
and a very detailed version of it can be found in [T1]. The existence of an Uhlen-
beck compactification for moduli spaces of non-abelian monopoles was predicted by
Pidstrigach and Tyurin in [PT2].

Note that in order to prove the equivalence between the Donaldson and the
Seiberg-Witten theories, it now remains only to give explicit descriptions of the ends
of the moduli space along the abelian locus, and to calculate the corresponding con-
tributions.

My own strategy to study the ends of the moduli spaces of PU(2)-monopoles
is based on the analytical results in [T3]. The PU(2)-monopole equations are not
conformally invariant, so it is difficult to use the method developed in the case of
instantons [DK] (which consists of identifying the solutions concentrated in a point
with the solutions on the connected sum of X with S*). We use a new strategy
[T4] which is still based on the gluing method. We obtain concentrated solutions by
gluing (non-concentrated) solutions on X corresponding to lower topological data,
with concentrated instantons on the tangent spaces, and then we deform the obtained
almost-solutions into solutions. This last step makes use of the classical Fredholm LP
theory on X, as well as of the Fredholm LP-theory on the tangent spaces (instead of
S%) which is developed in the quoted paper.

Progress on this problem, using different methods, was also announced by Feehan
and Leness.

I would like to thank professor Ch. Okonek for encouraging me to write this
paper, for the careful reading, and for his suggestions. I would also like to thank
professor S. T. Yau for suggesting me to submit the paper to AJM. Finally I thank
the referee for the very careful checking of the technical arguments and for his valuable
observations.

2. PU(2)-monopoles.

2.1. The SpinU® group and SpinV@-structures. For a more detailed pre-
sentation of the theory of SpinU(?)-structures we refer the interested reader to [T1],
[T2]. In these papers we also introduce the concept of SpinC-structures and G-
monopole equations for quite general compact Lie groups G.

The group SpinV®?) is defined by

Spin’® := Spin xz,U(2) .
Using the natural isomorphism U(2)/Z , = PU (2) x S*, we get the exact sequences

1 —s Spin —s SpinV® Gdet)y prr(9) x §1 4 1
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1—U@Q) — Spin?® 1550 — 1

1 — Zy — SpinU® mddet)y 50  PU(2) x ST — 1.

Let X be a compact manifold and P* a SpinU®)-bundle over X. We consider
the following associated bundles

F(Pu) = .ZDIu X SO, S(Pu) = Pu xs PU(2)? det(Pu) = Pu Xdet Sl’

Go := P* X Adod SU(Z); go = p* Xadod SU(2) ’

where Ad : PU(2) — Aut(SU(2)), ad : PU(2) — so(su(2)) are induced by the
adjoint morphism SU(2) — Aut(SU(2)), SU(2) — so(su(2)).

The group of sections Gy := I'(X,Gp) can be identified with the group of au-
tomorphisms of P* over m(P¥) x x det(P“). After suitable Sobolev completions it
becomes a Lie group, whose Lie algebra is the corresponding completion of A°(go).

Let P be a SO bundle over X. A SpinV®)-structure in P is a morphism P* —»
P of type 7, where P* is a SpinU()-bundle. Two SpinV®)-structures P* — P,
P'* — P in P are called equivalent if the bundles P*, P'* are isomorphic over P. A
SpinV () (n)-structure in an oriented Riemannian 4-manifold (X, g) is a SpinY(® (n)-
structure in the bundle P, of oriented coframes.

We refer to [T1], [T2] for the following classification result:

PROPOSITION 2.1. Let P be a principal SO-bundle, P a PU(2)-bundle, and L a
Hermitian line bundle over X.

i) P admits a SpinV® -structure P* — P with
P x5PU2)~P, P"x4C~L

if and only if wa(P) = w2 (P) + ¢ (L), where ¢, (L) is the mod 2 reduction of c,(L) .
it) If the base X is a compact oriented 4-manifold, then the map

P — ([P x5 PU(2)], [P* Xdex C])

defines a 1-1 correspondence between the set of isomorphism classes of SpinU(2)-
structures in P and the set of pairs of isomorphism classes ([P],[L]), where P is a
PU(2)-bundle and L an S'-bundle with we(P) = w2(P) +T;(L). The latter set can
be identified with

{(p,c) € HY(X,Z) x H*(X,Z)| p = (wa(P) + €)? mod 4}

a
The group SpinY®)(4) can be written as

- U2) gy — SU(2)+ x SU(2)- x U(2
Spin”'?(4) = )+ ( )/Z2 ,
hence it comes with natural orthogonal representations

adz : Spin? @ (4) — so(su(2)),
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defined by the adjoint representations of SU(2).., and with natural unitary represen-
tations

o4 : Spin’ P (4) — U(Hy ®c C?)

obtained by coupling the canonical representations of SU(2)+ with the canonical
representation of U(2).

We denote by adi(P*), ©*(P*) the corresponding associated vector bundles.
The Hermitian 4-bundles £*(P*) are called the spinor bundles of P*, and the sections
in these bundles are called spinors.

We refer to [T2] for the following simple result

PROPOSITION 2.2. Let P be an SO(4)-bundle whose second Stiefel-Whitney class
admits integral lifts. There is a 1-1 correspondence between isomorphism classes of
SpinU@ _structures in P and equivalence classes of pairs consisting of a Spin(4)-
structure P° — P in P and a U(2)-bundle E. Two pairs are considered equivalent
if, after tensoring the first one with a line bundle, they become isomorphic over P.

Suppose that P is associated with the pair (P¢, E), and let F be the spinor
bundles corresponding to P°. Then the associated bundles P* xR, S+ (P%), §(P¥),
det(P*), G(P"), Go(P*") can be expressed in terms of the pair (P¢, E) as follows:

P x.R' =RSU(Z},X27),
S5 (PY) = [5]Y © B =5E @ BV @ [det(P")], §(P*) = TE/c1, ads(P¥) = su(TF)

det(PY) ~ det(P°)~! ® (det E), Go(P") = SU(E), go(P*) = su(E) .

Here we denoted by RSU (X7, £7) the bundle of real multiples of C-linear isome-
tries of determinant 1 from X} to ¥ . The euclidean structure and the orientation
in this bundle are fibrewise defined by the Pauli matrices associated with a pair of
frames (ef,ef) in TF, satisfying e} Aef = e Ae;.

The data of a SpinU(?) (4)-structure P* — P in an SO(4)-bundle P is equivalent
to the data of an orientation preserving linear isometry

v: P xso) R* — P* x, R* = RSU(Z},%;) C Homg, (Z+(P*),~(PY))

which will be called the Clifford map of the structure.
The Clifford map 7 induces isomorphisms

T : AL (P xso@) R) — su(E7) = ads(P)

which multiply the norms by 2 ([DK] p. 77, [OT1]).
The following simple remark will play a fundamental role in this paper:

Suppose that A is a real oriented 4-bundle, and vy : A — P¥x,R* an orientation
preserving linear isomorphism. Then v defines an Euclidean structure g, on A such
that y becomes the Clifford map of a SpinV® (4)-structure in (A, g,).
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2.2. The PU(2)-monopole equations. Let o : P* — P, be a SpinV(®)(4)-
structure in the oriented compact Riemannian 4-manifold (X, g). Fix a connection
a € A(det(P*)). Using the third exact sequence in (1), we see that the data of a
connection A € A(6(PY)) is equivalent to the data of a connection B4 , in P* which
lifts the Levi-Civita connection in P, and the fixed connection a in det(P*) (via
the maps P* — P, and P* — det(P") respectively). The Dirac operator P4,
associated with the pair (4, a) is the first order elliptic operator

Do A(SH(PY) 22y AN(SE(PY) L A°(SF(PY)
Regarded as operator ¥ (P%*) @ ¥~ (P*) — X+ (P%) @ X~ (P%), the Dirac operator
D 4. is also selfadjoint. .
We define the quadratic map $*(P*) — ad(P¥) ®go, ¥ +— (¥¥), by
(‘Il‘i’)o ‘= PTady (P*)&Fo (\I, ® lI’) )
where praq, (pu)gg, denotes the orthogonal projection
Herm(Z+ (P*)) — ad, (P%) ®go -

We introduce now the PU(2)-Seiberg-Witten equations SW? associated to the
pair (o,a), which are equations for a pair (4, ¥) formed by a PU(2)-connection A €
A(8(P%)) and a positive spinor ¥ € A%(L+(PY)):

- D oY = 0
(SWa) {rme (TT),

The natural symmetry group of the equations is the gauge group Go := I'(X, Gp).
We denote by MZ the moduli space

. uyy1SWe
Mg = ABP) X A EI

where [A(J(P¥)) x A%(ZF(PY))] SWZ denote the space of solutions of the equations
(SW¢). Using the well-known Kuranishi method one can endow M¢ with the struc-

ture of a ringed space, which has locally the form Z (9)/(;, where G is a closed subgroup
of SU(2) acting on finite dimensional vector spaces H', H2, and Z(6) is the real ana-
lytic space cut-out by a G-equivariant real analytic map H! > U -2 H? (see [0T35],
[T1], [T2] for details).

3. Smooth moduli spaces.

3.1. The difficulty. Equations for pairs (4, ¥), where A is a unitary connection
with fixed determinant connection and ¥ a non-abelian Dirac spinor have been already
considered [PT1], [PT2]. For instance, the definition of Spin°-polynomial invariants
starts with the construction of the moduli space of solutions of the (4SD — Spin®)-
equations

EA‘II 07 ‘I’?éo
Fto= 0.

The proofs of the corresponding transversality results are incomplete. They are
based on the following false statement ([PT2], [PT1]):
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(A) Let P° — P, be a Spin°(4)-structure with spinor bundles *(P°) on
a Riemannian 4-manifold (X,g), F a Hermitian 2-bundle on X, and A a unitary
connection in E. If the JJ 4-harmonic non-vanishing positive spinor ¥ € A°(Z+(P°)®
E) is fibrewise degenerate considered as morphism EY — ¥, then A is reducible.

In the proof of this assertion ([PT1] p. 277) it was used that, in the presence
of a Spin®(4)-structure, the Clifford pairing (a,0) — v(a)o between 1-forms and
positive spinors has fibrewise no divisors of zero. This is true for real 1-forms, but
not for complex ones.

Counterexamples are easy to find:

Every holomorphic section in a holomorphic Hermitian 2-vector bundle £ on a
Kahler surface can be regarded as a degenerate harmonic positive spinor in £F,, ® &,
where F = A% @ A% is the positive spinor bundle of the canonical Spin¢(4)-
structure in X, if we endow £ with the Chern connection given by the holomorphic
structure. Therefore any indecomposable holomorphic 2-bundle £ with H°(E) # 0
gives a counterexample to the assertion (A).

Note that these counterexamples occur precisely in the K&hler framework, where
all explicit computations of moduli spaces and invariants were carried out.

3.2. Partial transversality results. Let 0 : P* — P, be a SpinV(®)(4)-
structure on (X, g), denote by

v :A! — Hom(Z+,%7)

be the associated Clifford map, and let Cp be a fixed SO(4)-connection in P¥ x,
SO(4) ~ P, (not necessarily the Levi-Civita connection). We fix again a connection
a € A(det(P*)). For any connection A € A(§(P*)) we have an associated Dirac
operator

0
Ea,A =7-Veo,a.4

where Vg, 0,4 1 A°(3F) — A}(ZT) is the covariant derivative associated with the
connection in P* which lifts the triple (Cy,a, A).

The role and the properties of these slightly more general Dirac operators will
be cleared up in the next section, where Cy will be a fixed C*°-connection in the
fixed bundle P* x, SO(4), but the metric g and the Clifford map 7 will be variable
C*-parameters.

Recall that one has a canonical embedding P* x, C* C Hom(Z*,X7), and that
o defines an isomorphism A} = P* x, C*. We consider the following equations

{ 0,4(%) +B(T)
L(FY)

0_
K(T®),

which are equations for a system
(A,%,8,K) € AB(P*)) x A°(ZF) x A°(P¥ x, C') x I'(X,GL(ad,)).

Complete the configuration space A := A(3(P¥)) x A°(X+) with respect to a large
Sobolev norm L?, and the parameter space

Q := A%(P¥ x,. C*) x T(X, GL(ad,.))

with respect to the Banach norm C*, &k > I.
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The perturbations (8, K) were also considered by Pidstrigach and Tyurin in [PT2]
in their attempt to get transversality for their version of non-abelian monopole equa-
tions.

An SU(2) x SU(2) x SU(2)-reduction of P* over an open set U C X induces
isomorphisms T*(P%)|y ~ S* ® E where S*, E are SU(2)-bundles. A spinor ¥ €
S+ (P*) will be called degenerate in z € X if, with respect to an SU(2) x SU(2) x
SU (2)-reduction around z, ¥, € S; ® E; = S ® E; has rank < 1. ¥ will be called
degenerate on V C X if it is degenerate in every point of V.

A pair (4, %) € A(6(PY)) x A°(E+) will be called abelian if the connection A is
reducible, and the spinor ¥ is contained in one of the A-invariant summands of £T.

If (A, ¥) € A(J(P*)) x A°(X7T) is an abelian pair, then ¥ is clearly degenerate on
X . However, the counterexamples in the previous section show that there exist non-
abelian pairs with non-trivial Dirac-harmonic spinor-component which is degenerate
on X.

Let sw = swy,q,0, : A1 X QF — A°(Z7);—1 x A%(ad ®g0)i—1 be the map defined
by the left hand side of the equations above, and let

N = M X QT )

be the moduli space of solutions with non-trivial spinor-component. N'* is the van-
ishing locus of the induced section sw in the Banach bundle

47 x @1 %0, [4°(5 )11 x 4°(adks ©g0)1-1]

. «._ A x QF S
over the Banach manifold B* := -1 /gl+ N which is defined by sw.
The purpose of this section is to prove the following partial transversality theorem

THEOREM 3.1. If sw is not a submersion in a solution p = (A,9,5,K) €
Al x O, then ¥ must be degenerate on X. In particular, N* is smooth away from
the closed subspace of solutions with globally degenerate spinor component.

Proof. Let (®,5) € A°(Z7);—1 x A%(ad+ ®go)i—1 a pair which is L-orthogonal to
im(d,). Using the perturbation 3 we get immediately that Re(3, ® ® ¥) vanishes for
every variation 3 of 8. With respect to any local SU(2) x SU(2) x SU(2)-reduction
(S*, E) of P*|y (U an open set) the contraction of ®®W¥ with the Hermitian metric in
E must vanish, which shows that pointwise ¥(v*)L®(v™) for every v* € S u c U.
If ¥ has rank 2 in a point z € X, then ® must vanish identically on a neighbourhood
of .

Also, if ¥ has rank 2 in z, then (¥¥)y has rank 3 in = as map adf,’_,m — go,z,
hence the same argument as above shows that .S must vanish on a neighbourhood of
z. Therefore the pair (®,.5) must be zero on a neighbourhood of z.

We can assume that A is the Coulomb gauge with respect to a smooth connection
Ap. Therefore, by Agmon-Douglis-Nirenberg’s non-linear-elliptic regularity theorems
(see for instance [B], p. 467, Theorem 41), it follows that (A4, ¥) is a smooth pair (if
the Clifford map A — P* x R had only class C*, we would have got a C*¥+1~¢_pair,
which is enough to complete the argument). Using now variations (A, ¥), we see that
(@, S) must satisfy an elliptic system of the form

D} 4[Dh )" (2,5) =0.
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Here ]jil,\l' is the first derivative in (A4, ¥) of the map Sw obtained by dividing by 2
the second component of sw such that the symbol of Dllq,q,[ﬁk’q,]* becomes a scalar,
and Aronszajin’s theorem applies. It follows that (®,S) = 0, because it vanishes on
a non-empty open set.

REMARK 3.2. The same result holds if QF is replaced by any product Q% x R
of QF with a Banach manifold R, and sw by a smooth map sw' : A x Q¥ x R
whose restriction to any fibre Ay x QF x {r} has the form swg ,.c, for a metric g, a
SpinU @) _structure o in (X, g), and an SO(4)-connection Co.

An easy way to parameterize the space of pairs consisting of a metric and a
SpinU(?) (4)-structure will be given in the next section.

3.3. PU(2)-monopoles with degenerate spinor component. Generic reg-
ularity. Let P* be a SpinU(®)-bundle. Suppose that the spinor ¥ € A%(XF) is de-
generate on a whole neighbourhood of a point € X but ¥, # 0, and let A € §(P%))
be a PU(2)-connection. The pair (A, ¥) will be called non-abelian in z if the second
fundamental form of the line subbundle L C E generated by ¥ around z is non-zero
in z.

We recall that if P* is associated with a pair (P¢, E), where P¢ is a Spin(4)
bundle P¢ of spinor bundles £F and E is a U(2)-bundle, then $* = [V Q E =
T ®EY®det(P¥) and P x,R* = RSU(Z},X;) C Hom(Z},2;) C Hom(Z+,X7).
The euclidean structure and the orientation in the real 4-bundle RSU (X}, ;) are
fibrewise defined by the Pauli matrices associated with frames (e, ef) of ©F satisfying
ef Nef =ef Aej.

DEFINITION 3.3. Let P be a SpinV® -bundle with P* x, R ~ Al. A Clifford
map is an orientation preserving linear isomorphism

y:A' — P x, R* =RSU(Z},2;) C Hom(Z+,27) .

Every C* Clifford map v : A — P“ x, R* defines a C*¥ metric g, on X which
makes y an isometry, so that v : A — P* x, R* C Hom(X+,X~) becomes the
Clifford map of a SpinV@-structure o in (X, g,).

This formalism will play an important role in this paper. The space

Clif :=T(X,Isoy (A}, P* x, R?*))

of Clifford maps parameterizes the set of pairs consisting of a metric and a SpinV(?) (4)-
structure for that metric. Note that the metric determines a SpinU(®-structure with
a given bundle P* only up to an SO(4)-gauge transformation of the cotangent bundle.

As in the previous section fix a C*° SO(4)-connection Cp in P* x, SO(4). To
any pair of connections (a, 4) € A(det(P*)) x A(J(P*)) we associate a Dirac oper-
ator 9 , 4 using the Clifford map v and the lift Va4 1 A°(5F) — AY(ZF) of
(CO 1) A)

0 —

'y,a,A - 7 : VCO,O.,A *
This Dirac operator does not coincide with the standard Dirac operator /3., 4 4 associ-
ated with (A, a) and the SpinV®)-structure on (X, g,) defined by -y, because y~1(Co)
may be different from the Levi-Civita connection in (A!, g,); however, it has the same
symbol as the standard one. The advantage of using these Dirac operators, is that
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they depend in a very simple way on +y and that they are operators with C*-coefficients
if 7 is of class C¥. The coefficients of the Levi-Civita connection in (Al,g,) are in
general only of class C*~!, and the coefficients of the induced Levi-Civita connection
in P* x, R* are also of class C¥~1, so that the coefficients of the standard Dirac
operator [ 4 4 have a regularity-class smaller by 1 than the regularity class of .

The use of these Dirac operators, whose coefficients do not contain the derivatives
of the Clifford map, is essential in our proofs.

REMARK 3.4. There ezists a section 8 = B(v,Co) € C*~1(P* x C*) such that
MgaA =E‘Y,0,A +ﬁ'

To see this, let C, be the SO(4)-connection in P* x, R* induced via 7 by the Levi
Civita connection in (A', g,). The difference o := V¢ 0,4 — Vy,a,4 is an ad-valued
1-form of class C*¥~1, hence an element in

CF1 (Al (ad4)) = C*7H (A (su(ET))) € C*H (A (End(EY)))

which does not depend on (4, a). In local coordinates, & has the form o = Y v ® a;,
with local sections o in su(X}). Its contraction with 4 has locally the form 3" y(u?)o
a;, and defines a C*~1-section 8 in Hom(Z}, ) = P* x, C*. O

Consider the following PU(2)-monopole equations

9aa¥ 0
(SW-) {FWEFQ = ().

for a triple (A4, ¥,) € A(§(P¥)) x A°(S+) x Clif. The map
I, :A? — End(Z}) C End(ZH)

is determined by 7 via the formula
1 * *
Ly(unv) =5 (=7(u)™r(v) + () y(w)

and vanishes identically on A2, , so that we could have written F:g’ instead of Fs
in the second equation. In the form above it will be easier to compute the derivative
with respect to 7.

Complete the configuration space A := A(§(P*)) x A°(X+) with respect to a large
Sobolev norm L? and the space of Clifford maps Cli f with respect to the Banach norm
Ck k>

Before stating the main result of this section, we begin with two simple remarks

REMARK 3.5. Let A, F be subspaces of a normed space H with F' finite dimen-
sional. Then

A+YF=A+F.

Indeed, A+ F D A, and A+F D F, hence A+F > A+ F. To prove the
opposite inclusion, it is enough to notice that A+ F D A+ F and to prove that A+ F
is closed. Let ¢ : H — H / A be the canonical projection. The right hand space is
also normed, hence ¢(F) C 7 / J is closed (being finite dimensional), and therefore
g 1(q(F)) = A+ F is closed in H, since q is continuous. This proves the remark. O
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REMARK 3.6. Let f : Hi — Hy be a continuous operator with closed image
and finite dimensional kernel between Banach spaces , and let A C H; be a closed
subspace. Then f(A) is closed.

Proof. f factorizes as Hy -2 Hl/ker f =5 f(H,) — H,, where the middle arrow

is an isomorphism by the Banach Theorem. Therefore it is enough to show that p(A)
is closed, or equivalently that p~!(p(A4)) = A+ ker f is closed. But this follows by the
remark above. O

Let [4; x Cli f*]5% be the space of solutions (A4, ¥, ) of the equations above, and
let [A; x Cli f*]2W be the subspace of solutions whose spinor component is degenerate
on the open set U.

The space [4; x Clif*]3% is a closed real analytic subspace of the space [4; x
Clif*¥]5W | since it is the vanishing locus of the (real analytic) map

Ay — A°(EF), 225 A0(det(P™)), =¥ A°(det(P™)|y): .

We can now state the main result of this section.

THEOREM 3.7. Let 0 = (A, 9,7) € [A x Clif¥]§¥, and suppose that for a point
u € U, one has ¥, # 0, and the pair (A,¥) is non-abelian in u. Then the image of
the Zariski tangent space Ty[A; x Clif¥]gW under the projection

To[A; x ClLif*]SW — T, (Clif*) = C¥(Hom(AY, P* x, R?))
has infinite codimension.

For the proof of the theorem, we need some preparations:

Note first (using [DK], p. 135) that we may assume that the Sobolev connection
A is in Coulomb gauge with respect to a smooth connection Ag and a fixed smooth
metric gy, i.e.

d°(A—Ay)=0.

Put o := A— Ao, hence Fy = ds,a+aAa+Fy,. The differential operator I'y od4, +
d;go" is elliptic although the metrics go and g, may be different, and it has coefficients
of class C*. Note also that I'yoda, + d;": is an operator between C*-bundles.

The Dirac operator J3° Eg,a, 4—"(c) has coefficients of class C¥. Therefore,

v,a,A =
the pair (o, ) is a solution ofothe non-linear elliptic system
‘w?y,a,Ao‘I’ + 7(0‘)‘1’ =0 _
Ty(daga+aAha+Fay) = (T0),
da -0 .

Writing the left hand side as a function of 27, o*, ¥, 9;a*, 9;¥' (with respect to
a smooth chart and bundle trivializations), we see that this function has class C* in
this system of variables (in fact it is polynomial of degree 2 in the last four group
of variables). It follows, by Agmon-Douglis-Nirenberg’s non-linear-elliptic regularity
theorems ([B], p. 467, Theorem 41) that a, ¥, hence also the pair (4, ¥), have class
Ck+1=¢. It would have class C¥*! if we had chosen a non-integer index k = [k] +¢,
i.e. if we had worked with the Holder space Cl¥l=.

Let sw: Ay x Clif* — A%(Z7);_1 x A%°(ad; ®go)i_1 be the map given by the
left hand side of the equations (SW,,), and put dety := resy o det.
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The tangent space Ty[A; x Clif¥]2W is the space of solutions (A, @,4) of the
linear system

‘a“—(aﬁf’\i:)|0(«43‘i’)+65_§"|o(ﬁ’) =0
dy(dety)(P) = 0.

Denote by
DlU = ker[dq, (dety)] C AO(E+)1

the Zariski tangent space at ¥ to the space DY := dety;'(0) of L? positive spinors
which are degenerate on U.

Theorem 3.7 can now be reformulated as follows

PROPOSITION 3.8. The subspace

() i (sem® e o0))

has infinite codimension in C*(Hom(A!, P* x, R*)).

In order to prove Proposition 3.8 we start by giving explicit formulas for the
partial derivatives above.
The derivative with respect to 7,

((9;_;0|9) : C*(Hom(A', P* xx R*)) — A°(Z7)i—1 x A°(ady ®go)i-1 ,
is given by
")’(VCO,a,A‘II)
1) (a;_w|9> (%) = ( J ) :
z LT,(Fa)E)
The derivative with respect to the pair (A4, ¥),
(‘af:w‘wilo) + Al o)t x A°(ZH) — A°(87)i1 x A°(ady ®go)i-1

is

. Mo,a,A‘i’ + 7(‘4‘)‘1}
o (e ().

: T, (dad) — [(FD)o + (TT)o]

The next two lemmata will translate the problem into a similar one which involves
only Sobolev completions.
Let jF , be the compact embedding

jF | C¥(Hom(AY, P* x, R*)) — A°(Hom(A!, P* x, R*))—1 .

LEMMA 3.9.
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1. The linear operator (‘90—3};’-]9) has a continuous extension to the Sobolev com-

pletion A°(Hom(A!, P* x, RY));_1. More precisely, formula (1) defines a linear con-
tinuous map

ai_1 : A°(Hom(A!, P* x R*));_; — A%(Z7)_1 x A%(ad; ®g0)i—1

dsw -k
73—’Y—|,9 =105, -

2. The space %Ig (Al(go); x DY) is closed in

such that

AO(E_)l_l X Ao(ad_,. ®g0)i—1-

Proof. 1. The first assertion follows easily, since V¢, 0,4 ¥ and F4 have regularity
class C¥—¢, and + has regularity class C¥. Therefore, working in local C*®-coordinates,
the expression

d . _d (1 i< g e N\
(EDGED = 1 (G076 + 616 © Fag) ()
is a linear operator of order 0 with C¥—¢ coefficients in the variable .
2. Decompose Al(go); x A°(ZF), as
Algo)r x A°(Z*), = D?A,W)[AO @0)i+1] @ ker[D?A,\P)]* = imD?A,\II) ® ker[D?A,q:)]*

where Df A,w) are the differential operators in the fundamental elliptic complex asso-
ciated with the pair (A, ¥) and the metric g,. The decomposition is Li -orthogonal.

The subspace Al(go); x DY C A'(go); X A°(XT), is closed, and contains the first
summand imD?A,\I,) by the gauge-invariance property of the degeneracy-condition.

Using the fact that Df 4 4 o D?A,\I,) =0, we get

Osw

5043717 (A" 0)t X D) = Di g [(4" o) x DY) Nker(DYy )] =

= D(IA,@)|k,,(D?A o [(Al @o): x DY) ﬂker(D?A,W))*] .

But D(IA,\II)Ikel’(D?A"P))* :ker(D?qu’))* — AO(E‘)l_l X AO(ad+ ®m0)[_1 is Fred-

holm and the subspace [(A1 @) x DY) N ker(D?A,‘I,))*] of ker(D?A,q,))* is closed, so
that the assertion follows from Remark 3.6.

LEmMA 3.10. If
dsw, \ ' [ Bsw 1 U
V= (B2)  (orasle (440 x 0P))
had finite codimension in C*(Hom(A!, P* x, R*)), then

0
Vis =i (nsle (4ol x DY)
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would have finite codimension in A°(Hom(A!, P* x, RY));_;.

Proof. Suppose there exists a finite dimensional subspace F of the space
C*(Hom(Al, P* x, R?*)), such that

V + F = CF(Hom(A, P* x, RY)) .
Then we have
(V) + 3 (F) = §F 1 (CF(Hom(A', P* x, RY)) € A°(Hom(A!, P* x, R*));_y ,

hence

(4) (V) +3f,(F) = A°(Hom(A', P* x RY))1—1

by the density property of smooth sections in any Sobolev completion.
Therefore, under the hypothesis of the lemma, and using (4) and Remark 3.5, one
gets

() GE1 (V) + 51 (F) = A°(Hom(AY, P* x R*))icy -

On the other hand, we know that 3;}1” lo =ai—1 0 j,’“_l. Therefore

= [jlk—I]—l (Vl—l) ’

which shows that jF , (V) C Vi—1. But Vi_; is closed by Lemma 3.9., hence jF (V) C
Vi—1. From (5) it follows that

Vie + jf (F) = A°(Hom(AY, P* x, R*))_y

which proves Lemma 3.10. O

The proof of Proposition 3.8 is now reduced to showing that V;_; cannot have
finite codimension in A°(Hom(A!, P* x, R*));_;. To prove this, we show that the
sections in Vj_; must fulfill a very restrictive condition, which is not of finite codi-
mension.

Let v € Vj_;. Then, by definition

a1 (v) € 8(A q,)lo(Al(QO)t x DY),

hence there exists a pair (4, ¥) € Al(go); x DV such that

D 0,aY +7(A)T = 9(Vegy,0,47)

T, (dad) — [(#8)0 + (TE)o] = £(T(Fa))() -

Consider now small balls Uy, U, centered in u such that U; € Uy C U, and such
that the following two conditions hold:

1. ¥ is nowhere vanishing on Us,.
Let S*, E be the trivial SU(2)-bundles associated with a SU(2) x SU(2) x
SU (2)-reduction of P*|y,. The connection Cp induces C*°-connections in S*, and
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the pair (4,a) induces a connection B4 (with C*¥+1~¢-coefficients) in E which lifts
the connection A|y, in §(P¥)|y, = P, E/ g1 and the connection aly, in det(P¥)|y, =

det(E). Since ¥ has rank 1 in every point of Us C U, it defines a C¥*+1~¢_splitting
E=L&® M with ¥|y, € A°(ST®L).

2. The second fundamental form b € C¥+1=¢(AL) of L with respect to the unitary
connection B4 (or, equivalently, with respect to A) is nowhere vanishing on Us.

Let I, m be C¥+1~¢ sections of E giving unitary frames in L and M. Then we can
write |y, = s¢ ® !, where s{ is a nowhere vanishing C*+!~-section of S*. Once we
have fixed this trivialization of E, we can identify the connections with the associated
connection matrices, and write By = A + %aid

Recall that b is defined by b := (Vp,I,m), and for any section ¢l of L one has
VB, (pl) = VB, (pl) + pb®m, where By, (resp. Bj) are the connections induced by
By in L (resp. M).

By the Dirac harmonicity condition, one has, taking the component of Mg,a, AY
inS" @M,

7(0)(sg) =0

Denote by Sy the rank 1 subbundle of S* generated by the section sg, and by Sg-
its orthogonal complement. Let ¥; be a path of spinors with ¥ = ¥ and det(¥;) = 0.
Derivating it in 0, we get that the component of @ in Sg-® M must vanish. Therefore,
the restriction ¥y, of an element ¥ € DY = Ty (DY) must have the form

Uy, =6t @l+(sf@m, o+ e L}(S*|y,), (e L}({U,C).

Take now the component in (S~ ® M)|y, of the restriction of the first equation
to U;. Put Vp,,(m) = A ® m, where X is a C¥~¢ pure imaginary 1-form.
One gets the following equation on Uy :

(6) Po(LsE) + CyN(sF) +v(0)(67F) +v(AD)(s5) = v(b)(sF) -

Here Eg : A%(St);, — A%(S7)s—1 , s < k, stands for the Dirac operator associated
with the Spin(4) structure on (Us, g4) defined by y and the SO(4)-connection Cp|y, in
RSU(S*,S7). E?, is a first order elliptic operator with C*-coefficients. The complex
1-form A? is the component of A written in the matricial form with respect to the
decomposition £ =L & M.

The idea to prove Proposition 3.8 is the following:

By the properties 1., 2. above it follows that, varying v in the equation (6), one
can get all the L} ;-sections of the rank-2 bundle (S~ ® M)|y,. But on the left of
the same equation one has a differential operator of order 1 with C*¥~¢ coefficients i in
(¢,6F, A?) which has a non-surjective symbol: only the complex valued function ¢,
which is a section in a rank-1 bundle on Uj, is derivated on the left.

The problem comes down to showing that the map L? — L} | associated with
such an operator, cannot have a range of finite codimension.

We define the following operators:

resy, : A°(Hom(A!, P* x, R*));—1 — A°(Hom(A', P* x- R*)y, )i—1
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evb,sg : AO(HOm(Al,Pu X R4)U1)l—1 — AO(S—|U1)1_1 , v — v'(b)(sbl') ,
P51 : A°%(S™ |u 1o — A°(S*F|u, )iz

prt : A°(S oy iee — A%(Syluy )iz -

Here [Dg]‘ is the Dirac operator associated with the connection Cp and the Clifford
map 7~ : Al — RSU(S™,S8T) given by

In general, the operator [IDS]‘ is not the formal adjoint of lD?,, because v~ 1(Co)
can have non-vanishing torsion, but it has the same symbol as [Eg]* and it is an
operator with CF-coefficients. The associated Laplacian [[#9]~ OES has scalar symbol
given by £ = —g,(¢, §)ids+.

LEMMA 3.11.

1. The operators resy,, pr+ are surjective.

2. The image of the operator [P3]~ : A°(S~|u,)i-1 — A°(S*|v,)i—2 has finite
codimension.

3. The operator €Vp o 1S surjective.

Proof. 1. The surjectivity of resy, follows from the extension theorems for
Sobolev spaces ([Ad], p. 83); the surjectivity of prt is obvious.

2. The fact that the image of [B9] : A°(S™|v,)i-1 — A°(ST|v; )i—2 has finite
codimension follows from the general theory of elliptic operators (see for instance
[BB]); It can also be directly verified as follows: We may suppose that X is the
4-sphere S* and that S*|y, are the restrictions to U; of the spinor bundles S'*
associated with a Spin(4)-structure on S* whose Clifford map ' extends v|y,. We
can also find a connection Cj in the associated SO(4)-bundle extending Co|g, -

The image of [[#9]~ contains the image of the composition resy, o [2,]~, where
[P5]~ : A°(S'");—1 — A°(S'F),_3 is the Dirac operator on the sphere associated
with (')~ and Cj. But resy, is surjective and [§3,]~ is Fredholm.

Note that [D?Y]‘ is in fact surjective, if U; is sufficiently small.

3. The surjectivity of ev, ot is the crucial point in which the fact that sg and b
are nowhere vanishing on Us is used in an essential way.

We begin by choosing a smooth Clifford map

Yo : A%Jz — Pule X ]R4

such that yo(b) : ST — S~ is an isomorphism in every point u € Us.

This can be achieved as follows: We know that v(b)(s¢") = 0, so the determinant
det(y(b)) of the induced morphism (b) : S* — S~ must vanish. Therefore g5 (b) =
det(y(b)) = 0, hence the real forms Re(b), Im(b) have pointwise in Us the same (non-
zero !) g,-norm and are pointwise g,-orthogonal. It suffices to choose vy such that
Re(b), Im(b) are nowhere g,,-orthogonal on Us. With this choice 7o (b)(sg) will be a
nowhere vanishing section of S~ on Us.

Let now s' € A°(S~|y,)i—1 be an arbitrary L? |-negative spinor.
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One can find a unique L} ; section § € A°(RSU(S~,S57)|v;))i-1, such that
8(v0(b)(sg)) = s": To see this, one uses the bilinear bundle map

RSU(S~,5") x §~ —s S~ .

The section ¢ is obtained by fibrewise dividing (in the quaternionic sense) s’ by the
smooth nowhere vanishing spinor 7o (b)(sg) which is a C¥~*-section on U, D Uj.
One also has a bilinear bundle map

RSU(S*,S™) x RSU(S™,5~) — RSU(S*,S7)

which in local coordinates looks like quaternionic multiplication.
Now define the L? ,-morphism v' : Aj;, — RSU(S*|v,, 5~ |v,) by

v'(a):=6-[n(a)], YaeAy, .
This morphism defines a section in
A°(Hom(Ay, , Py, xx R*);—1 = A°(Hom(Ay,,RSU(S, 57)|u,)i-1
which acts on complex 1-forms a by
v'(@)() = d[r(@)()] -

In particular, v'(b)(sg) = 8[vo(b)(sg)] = s'. O

After these preparations we can finally prove Proposition 3.8.

Proof. We have to show that V;_; has infinite codimension in

A°(Hom(A', P* x. R*));_; .

Take v € Vj_; and apply [pr o [#9]7] to both sides of (6).
. On the left, the only term containing second order derivatives of the sections
(¢, AY) is

[pr o PO71@5(¢s3)) -

But, denoting by i the bundle inclusion U; x C — St |y, z — zs{, one sees that
the 2-symbol of the composition

prie (I3]0 ] oo

vanishes, since the symbol of the Laplacian [ g]‘ 0133 is scalar.
Therefore, applying [prt o [M?,]‘] on the left, one get§ an e)fpression containing
only first order derivatives of the Sobolev L7 sections ((,6%,A?), hence an L? ;-

section of Sy.
On the other hand applying [prt o [Eg]‘] on the right of (6), one gets precisely

[prJ' o[y o evy ot © resul] (v) .
Now consider the operator

= [pTJ‘ o[BI o €vy g+ 0 resUI] : A°(Hom (A, P* x R*))1—y — A°(Sg-|u, )i
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and the following exact sequence
im(P A%(Sq)i-
0 — im( )/P(Vi_1) o A%(So ) 2/P(Vl—1) — coker(P) = 0.

We have seen that P(V2_1) is contained in A%(Si);—1, which has infinite codi-
mension in AO(S0 )i—2.2

Therefore A%(Sy - 2/ P(Vi_1) has infinite dimension. By Lemma 3.11 coker(P)
has finite dimension, so that im(P) / P(Vi_1) must have infinite dimension. But

im(P)/P(Vl_l) is a quotient of

A°(Hom(AY, P* x, RY)),— 1/‘/2
-1

so that the latter must also have infinite dimension. O

Let M*, DMY; be the moduli spaces

* . SW,
M* = [A % Clif¥] W/

gl+1 ’

_[Ar xCli SW
DM} = A if*l5 /Qz+1 ,

where the upper script ( )* denotes the subspace with non-zero spinor component.

COROLLARY 3.12. Letp = (A4,¥,7) € [Af x Clif’“][s,w" such that for someu € U,
U, # 0 and (A, ¥) is non-abelian in u. Then the Zariski tangent space Tj,y DMy, has
infinite codimension in Ti,M*. In particular, Tj; DMY% has infinite codimension in
T M* for every solution p with non-abelian (A, ¥)-component.

Proof. We have

. dsw ™!
prr (cuige)(TippM™) = By [ (o) (A @) x A°(Z), )] ,

and the vector space D%A,\IJ) (A(go); x A°(E1);) has finite codimension in A%(X7);_; x
Ao(ad+ ®90)1_1 .

Therefore, also the image of T}, M* under the projection to T, (Cli f k) has finite
codimension.

But, by Theorem 3.7, the image of Tj;DMY% under the same projection has
infinite codimension. This proves the first assertion.

The second assertion follows from Aronszajin’s unique continuation theorem and
the fact that the vanishing locus of an harmonic spinor cannot separate domains [FU].
Alternatively, one can use the Unique Continuation Theorem for monopoles [FL] to
see that a mnopole with non-vanishing spinor component, and which is -abelian on a
non-empty open set, must be globally abelian.

Therefore in the condition of the proposition we can find a point z € X with
¥, # 0 such that (4, ¥) is non-abelian in z. O

Using this result we can prove that for a generic Clifford map 1, the only degen-
erate solutions in the moduli space M* N poz fL( ) are the abelian ones. The idea is
the following:

3We used here the following simple remark: The space of L?_l-sections in the space of L,2_2
sections in a bundle has infinite codimension. Note that L12—1 is nonetheless dense in le_2.
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Let DM$ C DM be the subspace of DM?% consisting of solutions with non-
abelian (A, ¥)-component. We have proven that DM$ has infinite codimension in
M*. Since the projection DM — Clif* has "index —oc0”, the generic fibre should
be empty. There are of course two serious problems with this argument:

1. DMY% is not smooth.

2. The restriction of the projection DM$% — Clif* to the smooth part is not
Fredholm.

The idea to preceed is to weaken locally the equation defining DM$, such that
the resulting spaces of solutions become smooth manifolds which are Fredholm of
negative index over Clif*. This can be achieved, since DM$ is embedded in the
space M?*, which, though possibly singular, is Fredholm over Cli f*.

In order to carry out this idea, we will need the following two general lemmata.

Let f be a smooth map taking values in a Banach space, and denote by Z(f) its
vanishing locus. For a point p € Z(f) define the Zariski tangent space to Z(f) in p
by

Tp(Z(f)) = ker(dy f) .

LeMMA 3.13. Let ¥ be a Banach manifold, p € ¥, E a Banach space, and
s:X — E a smooth map such that s(p) = 0. Suppose

i) kerdps has a topological complement.

i) imdps is closed and has a topological complement.

Then there exists an open neighbourhood ¥' of p in ¥ and a submanifold W of
containing p, such that

1. ¥'NZ(s) is a closed subset of W.

2. T,(2(s)) = T(W).

Proof. Put T := imd,s, and denote by prr the projection on T associated with a
topological complement of T'.

The composition prr o s is a submersion in p, since its derivative in p is surjective
and ker(d,(prr o s)) = ker(dps) has a topological complement by assumption. Let X’
be an open neighbourhood of p such that prr o s is a submersion in every point of ¥'.

Then

' N 2(s) = £ N Z(prr 0 5) N Z(s) = Z(prr o s|)) N Z(s) -
Therefore, taking W := Z(prr o s|s)), claim 1. follows. Clearly

Tp(W) = ker(dp(prr o s)) = ker(dps) = Tp(Z(s)) .

LEMMA 3.14. Let W be a Banach manifold, E a Banach space, p € W, and
§: W — E a smooth map such that ker(d,d) has infinite codimension in Tp(W).
Then, for every n € N there exists an open neighbourhood W, of p in W and a
codimension n submanifold V, of W such that W) N Z(d) is a closed subset of V.

Proof. Since ker(d,d) has infinite codimension in T,(W), it follows that im(d,d)
has infinite dimension. Let F), C im(dpd) be a subspace of dimension n, and prg,, the
projection associated with a topological complement of F,, in E. The composition
prr, o0 is a submersion in p. Indeed, the derivative in p is surjective and the kernel of
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the derivative is closed of finite codimension, hence it has a topological complement.
Let W), be an open neighbourhood of p such that prg, o d is a submersion in every
point of W,,. Then

W,Ilﬂ Z(é) = I/V,,;ﬂZ(p’l'F'l Oé)ﬂZ((S) = Z(ern 06|W4) I"IZ((S) .

Take V,, := Z(prr, o dlw: ). O
LEMMA 3.15. Every non-abelian point [p] € DMY% has a neighbourhood Upy,

* - ok
which is a closed analytic subspace of a submanifold Vi, C [AF x Clif ]/§z+ | such
that the projection Vi) — Cli f* is Fredholm of negative indez.
Proof. Put p = (6,7) with § € Af and v € Clif¥. Consider a slice Sp C
6 +ker(D3)* C Ay through 6 to the orbits of the G,.1;-action, such that the restriction
of the canonical projection to Sy defines a parameterization of the quotient Al /gl+1

around [f].

Note first, that the image T' of the differential dp(sw|s, xcuisx) is closed and has
finite codimension in the Hilbert space A°(X7);—1 x A%(ad+ ®go)i—1.

Indeed, T contains the image of %lp , which is the operator D} associated

with the deformation elliptic complex of the solution § = (A, ¥), and the image of D}
is already closed of finite codimension.
Now put X := Sp x Clif*, and note that the restriction

q:% — [A] x C'Mfk]/gl_'—1

of the canonical projection is a parametrisation of the Banach manifold
Ar x Clif*
[A; f ]/gl+ , around [p].

Claim: Put s := sw|s. Then the projection

TySp x T, (Clif*) D ker(dps) — T (Clif*)

is Fredholm. In particular ker(d,s) has a topological complement in the tangent space
TP(E) = TpSp x T.Y(Cl’ifk).

Indeed, the kernel of this map is H} and its image can be identified with the

-1
subspace (%‘%ﬂ) [imDjg], whose codimension is at most dimHZ. If A is a topolog-
ical complement of Hj in TSy = ker(D9)* and F' is a topological complement of
-1

(%‘7’”) [imD}] in T, (Clif*), then (A x {0}) ® ({0} x F) is a topological complement
of ker(dps) in TpSy x T, (Clif*).

Applying Lemma 3.13 to the Banach manifold ¥ and the map s, we get a neigh-

bourhood ¥’ of p and a submanifold W such that ¥’ N Z(s) is a closed subset of W
and

Ty(W) = Ty(2(s)) = Ty (M) .

The restriction det |y of the determinant map det : £ — A%(det(P%)); satisfies
the hypothesis of Lemma 3.14.
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Indeed,

kerdy(det |w) = ker(d,(det |s)) N Tp(W)
= ker(d,(det |5)) Nkerdp(sw|s) =~ T[p)(DMX%),

which has infinite codimension in Tjy (M*) =~ T,(W) by Corollary 3.12.

Using now Lemma 3.14 we get, for any n € N, an open neighbourhood W}, of p
in W and a codimension n submanifold V,, of W such that W N Z(det |w) is a closed
subspace of V,.

Let ¥/ C ¥’ be an open neighbourhood of p in ¥ such that

W, =%,NW.
Then we have

£, NgH (D M) = Z(suls, ) N Z(det |z,

=Z(prr o S’wlga) n Z(Swlza) N Z(det Izi.)

=W, N Z(swls,) N Z(det|s:) = [W, N Z(det |w: )] N Z(sw|s: ) .
Therefore X, Ng™1 ((DMY) is a closed subspace of [W,, N Z(det |w: )], which is closed

in V.
On the other hand we know that the projection

T,(W) = ker(dps) — T,Clif*

is Fredholm. Since being Fredholm is an open property, we may assume (taking X'
small) that the projection of W on Clif* is Fredholm of constant index.
Now choose n larger than the index of this projection, and put

Vig) = a(Va) , Uppp = a(2, N g H((DMY)) = g(2,) N DM .

COROLLARY 3.16. The set
{y € Clif¥| DM% n pralli s+ (7) contains a non — abelian pair}

is a set of the first category in Clif*.

Proof. Indeed, let again DM$ be the open subspace of DM?% consisting of solu-
tions with non-abelian (A, ¥)-component. By Lemma 3.15 and the Lindelof Theorem
([Ke], p- 49) we can find a countable cover (U;); of DM$ such that every U is a closed

* - rk
analytic subspace of a smooth submanifold V; C [A7 x Clif ]/gl+ L which projects on

the parameter space Clif* via a Fredholm map of negative index. Since Fredholm
maps are locally proper [Sm], it follows that prgy;px(DM%) is a countable union of
closed sets; each of these closed sets is contained in a set of the form prgy;zx (V3),
which is of the first category, by the Sard-Smale theorem. O

Corollary 3.12, Lemma 3.15, Corollary 3.16 hold for every family of order 0-
perturbations of the equations which contains the perturbations of the Clifford map
which we have studied above. We need the following particular case:
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Define the space of parameters P* by
Pr = CF(P* x, C!) x C¥(GL(ady)) x Clif* .
Recall that a section 8 in the bundle
P* x, C!* = Hom(Z},£7) C Hom(Z+,27)

defines an order 0-operator A%(X1) — A%(Z7), commuting with the gauge action.
Consider now the equations

‘X -wg,a, 4 + IB(W)
(5We) { T

0_
K(¥%),

for a system
(A,9,8,K,7) € A:= AGB(PY)); x A°(T*), x P* .

Let [A; x P’“]SW“ ([Ag x Pk]lsjw“) be the space of solutions of the equations (SW,)

(whose spinor component is degenerate on U), and denote also by M* (DM :,) the
moduli space of solutions (whose spinor component is degenerate on U) with non-
vanishing spinor component.

PROPOSITION 3.17. Let p = (A, 9,06,K,7) € [A x ’Pk]gw“ such that for some
u € U, ¥ #0 and (A, V) non-abelian in u. Then the Zariski tangent space T[p]m:,
has infinite codimension in Tj; M*.

Proof. Consider the image of Tp([A; % P’“][S,W") under the projection to the tangent
space T(g,k,,)P* . This image has again infinite codimension. To see this it is enough
to notice that the intersection of this image with the subspace {0} x {0} x T,Clif*
has infinite codimension in {0} x {0} x T,Clif*. But this follows by precisely the
same arguments as in Theorem 3.7; one just has to replace the equations (SW,) by
their (3, K)-perturbations. The left hand side in the crucial identity (6) will only be
modified by the O-order term (A(sg). O

Using this result and the same arguments as above, we get

COROLLARY 3.18. The set
{p € P*| 57(4} n pr,‘,i (p) contains a non — abelian pair}
is a set of the first category in P* .

We can state now our generic regularity result:

THEOREM 3.19. There is a dense second category subset PY of P* such that for

every p € P§ the moduli space Mp = M* ﬂpr;i (p) s smooth away from the abelian
locus.

Proof. We know by Theorem 3.1 and Remark 3.2 that M* \ 2’?—7\4; is a smooth
manifold. Applying the Sard-Smale theorem to the Fredholm map

M*\ DMy — P*
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it follows that there exists a first category subset P¥ C P¥ such that the moduli space
[M*\ DM x]Npry.(p) is smooth for every p € P*\ PE. Let P} be the first category
set given by Corollary 3.18, and take P§ := P*\ (P |JP}). O

Finally consider the following parameterized ASD-Spin®- equations

{mg,a,Aw+ﬂ(m) =0
I'y(Fa) =0

for a system (4, ¥, 8,7) € AB(P*)); x A°(Z+); x C*¥(P* x, C*) x Clif*.

Let M™ be the moduli space of solutions with non-trivial spinor component,
and let P'* be the parameter space P'* := C*¥(P* x, C*) x Clif*. Denote also by
DM’ the subspace of solutions with degenerate spinor component, and by M.%, the
subspace of solution with reducible connection-component.

Using the methods of section 3.2, one can prove the following partial transversality
result

PROPOSITION 3.20. Suppose that the base manifold is simply connected. Then
the moduli space M"™ is smooth away from the union DM'% |J M

red*
Proof. Indeed, let p = (A,9,08,7) be a solution with non-degenerate spinor
component and non-reducible connection component, and suppose as in the proof of
Theorem 3.1 that (®,S) is Lgﬁ -orthogonal on the image of the differential in p of the

map cutting out the space of solutions. Using variations 8 of B one sees that ® must
vanish on a non-empty open set. But using variations of ¥, it follows that ® must
solve a Dirac equation, hence by Aronszajin’s unique continuation theorem, it must
vanish on X. Then using variations 7 of v we get as in [DK], p. 154 that S =0. It is
enough to notice that A is g,-ASD, and that any variation of the metric g, is induced
by a variation of the Clifford map «. O

In the proof of Theorem 3.7 we have only used the Dirac equation and the el-
lipticity (modulo the gauge group) of the system . Therefore the same arguments as
above give the following important

THEOREM 3.21.

1. There ezists a first category subset Py C P'* such that for every p € P'* \ Pk
the only solutions with degenerate spinor component in the moduli space M'™* ﬂp,‘,,lk (p)
are the abelian ones.

2. If the base manifold X is simply connected, there exists a dense second category
subset Pg¥ C P'™® such that for every p € P¥ the Spin®-moduli space M™ Npo;.(p) is
smooth away from M'* ﬂp;;,lk (p).

red

The results above are sufficient to go forward towards a complete proof of the Wit-
ten conjecture. Moreover, one can use the same method to prove a generic regularity
theorem along the abelian part of the moduli space. More precisely, let Mgb C MI*J be
the abelian part of the moduli space M;‘J of solutions of the monopole equations asso-
ciated with the perturbation parameter p. The space Mgb can be identified with the
disjoint union of the Spinc-Seiberg-Witten moduli spaces associated with the abelian
reductions of P* ([OT5], [OT7], [T1]).

Let [p] € Mgb be an abelian solution. The elliptic deformation complex Cp of p
splits as the sum

D =Cgb@Np
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where the first summand Czb can be identified with the elliptic deformation complex
of p regarded as solution of the abelian monopole equations, and N, is the so called
normal elliptic complex of p. .
The union ’H;l, = |J H!'(Np) is a real analytic space which fibres over M2P,
[pleMp®
but in general is not locally trivial over Mgb, and local triviality cannot be achieved

in the class of S'-equivariant perturbations.
Using the method from above one can prove

PROPOSITION 3.22. For a generic parameter p € P*, the complement of the zero
section in 7-[;13 is smooth of the ezpected dimension in every point.

4. The Uhlenbeck compactification.

4.1. Local estimates. The essential difference between the anti-self-dual and
the monopole equations is that the latter are not conformal invariant. Under a con-
formal rescaling of a metric g — § = p?g on a 4-manifold X, the associated objects
change as follows

g* =p~2g* on 1—forms; woly = plvoly ; s5=p s, +2p"2Ap

E;t = ©F (as Hermitian bundles), 5 = p~1y; T=p2T; P;=p2P,0% .

A standard procedure used in proving regularity and compactness theorems for
instantons is the following: restrict the equations on small balls in the base manifold,
and then rescale the metric. In this way, using the conformal invariance of the equa-
tions, one can reduce the local computations to the unit ball endowed with a metric
close to the euclidean one.

A similar procedure will be used in the case of PU(2)-monopoles. The problem
here is that the perturbed equations depend on a much larger system of parameters
(data). Using constant rescalings of the Clifford map (and hence of the metric), we
show first that one can reduce the local computations to computations on the unit
ball endowed with a system close to a system of "standard data” (see Definition 4.4).

First of all notice that if (4, ¥) € A(6(P¥)) x A°(X*) is a solution of the non-
perturbed PU(2)-monopole equations SW¢ for the metric g with respect to the
SpinV () (4)-structure o, and if p is a constant, then (A,p~!¥) is a solution of the
monopole equations SW7 for § = p?g with respect to the SpinU(? (4)-structure &
defined by the correspondingly rescaled Clifford map ¥ = p~!

The case of the perturbed equations is more delicate. F1x a SpinV? (4)-bundle
P, To write down the general perturbed PU(2)-monopole equations we considered,
one also needs a system of data of the form p = (v,C,q, 5, K), w 1ere v is a Clifford
map (see Definition 3.3), C is an SO(4)-connection in P* x . R*, .. is a connection in
the line bundle det(P*“), 3 is a section in P* x . C*, and K is a section in End(ad, ).

The rescaling rule is:

REMARK 4.1. If (A,0) € A(5(P¥)) x A°(Z+) solves the perturbed PU(2)-
monopole equations associated with the data (v,C,a,B,K). Then (A,p~'¥) solves
the perturbed PU (2)-monopole equations associated with the data

(p™'v,C,a,p7' B, K).

Let B be the standard closed 4-ball with interior B. Fix two copies Hy of the
quaternionic skew-field H regarded as right complex and quaternionic vector spaces



416 A. TELEMAN

and consider the two trivial SU(2)-bundles S5 := B x Hy.. Let also Ey = B x C? be
the trivial Hermitian rank 2-vector bundle on B.

Let P be the trivial SpinV(?)(4)-bundle associated with Si, Eo via the morphism
SU(2) x SU(2) x U(2) — SpinU?)(4) (section 2.1, Prop. 2.2).

A Clifford map for P* is an orientation preserving linear isomorphism -y : Ai‘a —
Homy(Sy,S;) = B x H. To every such a Clifford map v, we can associate the
constant Clifford v¢ given by the composition

AL — B x AL 2T, B
Note that the corresponding metric g,- is flat.
Denote by h, : B —s B, C B the homothety of slope r < 1.

REMARK 4.2. The Clifford maps vr := rhl:(v|B,.) converge in the C*-topology
to Yo, which is a Clifford map for the flat metric g,. In particular the metrics
gr '=T72h2%(g) converge to the flat metric ge.

Indeed, one has

(@A) = 7((e)s (2, N)) = 7y (rz, 7 X) = A(rz, A)

The data of a PU(2)-connection A € :4(3(P5‘)) is equivalent to the data of a
connection matrix, i.e. an element in A'(B,su(2)). Similarly, the data of a U(1)-
connection in det(P¥) is equivalent to the data of a 1-form in A!(B,u(1)).

REMARK 4.3. Let (A, %) € AG(P)) x A°(Z+(Pg)) be a pair which solves
the monopole equations for the data (7v,C,a,p,K). Then (h:(A),rh;(¥)) solves the
PU(2)-monopole equations for the data (v, hi(C), hk(a),ThE(B), hi(K)).

Note that,asr — 0,

1. 4, = ~° (which is a Clifford map for the flat metric g,),

2. rhi(B) = 0, h}(K) — K(0), h;:(a) converges to the flat connection in BxC =
det(Fg"),

3. h}(C) converges to the flat connection in B x H, and

4. v71(h:(C)) converges to the flat connection in (A} = B x R, g,), which is
precisely the Levi-Civita connection for g.c).

DEFINITION 4.4. A system of data for the bundle P§* will be called a standard
system, if it has the form (9, Co,0,0,Kp), where: -y is the standard identification
Ay = BxR* — B xH, Cy the flat SO(4)-connection in BxH, and Ky is a constant
automorphism of the trivial bundle su(Sg) = B x su(2)+.

The metric associated with the standard identification Ay, = BxR* -+ B x H is
the standard Euclidean metric go on the ball. _

For any K, € End(su(2)), let px, be the standard system of data on B defined
by Ko.

Let X now be 4-manifold, and P* a SpinU(®)(4)-bundle on it. Let 2 be a point
in X and U an open neighbourhood of zy. Fix an identification of P*|y with the the
trivial SpinU(® (4)-bundle on U, i. e. with the SpinV? (4)-bundle associated with
the triple U x H., U x C? (see section 2.1).

Given a system of data (7v,C,a,(3,K) for P*, we consider a parameterization
B,, 4, U ¢ X around zo such that f(0) = zo and 7|A;0 o [f:]ay is the standard

identification A} = R* — H.
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REMARK 4.5. For any pair (A, ¥) solving the monopole equations for the data
(7,C,a,B,K), the pair ((f o hy)*(A),7(f o hy)*(¥)) solve the monopole equations as-
sociated with the system

(f* (N, (f 0 he)*(C), (£ © hy)*(a), 7(f 0 hr)*(B), (f © hr)*(K)) .
This system converges to a system of standard data on the ball, sr — 0.

Therefore, as long as we are interested only in local computations, we can work
on the standard ball and assume (via the transformation defined in Remark 4.5) that
our system of data belongs to a small neighbourhood of a standard system.

We recall now the following important ”gauge fixing” theorem (see Theorem 2.3.7
in [DK]).

THEOREM 4.6. (Gauge-fizing) There are constants €1, M > 0 such that the
following holds:

Any connection A on the trivial bundle Eo over B with || F ||12< €1 is gauge
equivalent to a connection A over B with

(i) d5A = 0, where d is the normal adjoint of d with respect to the standard flat
metric go.

(i) lim, 1 A, =0 on S3,

(iii) || A ll2< M || F Il

The corresponding gauge transformation is unique up to a constant matriz.

Using this result we can prove the following

THEOREM 4.7. (Local estimates for data close to the standard data) There is a
positive constant e = €2(Ko) > 0 such that for any system of data p' on B which is
sufficiently C2-close to the standard system py,, the following holds:

For any solution (A, ¥) of the PU(2)-monopole equation for the monopole equa-
tions associated with p over the open ball B satisfying the conditions djA = 0,
Il (A,9) ||z+< €2, and any interior domain D € B, one has estimates of the form

I} (4, 9) llL20)< Copr | (A, %) |Ize
with positive constants Cp 1 p, for all 1 > 1.

Proof. First of all we identify the ball with the upper semi-sphere of S := S* and
we endow the sphere with a metric g; which extends the standard flat metric go on
the ball, and which has non-negative sectional curvature?.

We fix a Spin(4)-structure on the sphere with spinor bundles SF given by a
Clifford map v, : Ay — Homy(SF, S;), which, with respect to fixed trivializations
S*|5 = B x H., extends the standard Clifford map o on the ball. Let also C; be the
Levi-Civita connection induced by 7 in Homz=(S;, ;). Its restriction to the ball is
the standard flat connection Cg in B x H. Let finally K, be an extension of K to an
endomorphism K € A%(End(su(S7))).

4Such a metric can be obtained as follows: consider a plane convez curve with symmetry axis
Oy, which is horizontal in a neighbourhood of its upper intersection point with Oy. Then rotate this
curve around the Oy-axis in the 5-dimensional space R* x Oy . The hypersurface obtained in this
way is also conformally flat, by a theorem of E. Cartan (see [GHL], p. 157, [Ch], Th. 4.2, p. 162)
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We denote by E; the trivial .U(2)-bundle over S, and by P¥ the SpinV(3(4)-
associated with the triple (ST, E;). P¥ comes with an identification P¥|z = P¥,
induced by the fixed trivializations of SZ.

The system (7s,Cs, 0,0, K;) is an extension on the sphere of the standard system
ps := (70, Co,0,0, Ko). The point is now that any system p’ of data which is close to
Pk, has an extension p which is close to ps.

Put p = (v,C,a,8,K) = (q,K). The system q defines two first order elliptic
operators on the sphere

Pq . ASF@E,) — A(S- ® E,)
dyi=di+T,0d : Al(su(2) — A%su(2)* @ A%(su(S}) ® su(E;))

The symbol d* means the adjoint of d : A%(su(2)) — A'(su(2)) with respect to the
fixed metric g, and Pq := IS + B+ v(2). A%(su(2))* denotes the L2 -orthogonal
complement of the 3-dimensional space of constant sections.

These operators are injective in the special case ¢ = q5 := (vs,Cs,0,0), by
the Weitzenbock formula for the Dirac operator and because the cohomology group
H}z(S) vanishes. Since the coefficients of both operators in local coordinates are
algebraic expressions in the components of q, it follows by elliptic semicontinuity that
the two operators remain injective if q is sufficiently C%-close to gq,. Denote by Dq the
direct sum of these operators. We get operator valued maps

q— Dq (S
Iso [A°(St ® Es ® A'(s5u(2)))k+1, A%(Sy ® Es @ su(Sy) ® su(Es)k @ A®(su(2))i]
which are continuous with respect the C*-topology on the space of data q on the

sphere.
Therefore one has elliptic estimates

(eli) lw llzz,, < const(a) || Dqu Iz

where const(q) depends continuously on q w. 1. t. the C*-topology. In a sufficiently
small C2-neighbourhood of q; one has the following estimates with g-independent
constants

(el) 1w llzz, < eonst || Dgu [z
Since Dy is a first order operator, we have an identity of the form:

(*) Dq(pv) = ¢Dg(v) + Aq,0,(v)

where Aq,s, is an operator of order 0 depending on q and depending linearly on the
first order derivatives of (.

The first step is an input-estimate for the L2(D)-norms:

Denote by u the pair (A, ¥). Let 1 be a cut-off function supported in the open
ball B which is identically 1 in a neighbourhood of D. Then u; := @;u extends as
section in the bundle A(su(2)) ® S} ® E; on the sphere.

Taking into account that u solves the monopole equations associated with the
data p’, its connection component is in Coulomb gauge, and that p = (¢, K) extends
p’ one gets by (x)

(1) Dg(u1) = Ag,00, (u) + 1 {—F.,(A A :,4(),41\1}((@)0]
= Aq’g(pl (u) + 1 B’y,K(u)
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where B, g is a quadratic map.
Then by (el) we obtain an elliptic estimate of the form

lur llzz < el Dgua llz2< ([ w llZs + Il dp llpall w llzs)
<c"(ullzall wllzz + Il deollzsll w llzs)

where, for the second inequality we have used on the right the bounded Sobolev
embedding L? C L*. The constants c, ¢' can be chosen to depend continuously on p,
so that we can assume that they are independent of p on a small neighbourhood of
ps. We use now the standard rearrangement procedure described in [DK], p. 60, 62.
For a sufficiently small (independent of D) apriori bound €(Kjp) of the norm || u ||z,
we get an estimate of the type )

| w1 llz2< constp [ u s -
The constant constp in this estimate is independent of p in a sufficiently small neigh-
bourhood of ps, but it depends on D via || dy: ||zs.

In a next step we estimate the L3-norms:
Put us = pou, where - is identically 1 on D, but the support suppys is contained
in the interior of 7! (1). Then we can also write us = @ou;, and we have Ag,ap, (u) =

Aq,00, (u1)-
We estimate first the L2-norm of the right hand side of the formula obtained by
replacing ¢; with ¢ in (1) . We find

) Il Da(us) llz2 < const || s By i (ur) llz2 +constp |l ur llzs

and again we can assumethat the constants do not depend on q. The term 2B,y g (u1)
can be written as B, i (¢2u1 ®u1), where B, g is the linear map defined on the tensor

product (Al(su(2)) ® S} ® E’s)®2 associated with the quadratic map B, k.

In local coordinates we can write:

8i[B%K(%ul ® u1)] =3i(Bv,K)(<P2 ®u1) ® uy +B'1,K [0i(pau1) @ us +u1 ® (p20;u1)]
=0;(By,x) (2 ® u1) ® u1+ B, i [0i(pau1) ® ur+u1 ® 8i(paur) — 8 (p2)ur ® uq)

This gives an estimate of the form
| By, k(021 ® us) |22 < const || uz ||zl w1 ||z +constp || w1 ||zs ,
which together with (2) and (el) gives
| wz [lp2< const || ug |||l va llzs +constp(ll uy llzz + || ua l|zs) -

By the same rearrangement argument and using the existence of a bounded in-
clusion L3 C L}, we get, for a sufficiently small, independent of D, apriori bound of
|| w||z4, an estimate of the form

Il uz [|p2< constp || u|lLs -

The estimates for the third step can be proved by the same algorithm, using the
existence of a bounded inclusion L% C L.
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Since L2 is already a Banach algebra, the estimates for the higher Sobolev norms
follow by the usual bootstrapping procedure using the estimates (el;). Note in partic-
ular that we no longer need to use the rearrangement argument, so we do not have to
take smaller bounds for || u ||z« to get estimates of the higher Sobolev norms, so that
a positive number €, = £(Kjp) (independent of  and D !) with the required property
does exist. O

Let V., F Hermitian vector spaces of rang 2. One can easily check that there exists
a universal constants ¢ > 0, C, C; > 0, C2 > 0 such that for every K € End(su(V4))
with |K —id| < ¢, and every ¥ € V; ® F the following inequalities hold

(3) CiIT? < |K(TT)o| < Co| T

(4) CIE* < (K(TT)o, (T)o) = (K(TTF)o(T), ¥)

From now on we’ll always assume the last component K of a system of data
(7, Co,a, B, K) satisfies in every point z the inequality |K (z) — idaq, | < e.

COROLLARY 4.8. (Estimates in terms of the curvature) There exists a constant
€ > 0, such that for any system p' of data on the closed ball which is sufficiently
C?%-close to a system of standard data (v, Co,0,0, Ko) with |Ko—id| < e the following
holds:

For any interior ball D € B and anyl > 1 there ezist a positive constants Cp v,
Cb,l,p' such that every solution (A, ¥) of the PU(2)-monopole equations on B asso-
ciated with p' satisfying || Fa ||2< €, is gauge equivalent on B to a pair (A, ¥)
satisfying the estimates

~ ~ 1
Il Allzzp)< Coap 1 Fallee , 19 ll2p)< Cpupr 1 Fallzs -

Proof. Note first that all the pairs (A, ¥) with || Fa [|12< €1 are gauge equivalent
to pair (A, ¥) whose connection component is in the Coulomb gauge with respect to
the trivial connection and such that

(5) I Allz< M || Fgllze

Since now the constant K is supposed to belong to the bounded set B(id,¢) the
conclusion of Theorem 4.7 holds for a constant €, which can be chosen independently
of Ko.

On the other hand, by the estimate (3) and the second monopole equation, one
has

. 1 1 V2 o 4e, 1 V2 1
©)  N¥les < ITyFED N =TI F; ™" 7 <31 Faliz
¥ Clz 9,71 012 941 12 9.,’1

Since v is supposed to belong to a small neighbourhood of g this gives an uniform
~ 1
estimate of || ¥ ||4 in terms of || F ||2,. Using the bounded inclusion L? C L*, and

the estimates (5), (6) we see now that the L* norm of the pair (4, ¥) can be made
as small as we please by choosing € small, in particular smaller than the constant €.
With this choice the conclusion of Theorem 4.7 holds, and we get estimates of the
Sobolev norms of the restrictions on smaller disks D € B in terms of || (4, ®) ||L4,

1
hence in terms of || F5 || ..
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On the other hand, the same cutting off procedure as in the proof of Theorem
4.7, gives on the sphere an identity of the form

(& + Tyd) (1 A) = A 5, () + 0[-Ty(AA A) + (B8] ,

which is similar to the identity (1) in the proof of the theorem. Using Theorem 4.7 to
estimate the quadratic term on the right, it follows that the L?-norm of A|p can be

estimated in terms of the L? ;-norm of the restriction of A to a slightly larger disk
D; € B and || (4, %) ||2,. Inductively we get an estimate of the L?-norm of A|p in

terms of the L}-norm of A and of || (4, ¥) ||2.. But both terms can be estimated now
in terms of || F ||zz. O

Note that the estimate in terms of || F; ]]%2 which we obtained by applying di-
rectly Theorem 4.7, is in fact fully sufficient for our purposes. However it is interesting
to notice that the Sobolev norms of the connection component A can be estimated as
in the instanton case in terms of || F5 || 2.

COROLLARY 4.9. (Local compactness) There exists a constant € > 0 such that
the following holds:

For any pair system of data p which is sufficiently close to a system of standard
data pk, on the ball with |Ko —id| < ¢ , and any sequence (An, ¥,) of solutions of
the PU(2)-monopole equations for p with || Fa, |[12< €, there is a subsequence my, of
N and gauge equivalent solutions (Am,,Vm,) converging in the C*®-topology on the
open ball B.

0
We can prove now the following result, which is the analogon of Proposition 4.4.9
p. 161 [DK].

COROLLARY 4.10. (Global compactness) Let Y be a compact 4-manifold (with or
without boundary), set @ = Y \dY and let P* be a SpinV?) (4)-bundle on Q such that
A} ~ P¥ x. R* as oriented 4-bundles. Let p = (v,C,a,[3,K) be an arbitrary system
of data for (Q, P*) satisfying the condition |K(z) —idaq, | < ¢ in every point x € Q.

Let (A, ¥,) be a sequence of solutions of the PU(2)-monopole equations associ-
ated with p such that every point x € ) has a geodesic ball neighbourhood D, such
that for all large enough n,

/ lFAn |§7volg7 <z

where € is the constant in Corollary 4.9. Then there is a subsequence (my) C N and
gauge transformations u, € Go such that un(Am, ., Um,) converges in the C*-topology
on Q.

Proof. First of all note that every point has a geodesic ball neighbourhood
D!, C D, such that for a suitable subsequence (mZ),, C N and suitable gauge transfor-
mations uj, over D; the sequence (u},(Amz|p:, ¥mz|p,)n converges in the C* topol-
ogy on D?. This follows from Remark 4.5, Corollary 4.9 and the conformal invariance
of the L2-norm of 2-forms.

Using now Corollary 4.4.8 p. 160 [DK] we get a subsequence (m,), of N and
gauge transformations u, such that u, (A, ) converges in the C*®-topology on Q to a
connection A. But using the first monopole equation we see that the convergence of
the connection component together with the local L*-bound of the spinor component
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(provided by the local L2-boundedness of the curvature) implies the local boundedness
of the spinor component in any L?-norm. O

PROPOSITION 4.11. (Apriori C°-boundedness of the spinor) Let X be a compact
oriented 4-manifold, P* a SpinV®(4)-bundle on X with P* x, R* ~ A as oriented
4-bundles, and p = (v,C, a,8,K) a system of data for the pair (X, P*) satisfying the
condition |K(z) —idaq, | < ¢ in every point z € X.

1. If 8 =0, and C is induced via y by the Levi-Civita connection in (Al g,), then
for any solution (A, ¥) € A(J(P*)) x A°(Z+(P%)) of the PU(2)-monopole equations
associated with p, the following aprior: estimate holds:

_ S
sup |27, < max (0, c S;p(—z + CIFIIgw))

Here s stands for the scalar curvature of g, ¢ is a universal positive constant, and C
is the universal positive constant in (4) .
2. In the general case one has an apriori estimate of the form

sup ¥, < max (0,07 [sup(=5 + eFFly,) + 0,.C.6)] ) |
X X

where o(C, 8,7) depends continuously on the coefficients of 7y, C, 8 with respect to the
C? x C! x C-topology.

Proof. We prove the second assertion. Using Remark 3.4, it follows that, mod-
ifying B if necessary, we may assume that C is induced via v by the Levi-Civita
connection in (A, g,), so that the Dirac operator Ei a,4 associated with C' coincides
with the standard Dirac operator [ 4, 4.

The Weitzenbdck formula for coupled Dirac operators gives for any triple (4, a, ¥)
€ A(6(PY)) x A(det(P*)) x A°(Z*(P¥))

1 s
340¥ = ViaVaal + T [(Fa + 5 Fa) o]0 + 2 -
On the other hand
Do a@ryan+B) = ﬂ,zm,A +7-Vaa00

If (A, ¥) solves the PU(2)-monopole equations for the system of data p, it most
hold pointwise

(Vi aVael, ¥) + (K@E)(2), V) + 3 (T (Fa)(9), T)
+3N + (7 Vaa0 B(E), 1) =0,
Using the inequality (4), we get
(1) LAIEP = (Aaal, ¥) ~ [Va 2P
< —CIE|* + (ElFF | = DITP +1(r- Va,a 0 (1), B)] = [Vaa TP .
On the other hand
Y- Va4 0 B(T) = 7- (Vo) (L) + V44 T] .
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Therefore the term (- V4,4 0 B(¥), ¥) can be estimated as follows
®)  1(7Va,a0B(), ) < (IVe(B)IT* + 1611V 4,.2]2))
1
< |Ve(@Ner +181 (= [Vac¥? + ; 192)] |
where ¢’ is a universal constant and £ is any positive number. Choose now ¢ :=

m, so that the total coefficient of |V 4,,¥|? in the expression obtained by

replacing |(7-Vg,406(¥), ¥)| in (7) with the right hand term of (8) becomes negative.
Then we get an inequality of the form

1 L s ¢’ su
LA < Ol 4 sup (] + ¢ Vo(B)] - ) 1w + CX2 P g

and the assertion follows easily by the maximum principle. O
COROLLARY 4.12. If Q is compact, the condition ”Df |Fa,[5 voly, <€ for all

sufficiently large n” in Corollary 4.10 can be replaced by t;ze condition

2
- €
” /D |Fy 2 |§7volg7 < - for all suf ficiently large n ”.

Proof. By Proposition 4.11 and the inequality (3), the pointwise norm |FI:“’|
of the g,-self-dual component of the curvature is apriori bounded by a constant (de-

. +g
pending on sy, and p) hence [}, |F,’
eventually D, with a smaller ball. O

|7, can be made arbitrarily small, by replacing

4.2. Regularity. We begin with the following simple

REMARK 4.13. Let X be a 4-manifold and g, g' two metrics on X. Then the
operator d} + d*s : A — A® @ A3 . is elliptic. If X is compact then the kernel of
this operator is the harmonic space IHI£1,. The image of its extension L, — L3 is
(A% @ (Aig,);c'-, where (A%); is the L2-orthogonal complement of R C (A°)x, and
(Aig,)i' is the L2, -orthogonal complement of ]HTi; C (Aig,)k.

’

Indeed, one checks easily that the symbol o of dj + dts is injective for non-
vanishing cotangent vectors {. Indeed, if o¢(a) = 0, then ({ A @);, = 0, hence
& A a = 0. Therefore a has the form a = c £, ¢ € R. Using now the A°-component of
the equation o¢(a) = 0, we get ¢ [{|2 =0, 1. e. ¢ =0. But A’, A® A%  have both
rang 4, so o must be isomorphism. °

On compact 4-manifolds one has kerd*s" = kerd. Therefore ker(d} + d*s') =
ker(d; + d) = Hy(X). The image of the Lf,, — L7 extension of dj + dts is
obviously contained in (A%); ® (A% ,); Therefore it must coincide with this space,
because index(d} + d*+') = index(d} + d*¢) = b, —by — 1. 0

As in the section above we fix SU(2)-bundles SE on the 4-sphere S such that
AL ~ RSU(S;,S;) = Homy(SS,S;) as oriented 4-bundles. The pairs consisting of
a metric on the sphere and a Spin(4)-structure for that metric are parameterized by
linear isomorphic Clifford maps

v: Ay — Hompu(SF,S7) .
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We denote by Clif(S) the space of Clifford maps on the sphere. Let again E; be
the trivial U(2) bundle on S.

We fix a Clifford map v, : AL — Homy(S7, S;) such that g, := g,, has non-
negative scalar curvature, strictly positive in the south pole co. Therefore the associ-
ated selfadjoint Dirac operator ., is injective, by the Weitzenbock formula. Denote
by Cs the Levi-Civita connection induced by 7s in the SO(4)-bundle P* x, R* =
Homy(S7,S;) and denote by q5 the system of data

e = (%, Cs,0,0) € CLf(S) x A(PY xx BY) x A(det(PY)) x A°(P¥ x B) ,

where we used as usually the identification A(det(Pg)) = A (u(1)).
Denote by

swp : A@B(PY)) x A°(ST ® Es) — A%(S; ® E;) x A°(su(S}) ® su(2))
the Seiberg-Witten map associated with a system of data p for the pair (S, P¥).

PROPOSITION 4.14. (Regularity of L*-small L?-almost solutions with connection
component in Coulomb gauge) Let g be an arbitrary fized metric on the sphere. There
are positive constants a, p, ¢ (depending on g and vy,) such that for any system of
data p = (q,K) with q sufficiently close to qs and |K — idsu(S:')I < e the following
holds.

Any pair u = (A, ¥) € L2(A'(su(2))) x L2(SE ® E;) satisfying:

(i) d5(4) =0,

(i) || u ||+ < @, satisfies the inequality

lullzz< e |l swp(u) llzz -

If, moreover
(i) || swp(u) |2
(iv) swp(u) is smooth,
then u is also smooth.

Proof. We use the method of continuity as in the proof of 4.4.13 [DK]. The
essential fact used in the proof of that theorem is that the map

B +— (d*B, Ff)

can be written as the sum of an injective elliptic first order operator and a quadratic
map. By Remark 4.13, the map (dj, swp) has the same property. Note that we do
not require the metric g to be close to g,,.

As in the proof of Theorem 4.7, the system q = (y, C, a, 3) defines an elliptic first
order operator on the sphere

Pq : A°(SF®E,) — A°(S; ® E;)
Dq = &b D 8
dy+Tyod :  Al(su(2)) — A%su(2))* @ A°(su(SY) ® su(E,))

Here [Dq stands for the Dirac operator S +8+7(2), and A°(su(2))* for the L2-
orthogonal complement of the 3-dimensional space of constant su(2)-valued functions.

By Remark 4.13 and elliptic semicontinuity, it follows that Dgq is injective if g
is sufficiently C%-close to q,. Moreover, the L7, ; — L extension of Dq is an
isomorphisms depending continuously on g with respect to the C*-topology.
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We extend the operator dj on pairs by putting dy(B,®) := dy(B). With this
convention note that the map dj + swp can be written as

v(B)®

(dg + swp)(B,®) = Dq(B,9) + | (g 2 B) _ K(8F),

] =Dq(B,‘§)+B ,K(Bvé) ’

where B, i is the quadratic map defined by the square bracket.
Claim 1: If a is sufficiently small, there exists a constant ¢ = ¢(g,s) such that
for any L3-pair v with djv =0, || v [|L+< o, one has the estimate

e)) lvlz<ell sw() |z -
Indeed, the Coulomb gauge condition dj(v) = 0 implies

(2) Dq(v) = =By, k(v) + sw(v) .

This gives an estimate of the form

v ll2< Cq [l Dq(v) llz2< CqCr i 1w 176 + Il sw(v) [lz2<

< CCqCyk Nl v llzsll v llzz + Il sw(v) Iz,

Since q is assumed to be close to q; and K belongs to a bounded family, it follows that
the constants Cq, C, k can be chosen independently of p. The claim follows by the
same rearrangement argument used in the proof of Theorem 4.7, taking a0 < m
This proves the claim and the first part of the theorem.

Claim 2: If o is sufficiently small, then for any two L}-sections vy, va with d (v;) =
0, || v1 |lz4< @, || v2 ||ze< @ and sw(vy) = sw(vs) it follows v3 = vs.

Indeed, let b, k be the R-bilinear map associated with B, x. One has

Dg(v1 —v2) = by, k((v2 — v1),v1) + by, k(v1, (v2 — 1)) ,
hence, by the injectivity of Dq, we get an estimate of the form

lvi —v2 |lLa< C |l o1 = v2 ||2< CCq || by,k ((v2 = v1), 1) + by, k (U1, (v2 — 1)) || L2

S CCp(l[vr llze + |l v2 llze) [l v2 — o1 [|ze

where Cp is a constant depending continuously of p with respect to the C°-topology.
Therefore, we may suppose as above that Cp = C; is independent of p. Take o <
1
4CCI y . . .
Claim 3: If « is sufficiently small, then for any smooth pair v with dg (v) =0,
|| v ||z4< o one has estimates of the form

10 llzz,, < Cpus Il sw(®) llzz +Ppslll sw() llzz ) ,

where Cp . is a positive constant and Py is a polynomial with positive coefficients
and without constant term.

To see this use again the rearrangement argument above to estimate the L2 and
the L2 norms of v (compare with the proof of Theorem 3.7). For the higher Sobolev
norms apply the usual bootstrapping procedure to the elliptic equation (2).

1
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Claim 4: If « is sufficiently small, there exists a positive number g such that for
every smooth section f € A%(S; ® Es @ su(SF) ® su(2)) with || f ||z2< u, the
equation

sw(v) = f, dy(v) =0

has a smooth solution v satisfying || v ||z < a.

Indeed, choose first o such that the conclusions of Claims 1-3 hold. We use the
continuity method to find a smooth solution of the equations sw(v) = f, d3(v) =0 .
Let (SW?) be the equation

(SW?) (d + swp)(®) =1t f .

We have to find a smooth solution of (SW?) whose L%-norm is bounded by a. Let N
be the set

N := {t € [0,1]] (SW*) has a smooth solution v with || v ||+< a}

The set N contains 0. We assert that, taking a smaller bound « if necessary, N
becomes an open set. We use the implicit function theorem. Let vy be a solution of
(SW*) satisfying d}(vo) = 0, || vo ||z4< . We have

%(d; + swp) (V) = Dq(0) + by, (0,v) + by, k(v,0)

This shows that, for v = 0, the operator %Io(d; + swp) defines an isomorphism:

L}(St®E;) — L*(S; ® E;)
52] 57
L3(A'(su(2))) — L*(su(2)* @ L (su(S¥) ® su(Ey))

If || v ||z« is sufficiently small, then the L? — L? extension of %(d* + swp)
is still an isomorphism. By the Fredholm alternative it follows that the L — L2
extension is an isomorphism, too. Therefore, there exists ¢ > 0 and an L2 solution v;
of (SW?) for any t € (to — ¢, to +¢) such that vz, = vp. Using the usual bootstrapping
procedure, it follows that v; must be smooth.

We claim that N is closed, if the bound p of || f ||z is sufficiently small. Indeed,
if t, — to, and if v, is a smooth solution of (SWt) with || v, ||z«< a, then Claim
3. shows that there is a subsequence (vy,,)men converging in the C*®-topology to
a smooth section vy, which must solve the equation (SW?). Of course, it is not
clear that the strict inequality || vn,, ||z4< o is preserved at the limit. On the other
hand, using the estimate (1) proved in Claim 1. and the boundedness of the inclusion
L% C L*, we see that, choosing u sufficiently small, we can assure that

!
o llze< 5 -
Therefore v satisfies the stronger inequality || vo ||z4+< §. Now the second assertion
in the theorem follows immediately: If || u |[za< o, dj(u) = 0, || swp(u) ||z2< p,
and swp(u) is smooth, we can find a smooth solution v of the equations djv = 0,
swp(v) = swp(u) with || v ||zs< a. But, by Claim 2., this solution must coincide with
u. O

COROLLARY 4.15. With the notations and assumptions of the theorem, the fol-
lowing holds: There exists a positive constant a; (depending on (g,7s)) such that any
L2-pair u = (A, ¥) with dj(A) =0, || u || r2< o and swp(u) smooth, is also smooth.
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4.3. Removable singularities. We notice first that Corollary 4.8 (Estimates
in terms of the curvature) can be easily generalized to an arbitrary system of data
p' = (q', K') for the pair (B, P#), not necessarily close to a standard system. The
only difference is that the constant € in the conclusion of the theorem will depend on
p’. To see this it is enough to notice that the operator Dq constructed in the proof
of Theorem 4.7 is always elliptic by Remark 4.13 (even if the metric g is not close
to the metric g5). We can use in fact the standard constant curvature metric on the
sphere for the Coulomb condition, as in [DK]. Dq will be in general non-injective, but
the injectivity of this operator is not essential in the proof of 4.7: the corresponding
elliptic estimates (el), (el); will contain on the right the additional term || u ||L2,
which can be estimated in terms of || u ||+ using the volume of the sphere endowed
with the metric g,.

An alternative argument uses a division of the unit ball in small balls, the scale
invariance of the equations (Remark 4.5), the original Theorem 4.7, and the patching
arguments explained on p. 162 [DK] in the instanton case.

Using this generalization of Corollary 4.8, we get the following analogon of Propo-
sition 4.4.10 [DK]:

LEMMA 4.16. Let Q be a strongly simply connected 4-manifold endowed with a
SpinU? (4)-bundle P* with P* xR ~ A}, §(P*) ~ Q x PU(2). Fiz a trivialization
of the PU(2)-bundle §(P*). Let p = (v,C,a,B, K) be a system of data for the bundle
P such that pointwise |K —id| <e.

There exzists a positive constant ep, and for every precompact interior domain
Q' €Q there exists a positive constant My o such that any solution (A,¥) of the
PU(2)-monopole equations for p with || Fa || L3 <é€p is gauge equivalent over ' to a
pair (A',¥') satisfying

Il A" llzs @) < Mpor || Fa llzz,

REMARK 4.17. Given a fized system of data o, we can find constants o, Mo o
(independent of p) such that the conclusion of the theorem holds with these constants,
for every p sufficiently close to po. Moreover, the statement is true if we use the fized
metric g, to compute the Sobolev norms.

We will need these results in the following particular case:
Let A, N’ be the annuli

N:={z€eB| = <|x|<1} N':={zeB| = <|a:|<}

Denote by N,., N} the images of N, N’ under the homothety hr. We recall that
we denoted by Fj' the trivial Sme(z)(4) bundle on B, which is associated with the
triple of SU(2)- bundles ST :=BxHy, Ey:=BxC.

LeMMA 4.18. Let p = (v,C,a,8,K) be a system of data for the trivial
SpinU(?)(4)-bundle P{ on the ball B, such that pointwise |K —id| < e, and such that
YAz : R* — H = (P¥ X R*)g is the standard identification. Then there exists
constants (Ko) > 0, M(Ky) such that for any sufficiently small v > 0 the following
holds:

Any solution (A, ¥) of the PU(2)-monopole equations for p|n, with || Fa ||z2(n,)
< g(Ko) is gauge equivalent over N to a pair (A',¥") satisfying

Il A" lLaay < M(Ko) || Fa llzze.)
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The constants €(Kp) > 0, M(Kj) are independent of r, and the Sobolev norms
are computed with respect to the standard euclidean metric.
Proof. We use the same argument as in Remark 4.5. Let

he: W', N) — (N, N})

the homothety of slope 7.

The pair (h(A),rh’(¥)) solves the monopole equations associated with the sys-
tem of data (7, := rh(v), hi(C), hi(a),rhy(B), ki (K)), which converges to the stan-
dard system pg, restricted to N, as 7 — 0.

The result follows now from 4.16, 4.17 and the conformal invariance of the L4-
norm on 1-forms and of the L2-norm on 2-forms. O

We shall use the following notations

Q,:=B\B(r), B*=B\{0}, B*(R)=B([R)\{0} ,5*=5\{0}.

LEMMA 4.19. Let p = (v,C,a,8,K) = (q, K) be a system of data for the trivial
bundle P§ on the ball B, and let (A, ¥) be a pair on B* solving the monopole equations
for p|gs such that

/ IFal? < 00
B.

Then for any sufficiently small r > 0, there exist an SU(2)-bundle E, over B, a pair
(A, T,) € A(E,) x A°(S§ x E,) and an SU(2)-isomorphism

pr: Erlagry — Elar)

such that:
’L) p:(A, lII) = (4, lpr):
it) || Swp(Ar, ) ”L2(B)—) 0asr—0.

Proof. Let ¢ be a cut-off map ¢ : B — [0, 1] which is identically 1 on B\ B(2 —¢)
and identically 0 on B(% +¢).

Put ¢, := poh; 1. Note first that, by the conformal invariance of the L*-norm on
1-forms, the norm || dg, ||+ (computed with the euclidean metric) does not depend
on r.

Consider now the restriction of the pair (4, ¥) to N,. Since the total integral of
|F4|? on the ball is finite, it follows that for any sufficiently small r > 0 we have

Il Fallzzv,) < €(Ko) ,

so that Lemma 4.18 applies. The conclusion of this Lemma can be reformulated
as follows: There exists an SU(2)-trivialization N x C? = Ep|u: such that the
connection matrix of 7,*(A) (which we also denote by 7;(A)) satisfies the estimate

(1) | 77 (A) llzswvy < M(Ko) | Fa llzavs,
We define the SU(2)-bundle E, by gluing (over the annulus ;) the trivial bundles
B(0, 5’65) x C?, Ejlq(ary via the isomorphism 7;.

Let P be the SpinU(®) (4)-bundle associated with the triple (S, E,). The system
p can be also regarded as a system of data for the bundle PY.
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Now denote by u the initial pair u := (4, ¥), and by u, the pair
ur € A(E,) x AO(S’J' ®E,),

which5 coincides with u on Q((2 — €)r) and with the cut-off ¢,7;(u) of 77 (u) on
B(0,3).

Tflile section swyp(u,) vanishes identically on Q(3F), where u, coincides with u.
Therefore, in order to prove i) we only have to estimate the L? norm of swyp (¢, 77 (u))
on B(0, 8), where E, coincides with the trivial bundle B(0, 3) x C.

On B(0, 5F) the Seiberg-Witten map swyp can be written as a sum between a first
order differential operator and a quadratic map:

Dq2 B)(®
swp(B, ) = [F7(%B)] + [D/(B /\71(9))£ I){(ﬁ)o] = Ty(B, ®) + B,,x(B, &)

Since Ty is a first order operator, we have an identity of the form
Tq(fv) = Aq(df)(v) + fTq(v) ,

where Agq(df) is a 0-order operator whose coefficients depend linearly on the first order
derivatives of the real function f.
Therefore

swp (o, 7y (w) = Aq(dp,) (77 (w)) + ¢, Tq (77 (w)) + 92 By k(77 (w))
= prswp(77 (w)) + Aq(dir) (77 (W) + (97 — 0r) By, i (77 (u)
= Aq(dpr) (77 (u) + (97 — ¢r) By, (77 (w)) -
Therefore, taking into account that dy, and (p2 — ¢,) vanish outside N, we get
| swp (ur) llz2) = Il swp(7] (w)) llL2(B(5))
< Cq |l dpr llzall 777 (w) llpey +Cp |1 77 (w) s uy

Since || dipy ||+ does not depend on r we have only to prove that || 7, (u) ||L4(nz) con-
verges to 0 as r — 0. But the estimate (1) shows that the L*-norm of the connection
component of 7.*(u) converges to 0 as r — 0.

On the other hand, by the inequality (3) Section 4.1 and the second monopole
equation, one has pointwise in N.

[ (0)* = [T < [T, (Fa)I)”

This gives an estimate of || 77 (¥) [|z4(n7) in terms of || Fia ”1%,2( ~1y» Which obviously
converges to 0 asr — 0. O
We recall from [DK] the following important

THEOREM 4.20. (Gauge firing on the sphere 3) Let g, be the standard constant
curvature metric on the sphere S*. Then there are constants €., M. such that any

5Note that in [DK] it is stated a slightly weaker form of this theorem (Proposition 2.3.13 p.
63): The hypothesis requires that A can be joined to the flat connection by a path of connections
with L2-small curvature . However, the second proof of this result, which is given in section 2.3.10,
does not use this additional assumption. I am grateful to Peter Kronheimer for pointing me out
this important detail. On the other hand, note that this second proof works only for the standard
constant curvature metric, and can be generalized to conformally flat metrics with non-negative
sectional curvature. Since our regularity theorem works for solutions whose connection component
is in Coulomb gauge with respect to any metric, not necessary close to the metric defined by the
SpinV(2_structure, we don’t need this generalization
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connection A in the trivial SU(2)-bundle Es with || Fa || 2< €. is gauge equivalent to
a connection A satisfying

d; (A)=0, || Allg2< M || Fa llz2 O

We can prove now

THEOREM 4.21. (Removable singularities) Let p = (q, K) a system of data for
the trivial SpinY(?) (4)-bundle P¢ on B and let u = (A, ¥) be a pair on the punctured
ball solving the monopole equations for p|p. such that

/B.IFA}2<oo.

There ezists an SU(2)-bundle F' on the ball, and an SU(2)-isomorphism p : F|ge —
Ey|pe such that p*(A, ¥) extends to a global smooth solution of the monopole equations
associated with p and the SpinV(?)(4)-bundle defined by (Si, F).

Proof. We use similar arguments as in the proof of the ”Removable singularities”
theorem for the instanton equation (Theorem 4.4.12 [DK]). The only difference is that
the L2-bound of the approximate solutions we construct, does not follow directly from
Theorem 4.20 (Gauge fixing on the sphere).

Identify B with the upper hemisphere of the 4-sphere S, and extend the system
p to a system for the SpinU(?)(4)-bundle P*. The extended system will be denoted
by the same symbol p, and we can assume that p has the form (g, K) with q close
to the system g5 constructed in the proof of Theorem 4.7, so that Theorem 4.14 and
Corollary 4.15 applies. We shall use these results in the particular case g = g.; with
respect to this metric connections with L?-small curvature can be brought in the
Coulomb gauge, by 4.20.

Step 1. For a sufficiently small positive number R < 1 we use Lemma 4.18 to
get a trivialization of Eo|y , such that the L*-norm of the corresponding connection
matrix is controlled by || Fa ||2(wz)- By the same gluing procedure we get a bundle
E® on the punctured sphere S°, trivialized on S\ B (%). We cut off the pair u this
time towards the outer boundary of the ball, and we get a pair uft = (4%, ¥8), It
holds

. R 1 T R _
2) lim || swp(u®) lg2= lim || Far [lz2= Jim | 9% =0,
The first two relations follow as in the proof of Lemma 4.19, since both maps swp(-),
F. can be written as the sum of a first order operator and a quadratic map, hence the
perturbations produced by of the two cut-off operations can be estimated in terms of
the L2-norm of the curvature restricted to the corresponding annuli.

To get the third formula, it is enough to notice that the pointwise norm of the
spinor is invariant under bundle isomorphisms, and that the L*-norm of ¥| Be(R) can

be estimated in terms of || Fiy) .y, ”1%,2

Suppose now that r < R < 1 and use the same procedure (to modify the bundle
and cut off the solution), but this time in both directions.

We get SU(2)-bundles, E¥ on the sphere, which come with trivializations over
B(3r), S\ B(2£), and with an isomorphism

R = pr
Ellpspnace) =% Bolpespnace) »
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as well as cut-off pairs
= (A7, ¥f) € A(ET) x A°(S] ® EfY) .
With this construction, it holds

®3) lim || swp(u7’) [lz2 = | swp(u®) llg2, lim || Fag |lz2=]l Far |lz2

tim || € o= 27 e

Note that the double gluing-procedure we used could apriori give rise to a non-
trivial SU(2)-bundle Ey, g on the sphere. But since the curvature F4r can be made
as small as we please, it follows that all the bundles E, p become tr1v1al if R is small.

Step 2. Using (2), (3) and Theorem 4.20 it follows that, once R is small, there
exists an SU(2)-isomorphism F : E; — EE such that BE := o;. r(AF) satisfies

4) d (Bf) =0, || B |lz2< Me || Faz ||z2

Put 8% := (67)*(TF), vf := (BE, ®F).

Step 3. Using (2), (3) (4) and the boundedness of the embedding L? C L*, it
follows that, if R is small enough, the L*-norm of the pair vZ can be made smaller
as the constant a in the Regularity Theorem 4.14, so that we get an estimate of the

form

() | of llz2< el swp(vf) 2=l swp(uf) llz= -

The relations (2), (3) imply now that , choosing R small, we can assure that
(6) I of lpe< o

where oy is the constant in Corollary 4.15. From this point the proof goes further
like in the instanton case: We choose R sufficiently small such that all the mentioned
properties are fulfilled, and we let r tend to 0. Using the L?-boundedness obtained
in (6) it follows that we can find a sequence r; — 0 such that v; = (B;, ®;) := vf
converges weakly in L? to an Li-pair v = (B, ®).

Step 4. We want to prove that v is smooth. The weak limit v must also satisfies
Il v ll2< a1 by the weak-semicontinuity of the norm in reflexive Banach spaces.
Therefore, by Corollary 4.15, we only have to prove that the L2-section sw(v) is
smooth.

But on any small ball D, D C S, the pairs v; = (B;, ®;) remain in the same gauge
equivalence class. Recall now from [DK] that the Sobolev norms of any connection H
in Coulomb gauge can be estimated in terms of the gauge invariant expressions

| Frr o=, | VS Frr llze

as soon as its L%-norm is sufficiently small. Using the estimate (4) and the scale
invariance of the L*-norm on 1-forms, this condition will be also fulfilled (for all small
balls D), if R is sufficiently small.

On the other hand one can easily bound the Sobolev norms of a spinor = in
terms of the gauge invariant expressions || Vg}) Z ||z2 and the Sobolev norms of the
connection H.
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Therefore, taking a subsequence if necessary, we can assume that v; converges in
the Fréchet C*°-topology on S°, so that sw(v) is smooth on the punctured sphere.

But, by Lemma 4.19, lizm I swp(vilB(geg)) llL2— 0, so sw(v), which is the limit of
sw(v;) in the distribution sense, vanishes in a neighbourhood of 0.

On the other hand, for any ball D, D C B'(“—GB), the isomorphism 67 intertwines
the connection matrices A, B;, and B; converges in the C* topology on such a ball.
Therefore a subsequence GR converges in the C*° topology on B‘(5R) to a smooth
bundle isomorphism 6, such "that

9*(1‘113-(%)) = B|B-(%) .

Taking the limit of [07 ]*(¥|
also get

BSENB(*ia ) = B(sﬂ)\g(ﬁl)) for n = oo, we

9*(‘I’|B'(%)) = QlB'(%)) O

4.4. Compactified moduli spaces. Let X be a closed oriented 4-manifold. For
a SpinV(?)(4)-bundle P¥ with P* x,R* ~ A! and a system of data p = (v, C, a, 3, K)
for P* denote by Mp(P") the moduli space of pairs (4, ¥) € A(5(P*)) x A°(S+(P€))
solving the PU(2)-monopole equations associated with p.

By Proposition 2.1, the data of a SpinU(®(4)-bundle P™* on X with det(P"*) ~
det(PY), P x, R* ~ P“ X R? is equivalent via the map § to the data of PU(2)-
bundle P’ whose Pontrjagin class satisfies

p1(P') = (wao(X) + & (det(P¥)))? mod 4 .

For every number [ € N we fix:
1. A SpinY?) (4)-bundle P* with

1= X (1) - 1 G(P)
2. Identifications
(id) P! xR = PUx,. R, det(P}) =5 det(PY).
These bundle isomorphisms allow us to identify the spaces of perturbations-data as-

sociated with the bundles P*, B*.

DEFINITION 4.22. An ideal PU(2)-monopole of type (P%p) is a pair
([A", 9], {z1,...,71}) consisting of an element {z1,...,z;} in a symmetric power
S'(X) of X and a monopole [A', '] € Mp(PY).

We denote by IMyp(P*) the space of ideal monopoles of type (P*,p).

Let §; be the Dirac measure associated with a point z € X. If p = (v, 4, q, 8, K),
we always use the metric g, to compute the norms and to define (anti-)self-duality
for 2-forms.

LEMMA 4.23. The map F : IMp(P*) — [C°(X,R)]*, defined by

!
F(A, ¥ {z1,...,m}) = [Fa > + 82° ) 45, ,

=1
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is bounded with respect to the strong topology in the dual space [CO(X,R)]*.
Proof. Let ¢ € C°(X,R) with sup|p| < 1. Then
X

(FQA, O (o) < [ Fi 1Be = | B 132 + 21 Ef (22 4877
= —2n?py (3(P¥) +2C [| ¥ [l ,

where C is a universal positive constant. The assertion follows from the apriori C°-
boundedness of the spinor component of a solution (Proposition 4.11). O

Let m' = ([A’,¥'],s') be an ideal monopole of type (P¥,p) with s' € S¥(X)
and [A', ¥'] € Mp(P}). For a positive number € we define U(m',€) to be the set of
ideal monopoles m” = ([A”,¥"],s") of type (P*,p) with s” C s, and which have the
following property:

There exists an isomorphism of SpinY(?)(4)-bundles

@ Pilx\s — Bf|x\s
which is compatible with the identifications (id) such that
di(p"(4', %), (4", 8") <e,
where d; is a metric defining the Fréchet C*°-topology in the product
AB(PE o)) X A°(S* (it Lxve)) -

Let M > 0 be a bound for the map F' defined above. The weak topology in the
ball of radius M in [C°(X,R)]* is metrisable (see [La], Theorem 9.4.2). Let ds be a
metric defining this topology.

We endow IMp(P*) with a metric topology by tak