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PERIMETER-MINIMIZING CURVES AND SURFACES IN Rn 

ENCLOSING PRESCRIBED MULTI-VOLUME* 

FRANK MORGAN^ 

Abstract. Planar curves minimizing length for given area are classically characterized as circular 
arcs. We give a new generalization to R,n of such area constraints and characterize the minimizing 
curves. We also consider surfaces satisfying new generalized volume constraints. 

1. Introduction. A smooth oriented hypersurface 5 in Rn which minimizes 
area for given boundary and enclosed volume has constant mean curvature. (Given 
volume means that for any competitor 5", S' — S encloses net algebraic volume 0. 
Alternatively, Jsxidx2A---Adxn is prescribed.) Conversely, any small portion of 
a smooth, constant-mean-curvature hypersurface minimizes area for given boundary 
and volumes [M4, Rmk. p. 76]. 

This paper considers m-dimensional surfaces 5 in Rn for arbitrary m <n which 
minimize area for given boundary and "multi-volume": volumes enclosed by orthogo- 
nal projections onto all (m + l)-planes or just onto axis (m + l)-planes, which can be 
expressed as a multivector in the exterior algebra Am_|_iRn. Of course the volumes of 
projections onto axis planes may be arbitrarily adjusted by adding spheres in those 
planes. Theorems 2.1 and 2.3 show that a minimizer exists among the generalized 
surfaces (rectifiable currents) of geometric measure theory (cf. [M4]) and that it is a 
real-analytic submanifold on an open dense set. 

For the case m — 1, Theorem 3.1 classifies all such minimizing curves as simul- 
taneous tracings of circles and straight lines in copies of R2. Corollary 3.2 infers the 
general solution to the problem of finding the shortest closed curve of prescribed multi- 
area. Here Caratheodory's celebrated moment curve ([Ca], [Ga]) makes a surprising 
appearance in the calculus of variations. 

For the case m = 2, Proposition 4.2 provides analogous examples but no classifi- 
cation theorem. For m > 3, the only known examples are unions of constant-mean- 
curvature hypersurfaces lying in largely orthogonal subspaces (Proposition 4.3). 

1.1. The standard thread problem. In contrast to our approach, the stan- 
dard generalization from R2 to Rn of length-minimizing curves C for fixed area and 
boundary requires a fixed reference curve (or "wire") Co with the same boundary and 
minimizes the length of C given the area of the area-minimizing surface R bounded 
by C — Co- Actually, in the usual, more physical version of the problem, one fixes the 
length of C (the "thread") and minimizes the area of R (perhaps a soap film). This 
problem also generalizes from curves to m-dimensional surfaces. Minimizers generally 
have constant mean curvature. See [E], [DHKW, Chapt. 10], [N]. 

1.2. The variational condition. The variational condition 2.2 on our new m- 
dimensional surfaces 5 in Rn minimizing area for given multi-volume and boundary 
provides an (m -1- l)-vector £ G Am+iRn such that the mean curvature vector H 
satisfies 

H = £|3, 
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where S is the unit m-plane tangent to S. For hypersurfaces, this condition reduces 
to constant scalar mean curvature. Already in R4, it would be interesting to find any 
nontrivial surfaces satisfying H = eiAe2Ae3LS (see §4.2). 

1.3. The proof that minimizing curves are simultaneous tracings of cir- 
cles and straight lines in copies of R2. An argument using projections shows that 
all such curves are length minimizing. Conversely, the unit tangent T and curvature 
vector AC of a curve C minimizing length for given area constraints satisfy the varia- 
tional condition K — £|_T. By standard linear algebra, we may assume that £ is of the 
form 

£ = a;ieiAe2 +^263Ae4 H \-^k^2k-i^2k' 

Theorem 3.1 deduces that C must be simultaneous tracings of circular arcs in the 
corresponding 2-planes and possibly a straight line. 

1.4. Prescribed mean curvature vector. Earlier work of R. Gulliver and 
F. Duzaar and M. Fuchs (especially [DF2, Thm. 3.2]), in seeking surfaces with "pre- 
scribed mean curvature vector" as a function of tangent plane, considers a similar 
problem with just a single volume constraint. Then in the resulting variational con- 
dition H = £[8, £ comes from the constraint. Gulliver [Gul, p. 118] gives one 
interpretation of our helical minimizer as the path of "a charged particle moving in 
a magnetic field." Gulliver and Duzaar and Fuchs also consider variable curvature 
associated with a generalized volume constraint. 

1.5. Acknowledgments. I want to thank Ken Brakke for helpful comments and 
experiments on his Surface Evolver [B] and Robert Bryant, Lars Hesselholt, Mariano 
Giaquinta, and Ted Shifrin for their comments. This work was partially supported 
by a National Science Foundation grant. 

2. Existence and regularity. Theorems 2.1 and 2.3 show that our minimizers 
exist and are real-analytic submanifolds on an open dense set. The development 
includes the variational curvature condition 2.2. 

THEOREM 2.1. There exists an area-minimizing m-dimensional rectifiable current 
S in Rn with given boundary and multi-volume. (The only hypothesis on dS is that 
it bound some rectifiable current.) 

Proof. There is some rectifiable current satisfying the prescriptions because vol- 
umes may be arbitrarily adjusted by adding spheres in axis (m + l)-planes. The only 
problem in applying the Compactness Theorem [M4, Thm. 5.5] to obtain a minimizer 
is that a minimizing sequence may not stay bounded. This problem may be solved 
by judicious truncation and the restoration of the prescribed volume conditions by 
adding spheres as in [DF2, Thm. 3.2] or by repeating the process with translations 
of the discarded material as in [Ml, §4] (summarized in [M4, §§13.3-13.7]). The proof 
of [Ml] generalizes to clusters. D 

The following result gives the variation curvature condition for a minimizing sur- 
face 5: the mean curvature H and unit tangent plane S satisfy H — £[8 for some 
fixed (m 4- l)-vector £. (By definition, £[5 is characterized by 

(Z\§)*v = (-*(§to) 

for all vectors v.  For example, (eiAe2 -t-esAezi) |_ei = ^2-   Because there is a fixed 
inner product, we need not distinguish between vectors and covectors.) 
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The derivation of the Lagrange multiplier condition 2.2(2) or the equivalent cur- 
vature condition 2.2(3) is complicated by the possible degeneracy of the constraints. 
Our proof is simpler than the proof of a similar result in [DF2, Thm. 4.2], which 
does not apply to curves (m = 1). We avoid degenerate constraints and higher order 
correction terms by considering only especially simple variations. 

THEOREM 2.2 (Variational curvature condition). Let S be an m-dimensional 
oriented surface (rectifiable current) in Rn. Let {e/} be a set of oriented axis (m + 1)- 
planes in Rn (an orthonormal basis for Am+iRn

>). Then the following conditions are 
equivalent: 

(1) S is stationary for area for prescribed multi-volume. 
(2) For some Aj, 5 is stationary for A + EA/V7, where A denotes area and Vj 

denotes projected volume in ej. 
(3) For some £ € Am-|-iRn, the mean curvature of S weakly satisfies 

H=as, 

where S (x) is the unit tangent plane to S at x. 
The natural correspondence between (2) and (3) is given by £ = EA/ej.  We may take 

£ in spanl S(x)/\v:ve Rn >. 

Proof To see the equivalence of (2) and (3) with £ = EA/ej, note that for any 

smooth variation v, the first variation S1 (Vj) = J [ei[S) • v. Hence 

61 (A + EA/F/) = S1 (A) + EA/ / (e/|£) • v = S1 (A) + f (f |£) • ^ 

which vanishes for all v if and only if H = £[3. Note that £[3 depends only on the 

projection of £ onto span-j 3 (x)Av : v £ Rn >. 

Since condition (2) immediately implies (1), it remains to be shown that (1) 
implies (3). We consider variations of the form St = S + tv with v of the special form 
v = ip • VQ for some scalar function ip vanishing at the boundary and constant vector 
VQ. (A variation of this simple form respects the volume constraints if and only if 
/S5A« = 0.) 

Suppose that for all £ G Am+iRn, /s KL^J • v = 0. Then Js SAv = 0, the varia- 

tion respects the volume constraints, the first variation must vanish, and /5 H • v = 0. 

It follows that as a linear functional, H lies in the vectorspace I £[S : £ G Am+iRn i; 

i.e., for some £ G Am+iRn, 

for all v. It follows that H = £[5, as desired. D 

THEOREM 2.3 (Regularity Theorem). Let 3 be an m-dimensional rectifiable 
current in Rn stationary for fixed boundary and multi-volume. Then 3 is a real- 
analytic submanifold on an open dense set away from its boundary. If m = ■ 1 and 3 
is minimizing, then 3 is a real-analytic embedded curve (possibly with multiplicity). 
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Proof. By 2.2(3), 5 has weakly bounded mean curvature. By Allard's regularity 
theorem [A, §8], on an open dense set S is a C1,Q; submanifold. By Morrey's higher 
regularity for C1 weak solutions to elliptic variational problems [My3, Thm. 9.2, p. 
158], 5 is C2'" (actually C00), and hence real-analytic by [Myl] or [My2, Thm. 6.7.6, 
p. 271] on that open dense set. 

If m = 1, weakly bounded curvature already implies that 5 is a C1'1 immersed 
curve, hence real-analytic by 2.2(3) and the theory of differential equations. If two 
strands are tangent at a point, they coincide. Suppose two strands intersect transver- 
sally. Then reattaching them to each other contradicts bounded curvature. □ 

REMARK. Minimizers for fixed multi-volume may well enjoy the same regularity 
as the subclass of minimizers (without volume constraints); cf. [M4, Chapt. 8], [DF1, 
§5]. Such regularity is not known even for minimizers of A 4- EA/F/ (cf. [DS, Intro, 
and 5.5(iii)]). For minimizers of fixed multi-volume, it is not known even whether 
a tangent cone is minimizing, because the cost of small volume adjustments is not 
known to be linear. (Note e.g. the extra hypothesis required in [DF2, Thm. 5.1].) 

3. Length-minimizing curves for given multi-area. Theorem 3.1 gives a 
complete characterization of our minimizing curves. Corollary 3.2 gives the general 
solution to the problem of finding the shortest closed curve with prescribed multi-area. 

3.1. Linear algebra. Standard linear algebra shows that for any 2-vector £ G 
A2Rn there is an orthonormal basis such that 

(3.1) £ = a;ieiAe2 -\-U2e^he^ H \-Uke2k-1 ^2k 

with 0 < u)i < U2 < - - - < Wh- (This is essentially just normal form for skew-symmetric 
matrices.) Consider the complex structure 262^-1 = e2j. If the LJJ are distinct, then 
the choice of basis is unique up to rotation in the complex lines 62^-1 A 62j. More 
generally, if for example LJI = UJ2 = ■ • • = Wp, then 61,63,... ,62^-1 may be any 
unitary basis for their complex span (fixed complex structure). 

A general multi-area prescription of area Aij in the axis plane ei/Kej may be 
represented by the 2-vector E^e^Aej and hence for appropriate basis takes the 
simpler form (3.1) as described above. 

THEOREM 3.1 (Characterization of minimizing curves). LetC be a simple smooth 
curve in Rn with unit tangent vector T and curvature vector K satisfying the varia- 
tional curvature condition K = £|_T for some 2-vector £ E A2Rn (2.2(3)). Choose an 
orthonormal basis 61,62 = iei,...,e2k-i^2k = ie2k-~ii • • • ? en for Rn so that such £ 
takes the form (3.1) 

(3.2) £ = LJ1eiAe2 + UJ263Ae4 A \-^ke2k-i^2k 

with 0 < OJI < UJ2 < • • • < Wk -  Then C has an arclength parameterization of the form 

(3.3) C(s) = ao + aiefa;isei + • • • + ake
iu,kSe2k-i + ak+1s 

with ao G Rn; ai,...,a& G R; a^+i G span {e2k+i, • • •, en}. The 2-vector £ may be 
chosen so that aj ^ 0 for 1 < j < k and 0 < ui < U2 < • * • < Uk • 

Conversely, every such C in which each LJJAS is at most 27r radians is up to 
translation uniquely minimizing for given multi-area. 

Proof Consider an arclength parameterization 

C(s) = (Ci (s) ,C2(s),..., Ck(s), Ck+1 {s)) 
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with Cj(s) in the span of {e2j-i,e2j}, except that Ck+i{s) lies in the span 
of {e2fc+i,...,en}. Then 

T(s) = {C[(s)ja(s),...,C'k(s),Cf
k+1(s)), 

«w = (c,rw,^(s),...lcj?w>cjf+1w). 
Since /« = £|T> Ci(s) ^ perpendicular to C{(s) and hence Ci(s) is parametrized 
by a multiple of arclength. Therefore its curvature is a multiple of C"(s) and has 
constant magnitude, so Ci(s) is a circle. The same argument holds for (72,...,C^. 
Finally Ck+1 (s) = 0 and Ck+i is constant or a straight line parametrized by a constant 
multiple of arclength, as desired. The condition K, = ^[T implies that the Uj occurring 
in C equal the coefficients of £. 

^ may be chosen to minimize k. If say a& = 0, then K = ([T = ^'[T, where 
£' = £ — ^62^-1 Ae2/b, and A: can be reduced. If say ui = LJ2, then for the new 
orthonormal basis with 

, _ Qiei + 0263    , _ . ,    / _ -0261 +0163    / _ . , 
ei —       / 9   ,    0   >e2 — 2ei>e3 —        / o  ,    9   "7e4 — *e35 

the expression for £ still begins ci;ieiAe2 -fc^esAe^ but the expression for C(s) begins 
ao + ^/a^+~o^e^u)lSe,

1 + 0e2Ct;iSe2, and then A; can be reduced as before, the desired 
contradiction. 

To prove the converse, first note that the length of any curve and the lengths Li 
of its projections Ci satisfy 

(3.4) length C = J y/dLj + ■ ■ ■ + dL|+1 > ^L? + • • • + L|+1 

because of the algebraic inequality 

y/Al + Bl + ^ + B2
2 > y/^Ai + ^2)

2 + (Si + B2)
2, 

with equality if and only if the projections have proportional parameterizations. Now 
let C be as in (3.3) and let C be any minimizer. The projection lengths Li > Li, 
because planar arcs of at most 27r radians are uniquely minimizing for prescribed 
boundary and area (up to translation for the case of a full circle without boundary 
points). Now by (3.4), length C > length (7, and equality holds if and only if the pro- 
jections agree (possibly up to translation) and have proportional parameterizations, 
i.e., C is a translation of (7. D 

COROLLARY 3.2. For prescribed multi-area in Rn, the length-minimizing curves 
without boundary are as follows. For some orthonormal basis e\, 62 =iei, •.., e2k-ii ^2k 
= ie2k-i,e2k+ii' • -^n for Rn

; the prescription becomes area Aj in the 62^-1 A62^ 
plane (1 < j < k) and 0 in the other axis planes, with Ai > • • • > Ak > 0. If the Aj 
are distinct, then the basis is unique up to rotations in each span{e2j-i1e2j}. More 
generally, if for example Ai = ••• = Ap, then 61,63,... ,e2p-i may be any unitary 
basis for their complex span (fixed complex structure). Corresponding to each such 
choice of basis there is a shortest curve 

C(s) = ao + aieisei + 026^63 4- • • • + ake
kise2k-i 
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parametrized by a multiple of arclength s 6 [0,27r] with jirOj = Aj (1 < j < k). 

REMARK. Thus Caratheodory's famous "moment curve" ([Ca], [Ga]) makes an 
appearance in the calculus of variations. 

Proof. By Theorem 2.3, a minimizer is a real-analytic embedded curve. Since it 
has no boundary, it must have just one component, because translating two compo- 
nents to cross transversally would contradict regularity. 

By Theorem 3.1, every candidate must be of the form 

C(s) = ao + aieiu;iSei + • • • + ake
ioJkSe2k-u 

0 < s < 27r, 0 < LJI < UJ2 < ''' < Vk- Moreover, for C to be a closed curve, each Uj 
must be an integer. The projected areas are Ujira?- in the 62^-1 Ae2j plane and 0 in 
the other axis planes (because the Uj are distinct). The length L satisfies 

47r 

which is uniquely minimized when CJI = 1,... ujk — k and Ujira? = Aj (i.e., the larger 
projected areas correspond to the smaller coefficients). □ 

NONUNIQUENESS. In addition to the (sometimes nonunique) minimizers of Corol- 
lary 3.2, there are infinitely many other curves stationary for length, obtained by other 
integral choices of the Uj. Such curves are locally minimizing by Theorem 3.1. Fur- 
thermore, there is the union of disjoint circles in the e2j-iAe2j; when Ai = • • • = Ak, 
it has the permutation symmetry so conspicuously lacking for the minimizer. 

In R4 with Ai = A2 — 1, the problem is U2 invariant and there is a three- 
dimensional family of distinct minimizers. No curve could possibly be U2 invariant 
because the orbits of U2 are all three dimensional, except for the origin. 

4. Area-minimizing surfaces in Rn for given multi-volume. Proposition 
4.2 gives examples of our area-minimizing 2-dimensional surfaces in Rn, based on 
the linear algebra Lemma 4.1. Proposition 4.3 gives more general but less interesting 
examples of m-dimensional minimizers in Rn. Section 4.1 considers some particular 
examples without boundary. Section 4.2 discusses the problem of characterizing min- 
imizers. Theorem 4.4 applies the theory of calibrations to prove surfaces minimizing. 

LEMMA 4.1. Consider linear maps Li,..., Lk : R2 -> Rn
; L = ©L* : R2 -> R*71. 

Then the Jacobians satisfy 

with equality if and only if for some io, orthogonal maps Ai, and Xi > 0, 

(4.1) Li = XiAiLio. 

Proof. Choose an orthonormal basis ei, 62 for R2 such that J2L = \L (ei)| \L (62)|. 
Then 

J2L = \L (Cl)| \L (e2)| = (J2 \L* ^)|2) * (E \L* (e2)|2) * 
>Yt\Li(e1)\\Li{e2)\>Y/J2Lu 
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with equality if and only if each Li (ei) _L Li (62) and the vectors (\Li (ei)\, |L; (62)!) 
are all multiples of one (|Lj0 (ei)|, \Li0 (e2)|). □ 

REMARK. The sharp inequality of Lemma 4.1 generalizes to higher dimensions, 
but equality holds only if all but one Li is zero. This corresponds to the fact that for a 
closed three-dimensional surface S in R4, for example, the diagonal (id x id) (S) has 
greater area than .5 x {0} U {0} x 5 in R8 = span {ei,..., es}. This is not a higher- 
dimensional counterexample to Proposition 4.2, because volume in span {ei, 62,63, eg} 
for example changes. 

The following Proposition 4.2 constructs, for example from pairs of isometric, 
two-dimensional, constant-mean-curvature surfaces, immersed surfaces /(M) in Rn 

which minimize area for given boundary and multi-volume. 

PROPOSITION 4.2. Let M be a smooth 2-dimensional Riemannian surface (in 
general with boundary). Consider isometric immersions /i,... ,/& : M -> Rn which 
minimize area for given boundary and multi-volume (as does any small piece of a 
constant-mean-curvature surface in R3^ for example from a 1-parameter family of 
associated constant-mean-curvature surfaces in R3 of Bonnet (see [ChJ, [Ls, Thm. 
8]). Then f{M) = (Xifi (M)) c R*571 minimizes area for given boundary and multi- 
volume. 

REMARK. If the fi(M) are minimal surfaces, then f(M) is a minimal surface, 
and a small portion is known to minimize area for given boundary, even without any 
volume constraint ([F]; see [LM, §2]). 

Proof Let Rf denote the ith copy of Rn. For any competing surface 5, the 
projection Si of 5 into RJ1 satisfies area5^ > area/* (M). By Lemma 4.1, 

area S > 2J areaS* > Y^ area/e(M) = area/(M). 

For the parenthetical minimizing property of constant-mean-curvature hypersurfaces, 
see [M4, Rmk. p. 76]. D 

The following theorem is an immediate generalization of [M2, Thm. 5]. Con- 
sequential examples of surfaces minimizing area for given multi-volume include (a) 
the union of two orthogonal 2-spheres and (b) the union of two 3-spheres lying in 
span{61,62,63,64} and span{61,65,65,67}. 

THEOREM 4.3 (cf. [M2, Thm. 5]). For integers 2 < m < n let 81,82 be 
m-dimensional rectifiable currents minimizing area for given multi-volume. Suppose 
they lie in subspaces Pi, P2 of Rn with 

(4.2) dim (Pi n P^) >dimP1-m + 2. 

Then Si -h 52 minimizes area for given multi-volume. Suppose further that 

(4.3) dim(Pir\P2) <m-2 

and 8' minimizes area with the same boundary and multi-volume as Si + 82- Then 
8' = S'I + S2 with S'i in Pi minimizing area with the same boundary and multi-volume 
as Si. (If Si has no boundary, 8^ may lie in a translation of Pi.) 
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4.1. Examples without boundary. What is an area-minimizing closed two- 
dimensional surface enclosing multi-volume 

Vi = ei Ae2Ae3 + eiAe2Ae4, 

or 

y2 = ei Ae2Ae5 + esAeiAe^, 

or 

V3 = eiAe2Aes +e4Ae5Ae6? 

For the first problem, since Vi = ei Ae2A(es + 64), the answer is simply a round 
sphere in the ei Ae2 A(63 4- 64) plane with area 2\/97r « 6.09. For the third problem 
an answer is two round spheres by Theorem 4.3, with area 2v/367r « 9.67. For the 
most interesting, second problem, experiments by K. Brakke on his Surface Evolver 
[B] indicate a solution in the form of a "generalized sphere": 

(/(*) eit
ig(z) em,z) C C x C x R £ R5, 

with area of about 8.78601821587. By Corollary 3.2, the slices z — ZQ are length min- 
imizing precisely when Ai = irf(zo) < A2 = 27rg(zo) . Since / Ai dz = f A2 dz = 1, 
the inequality holds for some but not all ZQ. 

4.2. Characterizing minimizers. It would be interesting to generalize Theo- 
rem 3.1 and characterize smooth m-dimensional surfaces 5 in Rn with nonzero mean 
curvature vector H satisfying 

(4.4) H = SIS, 

for some fixed (m + l)-vector £ in Am+iRn. The few known examples have constant 
scalar mean curvature \H\. For the trivial case m = n — 1 of hypersurfaces, (4.4) 
just says 5 has constant scalar mean curvature. For the case m = n — 2, one may 
assume £ = ei A — • Aen-i. For the case of m = 2, n = 5, one may assume £ = 
ei A(e2Ae3 -f 0,64Aes). For the case of m — 2, n = 6, one may assume 

£ = eiAe2Ae3 + aieiAesAee + a2e4Ae2AeQ + a3e4Ae5Ae3 + a4e4Ae5Ae6 

[M3, Thm. 4.1]. The first open case is m = 2, n = 4, with i? = elAe2Ae3[S,, i.e., 
mean curvature perpendicular to 64 and of magnitude sin0, where 6 is the angle 64 
makes with 5. Each known example either lies in R3 {6 — 90°) or locally takes the 
form R x C for a space curve C (9 constant). There must be others, because for these 
examples either J X4 dxidx2 = 0 or f xi da^dxs = 0 and there are smooth surfaces 
satisfying other constraints by Theorem 2.1. 

In response to a preprint of this paper, Robert Bryant reports that the theory of 
exterior differential systems guarantees a local solution to (4.4) for real-analytic initial 
data (along an (m — 1)-dimensional submanifold). For the aforementioned case 

(4.5) H = e1Ae2Ae3lS, 

the 64 coordinate u is harmonic, with \du\   = cos2 9. If #(w, v) is a solution to 

(4.6) cot 9 (9UU + 9VV) + 92
u + 02 + 1 = 0 
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(a version of the sinh-Gordon equation in disguise), then there is an immersion x(u, v) 
into R3 with first and second fundamental forms 

I = tan2 9 dvr + sec2 9 dv2, 

II = sec0 tan 0 (du2 + dv2) , 

and the immersion x(tfc,v) + ue^ satisfies (4.5). To recognize (4.6) as sinh-Gordon, 
rewrite it in the form 

A (log (sec8 + tan0)) + sec0 tan0 = 0 

(which makes sense even when sin0 = 0), and set sin0 = — tanh (11 to obtain the 

sinh-Gordon equation 

A/ + sinh / = 0, 

which is known to have many global solutions. 
Since there is no Weierstrass formula for solutions of the sinh-Gordon equation, 

it follows that, unlike the case of minimal surfaces in R3, there will be no Weierstrass 
formula for solutions to (4.5). 

The following theorem extends the theory of calibrations to our minimizers. The 
differential form ip is called a d-constant calibration in [M5, §1.2]. 

THEOREM 4.4 (Calibrations theorem). Let S be an oriented m-dimensional sur- 
face (rectifiable current) in Rn. Suppose there is a smooth differential form ip with dip 
constant such that ip attains its maximum (say 1) on the tangent planes to S, Then 
S minimizes area for given boundary and multi-volume. 

Proof. Write any competitor in the form 5 + dR. By the volume constraint, 
§R d(£> = 0 and hence /aH </? = 0. Therefore 

area {S) = / y = /        ip< area(5 + dR). 
JS JS+dR 

n 
REMARK. Unfortunately there seem to be no nontrivial easy examples. A small 

portion of a round circle or sphere (or any constant-mean-curvature hypersurface) is 
calibrated ([M4, Rmk. p. 76], [M5, §1.2]), but a whole circle or sphere cannot be 
calibrated, because it is not minimizing among chains with real coefficients: a circle 
with half the density and twice the area has less weighted perimeter. 

Note that while a circle C is minimizing, R x C is not. On the other hand, if an 
m-dimensional surface S in Rn is calibrated by an m-form ip, then Tlk x 5 C R*"1"71 is 
calibrated by dxi A- • -AdxkAcp. More general products of minimizers are not generally 
minimizing (or even stationary). 
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