A REMARK ON DIVISORS OF CALABI-YAU HYPERSURFACES*

LIH-CHUNG WANG*

Abstract. We prove that a non-singular hypersurface of degree $\geq n+1$ in \mathbb{P}^n for $n \geq 4$ does not contain a reduced irreducible divisor which admits a desingularization having nef anticanonical bundle.

1. Introduction. In this paper we shall generalize a theorem [1] of Chang and Ran to the higher dimensional case. They proved that a generic hypersurface of degree ≥ 5 in \mathbb{P}^3 or \mathbb{P}^4 does not contain a reduced irreducible divisor which admits a desingularization having numerically effective anticanonical bundle. The \mathbb{P}^3 case is a conjecture of Harris which is first proven by G. Xu [5] with a different method. The natural generalization of their theorem is the nonexistence of a divisor with numerically effective (nef) anticanonical bundle on a generic hypersurface of degree $\geq n+1$ in \mathbb{P}^n for $n \geq 5$ (See Corollary 3.3). However, the interesting case is the case of Calabi-Yau hypersurfaces (degree equal to $n + 1$) since G. Xu gave a geometric genus bound for divisors on generic hypersurfaces of general type. In fact, our setup in this paper is a little more general. We prove that a non-singular complete intersection in Grassmannian with a similar degree assumption does not contain a reduced irreducible divisor which admits a desingularization having numerically effective anticanonical bundle.

Let us fix notations in this paper. Thus let *X* be a non-singular complete intersection of type (m_1, m_2, \dots, m_k) in Grassmann variety $G(r, n + 1)$ such that dim $X \geq 3$ and $m = m_1 + m_2 + \cdots + m_k \ge n + 1$, and suppose $\overline{D} \subset X$ is an irreducible and reduced divisor. Let $f: D \longrightarrow \overline{D} \subset X$ be a desingularization, *l* denote the dimension of *D* and *L* denote $f^*O_G(1)$. Obviously, *L* is nef and big. Let K_D be the canonical bundle of *D.* Let *S* and *Q* be the universal subbundle and universal quotient bundle on $G(r, n+1)$. Q^{\vee} denotes the dual of Q .

The main technical statement we are going to prove is the following.

PROPOSITION 1.1. *A* non-singular complete intersection *X* of type $(m_1, m_2, \dots,$ m_k) *in Grassmann variety* $G(r, n + 1)$ *such that* $m = m_1 + m_2 + \cdots + m_k > n + 1$ *does not contain a reduced irreducible divisor which admits a desingularization having* $H^0(K_D \otimes f^*Q^{\vee}) = 0$ and $H^1(K_D - m_iL) = 0$ for $i = 1, \dots, k$.

Here we review the definition and some basic properties of reflexive sheaves (See [3]). Let $\mathcal{F}^{\vee\vee}$ be the double dual of \mathcal{F} . A coherent sheaf \mathcal{F} is reflexive if the natural map $\mathcal{F} \longrightarrow \mathcal{F}^{\vee\vee}$ is an isomorphism. Define the singularity set of \mathcal{F} to be the locus where the $\mathcal F$ is not free over the local ring.

It is well-known that the singularity set of a torsion-free sheaf on *D* is at least 2-codimensional. Moreover, the singularity set of a reflexive sheaf on *D* is at least 3-codimensional. It is also well-known that, in general, any reflexive rank ¹ sheaf on an integral and locally factorial scheme is invertible.

We would like to thank Ziv Ran and Mei-chu Chang for their encouragement and suggestion.

^{*} Received May 31, 1999; accepted for publication August 31, 1999.

[†]Department of Applied Mathematics, National Donghwa Universitym Shoufeng, Hualien 974, R.O.C. (lcwang@server.am.ndhu.edu.tw). Paper partially supported by National Science Council (NSC-88-2115-M-259-001).

2. Proof of Proposition 1.1. The proof is by contradiction. Assume such divisors *D* exist.

First, consider the dual tautological sequence.

(2.1)
$$
0 \longrightarrow Q^{\vee} \longrightarrow \bigoplus_{(n+1) \text{ copies}} \mathcal{O}_G \longrightarrow S^{\vee} \longrightarrow 0.
$$

We pull back the dual tautological sequence tensoring with f^*Q .

$$
(2.2) \ 0 \longrightarrow f^*Q \otimes f^*Q^{\vee} \longrightarrow \bigoplus_{(n+1) \text{ copies}} f^*Q \longrightarrow f^*T_G \longrightarrow 0.
$$

The top cohomology group $h^{l}(f^{*}Q) = h^{0}(K_{D} \otimes f^{*}Q^{\vee}) = 0$ makes

$$
H^l(f^*T_G)=0.
$$

Second, we pull back the defining sequence of normal bundle of *X.*

(2.3)
$$
0 \longrightarrow f^*T_X \longrightarrow f^*T_G \longrightarrow \bigoplus m_iL \longrightarrow 0.
$$

Note that we need the smoothness of *X* to get the above sequence. Then we have $h^{l-1}(m_i L) = h^1(K_D - m_i L) = 0$ which implies

$$
H^l(f^*T_X)=0.
$$

Third, consider the defining sequence of normal sheaf N_f .

$$
(2.4) \t 0 \longrightarrow T_D \longrightarrow f^*T_X \longrightarrow N_f \longrightarrow 0.
$$

With the above three sequences, we obtain

 $H^l(N_f) = 0$

and

$$
c_1(N_f) = K_D + (n+1-m)L.
$$

Let $N_f^{\vee\vee}$ be the double dual of N_f . $N_f^{\vee\vee}$ is a reflexive sheaf of rank 1 so it is invertible.
The image of N_f in $N_f^{\vee\vee}$ under the canonical map is torsion-free since $N_f^{\vee\vee}$ is torsionfree. The singularity set of a torsion-free sheaf is at least 2-codimensional. Therefore, we have an exact sequence

$$
(2.5) \t 0 \longrightarrow \tau \longrightarrow N_f \longrightarrow N_f^{\vee \vee} \longrightarrow \phi \longrightarrow 0
$$

with support of ϕ at least 2-codimensional. Divide the above sequence into two short exact sequences.

(2.6)
$$
0 \longrightarrow \tau \longrightarrow N_f \longrightarrow \psi \longrightarrow 0,
$$

$$
0 \longrightarrow \psi \longrightarrow N_f^{\vee \vee} \longrightarrow \phi \longrightarrow 0.
$$

Then $H^l(N_f) = 0$ implies

$$
H^l(N_f^{\vee\vee})=0.
$$

On the other hand, we have $c_1(N_f^{\vee\vee}) = K_D + (n + 1 - m)L - c_1(\tau)$. Note that the first chern class of a torsion sheaf is always effective.([4] V.6.14) Therefore,

$$
h^{l}(N_f^{\vee\vee}) = h^{0}(K_D - N_f^{\vee\vee}) = h^{0}((m - n - 1)L + c_1(\tau)) > 0
$$

gives a contradiction.

$$
^{370}
$$

3. Main Theorems. For $r = 1$, we identify $G(1, n + 1)$ with \mathbb{P}^n .

PROPOSITION 3.1. *A non-singular complete intersection X of type* $(m_1, m_2, \dots,$ m_k) in \mathbb{P}^n for $n \geq 4$ such that $m = m_1 + m_2 + \cdots + m_k \geq n+1$ does not contain a r *educed irreducible divisor which admits a desingularization having* $H^0(K_D - L) = 0$ *and* $H^{1}(K_{D} - m_{i}L) = 0$ *for* $i = 1, \dots, k$.

Proof. Replace the dual tautological sequence in the proof of Proposition 1.1 with the Euler sequence.

(3.1)
$$
0 \longrightarrow \mathcal{O}_D \longrightarrow \bigoplus_{(n+1) \text{ copies}} L \longrightarrow f^*T_{\mathbb{P}^n} \longrightarrow 0.
$$

 $h^l(L) = h^0(K_D - L) = 0$ concludes

$$
H^l(f^*T_{\mathbb{P}^n})=0.
$$

and the remaining proof is the same as the proof in Proposition 1.1. \Box

Note that we can get the above proposition immediately from Proposition 1.1 if we identify \mathbb{P}^n with $G(n,n+1)$.

THEOREM 3.1. *A* non-singular complete intersection *X* of type (m_1, m_2, \dots, m_k) $\sum_{i=1}^{n}$ *such* that $\dim X \geq 3$ and $m = m_1 + m_2 + \cdots + m_k \geq n + 1$ does not contain a *reduced irreducible divisor which admits a desingularization having nef anticanonical bundle.*

Proof. If $-K_D$ is nef, $-K_D + L$ and $-K_D + m_iL$ are nef and big. With the Kawamata-Viehweg Vanishing Theorem, we obtain that $H^0(K_D - L) = 0$ and $H^1(K_D - m_i L) = 0$ for $i = 1, \dots, k$ (Note that dim $D = \dim X - 1 \ge 2$). Hence the theorem follows. \square

COROLLARY 3.2. *A* non-singular hypersurface of degree $\geq n+1$ in \mathbb{P}^n for $n \geq 4$ does no£ *contain a reduced irreducible divisor which admits a desingularization having nef anticanonical bundle.*

For $n = 3$, a hypersurface X of degree $d = 4$ in \mathbb{P}^3 is a K3 surface. The divisor \bar{D} becomes a curve. Therefore, $h^1(K_D - dL) = h^0(dL)$ is never zero. Hence, our proof doesn't work for this case. By the way, it is well-known that K3 surfaces have rational curves.

Now assume that $r \geq 2$. We can get a similar result.

THEOREM 3.2. A non-singular complete intersection X of type (m_1, m_2, \dots, m_k) *in Grassmann variety* $G(r, n + 1)$ *such that* $m = m_1 + m_2 + \cdots + m_k \geq n + 1$ *and* $(k+1) + (n+1-r) \leq \dim G(r, n+1)$ does not contain a reduced irreducible divisor *which admits a desingularization having nef anticanonical bundle.*

Proof. If $-K_D$ is nef, $-K_D + m_i L$ is nef and big. With the Kawamata-Viehweg Vanishing Theorem, we obtain that $H^1(K_D - m_i L) = 0$ for $i = 1, \dots, k$. In order to vanishing Theorem, we obtain that $H^-(\Lambda_D - m_i L) = 0$ for $i =$
get $H^0(K_D \otimes f^*Q^{\vee}) = 0$, we need to prove that $H^0(f^*Q^{\vee}) = 0$.

 $H^1(hD \otimes J Q^2) = 0$, we need to prove that $H^1(J'Q^2) = 0$.
If $H^0(f^*Q^{\vee})$ is non-trivial, from the the pull back of the dual tautological se-If $H^{\circ}(J^{\circ}Q^{\circ})$ is non-trivial, from the the pull back of the dual tautological sequence, the non-trivial section of $H^0(f^*Q^{\circ})$ gives a linear form *F* and \overline{D} is contained in $(F)_0$, the zero locus of *F*. We may identify $(F)_0$ with the Schubert cycle σ_1 _{....1}. Since *X* is a complete intersection, we also can identify *X* with the intersection of Schubert cycles $(\bar{H}m_i)\sigma_{1,0,\cdots,0}^k$. \bar{D} is a divisor of X so it is also a complete intersection. Hence we may identify \bar{D} with a multiple of $\sigma^{k+1}_{1,0,\cdots,0}$. Now consider a Schubert cycle

 $\sigma_{(n+1)-r,0,\dots,0}$, which does not intersect $\sigma_{1,\dots,1}$. On the other hand, $\sigma_{(n+1)-r,0,\dots,0}$ does intersect $\sigma_{1,0,\dots,0}^{k+1}$ if $(k+1) + (n+1-r) \leq \dim G(r, n+1)$. We get a contradiction. Therefore $H^0(\dot{f}^*Q^{\vee})=0$.

If K_D is trivial, then we get $H^0(K_D \otimes f^*Q^{\vee}) = H^0(f^*Q^{\vee}) = 0$. If K_D is not trivial, $H^0(K_D) = 0$. By the injectivity of

(3.2)
$$
0 \longrightarrow K_D \otimes Q^{\vee} \longrightarrow \bigoplus_{(n+1) \text{ copies}} K_D,
$$

we also get $H^0(K_D \otimes f^*Q^{\vee}) = 0$. \square

REFERENCES

- [1] M.-C. CHANG AND Z. RAN, *Divisors on some generic hypersurf aces,* J. Diff. Geom., 38 (1993), pp. 671-678.
- [2] H. CLEMENS, J. KOLLAR, AND S. MORI, *Higher Dimensional Complex Geometry,* Asterisque 166, 1988.
- [3] R. HARTSHORNE, *Stable reflexive sheaves,* Math. Ann., 254 (1980), pp. 121-176.
- [4] S. KOBAYASHI, *Differential Geometry of Complex Vector Bundles,* Publications of the Mathematical Society of Japan 15, 1987.
- [5] G. Xu, *Subvarieties of general hypersurfaces in projective space,* J. Diff. Geom., 39 (1994), pp. 139-172.
- [6] G. Xu, *Divisors on hypersurfaces,* Math. Zeitschrift, 219 (1995), pp. 581-589.