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DENSITY OF RATIONAL POINTS ON ELLIPTIC K3 SURFACES* 

F. A. BOGOMOLOVt  AND YU. TSCHINKEL* 

1. Introduction. Let X be a smooth projective algebraic variety defined over 
a number field K. We will say that rational points on X are potentially dense if 
there exists a finite extension K' /K such that the set X(K') of if'-rational points 
is Zariski dense. What are possible strategies to propagate rational points on an 
algebraic variety? We thought of two: using the group of automorphisms Aut(X) 
and using additional geometric structures - like elliptic fibrations. The class of K3 
surfaces is an ideal test case for both methods. 
One of our main results is: 

THEOREM 1.1. Let X be a K3 surface defined over a number field K. Assume 
that X has a structure of an elliptic fibration or an infinite group of automorphisms. 
Then rational points on X are potentially dense. 

Here is a more detailed list of what we learned: We don't know if rational points 
are potentially dense on a general K3 surface with Picard group Pic(Xc) = Z. In 
particular, we don't know if rational points are dense on a double cover of F2 ramified 
in a general curve of degree 6. However, we can prove potential density for a divisor 
in the space of all such K3 surfaces, corresponding to the case when, for example, 
the ramification curve is singular (cf. [6]). The overall picture is similar. In any 
moduli family of algebraic K3 surfaces we can find some union of algebraic subsets, 
including a divisor, such that rational points are potentially dense on the K3 surfaces 
corresponding to the points of this subset. More precisely, 

THEOREM 1.2. Let X be a K3 surface, defined over a number field K. Assume 
that rkPic(-X"c) = 2 and that X does not contain a (—2)-curve. Then rational points 
on X are potentially dense. 

REMARK 1.3. If rkPic(Xc) = 2 and if X does not contain a (—2)-curve then 
either it has an elliptic fibration or it has an infinite automorphism group (but not 
both!). For example, a quartic surface in P3 containing a smooth curve of genus 2 
and degree 6 doesn't admit any elliptic fibrations, but the group Aut(Xc) is infinite 
(cf. [24] p. 583, [27]). 

THEOREM 1.4. LetX be a K3 surface overK with rkPic(-X'c) > 3. Then rational 
points on X are potentially dense, with a possible exception of 8 isomorphy classes of 
lattices Pic(Xc). 

REMARK 1.5. If rkPic(Xc) = 3 then there are only 6 types of lattices where we 
can't prove potential density. There are only 2 types when rkPic(Xc) = 4. Potential 
density holds for all K3 with rkPic(Xc) > 5. All K3 surfaces with rkPic(Xc) = 20 
have infinite groups of automorphisms. We use Nikulin's classification of lattices of 
algebraic K3 surfaces (cf. [23], [22]). 
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First we consider the problem of density for general elliptic fibrations £ -> P1. 
Suppose that £ has a zero section (i.e. £ is Jacobian) and that there exists a section of 
infinite order in the Mordell-Weil group of £. Then a specialization argument shows 
that rational points are dense in £& for a Zariski dense set of fibers b G P1 (cf. [28]). 
It turns out that even in absence of global sections one can sometimes arrive at the 
same conclusion. 

DEFINITION 1.6. Let £ -> B be an elliptic fibration and M C £ an irreducible 
multisection (defined over C) with the following property: for a general point 6 € JB(C) 

there exist two distinct points PbiP't, € {M D £&)(C) such that pi, — p'h is non-torsion 
in the Jacobian JX^XQ of £&. We will call such a multisection an ni-multisection 
(non-torsion). 

For example, if M is ramified in a smooth fiber of £ then it is an ni-multisection 
(cf. 4.4). We will say that M is torsion of order m if for all b G B and all p&,P6 € 
Mn£b the zero-cycle pt — p'b is torsion of order m in J(£b)' An easy lemma (but 
not a tautology!) says that if M is not torsion of order m for any m E N then M 
is an nt-multisection (cf. 3.8). (There are analogous notions for abelian schemes and 
torsors under abelian schemes.) 

PROPOSITION 1.7. Assume that£ —>■ P1 has an nt-multisection which is a rational 
or elliptic curve. Then rational points on £ are potentially dense. 

We want to study situations when rational or elliptic multisections occur and to 
analyze constrains which they impose on the elliptic fibration (possible monodromy, 
structure of singular fibers etc). We shall call fibrations with finitely many (resp. 
none) rational or elliptic multisections hyperbolic (resp. strongly hyperbolic). Unfor- 
tunately, we don't know examples of hyperbolic elliptic fibrations (without multiple 
fibers). The aim of Section 2 is to prove the existence of a least one rational multi- 
section on algebraic elliptic K3 surfaces. From this we will deduce in Section 3 the 
following theorem: 

THEOREM 1.8. Let X be an algebraic K3 surface with rkPic(Xc) < 19 admitting 
a structure of an elliptic fibration. Then this fibration has infinitely many rational 
nt -multisections. 

The proof goes roughly as follows: We find elliptic K3 surfaces £' -> P1 admitting 
a dominant map £' -» X such that the genus of every irreducible m-torsion multisec- 
tion M' C £' is > 2. On the other hand, the deformation theory argument in Section 
2 implies that £' contains a rational multisection which must be an n£-multisection. 
Its image in X is a rational n£-multisection. 
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The first author was partially supported by the NSF. The second author was partially 
supported by the NSA. We would like to thank Joe Harris and Barry Mazur for their 
ideas, suggestions and encouragement. 

2. K3 surfaces. In this section we prove that every elliptic fibration on an 
algebraic K3 surface has at least one rational multisection. 

2.1. Generalities. There are several approaches to the theory of K3 surfaces. 
Algebraically, a K3 surface S (defined over some field of characterstic zero) is a smooth 
projective surface with trivial canonical class Ks = 0 and H1(5,05) = 0. They are 
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parametrized by an infinite countable set of 19-dimensional algebraic spaces. The 
main invariant is the Picard group Pic(S') which is isomorphic to a torsion free prim- 
itive lattice of finite rank (< 20) equipped with a hyperbolic even integral bilinear 
form. 

Another approach is via Kahler geometry. A K3 surface 5 is a compact simply 
connected Kahler surface equipped with a non-degenerate nowhere vanishing holomor- 
phic (2,0)-form us> To obtain a natural parametrization we have to consider marked 
K3 surfaces, which are pairs (5, cr) consisting of a K3 surface 5 and an isometry of 
lattices 

a : H2(S, Z) 4 £ ~ 3 • U 0 2 • (-£8), 

where Ti is the standard lattice with form xy and E$ is an 8-dimensional even unimod- 
ular positive definite lattice. We will denote by (,) the intersection form on H2(S, Z). 
Marked K3 surfaces are parametrized by the conformal class <7c(H2'0(S, Z)) of their 
non-degenerate holomorphic forms - the period. The latter lies in the quadric given by 
(ws,us) = 0 (inside P21 = P(H2(S,Z)c)). The period (still denoted by) us satisfies 
the inequality (US,UJS) > 0. Therefore, marked Kahler K3 surfaces are parametrized 
by points of a complex homogeneous domain fi, = SO^^Q)(R)/SO^.is) W- (with the 
standard equivariant complex structure). Unmarked K3 surfaces correspond to orbits 
of the group 50(3^9) (Z) on this space. 

We will identify cycles and forms on 5 with their (co)homology classes. We will 
call a homology class h primitive, if h ^ mZ for some m > 1 and some effective cycle 
Z. We denote by Aeff(S) the monoid of all classes in Pic(5) represented by effective 
divisors. (This differs slightly from the standard definition of the effective cone as a 
cone in Pic(S)R. In particular, the smallest closed cone in Pic(5)K containing Agff (5) 
could be finitely generated with Aeff(5') being infinitely generated.) 

We want to describe, in this setting, the subset of algebraic and elliptic K3 sur- 
faces. A Kahler K3 surface 5 is algebraic if there is a primitive element x G H2(5, Z) 
such that (x,x) > 0 and (us,x) = 0. Conversely, every primitive x G H2(5, Z) deter- 
mines a hyperplane {(a;^, x) =0}. The intersection of this hyperplane with ft will be 
denoted by fl(x). For a generic point of il(x) with (x,x) > 0 one of the classes ±x 
defines a polarization of the corresponding marked K3 surface. 

Every element h which is a generator of Aeff(S') with (h,h) = — 2 is represented 
by a smooth rational curve. Similarly, every generator of Aeff(5) with (h, h) = 0 
is represented by a smooth elliptic curve (which defines an elliptic fibration without 
multiple fibers S --» P1). In particular, this class is also represented by a (singular) 
rational curve, contained in the singular fibers of the fibration. Therefore, (marked) 
elliptic K3 surfaces constitute a set of hyperplanes fi(ft) with (ft, h) = 0 (and primitive 
h). For a generic member of fl(ft) the element h defines the class of a fiber of the 
corresponding elliptic fibration. 

2.2. Deformation theory. In this section we work over C. An immersion of a 
smooth curve / : C -> X into a smooth variety X is a regular map of degree 1 onto 
its image such that the differential df is non-zero everywhere. An embedding is an 
immersion with smooth image. 
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REMARK 2.1. If / : C —> S is an immersion of a smooth curve into a smooth 
surface then there exists a local neighborhood U of C (abstractly) to which the map 
/ extends as a local isomorphism / : U -> S. The normal bundle Afc(U) of C in U is 
defined by restriction of the canonical bundle ICs to /(C). In particular, if 5 is a K3 
surface then the normal bundle J\fc{U) = Kc- 

PROPOSITION 2.2. Let CQ be a smooth rational curve, So a K3 surface and 
fo'-Co—t So an immersion. Let S —> T be a smooth scheme over a complex ball T of 
dimension 20 with fibers smooth K3 surfaces St (local deformations of SQ). Consider 
the smooth subfamily Sj-, = S' —> T' corresponding to deformations such that the 
class of [fo{Co)} € H2(So,Z) ~ H2(5t,Z) remains algebraic for all t E T' (dimension 
ofT' equals 19). Then for all t G T' (close enough to to) there exists a smooth family 
of smooth curves Cq-' = C -> T' and a holomorphic map f : Cf —> ST' such that 
f'\to — fo 

Proof. Construct a complex 2-dimensional neighborhood Uo of Co with the prop- 
erty that fo extends to a holomorphic map go - UQ —> So such that go is a local 
isomorphism. This is possible since d/o ^ 0. There is a non-degenerate (2,0)-form 
on Uo induced from 5o. The curve Co is smooth in Uo and its normal bundle in UQ 

is isomorphic to 0<?o(-2). It is well known that in this situation there exists a local 
neighborhood of Co which is isomorphic to a small neighborhood of the zero section 
in the bundle Oc0(-2). 

The deformation of the complex structure on 5o induces (by means of go) a 
deformation of the complex structure on UQ. We obtain a smooth family g : Ur -> ST 

(with g\tQ —go) of deformations of complex structures on UQ. The base of the space 
of versal deformations for Uo is a 1-dimensional disc. In the neighborhood of to G T 
every deformation of Uo is induced from the versal deformation space by a holomorphic 
map. As a preimage of zero we obtain a local divisor Vo C T. It follows that Co x Vo 
is contained in the restriction of the family Ur to Vo. 

On the other hand, outside the divisor V C T the class [Co] G H2(C/t,Z) = Z is 
not algebraic. This is equivalent to the property that the integral of the holomorphic 
form ujt over the class [/o(Co)] is not zero. Then the integral of the induced form g*(LOt) 
over [Co] is not equal to zero as well (where ut is the non-degenerate holomorphic 
form on St induced by deformation). Therefore, the class [Co] G H2(i[/f,Z) cannot be 
realized by a holomorphic curve if t $ T7. Since we have obtained a realization of this 
class over VQ we can conclude that the local divisor VQ is contained in T'. Since T' 
is irreducible (it is a smooth disc), both divisors coincide. Therefore, the map /' is 
obtained by restriction of g to CD0 = Cr' • 

REMARK 2.3. This proof imitates the approach of S. Bloch who introduced the 
notion of semi-regularity for embedded varieties ([5]). Here we use a similar technique 
for immersed varieties. This deformation technique was extended to the case of general 
maps by Z. Ran (cf. [25] and [26]). 

2.3. Effective divisors. 

THEOREM 2.4. (Bogomolov-Mumford) Every class in Aeff(5) can be represented 
by a sum of (classes of) rational curves. 

Proof. The monoid of effective divisors Aeff (S) of a K3 surface S is generated by 
classes of (—2)-curves (represented by smooth rational curves), classes x with (x,x) = 
0 (represented by smooth elliptic curves, cuspidal elliptic curves or nodal elliptic 
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curves) and by primitive classes x with (x, x) > 0. Any smooth elliptic curve defines 
an elliptic fibration. This fibration always has singular fibers (Euler characteristic) 
and they consist of rational curves. It remains to show the following 

PROPOSITION 2.5. Let S be a K3 surface. Every primitive effective class in 
Pic(5) with {x,x) > 0 can be represented by a sum of (classes of) rational curves 
(with multiplicities). 

The rest of this section is devoted to a proof of this fact. An-alternative proof is 
contained in [21]. 

We first show that every primitive class is uniquely determined by its square. 
Next we give a direct construction of a K3 surface containing a rational curve which 
represents a primitive class, with a given square. Finally we apply a deformation 
argument. 

EXERCISE 2.6. Let C be an indefinite unimodular lattice containing 3 • H, where 
T-L is the standard form given by xy. The orbit of any primitive element under the 
group SO(£) is uniquely determined by the square of this element. 

Proof. First we show it for elements with x with (x, x) — 0. Indeed, since x is 
primitive, there exists a y with (x,y) = 1. Then x:y generate a sublattice T-L C C 
Since any sublattice % is a direct summand,. we have the result. Similarly, if z is any 
element such that (z, x) = 1 for some x G C with (x, x) = 0 then z is equivalent to the 
element with coordinates ((z,z),l) in the sublattice 7i (with standard coordinates). 
This concludes the exercise (see also [12], p. 224). 

COROLLARY 2.7. Let S be a K3 surface. Every primitive class in Aeff(S') is 
uniquely determined by its self-intersection. 

Proof. Identify Pic(5) with a sub-lattice in £ = 3 • H 0 2 • (-Eg). 

PROPOSITION 2.8. For any even n G N there exists a pair f : C ^ 5 consisting 
of a smooth rational curve C immersed in a K3 surface S and having self-intersection 
equal to n. 

Proof. Let R be a curve of genus 2 and J(R) its Jacobian. Let Z/£Z C J{R) be 
a cyclic subgroup of odd order £. Consider the map TT : R -> i7(i?)/(Z/£Z). 

LEMMA 2.9. For a generic R the curve n(R) contains exactly 6 points of order 
2 of the quotient abelian variety J\R) j'(Z j^Z). These points are non-singular points 
0flT(R). 

Proof. It suffices to show that the only torsion points of J'(R) contained in R 
(for a generic R) are the standard 6 points of order 2. (Indeed, a point 7r(Q), where 
Q £ R is a point of order 2 in J(R), is a singular point of 7r(R) if and only if there 
exists a point P ^ Q in R such that £ • P = Q in J(R). Thus P has to be a torsion 
point of order 2t.) 

Consider the universal family C —> M(2,2) of smooth curves of genus 2 with 2 
level structure. This family is imbedded as a subvariety into the universal family 
of principally polarized abelian varieties J -> Mj(2,2) (Jacobians) of dimension 2 
and level 2. The family C -» M(2,2) has 6 natural sections (points of order 2 in 
the Jacobian). The family J •-» Mj(2,2) has 16 natural sections and 6 of them are 
contained in C. 
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The monodromy of the family C -> M(2,2) is a congruence subgroup of the 
group Sp4(Z) (which we denote by Fc). The torsion multisections of J ->• Mj(2,2) 
split into a countable union of irreducible varieties Tm corresponding to the orbits of 
monodromy Tc on (Q/Z)4. 

Thus if a generic element Rt contains a torsion point of order £ then it also contains 
its Tc orbit. Remark that for odd £ this orbit consists of all primitive elements of order 
£ in the torsion group of the fiber. If £ = 2n then the corresponding orbit contains 
all primitive torsion points x,y of order £ with nx = ny. Thus the intersection cycle 
Rt + aDRt (where a is an element of order £ or n = £/2 in the even case) consists of 
primitive points x such that x + a is also primitive. The degree of this cycle is > (f){£)£2 

(where 0(£) is the Euler function.) (In fact, for any primitive a the degree is greater 
than the number of points x which are primitive modulo the subgroup generated by a 
- hence the number of primitive points in (Z/Z£)3 estimates the corresponding number 
from below.) On the other hand (Rt + a, Rt) = 2. Hence we obtain a contradiction if 
m > 2. 

It shows that the only torsion points which can lie on a generic curve of genus 
2 are the points of order 2. Since any point of order 2 which lies on Rt has to be 
invariant under the standard involution there are exactly six points of this kind on 
any R. 

LEMMA 2.10.  The self-intersection (7r(R),7r(R)) = 21. 

Proof. Indeed, the preimage 7r~1(7r(i?)) consists of translations of R by Z/^Z. 
Since (R,R) = 2 we have {jr(R),ir(R)) = \ • 2£2. 

LEMMA 2.11. For every even n > 0 there exists a K3 surface Sn containing a 
rational curve which represents a primitive class cn such that (cn,cn) = n. 

Proof. After dividing J(R)/(Z/£Z) by Z/2Z we obtain a rational curve 
7r(i?)/(Z/2Z) on the singular Kummer surface J(R)lV2i (where V21 is the dihedral 
group). After blowing up J(R)lV2t at the images of the 16 points of order 2 on 
J(R)I(ZI£Z) we obtain an immersed rational curve with square £ — 3. This curve 
represents a primitive class because its intersection with each of the 6 blown up (—2)- 
curves equals to one. 

LEMMA 2.12. Let S be any K3 surface with an effective primitive class x with 
square equal to n. Then there exists a 1-dimensional smooth family of K3 surfaces 
f : S -* Ti such that x is an effective class in Pic(St) for all t G T and such that 
Sto = S, S^ = Sn (for some to,ti e T) and the class x G Pic(5t1) is represented by 
an immersed rational curve. 

Proof. Consider a subvariety in the moduli space of marked K3 surfaces where a 
given class x is algebraic. It is given by a hyperplane section with the equation (CJ, x) — 
0 in the intersection of the open domain (a;,ccJ) > 0 with the quadric (UJ,(JO) = 0. This 
is a connected smooth domain, which we denote by £)(#). This domain is invariant 
under the action of a subgroup of 50(2,19) W- The arithmetic subgroup r(a:) C 
S,0(3ji9)(Z) stabilizing x acts discretely on n(x) (since it stabilizes a 3-dimensional 
subspace generated by x, u, u which has a positive definite intersection form) and the 
quotient is a possibly singular algebraic variety with at most quotient singularities. It 
is a (coarse) moduli space of K3 surfaces with a fixed class x. There exists a subgroup 
r(x)/ of finite index in Y(x) which acts freely on fi(#). The quotient Sl(x) is the fine 
moduli space of K3 surfaces with a fixed class x such that for a generic point of O(x) 
the corresponding K3 surface carries a polarization with class x.   There is a point 
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in Q,(x) which corresponds to a Kummer surface Sn with a class cn = x represented 
by an immersed rational curve. (Indeed, the classes cn,x lie in the same orbit under 
the action of 50(3,19)(Z).) We have a smooth algebraic curve T(x) C Q(x) which 
connects the projections of points corresponding to Sn and 5. Observe that we can 
choose the curve T(x) such that it contains only a finite number of points i where 
x is not a polarization of the corresponding K3 surface 5^. The family of effective 
cycles Ci(x) (represented by sums of rational curves) which represent the class x in 
the group Pic(5£) is an algebraic ruled surface which projects surjectively onto the 
generic point of T(x) (this follows from the surjectivity in the neighborhood of Sn). 
Hence, there is a smooth relative compactification of this ruled surface with a proper 
(fiberwise) map to the corresponding family of K3 surfaces. The class of the image of 
any fiber Q(x) is x. 

REMARK 2.13. Let xbea, primitive class which is one of the generators of AeflKS). 
Then it is represented by an irreducible rational curve. 

REMARK 2.14. There are similar results about immersions of stable curves (not 
necessarily rational curves) and substantially more general theorems on the existence 
of curves and families of curves. For example, Mori and Mukai proved that a generic 
K3 surface can be covered by a family of elliptic curves (cf. [20]). Yau, Zaslow and 
Beauville found a formula for the number of (singular) rational curves in a given 
class on generic K3 surfaces ([31], [4]). Xi Chen constructs such curves deforming 
them from combinations of rational curves on degenerations of K3 surfaces (cf. [8], 
[9]). (However, their results don't imply the existence of infinitely many rational 
multisections on elliptic K3 surfaces.) Let us also mention the work of C. Voisin on 
Lagrangian immersions of algebraic varieties into hyperkahler varieties. We decided 
to include the initial argument of the first author since it is direct, transparent and 
sufficient for our purposes. 

PROPOSITION 2.15. The set M(5, h) of elliptic K3 surfaces £ ->> P1 with a fixed 
Jacobian J(£) = S is given by M(5, h) = {ujt = us 4- th}tec C ft(h)f where t is 
a complex parameter and h is a representative of the class of the elliptic fiber Sb 
(b G P1

;. 

Proof. Let h be any (1, l)-form induced from the base P1. Then the form Uh := 
a;^ + th defines a complex structure on 5. Indeed, Wh is non-zero everywhere, its 
square is identically zero, it is a closed form and it is non-degenerate on the real sub- 
bundle of the tangent bundle. If its class is homologous to zero then the variation is 
trivial. Otherwise, we obtain a line M(5, h) in the space VL{h). 

Assume now that £' ->• P1 is an elliptic K3 surface with the same given Jacobian 
5. Then there is a smooth (fiberwise) isomorphism i: £ ->• £' which is holomorphic 
along the fibers. The holomorphic forms UJS and us1 correspond to the sections s, s1 

of H^P1,0). Therefore, the difference UJS — ^{^s1) is a closed form which has a non- 
trivial kernel on the tangent sub-bundle to elliptic fibers. Therefore, this difference is 
a form of rank at most 2 induced from the base of the elliptic fibration. 

3. Elliptic fibrations. 

3.1. Generalities. In this section we continue to work over C. We have to use 
parallel theories of elliptic fibrations in the analytic and in the algebraic categories. 
All algebraic constructions carry over to the analytic category. As in the case of K3 
surfaces there are some differences which we explain along the way. 
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DEFINITION 3.1. Let £ be a smooth projective algebraic surface. An elliptic 
fibration is a morphism tp : £ -* B onto a smooth projective irreducible curve B with 
connected fibers and with generic fiber a smooth curve of genus 1. A Jacobian elliptic 
fibration is an elliptic fibration with a section e : B ->• £. 

To every elliptic fibration ip : £ ->• B one can associate a Jacobian elliptic fibration 
(pj:J = J(£) -* B (cf. [1]). Over the generic point Jt, is given by classes of divisors 
of degree zero in the fiber £5. The zero section ej corresponds to the trivial class. A 
Jacobian elliptic fibration J can be viewed simultaneously as a group scheme over B 
(defining a sheaf over B) and as a surface (the total space). In order to distinguish, 
we will sometimes use the notation J and S(J), respectively. Most of the time we 
will work with JB = P1. 

We will only consider elliptic fibrations without multiple fibers. They are locally 
isomorphic to the associated Jacobian elliptic fibration J = J(£) (for every point in 
the base b £ B there exists a neighborhood Ut such that the fibration £ restricted 
to Ub C B is Jacobian). The fibration £ is a principal homogeneous space (torsor) 
under J and the set of all (isomorphism classes of) £ with fixed Jacobian is identified 
with Hgt(i?, J) (where J is considered as a sheaf of sections in the Jacobian elliptic 
fibration). In the analytic category we have a similar description of elliptic fibrations 
£ with given Jacobian J (where J is always algebraic). The group of isomorphism 
classes of £ with a given Jacobian J is identified with R^B, J). 

In the presence of singular fibers we have 

H1^, J) = H2(5(J),(9)/Image(H2(5(i7),Z)). 

The subgroup of algebraic elliptic fibrations U^B^J) coincides with the torsion 
subgroup in this quotient ([10], Section 1.5). It can also be described as the union of 
the images of K^B, Jm), noting the exact sequence 

H°n(B, J) -► BiD(B,Jm) -► Hin(B,J) 

where Jm is the sheaf of elements of order m in J (the elements of order m lie in the 
image of Hln(B,Jm)). 

3.2. Multisections. DEFINITION 3.2. Let (p : £ -> B be an elliptic fibration 
(analytic or algebraic). We say that a subvariety (analytic or algebraic) M C £ is 
a multisection of degree ds(M) if M is irreducible and if the degree ds(M) of the 
projection cp : M -» B is non-zero. The definition of degree extends to formal linear 
combinations of multisections. 

REMARK 3.3. If an analytic fibration £ -> B has an analytic multisection then 
both the fibration and the multisection are algebraic. 

There is a natural map 

Rest : Pic(f) -> Pic(£6)/Pic0(£6) = Z. 

DEFINITION 3.4. The degree ds of an algebraic elliptic fibration £ -* B is the 
index of the image of Pic(£) under the map Rest. 
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Clearly, the degree of any multisection M of £ is divisible by dg. 

LEMMA 3.5.  There exists a multisection M C 8 with ds{M) = d?. 

Proof. Let V be a divisor in £ representing the class having intersection d? with 
the class of the generic fiber of £. Then there is an effective divisor in the class of 
V' = V + n • £h for some n > 0. Indeed, consider (£>',£>') = (V,V) + 2nde(V). By 
Riemann-Roch, the Euler characteristic is 

±{V',V' -IC£) + cl + ^ = ±(V,vy + nde(V) - (K£,V) + 4 + ^ 

Hence, for n big enough, it is positive. By Serre-duality, we know that 

h2{£,V') =h0(£,K;e -V) = 0, 

since the latter has a negative intersection with the generic fiber Sj,. Thus, the class 
of V contains an effective divisor and V D £b = ds{V) = dg. Then the divisor M is 
obtained from this effective divisor by removing the vertical components (clearly, M 
is irreducible). 

COROLLARY 3.6.  The order of[£] e H1^, J) is equal to cfc. 

DEFINITION 3.7. A multisection M is said to be torsion of order m if m is the 
smallest positive integer such that for any b G B and any pair of points Pb,p'b € MC\£b 
the image of the zero-cycle pb —p'b in Jb is torsion of order m. We call a multisection 
an nt-multisection (non-torsion), if for a general point b G B there exist two points 
PbiPb € -M H ^b such that the zero-cycle pb — pj, G JT^ is non-torsion. 

LEMMA 3.8. If an irreducible multisection M C £ is not a torsion multisection 
of order n for any n G N then M is an nt-multisection. 

Proof. We work over C The union of all torsion multisections of £ is a countable 
union of divisors. So it can't cover all of M unless M is contained in some torsion 
multisection. 

Let £ —> B be an elliptic fibration (without multiple fibers). There is a natural 
set of elliptic fibrations Jm = Jm(£) over B parametrizing classes of cycles of degree 
m on the generic fiber of £. The Jacobian of each J171 is isomorphic to J0 = J. The 
class [J"™] G Han(B, J) equals m • [£]. If /? is a cocycle defining J® then the cocycle 
m • /? is defined by pointwise multiplication by m in the Jacobian fibration. Thus, we 
obtain the fibration J™®. 

We have natural rational maps of algebraic varieties J™ XB Jk -> Jm+k which 
fiberwise is the addition of cycles. These maps provide the set of isomorphism classes 
of Jm with the structure of a cyclic group. The order of this group for algebraic £ 
coincides with dg. The identification Jd£ = J0 is not canonical. It is defined modulo 
the action of H0(J3, J) on Jds (for example, choosing a multisection of degree dg in 
J1 — £ will fix the identification). 

The construction provides maps rf1 : J1 -» Jm for any m G N, since J1 imbeds 
diagonally into the fiber product of m copies of J1. All the above maps are well defined 
on the open subvarieties obtained by deleting the singular fibers of the fibrations. They 
are algebraic and they extend to meromorphic maps. 
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We obtain an action of J — J0 on £ = J1 which is regular in non-singular points 
of the fibers of J and E and which induces a transitive action of the fibers J& on £5 
(for smooth fibers). 

The maps 77™ allow to transfer irreducible multisections between the elliptic fi- 
brations Jrm (modulo efe). More precisely, we have 

LEMMA 3.9. Let M C Jk be a torsion multisection of order t (with djk\t). 
Consider the map rf1 : Jk -> Jkrn. Then ^(M) C J'mA: is a torsion multisection of 
order exactly t/gcd(t,m). Moreover, if M is non-torsion or torsion of order coprime 
to m then the restriction T)m : M —> ^(M) is a birational map and djk(M) = 
dj>m(rr(M)). 

Proof. Locally, we have a Jacobian elliptic fibration and the map 7/m is multipli- 
cation by m. Therefore, if r]m(x) = 7]m(y) for some x, y G Jk then m • (x — y) = 0 (in 
J). Since M is irreducible, either (x — y) is torsion of order gcd(£,ra) for any pair of 
points xyy € Jk for a general fiber b or these pairs constitute a divisor in M. In the 
latter case, it follows that the restriction of rf11 to M is a birational map and hence 
rfn^M) is a multisection of Jmk of the same degree. 

COROLLARY 3.10. Let p be a prime number and £ an elliptic fibration with 
ds = p. Let M be a torsion multisection of E. Then M. admits a surjective map 
onto one of the p-torsion multisections of £ or onto one of the non-zero p-torsion 
multisections of J{£). 

Proof. Suppose that M is a torsion multisection of order pkt where (t,p) = 1 and 
k > 1. If k = 1 choose an a such that at = 1 mod p. We have a map 

and r)at(M) is a torsion multisection of order p. 
If k > 1, then rjp t(M) is a non-trivial p-torsion multisection (but not a section) 

in J(£). 

DEFINITION 3.11. Let Z be any cycle of degree de{Z) on £ which is given by a 
combination of multisections with integral coefficients. We define a class map 

TZ :£->J 

by the following rule: 

Tz(p) = [de(Z)-p-Trz(<p(p))] 

for p e £. Here we denote by Trz(b) the zero-cycle Z n £5. 

3.3. Monodromy. Denote by &i,...,&n the set of points in B corresponding 
to singular fibers of £. Consider the analytic fibration £* -» J5*, where B* = 
J5\{6i,...,6n}, obtained by removing all singular fibers from £. We have a natu- 
ral action of the free group 7ri(2?*) on the integral homology of the fibers. The group 
of automorphisms of the integral homology of a generic fiber £& which preserve ori- 
entation is the group SL2(Z). One of the main characteristics of an elliptic fibration 
£ -> B is its global monodromy group F. 

DEFINITION 3.12. The global monodromy group T = T(£) of £ -> B is the 
image of 7ri(B*) in SL2(Z). Denote by ind(r) = [SL2(Z) : T] the index of the global 
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monodromy. A cycle around a point bi (for any i = 1, ...,n) defines a conjugacy class 
in 7ri(B*). The corresponding conjugacy class in SL2(Z) is called local monodromy 
around bi. So we obtain (a class of) cyclic subgroups Ti C SL2(Z) (up to conjugation). 

REMARK 3.13. The monodromy group T = T(S) of an elliptic fibration £ co- 
incides with T(J) of the corresponding Jacobian elliptic fibration. In particular, for 
locally isotrivial elliptic fibrations the monodromy group T(£) is a finite subgroup of 
SL2(Z). For non-isotrivial elliptic fibrations £ -> F1 we have ind(r(£)) < oo. 

The group SL2(Z) has a center Z/2Z and we shall denote by rc the subgroup of 
SL2(Z) obtained by adjoining the center to F. 

REMARK 3.14. A generic elliptic fibration £ -» F1 has monodromy group SL2(Z). 
More precisely, SL2(Z) has two standard nilpotent generators a, b. Assume that all 
singular fibers of £ are nodal (rational curves with one self-intersection). In this case, 
we can select a system of vanishing arcs from some points in B* so that all Ti split into 
two clusters Ia and /& (of equal cardinality) such that Ti = (a) for i G la and Ti = (b) 
for i e h (cf. [10], p. 171). In particular, any two local monodromies corresponding 
to different classes generate SL2(Z). 

Jacobian elliptic fibrations over F1 arise in families Jv parametrized by an integer 
r which is defined through the standard Weierstrass form 

y2=x3+p(t)x + q(t) 

where p (resp. q) is a polynomial of degree 4r (resp. 6r), satisfying some genericity 
conditions. There are lists of possible singular fibers, possible local monodromy groups 
and actions of these groups on the torsion sections of the nearby fibers as well as a 
list of possible torsion groups of the singular fibers (cf. [13] or [1]). 

For any non-isotrivial elliptic fibration £ —> B we have a map JB • B —>• F1 defined 
by 3B(b) :=j(£b) (where j is the standard j-invariant of an elliptic curve with values 
inF1 =PSL2(Z)\H). 

REMARK 3.15. If B = F1 and £ e Tr then 2B = 4P3%7q2 - Hence, the degree of 
the map JB in this case is bounded by 12r. 

PROPOSITION 3.16. Let £ —> B be a non-isotrivial elliptic fibration. Then 
ind(r)<2deg(JB). 

Proof. The map JB is the same for an elliptic fibration £ and for the Jacobian 
of £. Thus we reduce to the case of Jacobian elliptic fibrations. Consider the F- 
covering £* ->» B*. It is a Jacobian elliptic fibration over an open analytic curve B*. 
Since it is topologically trivial the map JB lifts to a holomorphic map JB > B* -» H 
(where H is the upper-half plane). This map is F-equivariant and it defines a map 
jr : B* -> T\H. Therefore, the map JB on B* is a composition jB = rp ojp, where rr 

is the map rr : r\fl" -» SL2(Z)\i3". The group F acts on H through its homomorphism 
to PSL2(Z). Therefore, the degree of rr is equal to the index ind(rc) if F contains 
the center Z/2 and equal to |ind(r) otherwise. 

COROLLARY 3.17. The number of possible monodromies in any family of elliptic 
fibrations with bounded degree of JB is finite. In particular, for the families J> with 
a given r all monodromy groups have index < 24r. 
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REMARK 3.18. If we have an algebraic variety which parametrizes elliptic fi- 
brations then global monodromy changes only on algebraic subvarieties, where the 
topological type of the projection ip : £ -> B changes. This variation normally occurs 
in big codimension. Indeed, the monodromy is completely determined by its action 
outside of small neighborhoods of singular fibers. Hence, it doesn't vary under small 
smooth variations of £. 

EXAMPLE 3.19. For the family J> the monodromy is SL2(Z) provided that at 
least two nodal fibers from different clusters Ia,h remain unchanged. The dimension 
of the subvariety in J> with monodromy different from SL2(Z) is < |dim^> -h 1. 

3.4. Torsion multisections. In this section we will work over C. Let (p : £ ->» B 
be an elliptic fibration and M an irreducible multisection of £. 

PROPOSITION 3.20. Let J -> P1 be a non-isotrivial Jacobian elliptic fibration 
with global monodromy T C SL(2,Z). Then there exists a constant c (for example, 
c = ^j such that for all torsion multisections M C J of degree dj(M) and order m 
we have 

"^ > E5& 

Proof. For each b G P1 we have an action of F on the cycle M. fl JT^ and also an 
action of T on the set of points of order m of this fiber. It follows that M fl Jb must 
coincide with an orbit of F on the m-torsion points. The size of the corresponding 
orbit for the full group SL(2,Z) acting on primitive torsion points of order m (e.g., 
points of order exactly m) is equal to the product m2 • ridm^ — VP

2
)- Hence, the 

size of any orbit of F on the primitive m-torsion points of a general fiber is 

p\m 

PROPOSITION 3.21. Let F C SL2(Z) be a subgroup of finite index. There exists a 
constant mo (T) such that for all non-isotrivial Jacobian elliptic fibrations J —)■ B, with 
at least 4 singular fibers, with global monodromy F and for all torsion multisections 
M C J of order m with m> mo(T) we have g(M) > 2. 

Proof. Although this fact is probably well known we decided to give an argument. 
Every orbit of the (linear) action of F on m-torsion points defines an irreducible 

m-torsion multisection in J (and vice versa). Thus we can identify the orbit for a 
given multisection with the quotient F/F', where F' is a subgroup of finite index in F. 
The corresponding orbit for a singular fiber J^ is equal to the quotient F/F; where 
Ti is a subgroup of F generated by F7 and the local subgroup Ti (even though Ti 
are, in principle, defined only up to conjugation in F, but specifying the multisection 
we also specify the pair T^F' modulo common conjugation). Therefore, the Euler 
characteristic of the normalization M of M will be equal to 

(3.1) x(M) = |r/r'| • (x(B) - ^(i - oi)) , 
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where the sum is over the set of singular fibers and the contribution a* for a singular 
fiber is computed as follows: denote by pa' the reduced irreducible components of the 
zero cycle M fl £5.. The number ai is computed as a sum of local contributions from 
pw, via monodromy. 

The above formula calculates the Euler characteristic of the topological normal- 
ization of M - the latter amounts to the separation of different local branches of M 
over the base. Therefore, it is equal to the Euler characteristic of the algebraic nor- 
malization of M. In order to prove our theorem it suffices to observe that this formula 
implies the growth of the absolute value of x(.M) (and consequently the genus of the 
normalization of M) as m —> 00. 

The fibration J -> B contains at least one fiber of potentially multiplicative 
reduction (pullback of 00 of the j-map). The local monodromy around any fiber 
of this type is an infinite cyclic group which includes a subgroup of small index 

(2,3,4,6) generated by the unipotent transformation (   n    -,   ) where k is the number 

of components in the fiber. The number of m-torsion elements in this singular fiber 
is at most m • k. But the degree of the torsion multisection grows like m2 (cf. 3.21). 
Hence the contribution a; for such fiber tends to zero when m -» 00. Indeed, 

where ba is the number of branches of M (around St) of local degree d. The sum 
Y^d bdd is equal to the global degree of M over P1 which for a torsion multisection of 
order m grows like m2. On the other hand the sum J^d ba can be estimated by m1+e 

(this follows from local computations). 
Similarly, for singular fibers with potentially good reduction the correspond- 

ing local monodromy groups are among the standard finite subgroups of SL2(Z) : 
Z/2Z, Z/3Z, Z/4Z, Z/6Z. They all act effectively on the points of order m for m > 5. 
Hence, every fiber of this type contributes at least 5/6, 3/4, 2/3 or 1/2, respectively 
(again this follows from local computations). 

Asymptotically, for m > 0, the contribution from every singular fiber of poten- 
tially multiplicative reduction will tend to 1, the contribution from other fibers is 
> 1/2. Since we have at least 4 singular fibers, the theorem follows. 

An alternative argument would be to observe that M. admits a map onto a mod- 
ular curve. Choosing a point on M amounts to choosing an elliptic curve and an 
m-torsion point on it. As m increases the genus of M has to go up. 

We have a similar result for non-Jacobian elliptic fibrations. Before stating it we recall 
some generalities: Let £ -> P1 be a (non-Jacobian) elliptic fibration and J{£) the 
associated Jacobian elliptic fibration. The fibration J{£) contains the grouplike part 
(/, obtained by removing multiple components and singular points of singular fibers. 
All the sections of J{£) are contained within Q. The fibers £/&, (for b € B) are abelian 
algebraic groups - sometimes non-connected. 

The fibration £ contains an open subvariety which is a principal homogeneous 
space under Q. It is defined by a cocycle cs e iir1(P1,^/) if / is the order of £ in the 
Tate-Shafarevich group. Here Gi is the Z-torsion group subscheme of Q, whose generic 
fiber Qi is isomorphic to 1} := Z/IZ+ Z//Z. We have: 

1. The minimum degree of a multisection in £ is /; 
2. The fibration of relative zero cycles of degree /,£/ ^ yJ(£)- 
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The latter isomorphism is unique up to the action of the group of global sections 

Consider the restriction of £ onto the open part B* C P1 where the fibers of £ 
are smooth. Now we define a cocycle CM £ ^{B*,Qi) as follows: we have a variety 
Ti which fiberwise (in smooth fibers) is defined as the set of points of £ which differ 
from M by torsion of order I (in the Jacobian). Thus we have an accociated cocycle 
CM on the open part 5* and a locally constant sheaf 7/ with fiber T} together with an 
affine action of 7ri(fr) on 7}. Here we consider 7} as an affine plane over Z/ZZ. Thus 
we get a homomorphism Ac : 7ri(i?*) -* ASL2(Z//Z) to the affine group ASL2(Z//Z). 
The linearization of this homomorphism is the composition of the monodromy homo- 
morphism 7ri(£*) -> T C SL2(Z) with the reduction mod /: SI^Z) -* SL2(Z/ZZ). 
Denote by Hc the image of it^B*) in ASL2(Z//Z). Thus the fiber of 7/ is a finite 
affine module (Z//Z+ Z/ZZ). 

It also defines £ as a (compactification of a) principal homogeneous space under 
J (under the natural embedding of sheaves Ti —> J). It follows that the order of the 
cocycle cs divides the order of the cocycle CM • 

The total space Ti ->• B* is a union of connected components. One of these 
components is the open part of M* of M lying over B*. Now it is a simple topological 
fact that connected components of Ti correspond to the orbits of Hc on 7} (under the 
affine action i7c C ASL2(Z). Thus M. defines in fact several torsion multisections 
(which are components of the subset of points in £ which fiberwise differ from M by 
torsion elements). 

PROPOSITION 3.22. Let T C SL2(Z) be a subgroup of finite index. There exists a 
Po > 0 (which depends only on T) such that for every elliptic surface £ —> P1 with at 
least 4 singular fibers, global monodromy T and for any torsion multisection M C £ 
of order p > po (where p is a prime number) the genus of the normalization of M is 
>2. 

Proof. The minimal index of a proper subgroup of SL2(Z/pZ) grows with p. 
This implies that for any subgroup F of finite index in SL2(Z) its projection onto 
SL2(Z/pZ) is surjective for all p> po> 

LEMMA 3.23. Suppose that T surjects onto SI^Z/pZ), that the elliptic fibration 
£ is non-Jacobian and that M G £ has torsion order p. Then M fl £& has cardinality 
p2 (for almost all b). 

Proof. The fiber of M over the generic point is an orbit of Hc in Tp where 
Hc C ASL2(Z/pZ) surjects on SL2(Z/pZ) and Hc is not contained in SI^Z/pZ)^ C 
ASL^Z/pZ)^ for all x in the affine space Tp (where SI^Z/pZ)^ is the subgroup 
stabilizing x). In other words, Hc can not be linearized - otherwise we would have a 
global section of £ ->• P1. Then Tp is the only orbit of Hc. 

If Hc is not isomorphic to SL2(Z/pZ) (under the linear projection) then it con- 
tains the group of translations (Z/pZ)2 and we are done. Otherwise, we have two 
conjugate semisimple elements of order p — 1 with different fixed points and different 
invariant directions. The orbit under the group generated by these elements is the 
whole (Z/pZ)2. 

We return to the proof of Proposition 3.22. Now we use Formula (3.1) and we 
obtain that in this case the contribution from each singular fiber is at least 1/2 and 
that there is at least one singular fiber with contribution asymptotically (for p —> oo) 
1. Thus the absolute value of Euler characteristic of the normalizaton of M grows as 
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PROPOSITION 3.24. For every finite index subgroup Y C SL2(Z) there exists apo 
such that for all primes p> po and all (non-isotrivial) non-Jacobian elliptic fibrations 
£ -> P1 of degree ds = p, with at least 4 singular fibers and with global monodromy T 
every torsion multisection M of £ has genus g(M) > 2. 

Proof. First observe that the class of order p in the Shafarevich-Tate group cor- 
responds to a cocycle with coefficients in the p-torsion sub-sheaf of J{£). Therefore, 
the elliptic fibration £ corresponding to a cocycle of order p contains a p-torsion 
multisection M. 

By 3.10, we know that every torsion multisection M1 C £ admits a map onto 
the p-torsion multisection in M C £ or a p-torsion multisection in the corresponding 
Jacobian elliptic fibration J{£). Now we apply 3.22. 

PROPOSITION 3.25. Let £ -> P1 be an elliptic fibration (with at least 4 singular 
fibers and fixed monodromy group T as above). Let p > po a prime number not 
dividing the degree ds. Let £' —> P1 be an elliptic fibration of degree p- ds, obtained 
by dividing the cocycle corresponding to £ by p. Then £' has no rational or elliptic 
torsion multisections. 

Proof. Let £" — £' e. It is a fibration of order p (with the same monodromy 
group F). Any torsion multisection of £' is mapped to a torsion multisection of £". 
By 3.24, the genus of any torsion multisection in £", and therefore in £' is > 2. 

LEMMA 3.26. Any elliptic K3 surface S ->• P1 with Pic(S) < 19 has at least 4 
singular fibers, including at least one potentially multiplicative fiber. 

Proof. The proof is topological and works for Jacobian and non-Jacobian elliptic 
fibrations. Denote by xi^b) the Euler characteristic and by r(£&) the rank of the 
lattice spanned by classes of the irreducible components of the singular fiber £5. Then 
x(£&) — ^(£5) = 1 if the fiber has multiplicative reduction (Type /n), or x(£&) — r*^) = 
2 otherwise. We have 2x(^6) = 24 and 2r(£&) ^ 18 (for more details see, for 
example [32], pp. 7-9). 

REMARK 3.27. In [3] Beauville proves that every semi-stable non-isotrivial elliptic 
fibration has at least 4 singular fibers and classifies those which have exactly 4. (These 
are 6 modular families, cf. [2], p. 658.) There is a complete classification of elliptic 
K3 surfaces with 3 singular fibers in [32]. For recent work concerning the minimal 
number of singular fibers in fibrations with generic fiber a curve of genus > 1 see [29], 
[32]. 

As a corollary we obtain Theorem 1.8 stated in the introduction: 

COROLLARY 3.28. Every algebraic elliptic K3 surface S -► P1 with rkPic(S) < 19 
has infinitely many rational nt-multisections. 

Proof. If S is Jacobian we denote by S' some algebraic non-Jacobian elliptic 
K3 surface with Jacobian JiS') = S. Otherwise, we put 5' = 5. Dividing (the 
cocycle defining) 5' by different primes p > po we obtain elliptic K3 surfaces £p (of 
different degrees). By proposition 3.25, £p don't contain rational or elliptic torsion 
multisections. At the same time, by deformation theory, they contain rational multi- 
sections of degree divisible by dsp. Therefore, we can produce a sequence of rational 
n£-multisections in 5' (and consequently, in 5) of increasing degrees. 
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4.  Density of rational points. 

4.1. Multisections. From now on we will work over a number field K and we 
restict to the case of the base B = F1. 

PROPOSITION 4.1. [7] Let ips : £ -^ F1 be an elliptic fibration defined over K 
with a nt-multisection M. Then for all but finitely many b G (pj(M(K)) C P1(iir) 
the fibers £{, have infinitely many rational points. 

Proof. Since M is an nt-multisection, we have a birational map 

r : M -> T(M) C J{S). 

An argument using Merel's theorem (or simply base change to T(M)) implies that 
rational points are dense in the fibers Jb for almost all b e (PJ(T(M)(K)) (for a 
sufficiently large finite extension K/Q). Then one can translate points in (£bnM)(K) 
(for b G (p(M(K))) to obtain a Zariski dense set of rational points in the fibers £& and 
consequently in £. 

COROLLARY 4.2. Let S —> P1 be an elliptic K3 surface defined over a number 
field K. Then rational points on S are potentially dense. 

Proof. By 3.28, every algebraic elliptic K3 surface with rkPic(5) < 19 has in- 
finitely many rational n£-multisections. If rkPic(S) = 20 we use 4.10. 

DEFINITION 4.3. Let </? : £ -> B be an elliptic fibration. A saliently ramified 
multisection of £ is a multisection M which intersects a fiber £& at some smooth 
point pb with local intersection multiplicity > 2. 

PROPOSITION 4.4. [6] Suppose that M C £ is a saliently ramified rational or 
elliptic multisection. Then it is an nt-multisection. Consequently, rational points on 
£ are potentially dense. 

COROLLARY 4.5. Let S be an algebraic surface admitting two elliptic fibrations 
over P1.  Then rational points on S are potentially dense. 

REMARK 4.6. An alternative approach to potential density of rational points on 
elliptic K3 surfaces £ -> P1 would be to show that there exists an family of elliptic 
curves "transversal" to the given elliptic fibration. Then a generic elliptic curve in the 
transversal elliptic fibration is a saliently ramified multisection of £ -> P1. It remains 
to apply 4.4. 

4.2. Automorphisms. Let X be a K3 surface defined over a number field K. 
We have a hyperbolic lattice Pic(X) := Pic(Xc) C C where C = 3 • Ti 0 2 • (-E8) and 
a monoid of effective divisors Aeff(X) C Pic(X). We denote by Aut(X) the group 
of (regular) algebraic automorphisms of X (over C). Observe that Aut(X) is finitely 
generated. We can guarantee that Aut(X) is defined over K', for some finite extension 
K'/K. 

REMARK 4.7. V. Nikulin proved that there are only finitely many isomorphism 
types of lattices Pic(X) for K3 surfaces with rkPic(X) > 3 such that the corre- 
sponding group Aut(-X') is finite (cf. [23]). We can prove potential density for those 
surfaces from Nikulin's list which contain (semipositive) elements with square zero. 
For example, there are 17 lattices that give finite automorphism groups Aut(X) for 
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rkPic(X) = 4 and of those 17 lattices 15 contain elements with square zero (and 
therefore admit elliptic fibrations) (cf. [30], [23]). 

EXAMPLE 4.8.   There exists a K3 surface of rank 4 with the following Picard 
lattice: 

f 2 -1 -1 -1 \ 
-1 -2 0 0 
-1 0 -2 0 

w 0 0 -2/ 

There are no elements or square zero and the group of automorphisms Aut(X) is 
finite. We don't know whether or not rational points on X are potentially dense. 

LEMMA 4.9. Suppose that Aut(X) is infinite. Then AeffPQ is not finitely gen- 
erated. 

Proof. If suffices to identify Aut(X) (up to a finite index) with the subgroup of 
Aut(£) which preserves Aeff (X). The set of generators of Aeff(X) is preserved under 
Aut(X). If this set is finite Aut(X) must be finite as well. 

THEOREM 4.10. Let X be a K3 surface over a number field K with an infinite 
group of automorphisms.  Then rational points on X are potentially dense. 

Proof. It suffices to find a rational curve C C X such that the orbit of C under 
Aut(X) is infinite. The monoid Aeff(^0 is generated by classes of (-2)-curves, curves 
with square zero and primitive classes with positive square. It follows from (2.13) that 
every generator of Aeff {X) is represented by a (possibly singular) irreducible rational 
curve. Suppose that orbits of Aut(X) on the generators of Aeff(X) are all finite. 
Then the group Aut(X) is finite and the number of elements is bounded by a function 
depending only on the rank of the lattice. (Indeed, any group acting on a lattice of 
rank n embedds into SLn(Z3). The normal subgroup of elements in SLn(Z3) equal to 
the identity modulo 3 consists of elements of infinite order. Hence any subgroup of the 
automorphisms of the lattice has a subgroup of finite index which consists of elements 
of infinite order.) So there exists an element of infinite order. For this element the 
orbit of some generator of Aeff(X) is infinite. This class is represented by a rational 
curve C. The orbit of C is not contained in any divisor in X. Extending the field, if 
necessary, we can assume that rational points on C are Zariski dense. This concludes 
the proof. 

REMARK 4.11. Certainly, there are algebraic varieties X such that the orbit under 
Aut(X) of any given rational point is always contained in a divisor. For example, 
consider a generic Jacobian elliptic surface J with a non-torsion group of sections. 
Then Aut( J) is generated by the group of fiberwise involutions with respect to the 
sections. In particular, inspite of the fact that the group is infinite the fibers are 
preserved and the orbit of any point is contained in a divisor. However, rational 
points on X are Zariski dense, as there is a rational section of infinite order (in 
Aut(X) and in J). 

COROLLARY 4.12. Let X be a K3 surface such that rkPic(X) > 2 and Pic(X) 
contains no classes with square zero and square (—2). Then Aut(X) is infinite and 
rational points on X are potentially dense. 

Proof The monoid Aeff(X) is infinitely generated. 
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