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REMARKS ON THE INVERSE MEAN CURVATURE FLOW* 

KNUT SMOCZYKt 

Abstract. In this short note we investigate the regularity of 2-surfaces evolving by its inverse 
mean curvature in an asymptotically flat Riemannian 3-manifold and derive an a-priori bound for the 
second fundamental form in terms of a quantity depending on the mean curvature and the elapsed 
time. This partially solves one of the 5 questions posed in [3]. The proof relies on the special 
geometry of asymptotically flat Riemannian manifolds and on the fact that the dimension of the 
evolving surface is 2. 

1. Introduction. Assume that Ft : Mn -> Nn+1 is a smooth family of immer- 
sions into a smooth Riemannian manifold iV evolving by the inverse mean curvature 
flow (IMCF) 

where H is the outward pointing mean curvature vector and H = \H\. In [3] the proof 
of the Penrose inequality [7] for a Riemannian 3-manifold N3 of nonnegative scalar 
curvature has been announced. The proof is based on a weak formulation of the IMCF 
and will appear in [4]. The weak solution remains equal to the smooth solution until 
the latter ceases to exist or Mt := Ft(Mn) ceases to be a minimizing hull, which may 
happen sooner. In this paper we investigate the regularity of the classical solution of 
(1). From (4) (see below) and the maximum principle it easily follows that H admits 
an upper bound that depends only on the initial immersion FQ : Mn —>• Nn+1. A 
more important and delicate question is whether there exists an upper bound for the 
full second fundamental form A. Let us compare the situation to the mean curvature 
flow -^F = — n. In [2] it was shown that a bound on the second fundamental form 
A implies bounds on all covariant derivatives \VkA\2,\fk > 0 and consequently a 
smooth solution for the mean curvature flow exists as long as A stays bounded. In 
special situations, as for example for mean convex solutions in the euclidean space, it 
is then possible to control the second fundamental form in terms of H, i.e. in terms 
of the speed alone. However, when working in arbitrary ambient spaces, this is no 
longer true. The aim of this paper is to derive similar results for the inverse mean 
curvature flow, i.e. we would like to control the second fundamental form and its 
covariant derivatives in terms of quantities that depend on the speed -^. It turns out 
that we can do this, if we restrict the dimension to 2. Interestingly enough, this is 
just the important case in general relativity and moreover we are able to bound A in 
terms of the speed and the elapsed time when working in arbitrary asymptotically flat 
Riemannian manifolds N. Throughout this paper we will (somehow more generally) 
assume that AT is a complete Riemannian 3-manifold such that all curvature quantities 
and covariant derivatives of arbitrary order are bounded. Let us define two constants 
a and b by 

a := maxm2 

Mo 

b := maxiJ2. 
Mo 
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Then we will prove the following theorem: 

THEOREM 1.1. Assume that n = 2. We can find constants kj>0 depending 
only on a, b and on the ambient geometry such that 

(2) \A\2H2<k + lt2 

for all t, where a smooth solution of (1) exists. If (0,T) is the maximal time interval 
for which a smooth solution of (1) exists^ then 

(3) limminiJ = 0. 
v   / t-+T Aft 

We summarize the evolution equations for the relevant geometric quantities in 
the following proposition. 

PROPOSITION 1.2. 

(4)     jtH = w{AH " l|Vjff|2"iJ(|A|2 4" ffic^,/))> 
(5) l1^2 = i{A|^2 - 21V^12 "" ^iJ'ViHVjH) - 4mrA3 + 2|A|4 

+ 2\A\2mc(v, v) -IHihijsRoiQj) - WiihjtR1^™ - timRlimj) 

-2hii(VjRj + VlR0ij
1)} 

LEMMA 1.3. If n = 2 then we can find constants ci,C2 > 0, depending only on 
the geometry of N3, such that 

(6) Jt^ - W{A|A|2 " 2lVA]2 -Ji{hij'yiHVjH) - 2H2WA\2 - H2) 
+ 2|A|2(m2 + Ric(i/, v)) + dl^l2 + c2} 

Proof. Since n = 2 we make the observation that 

(7) trA3 = Af + A3 = (Ax + A2)(A2 - AxAa + A2) = iH(3|A|2 - H2), 

where Ai, A2 denote the two principal curvatures of M. Since all curvature quantities 
on N are bounded we can repeatedly apply Schwarz' inequality to bound each term 
in the evolution equation (5) that involves ambient curvature quantities by a constant 
multiple of \A\2. This proves the lemma. □ 

REMARK. We want to point out that the following calculations strongly depend on 
the identity (7) and that in higher dimensions the bad term HtrA3 cannot be reduced 
to a term that seems to be good enough to imply bounds on derivatives of A in terms 
ofH. 

LEMMA 1.4. If n = 2 then we can find constants 03,04 > 0, depending only on 
the ambient geometry, such that 

(8) ^{\A\2H2) < -L{A(\A\2H2) - 2(V|A|27 ViJ2) - 6\A\2\VH\2 - 2H2\WA\2 

at Hz 

- 4(%, ViHVjH) - 2H\1\A\2 - H2) + cz\A\2H2 + aH2} 
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Proof. This^ follows directly from Lemma 1.3, the evolution equation for H and 
the bound for Ric(i/, i/), D 

Now let d > 0 be a constant to be chosen later and set 

(9) fd:=\A\2H2 + (^ + d)H2 

LEMMA 1.5, Ifn = 2 then we can find a constant C5 > 0, depending only on the 
ambient geometry, such that for any d > 0 we obtain the inequality 

(10) |/d < ^{Afd - !<ViJ, V/d) + 4\A\H\VH\2 - (c3 + 2d)|VH|2} 

- 2\A\2H2 + C4 + dc5. 

Proof. Using Lemma 1.4 and the evolution equation for H we obtain 

(11) jtfd < jp{Md - UI(V\A\\VH) - 6|.4|2|V#|2 - 2H>\VA\2 

- Wihij, ViHVjH) - 6(^ + d)\VH\2} 

- 2H2(3\A\2 - H2) + C4 - 2dRic(z/, v) 

Now let 

(12) Q2 := \VihktH + ViHhktf = H2\VA\2 + \A\2\VH\2 + H(V\A\2,VH). 

Then it follows that 

- 4H{V\A\2, Vtf) - 6|A|2|Vif|2 - 2H2\VA\2 - AH{hih ViHVjH) 

-6(| + d)|VF|2 

= -2#(V|A|2, VH) - 4\A\2\VH\2 - 2Q2 - AH^, ViHVjH) 
cs 
•2 

2_ 
H 

and the result follows from 

6(| + d)|ViT|2 

^-(VF, V/d) - 2Q2 - 4F(%, ViHVjH) - (c3 + 2d)|VH|2 

2|A|2 > H2 

-4:H{hij, ViHVjH) < 4\A\H\VH\2 

—2dRic(i/, z/) < des. 

D 
Next we define 

(13) hd := fd - (C4 + dc5)t - kd, 

where 

(14) kd:=(a+^+d)b 
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We come to the proof of Theorem 1.1. 
Proof. Fix a time interval [0,T), where a smooth solution of the IMCF exists. 

We first prove that we can find a constant d such that hd < 0 for alH < r. This is 
a consequence of the parabolic maximum principle, if we can show that -^hd < 0 at 
all points where Ahd < 0, Vhd = 0, hd = 0. But at such a point we can use (10) to 
conclude 

(15) ^hd<i4\A\H-c3-2d)^^-2\A\2H2 

If hd = 0 we obtain 

(16)\A\2H2 < (C4 + dcb)t + kd< (C4 + c5d)T + kd = C±T + 6(y + a) + d{b + c^r). 

Let 

Then 

A :— max{c4,C5} 

B := max{6(— + a), 6,1}. 

C4* 
c^r + b(— + a) + d(b + C5T) - cs — 2d 

< 2(2\]AT + B + d{B + AT) - d) 

= 2(2^(d+l)(Ar + B) - d). 

Provided d > 1, this is smaller than 

(17) 2(2^2d{AT + B) -d) = 2(VdVAT + B - d), 

where we have set 

A := SA 

B := SB. 

If we choose d := AT + B the last term vanishes and consequently 

(18) 4 JC4T + 6(y + a) + d(b + C5T) -c3-2d<0. 

We summarize: On any fixed time interval [0, r), where a smooth solution of the IMCF 
exists we can find constants A, B depending only on a, b and the ambient geometry, 
such that 

(19) /MT+2?<0on[0,T). 

This means that 

(20) |A\2H2 < (C4 + dc5)t + kd 

= (C4 + (AT + B)cs)t + (a + y + (Ar + B))6 

< Acsr2 4- (C4 4- £c5 + Afe)r + (a + y 4- 5)6 

= eir2 + e2r+ 63, 
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where 

ci := Acs 

62 := C4 + Bcb + Ab 

C3:=(a+^. + B)6. 

2 

Finally we use e2T < yr2 + | to conclude 

(21) \A\2H2 <k + lT2, 

with two constants k and / depending only on a, 6 and on the ambient geometry but 
not on r. Since r was arbitrary we are done with the first part of Theorem 1.1. This 
estimate states that \A\2 is bounded as long as H is bounded away from zero. Once 
we have a bound on the full second fundamental form we can use results of Krylov [6] 
(see also [1] and [2] for similar arguments) to derive bounds on all derivatives of the 
second fundamental form. This proves that a smooth solution must exists as long as 
H is positive. □ 
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