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THE MONODROMY PAIRING* 

ROBERT F. COLEMANt 

For an Abelian variety over a complete local field K, let A' denote its dual and 
T(A) its "fundamental group" (see §1 below). In SGA7I, Expose IX §9, Grothendieck 
defined a pairing between T(A) and r(^4/) with values in Z, if A has semi-stable 
reduction, which he called the monodromy pairing. In fact, he proved ap-adic analogue 
of the Picard-Lefshetz formula when A is a Jacobian of a curve with semi-stable 
reduction (see §5 below). 

Raynaud [Rl] also wrote down a definition of a pairing between T(A) and r(^4/) 
when A has semi-stable reduction using bi-extensions and Grothendieck asserted that 
Raynaud's pairing is the same as his in Chapter IX, §14.2.5 of SGA7 but gave no 
details of a proof. We provide a proof in §2 based on Werner's analysis of Raynaud's 
pairing which uses an observation of Reversat-Van der Put [R-vP]. 

This result was needed to show, in [CI], that the monodromy operator on the first 
de Rham cohomology group of a semi-stable curve defined in [pSI] is the same as that 
of Hyodo-Kato [HK] and it was also used in §3 of [W] to study local heigfht pairings. 

The remainder of the paper is a rigid analytic proof of the p-adic Picard-Lefshetz 
formula based on the aforementioned expression of Raynaud's formula for the mon- 
odromy pairing. A sketch of an alternate proof of this result is contained in [FC], 
Chapter III, Theorem 8.3. 

The main new technical result is an explicit relationship, proven in §4, between the 
rigid residue maps from the regular differentials on a curve with semi-stable reduction 
over K to K, defined in Reciprocity Laws on Curves [C2], and rigid homomorphisms 
from Gm into the Jacobian of the curve. 

We first prove, in §5, the Picard-Lefshetz formula in the case of the Jacobians 
of Mumford curves. Although this is not essential to our ultimate general proof, it 
provides motivation and in fact we are able to prove more in this case. 

In the following, K C Cp will be a finite extension of the completion of the 
maximal unramified extension of Qp, R will be its ring of integers, k will be its residue 
field and TT will be a uniformizing parameter of K. We will let v be the valuation on 
Cp such that v(7r) = 1. All objects discussed below will be supposed defined over K: 

unless otherwise indicated. 
Generalizing the notions of [C2]: If F is a complete subfield of Cp, by a discoid 

space over F we mean an affinoid which becomes isomorphic to a finite union of disjoint 
affinoid disks after a finite base extension and by a wide open space over F we mean 
the complement in a smooth complete curve of a discoid sub domain. If W is a wide 
open space over F the set of ends of W is the inverse limit of CC(Wcp — X) where 
X runs over the affinoid subdomains of WcP' The group Gal(Cp/F) clearly acts on 
this set. By a basic wide open pair, we mean a pair (W,X), where W is a wide 
open and X is an affinoid in W with good reduction such that after a finite extension 
the connected components of W - X are annuli and the map from CC(W -X) to the 
ends of W is a bijection. A wide open which is a member of a basic wide open pair 
will be called a basic wide open. The results and proofs of [C2] carry over easily to 
this more general context. 

* Received June 5, 1998; accepted for publication March 23, 1999. 
t Department of Mahematics,    University of California,    Berkeley,    California 94720, USA 

(coleman@math.berkeley.edu). 

315 



316 R. F. COLEMAN 

We are grateful to Annette Werner and Adrian lovita for helpful remarks during 
the composition of this paper. 

1. Covering Spaces. The following definition is due to Bosch and Liitkebohmert 
[BL, §8]. 

DEFINITION. Suppose f-.W-^Yisa morphism of rigid spaces over K. Then 
W is said to be a covering space of Y and f is said to be a covering map if there 
exists an admissible open covering C of Y such that for each U G C, /-1([/) is a 
disjoint disconnected union of spaces each mapping isomorphically via f onto U. If Z 
is a connected rigid space with no non-trivial covering spaces, Z is said to be simply 
connected. 

Generalizing the argument of Example 2.5 of [U] one can show that basic wide 
opens or one dimensional affinoids with good reduction are simply-connected. It fol- 
lows, in particular, that curves over K with good reduction are simply connected. 
(This has been generalized to higher dimensions by van der Put in [vP].) 

If Y is connected and is admissibly covered by simply connected rigid spaces 
(this is a special case of what Ullrich [U] calls "semi-locally simply connected") there 
is connected covering space Y which maps onto any other connected covering space 
W of Y such that 

Y 
I    \ 
Y    <-    W 

commutes. The space Y is unique up to isomorphism and up to unique isomorphism 
if a base point of Y is chosen. It is called the rigid universal cover of Y. The group 
of rigid automorphisms of Y over Y is called the fundamental group of Y. 

Suppose X is a curve over K with a regular semi-stable model X over i?. Then, if 
all the irreducible components of X are smooth, the collection of rigid subspaces of X, 
{red-1 (A)}, where A ranges over the irreducible components of X, is an admissible 
covering of X by simply connected rigid spaces since red~1(A) is a basic wide open 
or equals X if X is smooth. Thus X has a universal covering X over K. (This is true 
even if the irreducible components are not smooth. One way to see this is to pass to a 
ramified quadratic extension K' of K and blow up the singular points of XRK, . This 
new model will then be regular and we can apply the above analysis to get a universal 
covering which one can show is actually defined over K.) 

We follow Grothendieck [G, §12.3] (except that the edges of our graphs are ori- 
ented). Suppose Y is a semi-stable curve over a field L, as in Definition 9.2/6 of 
[BLR]. In this case, this means that Y is proper and has only ordinary double points 
as singularities. Let Gr(Y) be the oriented graph whose vertices ver(Y) correspond 
to the irreducible components of Y, and whose oriented edges, edg(F), connecting 
a vertex a to a vertex b correspond to ordered pairs (a:, y) of distinct points on the 
normalization of Y, Yn which map to the same point of Y such that x e a, y e b. If 
e = (x,y) is an edge between a and b, we let a(e) = a and 6(e) = 6.. If X is as above, 
we set Gr(X) = Gr(X)9  ver(X) = ver(^) and edg(X) = edg(X). 

If v is a vertex of Gr(X), we let Xv equal the red-1 (v) (this is the tube ]v[ in the 
sense of Berthelot) and if e = (x,y) is an edge, Ae = red-1 (a:') =]#'[, where x* is the 
image of x on X. Then, if X has more than one component, C = {Xv: v G ver(X)} is 
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an admissible cover of X by wide opens and if v is smooth, 

[XV1 Xv — I^J Xu) 

is a basic wide open pair. We note that, since A* is regular, any point in X(K) is a 
point on a unique element of C. 

DEFINITION. // r and s are two points of X(K) we say a path from r to s is 
a sequence (v,ei,... ,en,^), n > 0, where v^w G ver(X), ei € edg(X) such that 
r € XV(K), s G XW(K), b(ei) = a(ei+i) for 1 < i < n and v = w if n = 0 «;Me 
a(ei) = r onrf v(en) = sifn>0. 

We say two paths are homotopic, if the paths obtained by successively remov- 
ing all "doubling backs" (i.e. subsequences of the form ((#,?/), (y,x))) are the same. 
(Another way to think about this is that we have a natural map of paths on X to 
paths on Gr(X) and then two paths between the same pair of points in X(K) are 
homotopic if and only if their images on Gr(X) are in the usual sense.) Now the basic 
theorem which is an elementary translation of the results in [U] is, 

THEOREM 1.1. Suppose O G X(K). The points of X(K) are in one-to-one 
correspondence with pairs (7,6) where b G X(K) and 7 is the homotopy class of a 
path from O to b. 

Raynaud [Rl] introduced the covering of a semi-stable Abelian variety described 
in the following theorem and van der Put proved it is the universal cover in [vP]. (See 
also the comments after the statement of the theorem.) 

THEOREM 1.3. If A is an Abelian variety over K with semi-stable reduction, its 
universal covering is isomorphic to an extension G of an Abelian variety B with good 
reduction by a torus T, the covering map from G to A is a homomorphism and its 
kernel is a free Abelian group T of finite rank. 

As Berkovich pointed out, one can also deduce the simply connectedness of Ray- 
naud's covering from Theorem 6.5.1 of [B] and its proof. 

While A and T ->> G, in the above theorem, are algebraic varieties and morphisms, 
the map G -> A is rigid analytic. The scheme G has a model over RK whose reduction 
G is an extension of the reduction of B by a torus. Let G0 be the rigid space associated 
to the formal completion of this model along G. 

The information in this theorem may be summarized by the following diagram, 

r 
I 

(1) T   ->   G   -»   B 
I 
A 

which we call the uniformization cross of A.   We also point out that F is the 
fundamental group of A which we denote by T(A) elsewhere. 

Moreover, the free group in the uniformiation cross of A' is F' = Hom(T, Gm), 
the torus is Hom(T, Gm) and the Abelian variety with good reduction is the dual of 
B. The morphisms F' -» G' and T" -> G' are the one-motive duals of the morphisms 
T -► G and F -+ G. 

2. Grothendieck's and Raynaud's Pairings. In this section we prove the 
equality of the pairing defined by Grothendieck and the one defined by Raynaud. 
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Let notation be as in te preceding section, so that, in particular, A is an Abelian 
variety over K with uniformization cross (1.1). Fix a prime £. Let Te = Zi® T. We 
obtain from (1.1) a diagram with exact rows and columns, 

0 
I 

Te(T) 

0   -»•   Ti{G)   -»■   Tt{A)^   Tt   ->   0 
I 

Tt{B) 
i 
0 

Here, if a = (an)n 6 Tt(A) and (a,, € G(K)) H^ an, then tnan G T and 

<f>A((x) = lim ("'an. 

Suppose now £ 5^ p. There is a natural homomorphism, 

/»:/:=  Gal(K/K) -»■ 7i(Gm),     cr e / H- ((TT
1
^"^^n. 

We will henceforth think of Tt(Gm) as Zf (1) and use addtive notation when possible. 
Claim: If a G / and a€Te(A), 

(a - l)a e 7J(T). 

Indeed, G'^"]® C CW and so TeiG1)1 = Ti(G'). Suppose /? e 7i(G') C Te(A'). 
Then, since the points of Gm[^n] and G'[£n] are defined over K 

((a - l)a, P)weti = <7(<x, a~l {P))weU - (", P)weU = 0. 

Thus (a - l)o G TtiGY = Tt{T). 
If 

(, )l:TlxT't^Zt 

is the extension of scalars of the monodromy pairing, (, )Mon-> defined by Grothendieck 
then [G, §9] 

(*) {a°-\P)weU=p{p){*A{aU« mi 

Now let 7 G r(^4) and 7' G r(^4'). Then 7' may be thought of as a morphism of 
T into Gm. Now, 

T(K)/T0(K) £ G(K)/G0(K) 

where T0 and G0 are the formal completions of T and G along their special fibers and 
j'{G0(K)) C R*. Thus if g G r(/i:) maps to the image of 7 in G(K)/G0(K) 

(l,l')unif —vij'ig)) 

is a well defined Z-valued pairing. Werner [W] has shown this is the same as the one 
defined by Raynaud using bi-extensions. We will now show, 
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THEOREM 2.1. ( , )unif = ( , )Mon. 

Proof. It is enough to verify this after extending scalars to Z^. 
Identify F' with Hom(T, Gm) and so 

ri = ffomzf(7i(r),Z^(l)). 

If 5 G 7i(r) and /3 G ^(A7), then 

(iJ,)9)wc<« = ^(i8)(*). 

Then, 
((a - l)a,t3)Weil = <M/?)((<7 - l)a). 

Suppose ^'(/J) = 7' € r and ^(a) = 7 G_r. Write 7 = t + # where t G T(K) and 
flf G G0(K). Claim: We can pick an G G(F), ^n G T{K) and pn G G0(A') so that 
a \^ an, dn = tn+gn,etn+i = tn and ^n+i = pn. Indeed, we know £nan = 7 mod£r. 
This means we can assume £nan = 7. Let tn G T^) such that ttn+i = ^n? ^ > 0, 
and to =t. Then, 

r(an-*„) = <? 

and so an - tn G G0(if). Then 

(or - l)a = {{a - l)an)„ = ((a - l)tn)n 

and 

((a-l)a,P)Weil=7
f^{(a-l)tn)) 

= (737
,)um/p(cr). 

This completes the proof. 

3. Statement of p-adic Picard-Lefshetz. Let notation be as in Section 1. In 
particular, X is a curve with semi-stable reduction. Let E(X) be the free Abelian 
group on the oriented edges of Gr(X) and V(X) be the free Abelian group on the 
vertices of Gr(X). Let r be the automorphism of E{X) which sends (x,2/) G edg(X) 
to (y, re), let E {X) be the quotient group of E{X) by the relation r(s) = —s. If / is 
a function on edg(X) such that /(r(e)) = —/(e), ^ /(e)e will denote the element 
in E~{X) represented by a sum of elements f(e)e where one e is chosen from each 
pair {C,T(C)}, C G  edg(X). Let d:E(X) -> V(X) be the map such that 

d{e) = b(e)-a(e). 

Then d induces a map from E (X) to V(X) and its kernel in this group is naturally 
isomorphic to Hiet(Gr(X), Z). Now we define a pairing on E(X) by setting 

(e,f)={ 

1      if e=f 

-1   if f = T(e) 

0      otherwise 

for edges e and /. This induces a pairing (, )PL on £ (X) and hence by restriction on 
H^et(Gr(X),Z). Now H^et(Gr{X),Z) is canonically isomorphic to T(J(X)) where 
J(X) is the Jacobian of X. 



320 R. F. COLEMAN 

If we base change to a finite extension K* of K of ramification index e, we obtain 
Gr(XK') by replacing each edge of Gr(X) by a chain of e edges and e — 1 vertices. 
Using, this we get a natural isomorphism i:H?et(Gr{X),Z) -» H^et(Gr{XK>),Z) 
and we have 

(1) Mft), ^9))PL,K' = e(ft, g)pLiK. 

The p-adic Picard-Lefshetz Theorem, proven by Grothendieck in Chapter IX of 
SGA7I [G] is, 

THEOREM 3.1. 

( ,   )j(X),Mon = ( »   )xiPL' 

The remainder of this paper is devoted to giving a rigid analytic proof of this 
theorem. 

4. Residues. Let X be a curve over K as in §3 whose minimal model Af has 
semi-stable reduction with smooth irreducible components. Let J be the Jacobian of 
X and a: X ->• J an Albanese morphism. Then in the uniformization cross of J, T may 
be identified with Hom(-HrjBet(Gr(X),Z),Gm) and so we may identify Hom(T, Gm) 
with Hiet(Gr(X)1Z). Let / be the rigid morphism from T to J. For an edge e of 
Gr(X)1 let .Rese denote the map Resa(e^Ae: Q^ ,K —> K as described in [C2, page 
221]. 

THEOREM 4.1. Suppose u £ H0(J, Q,j/K) and h G H^et(Gr(X), Z) are such that 
f*uj = h*dz/z. Then, 

h — >     Rese(a*uj)e. 

Since, using Proposition 4.3 of [C2], we see that if a; is a holomorphic differential 
on X, over if, ^ Rese(u;)e represents a one-cycle on Gr(X) with coefficients in K, 
it follows that, 

COROLLARY 4.1.1. Let A be the group of holomorphic differentials u on X such 
that Reseuj € Z for all e € edg(X) and A0 be the subgroup of u) G A such that 
Reseoj = 0. Then the map 

u •-> 2_\ Rese(u)e^ 

induces an isomorphism of A/A0 with Hiet(Gr:Z). 
We may identify Hom(Gm, J) with Hl

Bet{Gr{X), Z). If e G edg(X), let fte be the 
class of the one-cycle / G edg(X) !->• (e, /), where ( , ) is the pairing defined in section 
3. Then an equivalent version of Theorem 4.1 is, 

THEOREM 4.2. Suppose e G edg(X) and LJ G H0(J,H^K)9 then 

Rese(a*(jj) = Resz=o(h*u>). 

The key result needed for the proof of these theorems is contained in §20 (partie 
polaire), Chapitre VII of Groupes algebriques et corps de classes [S]. 

Let C be a smooth complete curve over an algebraically closed field F and D 
be a reduced effective divisor on C over F (a module in the language of [S]). We'll 
also abuse notation and also use D to denote the set of points in its support. Let 
£(D) be the group of divisors supported on D and £0(D) the subgroup of divisors of 
degree 0. Then, the generalized Jacobian Jp of C with respect to D is an extension 
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of the Jacobian of C by the torus Tp = Hom(£0(I}), Gm). Let a^: C — D -» Jp be 
a generalized Albanese morphism. 

For each point P E D, let tp be a rational function on C over F which is a 
uniformizing parameter at P and is such that ^(P') = 1 if P' 6 D, P' ^ P. Let ^ 
be the function on the complement U of the support of the union of divisors of the 
tp.PeD, into TD defined by 

m) = (Y,arp^ n^w)op)- 
Then the result Serre proves in [20] may be rephrased, in this case, as, 

PROPOSITION 4.3.  The morphism an -ip from U to JD extends to U U D. 
Let Y be a semi-stable curve over F.  Then, as explained in Example 9.2/8 of 

[BLR], we have a natural exact sequence, 

0 -> Ty -► Pzc0(Y) -►     JJ     Pic0{A) -> 0, 
A€ver(Y) 

where Ty = Hom(ilfe*(Gr(Y),Z),Gm). If A £ ver(Y), let TUA denote the inverse 
image on A of the singular locus of Y and GA the generalized Jacobian of A with 
respect to m^. Then there are natural maps from Hiet(Gr(Y),Z) to £0(mA) and 
M'CM -* Pic0(Y) such that the following diagram commutes, 

Hom(£0(77M),Gm)    —> Ty 

+ I 
GA -^> Pic0(Y) 
I I 

Pic\A)      —► rw^0(£) 

REMARK. //C is a smooth curve over F and mi,m2,... ,mn are disjoint effec- 
tive divisors on C over F, let Gmi>...jmn denote the generalized Jacobian of C which 
classifies n 4- l-tuples (£, ii,..., Ln) where C is a degree zero invertible sheaf on C and 
ti is a trivialization of C atrrii, i.e., an isomorphism from £/mmi£ onto Oc/^miiOc- 
Here, mmi is the sheaf of ideals whose sections are the sections of Oc which vanish at 
mi. Now, with notation as above, put the following equivalence relation ~A on TTIA : 
Say for e, d € TTIA, e ~A d if and only if the interiors of the edges which correspond to 
e and d lie on the same connected component of Gr{X)\{A). Let mi,... ,mr be the 
equivalence classes in TTIA with respect to ~A, Then one can show that the image of 
GA in Pic0(Y) is naturally isomorphic to Gmi)...)mr. 

Let X and # be as above. Let v e ver(X), P £ X(K) such that P is a smooth 
point on the image of v in X and suppose a: X ->• J(X) is the Albanese morphism 
from X into its Jacobian such that a(P) = 0. Then if Xns is the non-singular locus 
of A' and Af is the Neron model of J(X), a extends to a morphism a: Xns -» A/*. 

Let v' denote the image of v-mv in X. Then, aty') is contained in the connected 
component of the origin of N" which by Theorem 9.5/4 of [BLR] is naturally isomor- 
phic to Pic0(X). Moreover, making this identification, a\v> is the composition of the 
generalized Albanese morphism from vl to Gv> sending P to 0 and the homomorphism 
iv discussed above. 

REMARK. From this and the previous remark it follows that a restricted to v' 
is a closed immersion if the genus of X is positive and all the sets mi have cardi- 
nality at least 2, (or equivalently, if all the singular points on the image of v are 
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non-disconnecting double points). We make this more explicit in the special case of 
Mumford curves below (see Theorem 5.1). In §9 of [E], Edixhoven studied to what 
extent a is a closed immersion. In particular, his results imply that a is a closed im- 
mersion if X has genus at least one and all the singularities of X are non-disconnecting 
double points. 
End of proof of Theorem 4-1- 

We may and will suppose the reduction of X has more than one component. Let 
v be a vertex of Gr(X) and Yv the afRnoid in Xv equal to Xv — Uweverfx) w^v Xw- 
Then, as we remarked above (XV,YV) is a basic wide open pair and Xv — Yv is a 
disjoint union of annuli which we call ends. In fact, it equals 

U    A- 
eeedg(X) 

a(e)=v 

Moreover, the reduction of Yv is naturally isomorphic to vf. Let a:X —> J be the 
Albanese morphism sending P to 0. There exists a unique lifting d: Xv -> G which 
takes P to 0 G G. We can complete Xv to a complete smooth curve C with good 
reduction isomorphic to v by gluing in afRnoid disks as in the proof of Proposition 3.3 
(ii) of [C2]. For each e G mv, let te be a rational function on C regular on the residue 
classes corresponding to the the elements of mv (which we shall label e, for e G mv) 
and invertible on the annulus Ae such that ie is a uniformizing parameter at e and 
ie(f) = 1, if / G mv and / ^ e. Let U be the rigid subspace of Xv where the te are 
defined and invertible and for an edge c of Gr(X) define the function on U, 

zc = < 

tc        if a(c)=v 

*;£) */ b(c)=v 

1 otherwise 

and let tpiU -> Hom(JH
ri(Gr(X), Z), Gm) be defined by 

lW)=(    E    a«cH>     II     ze(Q)ae)' 
eeedg(X) e£edg(X) 

Let Z be the affine open of v' where ^ is regular (it is non-empty) and Z the affinoid 
subdomain of Yv above it. Let g: U —>> G be the morphism a — ip. We know g(Z) C G0 

(the rigid space associated to the completion G of G along its reduction. In fact, 
if TT: G ->► J is the natural map TTIG-O is an isomorphism of G0 with the connected 
component of the origin in the rigid space associated with the formal completion of 
J\f along its reduction. In fact, 

PROPOSITION 4.4. There exists a wide open neighborhood W of Z in U such that 
g(E) is contained in a residue class of G0 for each end EofW contained in an end 
OfXV. 

We will prove this below. (We can show that, in fact, g~1(G0) contains Ae for 
all e G rriy). Thus if Ve is the annulus Ae fl W and if LJ is any invariant differential 
on G, since the residue classes of G are open disks, g*(jj is exact on Ve. Thus for any 
orientation on Ve, 

Resveg*u = 0, 

for all e such that a(e) = v. As this residue also equals Reseg*^, we see that, with 
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notation as in the statment of theorem, 

dz 
Resca*uj = Resc(ilj*(h*—)) 

z 

= Resc(    22    ae—~) = ac- aT{c)7 
e€edg(X)        Ze 

if h is represented by ]£ aee, for all c G mv, (see §11 of [C2]). This completes the proof. 

Proof of Proposition 4-4- 
To prove the proposition, for each e € mv, choose rigid functions, 

fe,i,- ">fe,d, on the open affinoid in G0 above an affine neighborhood of g(e) in 
Pic0(X) which reduce to a system of local parameters at ^(e).   Let je be a lifting 
of g(e) to a point G0(K). Now use Proposition 4.3 and the following lemma applied 
successively to each of fe^ o g — fei (7e). 

LEMMA 4.5. Suppose {B,Y) is a basic wide open pair over K and h is a rigid 
function on B and |/i|y < 1. Let C be the completion of Y to a smooth curve over k. 
Suppose e £ C — Y and /i|y extends to Y U {e} so that /i|y (e) = 0. Then, there exists 
a wide open neighborhood W of Y in B such that if E is the end of B corresponding 
toe, h(EnW)CB(0,l). 

Proof Let C be a smooth curve over K with reduction C obtained from B by 
gluing in affinoid disks and Be the residue disk of C above e. Then, there is a rational 
function z on C (a function which reduces to a uniformizing parameter at e) and 
r € |Cp|, 1 > r > 0 such that 

E(CP) = {xe Bc(CF):l > ||3(ar)|' > r}. 

If we expand h in z, 
oo 

h(z) = ^2anzn, 
— oo 

then the hypotheses that h is a rigid function on B over K and |ft|y < 1 imply an G K, 
\an\ < 1 and 

Mm   |an|5n=0,     ifl>s>r. 
n—> —oo 

The hypothesis that h(e) = 0 implies \an\ < 1 for n < 0. Now suppose 1 > t > r, then 
we know there exists an N > 0 such that \a-n\t~n < 1, for all n > N. Let, 

u =   max  la-J1/71. 
l<n<JV 

Then u < 1. It follows that on the annulus A in E, 1 > \z\ > max{t,u}, \h\ < 1. Thus 
we may take W = (W - E) U A. Q 

5. Toric Jacobians. Let X be a regular Mumford curve of genus at least one 
over K (which is a finite extension of Qpr) such that all the components of its reduction 
are smooth, and let J be its Jacobian. Then we have 

o->r^r-^j->o, 

where T = lIom(Hfet(Gr, Z), Gm). We regard X as embedded in J via an Albanese 
map so that 0 € X. Let X be the universal covering of X. If 6 is a point of X above 
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0 we have a unique map L from X to T so that 0 H-» 0^ and the following diagram 
commutes 

X    4    T 

x   ->   J 

We know that Hom(r, Gm) is naturally isomorphic to a lattice inside iJ0( J, flj) (/ !->• 
f*(dt/t), which is a form invariant under the action of T so comes from J) and we 
know, by Corollary 4.1.1, that the pullback of this lattice to X via L* is the lattice A 
of differentials inside ff0^^) such that Rese(u) € Z, for e G edg(X) . We also have, 
by Corollary 4.1.1 an isomorphism of A with H^et(Gr,Z)1 

UJ i->- /^ := \J  Rese(u))e. 

We will now make explicit the map from X to T. 
Suppose c € ^(Zf) corresponds to a path 

7 = (v,ei,...,en,iu) 

from 0 to b. We will produce a homomorphism from A into Gm. Let Xi = Xb(e.) 
for 1 < i < n and XQ = Xv. Suppose UJ 6 A, then we know that on Xj there is an 
invertible function hj such that 

UJ = dhj/hj. 

We can choose hj so that ho(Q) = 1 and /i^ = hi+i on ^4et. (the annulus corresponding 
to ei) for 1 < i < n. Then the image of c in T(K) is the homomorphism which takes 
UJ to hn(b). 

It follows that the image of the fundamental group (homotopy classes of paths 
which begin and end at 0 and which is isomorphic to 7ri(Gr(X))) is contained in F. 
Since this map is a homomorphism (which one sees after a moment's reflection) it 
is surjective because X generates J and it factors through the Abelianization of the 
fundamental group which is H^et(Gr,Z). 

We can make this last statement more explicit. 
Suppose g e H^et(Gr,Z) is represented by g = J2eaee ^ -^PO an(l ^ ^ A. 

Suppose, for a vertex v, kv is an invertible function on Xv such that dkv/kv = UJ on 
Xv. Then for an edge e, ce =: (ka(e)/h(e))\A   is 'm K> Set 

Expfuj=:     ft     ca
e'. 

J9 eeedg(X) 

This is well defined because ce = c~}ey Then UJ !->• ExpJ UJ is the element of 
Hom(A, Gm) to which g maps. (I am trying to avoid any confusion caused by the 
fact that A and F are canonically isomorphic.) In fact, if A is the homomorphism from 
T to Gm such that dX/X (considered as a form on J) pulls back to u, and 7 is the 
image of g in T, 

A(7) = Exp I u. I- 
One can see this because the function hj above is just the restriction of A to the 
appropriate image of -X"^.). 
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The Picard-Lefswhetz formula, in this case, comes down to the computation 

"(Hi)) = v(Exp / u) = ^aet>(ce) 
J9 e 

= y^aeReSe(u), 

by the Lemma 7.1, since we may suppose ki E A0(Xi). But this latter is just (#, fJ)pL 
by Theorem 4.7. 

Using the above considerations we can translate the arguments in [U], 

THEOREM 5.1. If X is a Mumford curve, every edge of whose graph lies in a 
cycle, and Y is a component of the non-singular locus of the reduction of its minimal 
model X, the morphism from Y to the reduction of the Neron model of the Jacobian 
of XK is a closed immersion. 

Proof Let X0 be the formal completion of the non-singular locus of X along 
its reduction, y0 the connected component of X0 corresponding to Y and J0 be 
the formal completion of the Neron model of J along its reduction. Let Z be the 
connected component of J0 to which Y0 maps. We must show the map from Y to Z 
is a closed immersion. It is enough to show that the morphism from Y0 to J0 is a 
closed immersion (in fact, this is precisely the result needed in the proof of Theorem 
3.17in[CKR]). 

Now, Y"0 is isomorphic to the formal completion of P^ — 5 along its reduction 
where S is a finite subset of P].(&) which corresponds to the set of singular points of X 
which lie on Y. After a translation, we may suppose Z is the connected component of 
the origin in J0 and so is isomorphic to the formal completion of T along its reduction. 

It follows from the results in §4 that if /: edg(X) -> Z is a one-cycle, i.e., if 
/(e) = —f(r(e)) and for all x G ver(X), Yla(e)=x /(e) = 0> ^en there exists a 
homomorphism h from T to Gm such that 

Resei*(dh/h) = f{e). 

Since every edge e of Gr(X) lies in a cycle, there exists an h G Hom(X', Gm) such that 

(2) Re8e(d(i*h)/(L*h)) = 1. 

Now these h induce homomorphisms h0 from T0 into G^ and so L*h0 is a formal 
function on Y and because of (2), R({i*h0:h G Hom(T, Gm)}) is the ring of formal 
functions on Y. This completes the proof. D 

6. The Key Lemma. 
LEMMA 6.1. Suppose h:Y —> B is a rigid analytic morphism over K from an 

absolutely irreducible affinoid subdomain of B^ into an Abelian variety over K with 
good reduction. Then h(y) is contained in a residue class of B corresponding to a 
point of B{k) (i.e. h factors through the inclusion of a residue class). 

Proof. Let B be the reduction of B and suppose t/is an affine open in B. Let 
U be the affinoid in B which is the reduction inverse of U. If h{Y) is contained in [/, 
then since h: Y ->■ U is a morphism of affinoids, it has a reduction Y -> U and hence h 
reduces to a morphism from Y to B. Since the reduction of Y is isomorphic to several 
affine opens of Aj. crossing at a point, as we can see using Theorem 9.7.2/2 of [BGR], 
and there are no non-constant rational maps from P1 into an Abelian variety by the 
corollary of Lemma 3.9/7 in [S], we conclude h{Y) is contained in a residue class. 



326 R. F. COLEMAN 

Now suppose {Ui} is aimite affine open cover of B and {[/;} is the corresponding 
affinoid cover of B. Then Xi = ft"1^) is an afSnoid subdomain of Y. After a 
finite extension of K we may suppose that Xi is a union of finitely many absolutely 
irreducible afRnoids. By the above argument h takes each of these afRnoids into a 
residue class. Since residue classes are pairwise disconnected and Y is connected, 
h must take all of these affinoids and hence Y into a single residue class. It must 
correspond to a point of B defined over k since it is clearly Galois stable. D 

Since annuli (wide open, half wide open or affinoid) may be admissibly covered 
by an increasing union of affinoids satisfying the hypotheses of Lemma 6.1, we obtain, 

COROLLARY 6.1.1. If h:A ->* B is a rigid morphism from an annulus to an 
Abelian variety B with good reduction, then the image of h is contained in a residue 
class. 

Suppose (X, Z) is a basic wide open pair over K and G is an extension of an 
Abelian variety B with good reduction by a torus T and we have the rigid picture 

T 
u 

X    -A    G 
I* 
B 

Let £0(X) denote the subgroup of the free Abelian group on the ends of X con- 
sisting of elements of degree 0. If rj is a differential on X, let Resxiv) =z: ^2e Rese(rj)e 
where e runs over the ends of X. It follows that, 

LEMMA 6.2. Suppose we have an invariant differential OJ on G such that f*uj is 
a logarithmic differential on T, then Resx{g*u) G £0(X) and is 0 if f*uj = 0. 

Proof We may assume X is a wide open annulus. In this case, by Corollary 6.1.1, 
7r(g(X)) is contained a residue class U of B which after translation we may suppose 
to be the kernel of reduction. Now Gu — U x T and the hypotheses imply that the 
restriction of u to Gu is of the form a + dX/X where a is an exact differential and 
A is an invertible function on Gu- The first assertion follows. If f*Lj = 0, then u is 
the pullback of an invariant differential rj on B and so is exact on Gu- The second 
assertion follows. D 

COROLLARY 6.2.1. There is a positive integer N which only depends on X so 
that if UJ is an invariant differential on G whose pullback to T is logarithmic there is 
a unit h in A(X) such that 

(1) Resx{Ng*Lj-^)=0. 

Proof Let M be the exponent of the group of divisor classes represented by 
divisors of degree 0 supported at oo on X. Suppose C is a complete curve with good 
reduction with the property that X is isomorphic to the complement in C of a discoid 
subdomain. For each end e of X, let De be the corresponding disk in this subdomain 
and choose a point Pe € De(K). Choose an end eo- Embed C in its Jacobian J so 
that Peo goes to the origin. The image of Deo in the Jacobian J of C generates an 
open subgroup U of the kernel of reduction JQ. Then, since K is discretely valued 
there exists a positive integer r so that prJo(K) C U. Let J]e nee 6 £

0(X). It follows 
that the class of M J2e nePe lies in Jo(i^) and hence the class of N ^Je nePe lies in U 
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where N — prM and so there is a divisor E of degree 0 supported in D so that 

/Mj]nePe = (/l) 
e 

for some function h on C. Hence, 

e 

KEY LEMMA 6.3.    Suppose   LJ E InvK(G)    and   f*uj = dA/A   w/iere   A G 
HomK(T,Gm). Suppose P,Q G X(-K') and a,6 G G0^) sncft ifta^ 
F' := g(P) - a and Q' := ^(Q) - 6 be in T{K). Then if h G A(X)* ^ato/zes ^;, 

f;(M^)/MO))" = ^t;(A(P/)/A(Q/)). 

(Note that the left hand side of this equation doesn't change if h is replaced by kh 
where Resx(dk/k) = 0.) 

Proof First we show, 

SUBLEMMA 6.4. Suppose w is a morphism from X into G. Then, there exists a 
t G T(K) such that w(X) C t + G0 if and only if Resx(w*rj) = 0 for all invariant 
differentials rj on G. 

Proof Let W be one of the connected components of X — Z. Then W is an 
annulus. It follows from Corollary 6.1.1 that 7T(W(W)) is contained in a residue class 
Dw of B. Since D\y is a poly disk, the T0-torseur G^ over Dw splits as does the 

T-torseur GDW over Dw I.e., G0
Dw = Dw x T0 and GDW = -Dw x T compatibly. 

Suppose w(X) C G0. As G^,w = Dw x T0 for every connected component W of 
X— Z and every function on a wide open annulus into rigid G^ reduces to a constant, 
it follows that w(W) is contained in a residue class of G0 and since every invariant 
differential rj of G is exact on any residue class of G0, it follows that Resx(w*ri) = 0. 

By Theorem 6.2 of [BS], the formal Neron model (see Definition 1.1 of [BS]) of 
G is the formal completion along its reduction of its tft Neron model. In particular, 
its generic fiber is the union of all translates of G0 by elements in G(K). Thus, by 
the rigid analytic Neron mapping property, since Z is.an affinoid with good reduction, 
w(Z) C t + G0 for some t G G(K). So, after a translation by an element of T(K), 
we may assume w(Z) C G0. We will now assume Resx(w*v) — 0 for aU invariant 
differentials rj on G and prove w(X) C G0. 

Suppose W is a connected component of X — Z. The hypotheses imply that 
every closed differential on Dw x T pulls back to an exact differential on W. This, in 
turn, implies that there exists a residue class V in G0

Dw and an 5 G T(K) such that 
w(W) C s + V. Indeed, suppose hi,...,hd are homomorphisms from T onto Gm such 
that 

T=:{hu...1hd):T^Gd
m 

is an isomorphism. Identify T with G^ via r. Then log(fti) is analytic on the image of 
W for all i. This means that there exists r G G^K) such that ^(W) C D x rB(l, l)d, 
since the domains of analyticity of the logarithm are the disks uS(l, 1) for ix G C* 
Since G0 and s + G0 are disconnected if s G T(K) -T0(K) while W is connected to Z, 
we must have w(W) C G0. Since this is true for all connected components of X — Z, 
we see that w(X) C G0 as claimed. □ 
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We can always change any morphism w from X into G without changing the 
projection to B by adding a morphism r of X into T. Suppose 77 G Inv(G), then 

(w + f 0 r)*7? = 111*7) + r*(f*TJ). 

Now we note, that if n is an integer and 77 is an invariant differential on G, 
(ng)*r) = 71(0*17). 

SUBLEMMA 6.5. Le£ F' = Hom(T, Gm). Consider the subgroup A of 
Hom(r',£0(X)) consisting of elements of the form 

(7Gr')^i?eSxr*(7*-), 

ly/iere r rsms over morphisms from X into T. Then, A D NHom(Tf
y£

0(X)). 

Proof Suppose 7i,...,7d G F' such that 5 =: (7i,...,7d):r -> G^ is an iso- 
morphism. Let a e Hom(r/,£0(X)). Then by the proof of Corollary 6.2.1, for each 
1 < i < d there is an invertible function fi on X such that Resxdfi/fi = Na^i). Let 
r = 6-1(fu ...,/,). Then, for 7 € F 

Nai-y) = JRe5x(r*(7*—)). D 

Since, if 77 is an invariant differential on G, Resx(g*v) on^y depends on the image 
of 77 in Inv{T), by Lemma 6.2, and the image of V in Inv{T) (by 7 H^ 7*(dT/T)) is 
a lattice, we deduce from the previous lemma that there exists a morphism t from X 
into T such that 

Resx(t*(f*ri))=NResx(g*r]) 

for all invariant differentials 77 on G.   Thus if #0 = Ng — f o t, we conclude from 
Sublemma 6.4 that go(X) C G0. Also, TT O g0 = TT O JVp. 

Then, 
iV0*a; = (iV0)*a; 

= t*(ru>)+95Lj 

= t*—+g^. 

As iJesx^o^) = 0^ Po W C G0 and so 

dt*\      n      dh 
Resx—r- = Resx-r- 

t*\ h 

Since t*\/h is a unit on X the value of v(t*\/h) is constant, say equal to r, on Z. By 
Lemma 2.2 of [C2], this function is constant on each end and so by Corollary 3.7b of 
[C2] it follows that it is equal to r on X. As v(X(t(P)) = v(\(Pf)), this concludes the 
proof of the key lemma. D 

7. The general case. Suppose now that X is a curve with a regular semi-stable 
model and whose Jacobian J has the uniformization cross: 

r 
I 

T   ->    G    -►    B 

I 
J 
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If a € G(K) and A is a homomorphism from T to Gm, let (vX)(a) denote v(X(a - b)) 
for any b e G0(K) such that a - b G T(K). 

Let A be the subgroup of holomorphic differentials LJ on X such that Reseuj £ Z 
for all edges e. By Corollary 4.1.1, this is the pullback of the group of invariant 
differentials on J whose pullback to T is the logarithmic derivative of a homomorphism 
from T into Gm. 

Suppose c € X corresponds to a path, 7 =: (v,ei,... ,en,w;), from 0 to 6. Let 
Xi = Xft(ei) for 1 < i < n and XQ = Xv. Let CJ G A, then we know, by Corollary 
6.2.1, that there exists a positive integer N and for each 0 < j < n an hj G i4(Xj)* 
such that 

Resx^Nu; - dhj/hj) = 0. 

We can choose /ij so that ho(0) = 1 and v(hi/hi+i) = 0 on Aei, for 0 < i < n. Then 
our Key Lemma implies that if A : T -> Gm is the homomorphism which corresponds 
to u and d is the image of c in G, then 

v(hn(b)) = N(v\)(d). 

Suppose u G Hiet(Gr,Z) is represented by X)eaee and a; G A. Suppose, for 
v G v€r(X), fc^ G A(XV)* and Resxv{dkv/kv — NCJ) = 0. It follows that for an edge 
e, fca(e)/A;6(e) is a function on the annulus Ae with constant valuation ve. In fact, 

LEMMA 7.1. Suppose e is an edge of Gr(X), u is a differential on Xa^ UXb(e}, 
hceA(Xc{e)ynA0{Xc{e)) and 

Rese(Nuj - ^) = 0 

for c G {a, 6}. Then /i0//i& /ia5 constant valuation on Ae equal to NReseuj. 

Proof. Let n = Rese(uj) = —ResT(e)(uj). Let 2; be a uniformizing parameter on 
-X^j,] such that \z(x)\ decreases to 1 as a; approaches Xa(ey Since, X is regular, \z(a)\ 
increases to |7r| as x approaches Xb(ey It follows from Lemma 2.2 of [Cl] and the 
proof of Lemma 2.1 of [C2] that on Ae, ha = znNf and hb = (^/z)~nNg where / and 
g are units on Xe of constant absolute value 1. Hence, 

v(hx/hy) = v(7rnNf/g) = NRese(u), 

as claimed. D 
Set 

SuU := -^     51     aeVe 
N 

eeedg(X) 

In fact, if A is the homomorphism from T to Gm such that dX/X is the pullback of a 
form on J which pulls back to a;, and 7 is the image of u in G, 

(7, ^Mon = (vX)(j) = Suu. 

The Picard-Lefshetz formula in the not necessarily toric split case follows from 
the computation 

(V A) (7) = SUU = —      ^      tte^e 
eeedg(X) 

=     ^2    CLeRese{uj), 
e£ed9{X) 
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by Lemma 7.1, since we may suppose hi E A0(Xi). But this latter is just 

(u12^eRese{uj)e)pL, 

and the right hand side is the element of H^et(Gr, Z) corresponding to A by Theorem 
4.1. 

IB: 

[BGR; 

[BL; 

[BLR 
[BS' 

[Cl 

[C2 
[C3^ 

[CKR] 
[cr 

[E; 

[FC" 
[EGA-I 

[G: 

[HK 
ps: 

[RI; 

[R2 
[R-vP^ 

[s: 
[u; 

[VP; 

[w; 
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