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DEFORMING TRANSVERSE RIEMANNIAN METRICS OF 
FOLIATIONS* 

MIROSLAV LOVRICt, MAUNG MIN-OO*, AND ERNST A. RUH§ 

Abstract. The Ricci flow of Riemannian metrics on a compact manifold can be interpreted as 
a deformation of Cartan connections of hyperbolic type. The purpose of this paper is to show that 
there is analogous interpretation for the holonomy invariant transversal Riemannian metric defined 
for foliations over compact manifolds. Once the short-time existence of the transversal flow of Cartan 
connections is established, the theorems proved using deformation of the metric through the Ricci 
flow are generalized to the case of a Riemannian foliation on a compact Riemannian manifold. 

1. Introduction and Results. In [9] the Ricci flow of Riemannian metrics on 
a compact manifold was interpreted as a deformation of Cartan connections of hyper- 
bolic type. The purpose of this paper is to show that there is analogous interpretation 
for the holonomy invariant transversal Riemannian metric defined for foliations over 
compact manifolds. 

As the first consequence, using the theorem of Hamilton [3, section 5] we obtain 
the short-time existence of the transversal flow of Cartan connections on M. Following 
the idea of Bemelmans, Min-Oo and Ruh introduced in [2] and using the maximum 
principle as in [1] we obtain the following smoothing property: 

THEOREM 1.1. Let J7 be a foliation of codimension q defined on a compact n- 
dimensional Riemannian manifold M with a holonomy invariant transversal Rieman- 
nian metric QQ on the normal bundle Q. There exists a smooth curve of transversal 
Riemannian metrics g(t) with g(0) = gg and universal constants C(q) and e(q) de- 
pending only on the codimension q, such that 

t1-1) E j(khwlDkFD{9m2 - c'(«)|Fl>(fl(0))|2 

uniformly for t G [0,e(g)], where \DkFD(g(t))\ is the supremum of the k—th covariant 
derivative of the transversal curvature tensor FD(g(t)) of the metric g(t). 

Theorems proved using deformation of the metric through the Ricci flow (see 
[7, 8, 12]) can now be generalized to the case of a Riemannian foliation on a compact 
Riemannian manifold. In particular, we obtain the following theorems (see [3, 4]): 

THEOREM 1.2. Let J7 be a foliation of codimension three on a compact manifold 
M with a holonomy invariant transversal Riemannian metric gq for the normal bundle 
Q. Suppose that the Ricci curvature of gq is positive definite. The metric gq can 
be deformed to a holonomy invariant transversal Riemannian metric with constant 
positive sectional curvature. 
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THEOREM 1.3. Let T be a foliation of codimension four on a compact manifold M 
with a holonomy invariant transversal Riemannian metric QQ for the normal bundle 
Q. Suppose that the curvature operator of QQ is positive definite. The metric QQ can 
be deformed to a holonomy invariant transversal Riemannian metric with constant 
positive sectional curvature. 

Similar result can be obtained in higher codimensions for a transversal curvature 
that is pinched enough (see [7, 8, 12]). 

In order to prove theorems 1.2 and 1.3 we have to observe that once the existence 
of the flow (3.4) has been established, Hamilton's proof in [4] carries over to the 
more general setting of a Riemannian foliation since the Weitzenbock formulas are 
true locally on the local Riemannian quotient and because we can use the maximum 
principle for basic functions on the compact manifold exactly as it was done in [10]. 
The technical details will be dealt with in a forthcoming paper. 

It is worth noting that the theorem of Hamilton concerning the Ricci flow on 
surfaces [5] does not have a generalization to Riemannian foliations. Technical reasons 
for this are the lack of a Gauss-Bonnet theorem and the non-existence of a suitable 
volume. A more basic reason is the counter-example of Hebda [6]. 

In Section 2 we present the background material and introduce Cartan connec- 
tions. Section 3 is devoted to a study of the transversal flow of Cartan connections, 
which turns out to be the right tool - it enables us to extend the known results (see 
[4]) to foliations over Riemannian manifolds. In section 4 integrability and smoothness 
of the flow are established. 

2. Main Concepts. Let (M,#M) be a compact Riemannian manifold and VM 

its Levi-Civita connection. By F we denote a Riemannian foliation on M defined by 
an integrable distribution Lp C TM with normal bundle QQ £ TM/L. 

The tangent bundle TM splits orthogonally (with respect to QM) as TM = LsL-1, 
and QM = 9L © QL^ • The metric QQ on Q = L1- is defined as a pullback by local 
Riemannian submersions fa (local transition functions are isometrics) which describe 
the foliation J7, This metric is actually the pullback cr*gL±, where a : Q —> L1- C TM 
splits the sequence 

(2.1) 0->Z,->TM?-4<2->0. 

Such a metric satisfies [11, page 78] LXQQ — 0 for X G YL and we say that the metric 
gq is holonomy invariant (or that QM is bundle-like). 

Basic Vector Fields and Basic Forms. A vector field X defined on a domain 
U C M is called basic if X 6 YQ (i.e. if X is horizontal) and if X is locally /-related 
to a vector field X defined on.a local Riemannian quotient /([/). 

A vector field X in TM is called projectable if [X, Y\ e YL whenever Y € YL. (In 
local coordinates X — YM=\ 

xi{V\^ "*?%)^7> where {?/*} is the transversal coordinate 
frame). It is always possible to find a local orthonormal coordinate system {ei,..., eyj 
on TM such that ei,..., ev £ YL and Cp+i,...,en G YQ are projectable vector fields. 

A differentiable form a on M (with values in a vector bundle E with connection 
D) is called basic iff ixa = 0 and Lxoc = 0 for X E YL, or equivalently, iff both a and 
dDa are horizontal. Such a form can be identified, on a distinguished chart (U,f), 
with the pullback a on the Riemannian quotient f(U), i.e. a = f*a. 

Basic Transversal Levi-Civita Connection in Q. The bundle Q is canoni- 
cally (independently of the metric) equipped with the partial connection (called the 
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Bott connection) 

(2.2) Vfy = prQ[X,n 

where X € TL, Y G TQ and Y' G TTM is such that prQ(Y') = Y. This connection is 

flat (i.e. RvB(X,Y) = 0 whenever X,Y G TL) and Vf Y = 0 for a basic vector field 
Y. It is not the restriction of the Levi-Civita connection VM of TM to L. 

To extend the Bott connection we define 

(2.3) VxY = prQ(Vfr') 

for X.Y G FQ, and 7' G TTM is such that prQ(r) = Y. 
The connection VxY for X G TTM and Y e TQ defined by (2.2) and (2.3) is 

called adapted to Bott connection V^F. It is metric (with respect to QQ) [13, page 
53], and torsion free [13, page 49] and is called the transversal Levi-Civita connection 
of T. It coincides (because of local uniqueness) with the pullback of the local Levi- 
Civita connection on the Riemannian quotient. Such a connection is called basic. 
Equivalent statement, ixRV = 0 for X G PL, is a consequence of the Jacobi identity. 

Gauge Transformations. Any invertible endomorphism 6 : Q -> Q can be 
extended to a homomorphism 6 = 8 o prg : TM -> Q, where prg : TM —> Q is a 
projection onto Q defined using the (fixed) metric QM on M. It can be easily verified 
that if LxO = 0 for X G FL, then 6 is a basic 1-form on M with values in the bundle 

Q- 
The gauge transform of a connection V in Q is (8*V)xY = 0-1 (Vx(0Y)). The 

curvature is then 0*R(X,Y)(Z) = e^iRiX.Y^OZ)). 
The gauge transform of the metric gq in Q is 6*gQ(X,Y) = QQ^X^OY), where 

X.YeTQ. 

Cartan Connections. Consider a vector bundle E = Q 0 Q A Q over a compact 
manifold M. The bundle Q A Q is identified (via QQ) with the bundle of skew- 
symmetric endomorphisms of Q, i.e. 

(2.4) (X A Y) o (Z ^ 0Q(Z, y)X - gQ(Z: X)Y). 

The fibers of E are isomorphic to o(l,n), and the Lie algebra structure is given 
by 

(2.5) [(X, A), (F, £)] - (A(Y) - B{X), [A, B}QAQ + X A Y), 

where X, Y G TQ and A, B G r(Q A Q). 
The metric ## in fibers of E is a direct sum metric induced by the base metric 

PM; hence ^(A,J5) = -|tr(i4B) and p£;(A,XAY) = -gM(A(X),Y) for X9Y G TQ 
and skew-symmetric maps A, JB : Q —> Q. 

Combining the connection onE = Q®QAQ induced by V (see definitions (2.2) 
and (2.3)) with the gauge transform 6 we form a Cartan connection of the type o(l,n) 

(2.6) Dx8 = Vxs + [0X,8], 

where X G TTM, s G TE and the bracket being defined in (2.5). Since both V and 
0 are basic it follows that the Cartan connection D is also basic, i.e. is a local lift of 
a Cartan connection on a local Riemannian quotient. 
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Take any a € Op(M;J^). The exterior covariant derivative with respect to the 
connection D is defined by 

n 

(2.7) dDa(Xo,...,Xp) = ^(-irJDxt-(a(Xo,...,^,...5Xp)) 

n 

where XQ ,..., Xp G TTM. The exterior derivative dv with respect to the connection 
V on Q adapted to the Bott connection is defined analogously. Hence 

(2.8) dDa = dva + cfea, 

where cfe is the algebraic operator 
n 

(2.9) d2a(Xo, ...,XP) = ^(-l)*^^), a(Xo7..., Xh ..., Xp)]. 
i=0 

Let F^ be the curvature of the connection D, FD £ QI
2(M'1E* <S> E). A simple 

computation shows that 

(2.10) FD{X, Y)s = ^(X, Y)s + [6>X A 6>y, 5] 4- [dv6(X, Y),s} 

for X, Y G TTM and 5 G TE. Therefore the curvature FD is the direct sum FD - 
Fi + F2, where Fi has values in Q A Q and is given by 

(2.11) F^X^Y) = R*(X,Y) + OX A 6Y 

and 

(2.12) F2(X,Y)=dv0(X,Y) 

has values in Q. The Cartan torsion is defined by the formula 

(2.13) Tv>e(X,Y) = F2(X,Y) - Vx(0Y) - VY(0X) - 0{[X,Y]). 

LEMMA 2.1 (Bianchi identities).  Assume that the Cartan torsion is zero.  Then 
d2F = 0 and d?F = 0. 

Proof. A straightforward computation gives 

(2.14) d2F1 (X, Y, Z) = [OX, Ft (Y, Z)] - [ffY, Fl (X, Z)\ + [QZ, F1 (X, Y)] 

= -Fi (Y, Z)6X + Fi {X, Z)0Y - Fi (X, Y)6Z 

= -RV(Y, Z)0X - ggiex, 9Z)6Y + gqifiX, 0Y)6Z 

+ RV{X, Z)6Y + gQ{dY, eZ)9X - gQ{eY, 9X)dZ 

- RV(X,Y)9Z - gQ(dZ,dY)9X + gQ(6Z,6X)6Y 

= -9(9-1Rv(Y, Z)9X + 9-lRv{Z, X)9Y + 9-1Rv(X, Y)dZ) 

= -9(R8'V (Y, Z)(X) + R$'v (Z,X)(Y) + R0"v (X,Y)(Z)) = 0 

by the first Bianchi identity. Furthermore, 

(2.15) dvF1^dvRv +dv(9A0)=0, 

since dv
JR

v = 0, and dv9 = 0 by assumption. D 
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3. Transversal Flow of Cart an Connections. In this section we consider 
Cartan connections D = V + 8 on a vector bundle E = Q © Q A Q satisfying the 
following requirements: 

(i) V restricts to the Bott connection VB on TL 
(ii) V<7Q = 0, where gq is the (fixed) initial transversal metric, and 
(hi) the Cartan torsion Tv^ = 0. 

LEMMA 3.1. The connection 0*V is the basic Levi-Civita connection of the 
transversal Riemannian metric 0*gQ. 

Proof. Since 

(3.1) ({PVMP9Q)){X,Y) 

= U(d*gQ(X,Y)) - PgQWVhX, Y) - 6*gQ(X, {PVjuY) 

= U(gQ(eX,6Y)) - gQ{Vu(eX),6Y) - gqiX^uiOY)) = 0 

and 

(3.2) T0^(X,Y) = (6*V)xpTQ(Y) - (rV)yprQ(X) - prQ[X,Y] 

= e^VxiOY) - e-^vidx) - 9-l{p[x, Y)) 

= e-1(TVfi{X,Y))=Q, 

it follows that ^*V is the Levi-Civita connection of #*<?Q. The fact that it is basic 
follows from 

(3.3) {ixRrv){Y) = Re*v(X,Y) = O'1 (Rv (X ,Y)9) 

and the fact that V is basic. □ 

Consider the flow of Cartan connections D = V + 0 

(3.4) ^-D = -SDFD 

on a vector bundle E = Q © Q A Q, with the initial condition D(0) = V + id. The 
operator SD is "almost" adjoint of the exterior covariant derivative dD, and is given 
by the formula 

n 

(3.5) 6Da(X2,...,Xp) = -J£lVek(a(ek,X2,...,Xp)) 
k=l 

n n      n 

+ ^a(Vefcefc,X2,...JXp) + ^^a(eJfe,X2,...,VefcXi,...JXp) 
k=l k=l3=2 

+ 'Yy0ek,a(ek,X2,... ,XP)], 
k=l 

where X2, -.., Xp G FTM, {e^} is an orthonormal basis of TM for the metric <?L00*<7Q 

and V is the metric connection (which preserves the splitting TM = L © Q) given by 

(3.6) VXY = prLV^ (prLy) + prQV^ (prQY) 
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for X,Y £ YTM. The connection VM in (3.6) is the Levi-Civita connection of the 
metric QM on M and prL the projection TM -> L. 

The operator 8D leaves basic forms invariant and coincides, on a distinguished 
chart C7, with the lift of the usual formal adjoint on the local Riemannian quotient 
/([/) (see [10, Prop. 2.6]). 

Define the operators 82 and Jv by: 

(3.7) 82a{X2,... ,XP) = [0e*,a(e*,X2,... ,XP)], 

and 

(3.8) ~6Va(X2,...,Xp) = -(V®V)eha(ek,X2,...,Xp) 
n n 

= -^2 Vefc(a(efe,X2,... ,XP)) + Yl a(Vekek,X2, ...,XP) 
k=l k=l 

n      n 

+ ^1^1 a(ekiX2, . • • , Vcfc-Xj-, . . . , Xp), 
k=l j=2 

for a p-form a on M with values in 25, X2,..., Xp € FTM and a frame {e^} of TM 
orthonormal with respect to the metric gi ® Q*gQ> The operator ^ defined in (3.5) 
can now be written as 

(3.9) 8Da = 8va + 82a. 

The Ricci tensor, viewed as a 1-form with values in TM can be expressed as 

(3.10) Ric{X) = R(X,ek)ek = [ek,R(ek,X)], 

where the full curvature R is interpreted as a 2-form with values in TM A TM. 

The short-time existence of the flow (3.4) is proved in the next section. 

LEMMA 3.2. Let F2 = 0. Then V = -SVF and 6 = -82F. 

Proof. By definition of the Cartan connection it follows that 

(3.11) bx8 = Vxs + [dX,8l 

since the Lie algebra structure in fibers is fixed. On the other hand, by the definition 
(3.5) 

(3.12) $DF(X))s = ^vF{X))s + [52F(X), s]. 

Comparison of the components of Q and Q A Q in (3.4) and the fact that F2 = 0 
imply the statement of the lemma. D 

LEMMA 3.3. Let F2 = 0. The flow (34) induces the following evolution equation 
for the transversal metric: 

(3.13) gQ{X, Y) = -2gQ(Ric(9Q){X),Y) - 2(n - l)gQ(X, Y). 
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Proof. By the previous lemma the time derivative of the (changing) metric Q*gQ 
is computed to be 

(3.14) jt{9*gQ{X,Y)) = gQ{eX,9Y)+gQ{eX,eY) 

= -9QiX9ek,F{ektX)]tffY)-gQ{[eek,F{ek,Y)],9X) 

for a 0*<?Q-orthonormal basis {e^}. Now since F2 = 0, 

(3.15) gQ{[eekyF{ek,X)l6Y)=gQ{-F1{ek,X)eek,9Y) 
= -gQ(Rv(ek,X)6ek,9Y)-gQ((eekA9X)eek,eY) 

= -e*gQ(Re*v(eklX)ek,Y)-gQ(eek,6X)gQ(eek,eY) 
+gQ(0ek,8ek)gQ(6X,6Y) 

= 8*gQ{Ric9*v{X),Y) + (n - lWgQ{X,Y). 

The result now follows from the fact that (3.14) is symmetric in X and Y. D 

Equation (3.13) differs from Hamilton's [3, page 259] in the normalizing factor. 

LEMMA 3.4. Let F2 = 0. Then VyX -QforV^TL and X e TQ. 

Proof. The statement follows from the equation VyX = —(SVF(V))(X) (see 
lemma 3.2 ) and the fact that F = Fi is basic. D 

LEMMA 3.5. Let F2 = 0. Then F2 = -d2SvF - dvS2F. 

Proof. A straightforward computation gives 

(3.16) MXiY) = Vx(0Y) - Vy(0X) + Wx{0Y) - Vy(^X) - e[X,Y] 
= -6vFl(X)(eY) + SvFl(Y)(eX) + dv0{XJY) 
= [0Y, SVF(X)] - [OX, 5VF(Y)] + dv8(X, Y) 
= -d2dvF(X,Y) - dv62F(X,Y)J 

by lemma 3.2 and definition (2.9). D 

Now we show that the flow (3.4) is tangent to the space of Cartan connections 
with vanishing Cartan torsion. 

LEMMA 3.6. LetF2= 0. Then F2 = 0. 

Proof. Let {e^} be an orthonormal basis of TM with respect to the metric 
gi © 8*gQ chosen so that ei,..., ep G TL and ep+i,..., en G TQ are projectable vector 
fields. Take X = XL 4- XQ and Y = YL + YQ in TM with transversal components XQ 

and YQ being projectable vector fields (such a choice suffices because (3.16) is linear 
with respect to smooth functions on M). Since VM is the Levi-Civita connection, 
we can assume that at the point x on M the vector field bracket and the covariant 
derivatives of vectors e&, XL, XQ, YL and YQ vanish. 

If ek e TL then F(ek, VefcX) = 0 since F = Fi is basic and F(Vekek,X) = 0 since 
Vekek = prL(V^efc) = 0. If efe G TQ then Wekek = prQ(Vfkek) = 0 and VekX = 0 
by the choice of ek and X and by definition (3.6) of the connection V on M. In any 
case, 

(3.17) 5VF(X) = -VekF(ek,X) = -Vek(F(ek,X)). 
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Definitions (2.2) and (2.3) and the assumption VM
XQ = 0 imply that VXQ = 0. 

The fact that the gauge transform d~1V0 of V is basic implies that their projections 
on the local Riemannian quotient are also related by the gauge transform 0 and 
therefore, since VXQ = 0, it follows that O^VOXQ = 0. Consequently, V6X = 0 
(V0XL = 0 holds by the definition of 0) and analogously WOY = 0 and V6ek = 0. 
This consideration simplifies the following computations (see Lemma 7 in [9]): 

(3.18) d2*vF(X, Y) = [0X, 6VF(Y)} - [0Y, SVF(X)] 

= -[0X7Vek(F{ek,Y))] + [0Y,Vek{F{ekiX))] 

= Vefc ([OX, F(Y, ek)) + [BY, F{ek, X)]) 

= -Vek[0ek,F(X,Y)l 

by the Bianchi identity c^F = 0. On the other hand 

(3.19) dvS2F{X,Y) = Vx(&2F(Y)) - VY{82F{X)) 

= Vx{[eek,F{ek,Y)}) -VY{[0ek,F{ek,X)}) 

= [eek,Vx{F{ek,Y)) - Vy(F(e,,X))] 

= Vefc[ffeifc>F(X,y)]> 

by the Bianchi identity dvF = 0. □ 

4. Integrability and Smoothness of the Flow. Our next goal is to prove the 
short time integrability of the flow (3.4). To avoid introducing additional notation 
we will use the symbol QQ to denote the metric on E — Q ® Q AQ induced by the 
metric QQ on Q. Fix the connection D(0) on E. Any other connection D on E can be 
expressed as D — D(0) + A with A € n1(M;F* 0 E), and therefore we can rewrite 
(3.4) as the flow 

(4.1) ^A = -SfW+AFDW+A 
v     J Qt e gQ 

in fi1 (M; E*®E) with initial condition ^4 = 0. The symbol Se}g^
+   denotes the adjoint 

(3.5) defined with respect to the connection D(0) + A and the gauge-transformed 
metric 6*gQ. 

PROPOSITION 4.1. The evolution equation (4-1) has a unique smooth solution for 
some (small) time interval [0,r > 0] for any initial condition -D(O). 

Proof. The time derivative of A is computed to be 

(4.2) liA = -5f}XAFD{0)+A 

= (_^(0) _ + A v _ _ G^FD(0) + dD(0)A + [A| Ay 

= -5f(VdDWA - ~6%0)[A,A] + AVdD^A - G.dD^A 

+A V FDW +AV[A,A}- G.[A, A] - S^FD^ - G.FD^, 

where 

(4.3) S^0)a(X2, ...,XP) = -(V® D(0))eka(ek,X2,.. .,XP), 
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and {ek} is a gq—orthonormal frame of TM, dD^ is the exterior derivative operator 
defined in (2.7), 

(4.4) A V a(X2,..., Xp) = £ A(ejfe)a(e^, X2,..., Xp) 
k=i 

and 
n 

(4.5) -     G.a(X2,...3Xp) = ^a(G(e,)efc,X25...,Xp) 
fe=i 

n      p 

+ ^ Yl a(ek>Xl' * *'' G(ek)Xj,..., Xp) 

n 

+ 53G*(fi>W)o(ei>X2,...,Xp), 
fc=i 

where Gfc are smooth functions in 9 and its partial derivatives and 

(4.6) G(X)Y = d^iVxiVY) - flVxY) = (r1 o {VxOW 

forX,y eTTM. Hence 

(4.7) —A = -^(0)dD(0)^ + terms of lower order in A, 
ot yQ 

with the second order term given by 

-SfWdP^AiX) = -J2mekD(0)ekA(X) -J2mekD(0)xA(ek) 
k=l k=l 

(4.8) +lower order terms. 

Define the operators 

(4.9) L(A)H = ~6°fQ
+AH 

iorH€n1(M;E*®E),<wd 

(4.10) E(A) = -6fW+AFDW+A. 

Now L(A)E(A) = — [^0*gl     )   is a first-order operator, since 5 is adjoint to d up to 

an algebraic term, see (3.5). 
From (4.8) it follows that the symbol of the derivative DE(A) in the cotangent 

direction £ equals 

n n 

(4.11) (oDEiAmH^ = (£ ZDHj - 5] ZktiHk. 
k=l k=l 

The symbol of L(A) is given by 

n 

(4.12) <TL(AmH =-Y.ZkHt, 
fe=i 
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and therefore the nullspace iV of CTL(A)(£) consists of all H G n1(M; E*(g)E) satisfying 
ELi tkHk = 0. The restriction of aDE(A)(^) to AT is then 

(4.13) (aDEiAmiNH)! = (^^Jfl,-, 
k=i 

i.e. a multiplication by $3ff. Hence both conditions of the theorem of Hamilton [3, 
Theorem 5.1] are satisfied, and the conclusion follows. □ 

To prove the smoothness property of the flow (3.4) we follow closely the idea 
presented in [1]. Let E -> M be a vector bundle with connection D over a compact 
manifold M and let FD be its curvature. The flow of connections defined by the 
equation -j^D = —SDFD implies the following heat equation for the curvature: 

(4.14) ^FD = -ADFD, 

where A^ = dDSD + dDdD. By the Weitzenbock formula, 

(4.15) ADFD = AFD + K^F0) + K2(FD), 

where A = —DiDi is the rough Laplacian, Ki is linear in FD and involves the 
curvature of the base space, and K2 quadratic in the curvature FD. Let QE be a 
family of metrics on E and assume that 

(4.16) 
d 
m9E <c. 

THEOREM 4.2. There exist constants C{q) and 8{q) depending on the dimension 
of E only such that the equation (4-14) has a solution for any initial condition FD(0) 
with |FP(0)| < 1 on the interval [0,S(q)], and 

The proof will be based on estimates given in the next few lemmas. By C we denote 
any constant which depends only on the dimension of the manifold M and the variance 
of the tensor T. 

LEMMA 4.3. For any tensor T 

(4.18) A|r|2 = 2(AT,T) - 2|VT|2. 

LEMMA 4.4. Let T be any tensor and A the rough Laplacian. Then 

k 

(4.19) A(DkT) - Dk(AT) = JT Cj(Z3<jFD)(I>*-iT), 
2=0 

where a < (^) for0<i<k. 
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Proof. We use the induction and the fact that 

(4.20) A(DkT) = JD(A(D*-
1
T)) - 2FD.DkT - DFD.Dk-lT. 

LEMMA 4.5. Assume that ^D - -5DFD. Then 

(4.21) ^(DkT) - Dk{jT) = J2 (k^{Di-\£D)){Dk-in atv 

and hence 

(4.22) ^D-Z^T) <c^( .WFI>||I>*-*T|. 
i=l 

Combining lemmas 4.4 and 4.5 we obtain 

LEMMA 4.6. 

(4.23) (l + A)DkFD < C (J2\DlFD\+£(ktl)\I*FD\\D*-*FD\\ . 
\i=0 i=0  ^ ^ / 

For m > 1 we define 

(4.24) 

(4.25) 

fk/2 m 

0*=(Jb + l)!|Z>*iri'1'    ^ = E^    and 

t(k-l)/2 ™> 

fc=l 

LEMMA 4.7. For m > 1 t/iere zs the estimate 

m     k 

(4-26) EE 
k=0 i=0 

Assume that t < 1. T/ien 

(^^I^^H^^II^-'^! ^ 2(tv
1/V +v3/2)- ^ ^ + 2^ ipji^DimifeciDiinfc-izr-Di 

((fc + l)!)2 

(4.27) 
ZTL        t*        — E 

fc=o«fc + 1)!)2io 
J2\DiFD\\DkFD\<6ip. 

Proof of theorem 4.2.    Combining lemmas 4.3 and 4.6 with the uniform bound 
on the change of QE we obtain 

o k 

(4.28) ^-\DkFD\2 < C\DkFD\2 + C^\DiFD\\DkFD\ 
dt 

i=0 

+cE 
2=0 

k + 2 * I^F^HJD^JF^HZ?*-*^! - AI^F^I2 - 2\Dk+1FD\2. 
i + 2 
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We then estimate ((^1)i)2 \DkFD\2 using (4.28), add up the inequalities thus obtained 
(from A; = 0 to m) and combine with lemma 4.7 , obtaining the inequality 

(4.29) % < -A<p - (1 - CV72)*/' + CV3/2 + C<p. 

The maximum principle applied to (4.29) together with the fact that (by the assump- 
tion) |<p(0)| - |i^(0)|2 < 1, implies 

(4.30) <p(t) < (2e-c*/2 _ ^2 

for all* € [0, T], T = ^ < 1, and the theorem follows. D 
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