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ON THE NEGATIVITY OF KERNELS OF KODAIRA-SPENCER 
MAPS ON HODGE BUNDLES AND APPLICATIONS* 

KANG ZUO* 

Let X denote a smooth complex projective variety, and S = J^Si C X a 
normal crossing divisor with smooth components. We consider a polarized variation 
of Hodge structure VQ on XQ = X \ S and the period map 

0 : XQ -> V/T 

corresponding to VQ. 

THEOREM 0.1. Suppose that 0 is injective at some points. Let D C XQ denote 
the degeneration locus of <f).  Then 

i) tlxtfogS) is weakly positive on XQ\D in the sense of Viehweg [VI], [V3]. 
i.e. for any ample line bundle L on X and for any positive number a there exists 
some positive number 0 such that the symmetric tensor 

Sa^illx{logS))®I^\Xo\D 

is generated by global sections on X. 

ii) the Kodaira dimension of detflx^logS) is equal to dimX. i.e. (X,5) is of 
logarithmic general type. 

Viehweg recently asked that if the cotangent bundles of moduli varieties of polar- 
ized varieties with log-pole along infinity are positive in some sense. It is well known 
that the moduli space of curves of genus g > 1 has the semi-positivity property. The- 
orem 0.1 shall give a positive answer to this question in the case when some Torelli 
map on the universal family is locally injective. It is extremely very interesting to 
know if that will still be true without existence of locally injective Torelli maps at all! 

In particular, Theorem 0.1 recovers the following two special cases, which were 
known previously. Let XQ = an arithmetic variety V/T, and X is a smooth com- 
pactification of XQ. Then Mumford [M] proved that (X, 5) is of logarithmic general 
type by using automorphic forms, which was studied in [BB]. Recently, Luo [L] showed 
that the moduli spaces of polarized Calabi-Yau manifolds are of log general type. Luo 
used the method in [SY] and the general Schwarz lemma of Yau [Y]. Our method here 
is essentially semi-positivity of n^-(logS), and Kawamata-Viehweg vanishing theo- 
rem. The author believes that one can also use the methods of [SY] and [Y] to prove 
ii). 

Inspired by a recent paper of Bedulev-Viehweg [BV] Jost and the author [JZ] 
recently proved similar inequalities, the so called Arakelov type inequalities for Hodge 
bundles over curves (also see [P2]). The inequalities states that the degree of Hodge 
bundles are bounded above by the degree of the log-canonical bundles of the curve C 
multiplies some constants, which depends on the Hodge type of E only, i.e. 

degE™ < rp>q{2g{C) - 2) + #5). 
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Those inequalities recover the original Arakelov inequality for families of semi- 
stable algebraic curves over curves [A]. And they also improve the Faltings inequality 
for families of semi-stable abelian varieties over curves [F]. Here we have Arakelov-type 
inequalities for Hodge bundles over any dimensional varieties. 

THEOREM 0.2. Under the same assumption as in Theorem 0.1, and suppose that 
the monodromy around the components of S are unipotent. Let (E,9) denote the 
canonical extension of (i?o,0o). Then after a blowing up r : (X,S) -» (X, S), there 
exist a positive rational number rp,q, which is bounded above by the Hodge type of 
(E,0), an effective Q—divisor Pp,q and a semi-negative Q—divisor Np,q on X, 
such that 

detT*Ep'q = r™ det r*n^(log5) - Pp>q + N™. 

DEFINITION 0.1. A divisor N on X is called semi-negative, if there exists a 
Hermitian metric h on the line bundle Ox (N) possibly degenerates along a subva- 
riety of X, such that the Chern form ci (iV, h) of h is negative semi definite, which 
represents the Chern class of Ox(N), and for any morphism f : Z -> X one has 

/. 
Adimz(-/*ci(JV,/0)>0. 

Set D>rf :=PP«-N™. Then L™' =T*L™, and the line bundle U>« is weakly 
positive on some Zariski open subset of X. 

In his paper [Gl] Griffiths defined the so-called canonical bundle K{EQ) of the 
variation of Hodge structure Vo by: 

K{Eo) = (det£0
M)* 0 (detEo1'*-1)*"1 0 ... ® (det^"1'1), 

where ($EQ
A
 is the system of Hodge bundles corresponding to VQ (see below). 

Griffiths showed that the curvature form of K(E) is positive semi definite, and is 
positive definite at those points, where the period map is injective. If the monodromies 
around the components of 5 are unipotents. Then, there is a canonical extension 
®£p'9 on X (see below). Hence, a canonical extension K(E), such that K(E) is 
nef and big. Applying Theorem 0.2 we obtain the following inequality, which shall be 
consider as an algebraic geometry version of Yau's Schwarz inequality 

COROLLARY 0.3. After a blowing up r : (X,S) -> (X,S) there exists a positive 
rational number r, which is bounded above by the Hodge type of VQ, an effective 
Q—divisor P and a semi-negative Q—divisor N on X such that 

K(T*E) = r det r*^(log5) - P + N. 

In particular, ^(K(r*E)—N) is a nef and big invertible sub-sheaf of detT*n^(log5). 

REMARK. The inequality in Cor. 0.3 still holds on the curvature level. So, we 
may regard this inequality as an effective and geometric version of Griffiths-Schmid's 
theorem [GS]. Namely, the holomorphic sectional curvature of the horizontal sub- 
bundle is strictly positive. 



KODAIRA-SPENCER MAPS ON HODGE BUNDLES 281 

QUESTION (Viehweg)   Does the difference 

rdetr*fi^(logS) - K(T*E) 

have any geometric meanings? 

The main idea in the proof of Theorem 0.1 and 0.2 is the negativity of kernels 
Kodaira-Spencer maps on Hodge bundles, which we are going to describe. A polarized 
variation of Hodge structure VQ on XQ gives rise the Hodge bundles 

£o = grFoV=   0  ES>< 
p+q=k 

and the linearlizations of the Gauss-Manin flat connection 

p+q=k 

According Simpson's terminology [SI] we shall call the pair (EO,0Q) a system of 
Hodge bundles. It satisfies OQ A 9o = 0. In the case when (Eo,0o) comes from 
a geometry situation, a family of smooth projective varieties f : YQ -¥ XQ, then 
Vo = Rkf*(CY0), E%'q = Rqf*(^Yo/Xo) and 8$q is just given by the cup product 
with the Kodaira-Spencer class. 

By works due to Deligne, Griffiths and Schmid the vector bundle Vo = Vo (8) 
OXQ can be extended over X as vector bundles, the Gauss-Manin flat connection 
has regular singularities along S and the Hodge filtration FQ can be extended as 
a filtration of coherent sheaves over X. In the case when the monodromy around 
the components of S are unipotent, then there is a canonical extension V of Vo, 
FQ is extended as a filtration F of vector bundles over X [Sch] and 6 has at most 
logarithmic pole along S. The canonically extended system of Hodge bundles will be 
denoted by 

(£»0) = (0  JSM,  0  0p'9),    ^(E^C^-^+^ft^logtS)). 
p+q=k p-\-q=k 

DEFINITION 0.2. We set 

K(0p'9) := Ker(0M : E™ -+ E*-1**1 0 ft^(log(S)). 

Prom the general fact, K(6Pjq) C EPiq are sub-bundles in the complement of 
some subvariety of X of codimension > 2 except some obvious cases. For example, 
we have trivially K(e0>k) = E0>k. 

A prototype of the negativity of K(8p'q) is a theorem of Griffiths [Gl], who 
showed that the curvature form of E0' is negative semi definite. In the case when 
the monodromies around the components of 5 are unipotent, by using this curvature 
property and variations of mixed Hodge structures Fujita [Fu] for dim X = 1 case, 
and Kawamata [Kal] for dimX > 1 case showed that E0>k is semi negative in the 
algebro-geometric sense. In fact, they showed that Ek'0 (~ E0,kv) is semi positive. 
Namely, let / : C ->> X be a morphism from a smooth projective curve into X, 
Then the degrees of any invertible quotient sheaves of /*(jEfc'0) are non negative. In 
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the case when the monodromy around S are not unipotent, one has to be careful on 
which extension will be taken. 

The same principle will be exploited in the proof for the semi-negativity of sub- 
bundles N C K(6p'q). By using the GrifRths formula for the curvature form of the 
Hodge metric on EQ [G2] and the extra property that 9p>q(N) = 0, one shows that 
the curvature form of N\x0 of the Hodge metric is negative semi-definite. On the 
boundary S one has the similar situation as on XQ. The intersection of different 
components gives rise a stratification 5 = U/5/. The residue of 6 on Sj induces a 
filtration on iVls,, such that each component in the grading again lies in the kernel 
of the Kodaira-Spencer map on the system of Hodge bundles induced by variation 
of mixed Hodge structures. In the case when the local monodromies around the 
components of S are unipotent, a Theorem of Kollar ([K], Th. 5.20) allows the 
Chern forms of the singular Hodge metric of iV to represent the Chern classes of iV. 
We obtain 

THEOREM 1.2. Suppose that N c Ep>9 is a sub-bundle, such that dp>q(N) = 0. 
Then the curvature form of the Hodge metric restricted on NQ is negative semi- 
definite. If in addition the local monodromies of YQ around the components of S are 
unipotent, then the Chern classes of N can be represented by the Chern forms of this 
curvature form. The Chern classes Ci(Nv) is semi-positive in following sense. Let 
f : Z —> X be a morphism, then the integration 

1, n4(Nv)...c^(Nv))>0. 

More over, if f*ci(N)LdimZ~1 = 0 for some ample line bundle L on Z, then 
the following holds: 

i) If f(Z) <£ 5, then the Gauss-Manin connection on f*E restricts to a flat 
connection on f*N, which is compatible with the Hodge metric. Hence, the map 
f*N —> f*E  induces a map between the underlying local systems of f*N\o   and 
FEW 

ii) If f(Z) C rti!,...,^^ =: 5/ and £ Sj for J D I. Let 

®Gr(.fJV)c0Grr(£) 

denote the gradings for f*N and f*E of the pulled back weight filtration of the residue 
of 6 on Sj. Then the Gauss-Manin connection on 0 Gr(f*E) (it comes from VHS 
on the grading of the weight filtration of the monodromy around Sj) restricts to a 
flat metric connection on 0 Gr(f*N). Hence the map f*N -> f*E induces a map 
between the underlying local systems of 0 Gr(No)  and 0 Gr(f*E\o). 

In order to apply Theorem 1.2 to the semi-positivity of fi,x(logS) we consider 
the induced VHS on the endomorphism End(Vo) and the corresponding system of 
Hodge bundles of weight k = 0. 

(End(£),0end) = (E,0) 0 (£v, -0V). 

The Kodaira-Spencer map 0 : E -> E ® fi^(log5) induces a sheaves map 

d(f):Tx(-logS)->End(E), 
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with d0(Tx(-log5)) C End(E)"1'1, and such that #|xo coincides with the differ- 
ential of the period map </>: XQ -> V/T. Prom the integrable condition 9A9 = 0 one 
gets 

PROPOSITION 2.1. 

eenddct>(Tx(-\ogS)) = 0. 

Theorem 0.1 and 0.2 follow from Theorem 1.2, Prop.2.1 and Kawamata-Viehweg's 
vanishing theorem. Here we have further applications of Theorem 1.2 and Prop. 2.1. 

Consider X \ S as a moduli variety of polarized varieties, carries a universal 
family, and such that some Torelli map on the family is locally injective. Let / : 
(Z, 5') -> (X, 5) be a morphism. A deformation ft of /, such that ftiS') C 5 can 
be thought as a deformation of the family of polarized varieties over Z with the fixed 
discriminant 5'. This gives rise a section s : Oz -*• /*(Tx(—logS)). By Theorem 
1.2 and Prop. 2.1 we recover Faltings theorem on deformations of families of polarized 
abelian varieties [F], and the theorem due to Jost-Yau and Peters on deformations of 
period maps [JY], [PI]. 

COROLLARY 0.4. Suppose that f :Y -* Z is a family of polarized varieties, such 
that the Torelli map for some i?A;/*(Cy) is locally injectives. Then a deformation 
of this family with the fixed Z and the fixed discriminant S induces a non-zero 
endomorphism on i?fc/*(Cy) of (—1,1)—Hodge type. 

Corollary 0.4 should have a far reaching generalization. Namely, Cor.0.4 just 
means that the image of the 0-te cohomology 

Im(H0(Z,f*Tx(-\ogS)) -► H0{Z,rEnd(E))) 

of coherent sheaves can be realized as the 0-te topology cohomology classes in 
H^etti(Z, /*EndVo) of the local system /*End(Vo). We may ask a further question, 
if for any q the image 

Tm(H9{Z,rTx(-]DgS)) -» ff^./'EndfE))) 

can also be interpreted as a sub-space of H%etu{Z^ /*EndVo)? Here we have an 
answer for the projective case. 

THEOREM 0.5. Suppose f : Z -» X is a morphism. If f(Z) C XQ, then the 
sheaves morphism 

rTx(-\ogS)^f*End(E) 

induces an injective map 

Im{H«{Z,rTx{-\ogS)) -»• H^ZJ-EndiE))) -»• H<Betti(Z,rEnd(Vo)). 

The proof of Theorem 0.5 is just to use Prop. 2.1 and Simpson's three descriptions 
for the cohomology of a local system. Namely, 

Hl
Betti(ZJ*Y0) ~ HhniZJ'V) ~ WDol(Z,r(E,d)) 
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via harmonic forms. 

Conjecturaly, Theorem 0.5 shall till be true for the quasi-projective case. If 
dimX = 1, then Theorem 0.5 should follow from Zucker's theorem [Z]. For higher 
dimensional quasi-projective varieties one needs to work out Simpson's three descrip- 
tions for cohomology of local systems (or a better formulation: the intersection coho- 
mology of local systems) via L2—harmonic forms. Of course, the theorems in [CKS] 
for degeneration of Hodge structures will certainly come into play. 

Theorem 0.5 and its general form has the following potential application for defor- 
mations of subvarieties in moduli spaces of polarized varieties. In order to explain the 
idea we just consider the moduli space / : A -» Mo of polarized abelian varieties with 
a universal family. Let g : (Z, S') -> (M, S) be a morphism and / : A\z -> Z the 
pulled back family. In their paper [SZ] Saito and Zucker asked the following question. 
To understand those infinitesimal log-deformations of {Z,S'), which underly projec- 
tive deformations of {A\z') /"HS")) as a fibre space. It is the same thing to ask that 
when an abstract log-deformation of (Z, S') will underly a deformation of the triple 
g : (Z,S") -> (Af,5). Consider the VHS S2^1/*^)- Then the tangent bundle of 
M with log-zero along S is identified with the last Hodge bundle 52i?1/*(0^) of 
S2Rl /*(CW4). The morphism between tangent sheaves reads 

Tz{\ogS')->S2RlU{0AU). 

A calculation in [SZ] shows that the obstruction for an abstract log-deformation 
of {Z,S') underlying deformation of (.Alzj/-1^')) as a fibre space lies in 

Imtf^.TzOogS') -► H1{Z,S2E}UOAU)). 

Assuming Theorem 0.5 is true for the quasi projective case. Then this obstruction 
lies further in 

H^ifr&tfMCMz)) C tfW^Endoti?1/*^)). 

If the induced map g : ZQ ->• Mo induces an isomorphism g* : ^{ZQ) ->• 7ri(Mo), 
then it induces an isomorphism 

^^(Z.Endo^/.C^iz)) ^ flWMo,Endo(i*7.C,0). 

By Weil's locally rigidity theorem the cohomology group on the right site vanishes, 
we expect the following statement: 

CONJECTURE 0.6. Let j : A ->• Z be a semi-stable family a polarized abelian va- 
rieties over a smooth projective variety Z with the discriminant divisor Sf. If the in- 
duced map g : ZQ -> MQ to the moduli space is an isomorphims g* : 7Ti(Zo) -> 7ri(Mo) 
then any infinitesimal log-deformation of (Z, S') underlies a projective deformation 
of (A, /~1(iS"))  as a fibre space. 

The same statement for global deformations was recently proved in [JLZ]. It is, 
in fact, a statement about variations of Hodge conjecture in the non-abelian case. 

THEOREM 0.7. Let TT : ZQ -» BQ be a family of smooth quasi-projective varieties 
over a smooth quasi-projective variety BQ. Suppose that over one fibre ZQ  there is 
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a family of smooth polarized abelian varieties f : A —> ZQ and the induced map 
g : ZQ ->• MQ to the moduli space is an isomorphims g* : ^(ZQ) -> 7ri(Mo). Then the 
family f : A -* ZQ can be extended as a family of smooth polarized abelian varieties 
f : A —> ZQ after a base changing of BQ. 

Before we finish this section, we would like ask: 

QUESTION. Let </> : XQ -> V/T be a locally injective period map correspond- 
ing to a VHS VQ. Suppose that for any morphism / : Co -» XQ, such that the 
composition 0/ : Co -4 V/T is non-constant, there exists no endomorphism of 
(—1,1)—type twisted by a unitary local system on the underlying local system of 
/*Vo. Is n^(logS) big on some non-empty Zariski open subset U C XQ ? 

Here the bigness of n^(log5) on U (see [V3]) means that for any line bundle 
M over X there exists some 7 >> 0, such that 

S7(fi^(log5)®M-1 

weakly positive on U 

It is easy to see the converse direction of this question is true. Suppose VQ 

arises from the geometry situation, Viehweg recently asked if some extra geometry 
properties on the fibres shall force fix (log 5) to be big. For example, the contangent 
bundle along the fibres is big. On the other hand, the existence of a (—1,1)—type 
endomorphism on Rkf*(CY0) implies that this VHS splits over C of some very special 
types. It would be interesting to see if this property has any consequence to the 
geometry on the fibres. 

ACKNOWLEDGMENT. I would like to thank the following people, with whom i 
have discussed various parts in this note: H. Esnault and C. Simpson on the three 
descriptions for cohomology of a local system and possible generalizations to the 
quasi-projective case, J. Jost on Jost-Yau's theorem on deformations of period maps, 
G. Trautmann on the representation theory, E. Viehweg on his question on semi- 
positivity of moduli varieties, possible generalizations to variation of mixed Hodge 
structure and Theorem 0.2 and C-L. Wang on mixed Hodge structures and moduli 
spaces of Calabi-Yau manifolds. 

A part of this paper was written down during my visit in the Institute of Mathe- 
matics and Sciences of the Chinese University of Hong Kong in the summer 1999. I 
would like to thank Prof. S-T. Yau for very interesting discussions on this subject. 
This paper is highly inspired by his general Schwarz inequality. I would also like to 
thank him for the hospitality of the institute. During the preparation of this paper, 
the author was supported by a Heisenberg fellowship of the DFG. 

1. Negativity of kernels of Kodaira-Spencer maps. Let X denote a smooth 
complex projective variety, and 5 C X a normal crossing divisor with smooth com- 
ponents. For the convenience of the readers we give a short review on variation of 
Hodge structure (see [Sch]) 

A variation of polarized Hodge structure VQ of weight k on XQ = X \ S consists 
of: 

i) a finite dimensional real vector space V, and a homomorphism 

P'.miXo.Xo) ->GL(y) 
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Let VQ denote the local system corresponding to p and Vo = VQ 0 OXQ the holo- 
morphic vector bundle with the integrable connection (the Gauss-Manin connection) 

V:Vo->Vo®fi^0,    V
2=0. 

ii) A flat, real and non-degenerated bilinear form 

Q : Vo ® Vo -» K 

iii) A filtration of Vo by holomorphic sub-bundles 

Vo = F0
0 D Fo1 D ... D F* 

This filtration is called the Hodge filtration and satisfies the infinitesimal period re- 
lation 

A VHS induces a so-called system of Hodge bundles as follows. Let 

Because of the infinitesimal relation, the integral connection induces a sheaves homo- 
morphism 

fl™:^-*^1'^1®^. 

We set 

(Ecflo) = (® E™, 0 6™). 
p+q=k p+q=k 

The Hodge bundles satisfies the following Riemman-Hodge bilinear relations 

Q(E^\ EQ'
S
) = 0   unless   p = 5, q = r, 

t^QMX),    if   veE%'q,v?o. 

The so-called Weil operator C : EQ -> EQ is defined by 

Cv = ip-qv,    if   i;6JE^»g. 

The Hermitian form h(u,v) := Q(Cu,v) is positive definite and defines the so-called 
Hodge metric h on EQ. 

Suppose that the local monodromy around each component of 5 is unipotent. By 
works of Deligne and Schmid there is a canonical extension V of Vo, FQ is extended 
as a filtration F of vector bundles over X, and 8 has at most logarithmic pole along 
5. This extension is locally described as follows: Let s = J2i fisi be a single-valued 
section of of Vo, where /* are multi-valued holomorphic functions and Si are multi- 
valued flat sections of VQ. Then s can be extended over S to a local section of V if 
and only if every fa has at most logarithmic singularities along S. This canonically 
extended system of Hodge bundles will be denoted by 

OE7,0) = ( 0  E™,  0  0**),    6™ :Ep>q-*Ep-1>q+1®n1
x(log(S)). 

p+q=k p+q=k 
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PROPOSITION 1.1. Let N C E™ be a sub-bundle and 6™(N) = 0. Then N is 
semi-negative in the following sense: 

i) The curvature form Q(N\x0,h) of the induced Hodge metric h is negative 
semi definite. More over, if Q(N\x0,h) = 0. Then the metric connection on N is 
flat, and coincides with the Gauss-Manin connection. 

ii) In general, we consider iV|sJ0. There exists a filtration of sub-bundles of 
JE|S7, called the weight filtration of ressjO 

Wo,...,o,...,o C ... C Wlu...,im,m..,im C Wzlf...1im+il...,i#/ C ... C W2k,...,2k,...12k = Els,, 

which is preserved by 9, and such that the quotient G?nlv..>/m)...ji#I(JS|5/) together 
with the descent 6 forms a direct sum of systems of Hodge bundles locsj (25,8) corre- 
sponding to a direct sum of polarized VHS on Sj. Furthermore, this filtration restricts 
to a filtration on Nlsj 

W0,...,o o(iV|s,) C ... C Wh im,...Ul(N\Sl) C ... C W2k 2k,...MN\sI) = iV|Si, 

such that 

Gfn1,..,«m,...,i#J(^l5J))C Ker(locs9 : locsE™ ^ locsE^^^n^ilogiSjn^Sj)). 
JDI 

Hence, by i) the curvature form of the induced Hodge metric on Gri1^..iirni„.jif:I(N\sIt0) 
is again negative semi definite. And, if the curvature form vanishes. Then the metric 
connection on Gn1,...,jm>...1z#/(iV|s/i0) zs flat, and coincides with the Gauss-Manin 
connection on Iocs, (25,6). 

Proof of i). Let h denote the Hodge metric on the system of Hodge bundle 
(25o,0), and Q(Eo,h) the curvature form of (25o,/i). By [G] we have 

e(Eo,h)+6Aeh + 6hA6 = 0, 

where 6h is the complex conjugation of 8 with respect to h. 

Suppose N C Ep>q is a sub-bundle and 8(N) = 0. We shall use the last equation 
above to deduce that the curvature form of N\x0 is negative semi definite. 

The metric h induces a metric h on N\x0 =' Aro, and C00—decomposition 

This gives 

0(JVo, h) = ©CEo, h)\No +AAA = -9/\9h\No-8hA 8\No +AAA, 

where A G A1*0(Rom^o, NQ^ is the second fundamental form of the sub-bundle 
NQ C EQ. Note that 8(N) = 0, we have 8h A 8\No = 0. Hence 

0(jVo, h) = -8A 9h\No + A A A < 0. 

If 0(iVo, h) = 0, then 8 A 8h\NQ = 0 and AAA = 0. This implies that A = 0 
and fl/^iVo = 0. This means that the above C00-decomposition is holomorphic, and 
the decomposition of the Gauss-Manin connection on Aro becomes D = Dh. i) is 
proved. 
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Proof of ii). The main idea here is similar to Kawamata's proof for Ek>0 [Kal]. 
There he used the weight filtration of the monodromy around 5, and showed that 
Ek'0 is semi positive. Here we shall prove the semi negativity of the kernels of 
Kodaira-Spencer map on the Hodge bundles. Since they are algebraic subsheaves 
of Hodge bundles, we have to use the following weight filtration defined by ress0. 
The underlying spaces of those two filtrations are the same. But, they have different 
holomorphic structures in general. 

It is a 9—invariant filtration 

Wb,...,ol...,o C ... C Wilf...,jmf...,/#/ C Wi1,...jjm+if...>j#7 C ... C W2k,...,2kt...,2k = Elsj, 

such that the grading together with descent 0 forms a direct sum of systems of 
Hodge bundles corresponding to the polarized VHS on 5/ induced by variation of 
mixed Hodge structure along 5/. 

First of all we shall review the notion of variation of mixed Hodge structure 
(VMHS) and the systems of mixed Hodge bundles corresponding to them. The fol- 
lowing discussion on mixed Hodge structure can be found in [Sch], [CKS] and [Kal]. 

We write / = {n, Z2, ...,«#/} with the fix chosen order ii < zj+1 The VHS He 
on X \ S induces a VMHS on 5/ inductively (it depends on the order that we have 
chosen). 

Start with I = {i}. Let ji denote a short loop around Si. One has the unipotent 
matrix 

p(li) = I + NieGL(V),    N*+1=0. 

There exists a unique filtration [Sch] 

Wo* C Wl C ... C W} C Wf+1 C ... C W}k = V 

such that Ni(Wi) C Wi_2. Set Grj(V) := W}/W^. Then 

Nl-.GvUW^GvUiV) 

is an isomorphism, for each I > 0. 

If I > jfe, let V} C Gri(V) denote the kernel of 

Nl-WiGilW^GiU^iV) 

and set Vi = 0 if / < 0. Then one has the so-called primitive decomposition 

Gvi(V) = 0 Nf(Vi+2j),    j > max (k - 1,0). 
j 

Q defines a nondegenerated bilinear form Q} on GTI(W^) by 

Qjtu, v) = Q{u, Nl~~kv),    iiu,v€ W/represent u, v. 

The isomorphism above is then an isometry, and the decomposition above is then 
orthogonal with respect to this bilinear form. 

Let Ui denote a tube neighborhood of Si in X. Then this weight filtration gives 
rise a filtration of flat sub-bundles of Vo|£/;\s*> s^nce ^ commutes with p\ui\Si' Vo 
has a canonical extension V over X, locally described as follows. 
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Let s = J2ifisi be a single-valued section of of Vo, where fo are multi-valued 
holomorphic functions and Si are multi-valued flat sections of Vo with respect to the 
Gauss-Manin connection, s can be extended over 5 to a local section of V if and 
only if every fa has at most logarithmic singularities along S. 

The Gauss-Manin connection is then extended as meromorphic integrable con- 
nection with log pole along S 

V : V-> V®ftx(logS). 

The weight filtration {Wf} can be extended as a filtration of sub-bundles of V\ui 

wic...cwl
ic...cwik = v\Un 

such that the induced Gauss-Manin connection on GrftVlu^Si) extends to a holo- 
morphic integrable connection on Gr^Vlc/J. There is a way to describe local flat 
sections of GrJ(V|c/.). 

Let Ux C X be a small neighborhood of x 6 S';, and u be a multi-valued flat 
section of W/j^^. The multi-valued property of u is exactly caused by the nilpotent 
part Ni of the unipotency matrix p(ji) = I + Ni. Since Ni(Wi) C ^(^-2)5 ^e 

action of p(7i) on Gr^Vlc/^sJ is identity. Hence u projects to a single valued flat 
section u of GrJ(V|t/:c\l9i), which extends to a flat section of Gr^Vl^). Qj also 
extends to a flat bilinear form on Gil(V\ui)j which will be again denoted by QJ. 

Moreover, W. Schmid showed that the Hodge filtration {FQ } has an extension 

V = F'0 D F1 D ... D Fp D ... D Fk, 

such that {Fp} , {Wf} and together with Q] define a variation of polarized mixed 
Hodge structures on V^. i.e. the projection of {Fp} to Gr^V^J defines a direct 
sum of VHS on the components of the primitive decomposition of Gr^VlsJ, and 
those VHS are polarized by the bilinear form Q^. 

Now let / = {ii, 22}, we consider two components of 5. Let 7^, ji2  be the 
two short loops around 5^, Si2   and N^, Ni2  the nilpotent parts in ^(7^, p(7i2 

respectively.  Since iV^  and Ni2  commute, the property of the weight filtration of 
iV^ in i) is preserved by Ni2. The weight filtration of N^ 

w*1 c w? c ... c wil c wh c ... c w;i = V 
is also preserved by Ni2. Hence, Ni2 descends to a nilpotent endomorphism 

and defines then a weight filtration on Giil(Wi1) 

Kfi   C Kt C - C K? C Ktii C - C Wtttl = Gr^V). 

Let t/f^ia denote a tube neighborhood of 5:1?f2 in S^. Then we just repeat 
the above discussion again here. The weight filtration {W/1'/2} defines a filtration 

of flat sub-bundles of GrJJ(V)|c/t. ji2\5tlit- , and extends to a filtration of sub-bundles 

on GrJ^V)!^ ft. such that the Gauss-Manin connection V induces a holomorphic 
integrable connections on the quotient 

Gr;;;;:(v):=^;/7<A- 
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Further more, the Hodge filtration on GrJJ(V) projects to the primitive parts of 

GrjJ'k is a VHS, and polarized by 

In general, for any 5/, we construct inductively a grading 

liM,~'J#i 

and show that each component of this grading carries a direct sum of polarized VHS 

Now we shall write down the system of mixed Hodge bundles corresponding to 
VMHS constructed above. Consider the canonical extension 

6:E^E®nlx(logS) 

of the system of Hodge bundle corresponding to a VHS. 9 has the expression 

i=l l        i>m+l 

near 5 = {z\zi...zm = 0}, where all 0i are holomorphic, and 8i6j = OjOi. 

The so-called residue map around Si of 5 is an endomorphism defined by 

ressj : E\Sl ^ Elst. 

In our situation res^tf is automatically nilpotent, and (ress-fl)*5"*"1 = 0. So, it 
defines a weight filtration on Elsi 

Wo(E\Si) C WxiElst) C ... C WiiEls,) C Wi+iCJSIsJ C ... C W2k(E\si) = E\sn 

which is preserved by the action of 0^. Simpson [S2] showed that this weight fil- 
tration is the same as the weight filtration corresponding to the nilpotent part of the 
local monodromy around Si. So, this filtration is a filtration of sub-bundles. Denote 
GrJ(S) = W^Elsi)/Wi-.i(E\si), one also has a primitive decomposition 

Grj(S) = 0(reS5i^(n,2j). 
j 

We consider now the following two exact sequences 

ressi 
0 -► End(E) 0 n^ (log(5i Y, S3) -* End(E) ® nx(log(S)|s«   ->' End^)!^ -> 0 

and 

0 -> End(GrJ(E)) 0 Jl^ (log(S« n ^ Sj)-* End(Gr|(£;)) 0 n^(log(5)|5, 

re45iEnd(Grj(£))^0. 
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Since 

6 e H0(SuEnd{E)®il1
x{log(S)\si) 

preserves the weight filtration, it descends to a section 

0 € ff^EndCGrf)!*) ® ^(log^lsj. 

The image 

leastiO) 6 if0(5i,End(Gr/
i(£)) 

is zero, since it comes from 

resale ff0(Si,End(E)|sJ, 

and it has the trivial action on the quotient Gr] of its weight filtration.  Hence 6 
factors to a section 

Of e H0(S, End(Grj(S) ® n^(logC^ n ^ 5,). 

This section together with the projection of the Hodge sub-bundles of E\si to 
GrJ(E) is the direct sum of systems of Hodge bundles 

(GviiE)^) = ®((reSsM7W.<t) 
j 

corresponding to the direct sum of polarized VHS on the primitive decomposition of 
GrJ(iy). We call the following direct sum of systems of Hodge bundles 

©((ress^)^^),^) =: loc5|(25,0) 

the localization of (E,8) on Si. 

Now we consider two components S^, Si2 of 5. The residue 

ressii>t.2locsfi0 =: vessi^ij 

gives a weight filtration 

K\i2 c K;!2 c - c Kf2 c ^.x+ic - c ^.fi = G1^^- 
Let Grllf (E) = W^f/W^f^. Then by the same argument as above locs^O de- 
scends to an endomorphism 

dilf :Gr?if(E)^GTilt(E)®P.l5iii2(log(Siui2n   £  5,). 

This endomorphism together with the projection of Hodge sub-bundles of GrJ1 (E) 
to GrJ1'J2(E) is a direct sum 

(Grf;:!m<fo'a) = ©((res5il,2^(^;^),^) 
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of systems of Hodge bundles corresponding to the polarized VHS on the primitive 
decomposition of GrJJ^OO. 

We call the direct sum of systems of Hodge bundles 

0 ((Mft1,1#(Pf£W.«&£i) =:!«*,,,,(£,*) 

the localization of (E,9) on Silyi2. In general, for / = {ii, 22,...,«#/} we just con- 
struct the residue res5J (9) and its weight filtration inductively. The pulled back the 
weight filtration on each individual step to Elsj gives rise a filtration with a multi 
index set 

Wo,...,o,...,o C ... C Wiu...,imi...Uj C Wilf...,/m+i,...l/#J C ... C W2k,...,2kt...,2k = Elsj, 

such that the grading together with the descent 0 

©       (Grh,...,im,...,/#j(sl5j,'9zi,...,/Tn,.. .,/#/) 

is a direct sum of systems of Hodge bundles corresponding to the polarized VHS on 
the primitive decompositions of the components of the grading 

Now let AT C Ep>q be a sub-bundle and 9(N) = 0. We consider the grading 
GIii,...,im,:.,i#i(N\si) of the filtration restricted to iV. It is contained in the kernel 
of loc5J^. Applying the same argument in i) to this grading we prove ii). 

Proof of Theorem 1.2. We first consider a special case, where f : Z -+ X with 
f(Z) £ S. By Kollar's theorem ([K] Th. 5.20) the Chern classes Ci(f*Nv) of the 
dual bundle can be represented by the corresponding Chern forms Ci(f*NQ,h) of the 
induced Hodge metric, and they are semi positive by i), Prop. 1.1. Hence 

/r(cii(ivv)...4"(ivv))= / ncY(NZ,h)...ct?(K,h))>o. 
JZ JZo 

We consider now the general case. Suppose that f(Z) C 5/ and f(Z) <£ r\jDiSj. 
We pull back the weight filtration of ressI9 to Z, and enlarge it to a filtration 

Wo,...,o,...,o(/*JV) C ... C W/1)...,,m,...,,#,(rAr) C ... C f'N, 

such that it is a filtration of vector bundles on the complement of a subvariety of 
codimension two. We then take a blowing up TT : X -)> Z, such that the pulled back 
filtration can be enlarged to a filtration of vector bundles 

Wol...lof...,o(7r*rW) c ... c Wlu...llm,...thj(w*rN) C ... C 7r*/*iV. 

Now, all the quotient Gr/1,...j/mj...>/#J(7r*/*A0 are sub-bundles of 7r*/*(loc5JE
p'9), 

and lies in the kernel of 7r*/*loc5/0 by ii, Prop. 1.1. Applying the same argument as 
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before, the Chern classes of Gr/1)...}/Tn?...j/#J(pf*/*iVv) are semi-positive. Hence the 
Chern classes of 7r*f*Nw are semi positive. This implies that 

/ r(ci1(iVv)..4»(JVv)) = f ci'(ir7*.tfv)...<&(7r*/*tfv) > Q. 
Jz Jz 

Suppose that ci(N)LdimZ~1 = 0 for some ample line bundle L. We consider 
first a special case, where f(Z) (jL S. we shall show that the Curvature form on /*iVo 
vanishes. Let C be a smooth projective curve of the complete intersection of sections 
of the linear system |mL|. Since the first Chern form of f*N\c0 is negative semi 
definite and represents the first Chern class of /*iV|c, this Chern form vanishes. By 
choosing different curve C passing through any point in Z and along any direction, 
we show that the first Chern form of /*iVo vanishes. This implies that the curvature 
form on /*iVo of the Hodge metric h vanishes. Hence, the Gauss-Manin connection 
restricts a flat ft—connection on on f*No. 

Suppose now f(Z) C 5/ for some J, and <£ HJ^JSJ, then by the same argument 
as above we show that the same property holds for the grading Gr(iV) of the pulled 
back weight filtration of the residue of 6 on 5/. Theorem 1.2 is proved. 

2.  Semi positivity of parameter spaces of Hodge structures.  Let  ^ : 
XQ ->• 22 denote the equivariant holomorphic map from the universal cover XQ into 
the classifying space of polarized Hodge structures corresponding to a VHS VQ with 
the system of Hodge bundles (EQ,6Q). The differential of (j) induces a sheaves homo- 
morphism 

d^ : TXo -* PT-D- 

We have the following Hodge-theoretical description for d4> [Gl] and [Sch]. Let 
VR denote the real vector space of the fibre of the local system at XQ with the Hodge 
filtration 

Vc = F° D F* D ... D F*. 

The orthogonal group of the bilinear form Q is a linear algebraic group defined 
over E 

GR = {geGL(VR)\Q(g(u)1g{v) = Q(u,v)   for all   u, v € Vfc}. 

The group of its C—points 

Gc = {g€GL(VR)\Q(g{u),g{v) = Q(u,v)   for all   u, v € Vc}. 

The Lie algebra gc of Gc is then 

gc = {X6End(Vc)\Q(X(u),v) + Qtu,X(v))=0   for all   u, v € Vc}. 

The quotient space 

P = GR/GR n B,    where   B = {g e Gc\gFg = Fp\fp} 

is the so called classifying space of Hodge structures, which parameterizes Q—polarized 
Hodge structures with fixed Hodge numbers /ip'9, J2p+q=k hp'q — dim Vfc, and carries 
the universal Q—polarized Hodge filtration, and the universal Hodge bundles £. 
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Since the Hodge structure is functorial, the dual space V^f is equipped naturally 
a Hodge structure of weight -k by 

2#:=     0     Ef 
p<+q'=-k 

VP ,Q 
0       J 

where Ev^q =£-*>'>-%. 

If the Hodge structure on VR is polarized by a bilinear form. Then this bilinear 
form induces naturally a bilinear form on V^jf which polarizes the Hodge structure 
onyR

v. 

Further more, these two Hodge structures on Vfc and on V^ induces a Hodge 
structure on End(Vc) 

0End(£)S's=    0    i<r®£vsv- 
r+s=0 (p+p/)+(g+g/)=o 

The product of the polarizations on Vfe and on V$f gives the polarization on 
VR (8) Vj^. The Lie algebra gu of GR is then 

gR = {X e End(VR)\Q(X(u),v) + Q(u,X(v)) = 0   for allti, v G VR}. 

This sub-space gR C End(VR) carries a sub-Hodge structure with 

gc = 0gr'-r, 
r 

where 

gr'-r = {X € gc|X£™ C 5p+r'q-r,    Vp7q}. 

The Hodge bundle g-1,1   is identified with the so-called horizontal sub-bundle of 
holomorphic tangent bundle Tp. We have then 

Tx0 
d4 ^g-1'1 ^ ^End(5), 

which descends to 

Txo d4 g"1'1 4 End(Eo), 

where g-1,1 is the (-l,l)-type Hodge bundle of the descent sub-system of Hodge 
bundles of (Eo,6o), and the composition map idcj) coincides with the map 

TXo -+ End(Eo) 

induced by the Kodaira-Spencer map 9o : EQ -> EQ® fl^0. 

Suppose that the monodromies of Vo around components of 5 are unipotent. 
Then by works of Deligne and Schmid we have a natural extension 

£->E<g)n^(logS), 

which induces an extension 

TM-logS^g-^EndtE). 
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In the general, by [Sch] the monodromies around the components of S are uni- 
modular. i.e. the norms of the eigenvalues of the monodromy matrix are equal to 1. 
In this case, one still extensions 

£Q->£Q®ft^(logS), 

which induces an extension 

TM-logS^g-^EndtE*). 

PROP. 2.1. Let (End(E),9e7ld) denote the system of Hodge bundles correspond- 
ing to the polarized VHS on End(H^), induced by the polarized VHS on Vfc.  Then 

eend(dcf>(Tx)(-\ogS))) = o. 

Proof. Let (J5,6) be the system of Hodge bundles corresponding to the VHS on 
V. Then the system of Hodge bundles corresponding to the induced VHS on Vv is 

p'+q'=-k 

where EWP '9 = E~p >~q   , and 0V = 6 under the natural isomorphism 

End(£v)=End(£). 

The system of Hodge bundles corresponding to the induced VHS on End(V) is 

(End(£),0end = ( 0 End(£)r'*,0end) = ( 0 E™ 0 £vpV,0end) 
r+s=0 (p+p/)+(q+9/)=o 

with 

0end(u 0 <;v) = 6(u) 0 vv - u 0 9v(vv). 

Let U C X be a Zariski open subset, such that E\u and Qx are trivial with 
the base {ei,...,em} and the base {dzi,...,dzn} respectively. Then 

n 

with 

Ai = (£afer 0 evs) e H
0(U,End(E)) 

and 

n 
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with 

AV = (£ aV^'e^ 0 e8) 6 H0(U, End(Ev),    with     a^s = az
s'r,    Vi, r, 5. 

Txlc/ has the base {1/dzi,..., l/dzn}, and the map 

d(j):Tx -^ End(E) 

is defined by sending 1/9^ to Aj. A simple calculation gives 

n 

0end(^) = Y^AiA* - AjAJdzj. 
i=i 

Since A^^ - AjAf = 0 for all i, j we get ^end(Ai) = 0. Prop. 2.1 is proved. 

Proof of Theorem 0.1. i) We first show i) for the case when the monodromy 
around the components of 5 are nilpotent. We shall prove that fi^(logS) is weakly 
positive on the complement of the degeneration locus D of d<j). 

By blowing up TT : X —> X on some sub variety of codimension > 2 and contained 
in the degeneration locus D of d(f), we may enlarge the sub-sheaf 

7r*#(Tx)(-logS)) c T C TTV
1
'
1 

to a sub-bundle T with the torsion quotient T/ir*d(j)(Tx)(—logS)). By Prop. 2.1 

0encl(T) = 0. Since the monodromies of End(Vo) around the components of 5 
also are unipotent, by Theorem 1.2 the Chern classes Tv are semi positive. This 
implies that Tv is weakly positive. Now Let L be an ample line bundle over X, 
and E C X the exceptional locus of the blowing up TT. Then 7r*Lr(—E) is ample for 
some r >> 1. Hence, for any positive a there exists a positive number /? such that 

5a/?(rv)0(7r*Lr(-JE;))/3 

is generated by the global sections on X. 

Since 

by take the direct image of TT we get that 

S^(^(logS))|;fVD®Z7<3 

is generated by global sections on X. We proved i) in Theorem 0.1 for the unipotent 
case. 

We shall now prove i) in Theorem 1 for the general case. By [Sch] the system of 
Hodge bundles 

9o:Eo^Eo® n^0 

has an extension as a system of Hodge coherent sheaves 

0:£-» E®Qx(logS). 
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After a blowing up at a subvariety of 5, we get an extension of system of Hodge 
bundles. This gives rise a map 

Tx(-logS)-+End(E). 

We claim that the sub-sheaf Tx(-logS) ->• End(E) is generated by those local 
sections, whose Hodge norms have at most logarithmic singularities on 5. 

Given some real numbers ai, a2,.... Let U 3 x G S be a small open subset, such 
that UnS — {z € U\ziZ2...Zk = 0}. One defines an extension by taking local sections 
5 in E with the growth w.r.t. the Hodge norm h 

\s\h<\zir-ei...\zk\«k-<k 

for any positive numbers ei, ...,€&. By [S2] for the dimX = 1 case and [JLZ] for the 
dim X > 1 case, one gets an extension for the Kodaira-Spencer map 

9:Ea -+Ea®nl
x(logS). 

This means that the extended Kodaira-Spencer map preserves the polynomial growth 
condition of local sections in E. Hence, the sub-sheaf Tx(— log 5) -> End(E) must 
be generated by those local sections of End(E), whose Hodge norms have at most 
logarithmic singularities on 5. 

Now the argument in the proof of Theorem 5.20 in [K] can be still applied to this 
sub-sheaf Tx(— log 5) —> End(i£). So, we also prove i) in Theorem 0.1 for the general 
case by the same argument as in the unipotent case. 

Proof of ii) in Theorem 0.1. We need the following lemma 

LEMMA 2.2. Under the same notion as in the proof of i). Suppose that d<j) is 
injective at some point. Then the self-intersection (detTv)dimX > 0. 

Proof Since by Prop. 2.1 and i) in Theorem 1 the first Chern form of T\x with 
the restricted Hodge metric is negative semi definite, we only need to show that this 
first Chern form of T is strictly negative at some point in XQ. The main idea here 
is to apply Griffith-Schmid's theorem that the holomorphic sectional curvature in the 
horizontal directions is strictly negative [GS]. 

Suppose that dcj) is injective at some point XQ € XQ. Then there exists an analytic 
open neighborhood U of XQ, such that 0 : U -» V is an embedding. 

Let W = (t>{U). We have Tx\u = ^It/, and Tx\u together with the Hodge metric 
is the pulled back of the tangent bundle TV together with the universal Hodge metric 
via (j). Let Q{Tx\u) denote the curvature form of Tx\u of the Hodge metric and 
Q(Tw) denote the curvature form of TV with the universal Hodge metric. Then we 
have e(Tx\u) = <f>*mTw))- 

By Prop.1.1 the Hermitian form (Q(Tx\u),v,v) is negative semi definite for any 
holomorphic tangent vector v E TxUo- ^ order to show it is strictly negative definite, 
we only need to show that at least one eigenvalue of (©(TXILOJ ^ ^) 'IS strictly negative 
for v ^ 0. 

We shall show at least one eigenvalue of (©(TV),^,^) is strictly negative for 
any u ^ 0 £ TV|t/o-  By a theorem due to GrifRth-Schmid [GS] the holomorphic 
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sectional curvature of ©(g-1,1) of the universal Hodge metric is strictly negative, 
i.e.the product 

u(0(g-1'1),u,u)u<O,    Vu^OGg"1'1. 

Consider now the holomorphic sub-bundle Tw C g_1,1|vj the Hodge metric 
induces an orthogonal C00—decomposition 

g-1'1|w = TweT^. 

Let A € A1'0(Hom(T^,r^>) denote the second fundamental form. Then 

e(rw) = e(g-1'1)|TW+AAA. 

Since the Hermitian form (A A A, u, u) is negative semi definite, the product 

u(Q(Tw), u, u)u = ^(©(g"1,1), u, u)u + u(A A A, u, u)u < 0 

for any non zero tangent vector u G Tw\yo- Hence, we obtain 

v(Q(Tx\u),v,v)v = (/)*v(Q(Tw),<t>*v,f*v)f*v < 0 

for any non zero vector v G Tx \xo • This implies that the Hermitian form (0(Tx |c/), v, v) 
has at least one negative eigenvalue for any non zero holomorphic tangent vector 
v € Tx\xo' Hence, the first Chern form of the dual bundle ci(Tv,ft) is strictly 
positive on [/. Applying Kollar's theorem we get 

(detrv)dimX = / AdimXc1(T
w,h) > 0. 

Jx 
Lemma 2.2 is proved. 

We are in the position to prove ii).   By the proof for i) in Theorem 1 detTv 

is nef, and by Lemma 2.2 (detTv)n > 0. Hence, by Kawamata-Viehweg's vanishing 
theorem ([Ka2], [V2],3.2) the Kodaira dimension of detTv is equal to dimX. Since 
the quotient of T^(-log5) C T i s a torsion sheaf, we get a non zero sheaves 
homomorphism detTv -> detfi1^ (log 5). Hence, the bigness of detTv implies the x 
bigness of detfi^(log5). Note that the Kodira-dimension of (X, 5) is a birational 
invariant, we prove ii) in Theorem 0.1. 

3. Arakelov inequalities for Hodge bundles. In this section we shall prove 
Theorem 0.2. First we review some basic facts from representation theory [FH]. Let 
V and W be two vector spaces of dimF = m, and dim W = n. Then one has 

Ad(y 0 W) = 0 §\V <g> SvW, 

where E>\V respectively ^>\'W, is an irreducible representation of GL(V) respectively 
an irreducible representation of GL(W). The sum over partitions A with at most 
dim V rows and at most dim W columns in the associated Young diagram. And A' 
is the conjugate of A, which is defined by interchanging rows and columns of A. It is 
known that the representation SA^ can be realized as a GL(V)—invariant subspace 
of a tensor product V®1, which depends on A. One can do the same thing for vector 
bundles (see [B]). 
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Now, we do one step further. Let iV C E be a sub-bundle of a system of Hodge 
bundles (E,9) corresponding to a VHS V, and 0(N) = 0. Then by taking the 
representation §A(V), we obtain the system of Hodge bundles corresponding to this 
representation (S\E,§\0), which has the property S\N C S\E and S\(6)§\N = 0. 

By Theorem 1.2 we obtain 

LEMMA 3.1. §>\N is semi negative w.r.t. the induced Hodge metric via the 
embedding 

SxN C §A£. 

Proof of Theorem 0.2. We consider the differential of the period map 

d(P:Tx{-logS)^Eiid(E) 

and let T =: d<j>{Tx{— logS)). Then the Kodaira-Spencer map takes value in Tv, 

EP'i 9™ Ep-l'q+1 ® Tv eP~1^l®i £P-2,g+2 0 rv®2 e*-2-^®? 

where i :TV -tTv is the identity map. We set 

ii := (ep-l,q+i®il)...(ep-Uq+i ® 0(£p'?), 

and 

ifl:=Ker(//'-,-1"4+lSi,+1Jl+1). 

After a successive blowing up r : X —> X we may assume that all Tv, //, Ki are 
vector bundles. 

By the additivity of divisors of determinant line bundles in short exact sequences, 
to prove Theorem 0.2 is enough to show that it holds on X 

det Ii = n det fi^ (log 5) - Pi + Ni 

and 

det Ki = r{ det fi^ (log 5) - P/ + JV/ 

for some positivie rational numbers r/, r^, which are bounded above by the Hodge 
type of E, and some semi negative Q-divisors A'/, N[ and some effective Q—divisors 

Pi, PI- 
Since for some large /, we have eventually // = Ki and again by the additivity of 

divisors of determinente line bundles in short exact sequences we only need to show 
the second equality. 

Since 0p-i-iiq+i+i ®il+1(Ki) = 0, we have 

ir/cif(fl,>-|-1^+£+1)®rv®(/+1). 
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Let d := rkftTj. By [FH] we have then 

detKi c Ad/ir(0*-/-1'«+l+1) 0rv0(l+1) = 0sAif(^-/-1'«+l+1) ® Svrv®(l+1). 

We find then a non-zero projection for some A 

detir, -> SA^C^-^
1
'^^

1
) ® §vr

v0(w). 

Hence, a non-zero sheaves map 

/ : detif/ ® §VT^/+1) -> SA^^-
1
-

1
'^^

1
). 

Set 

G := /(detlfi ® §A^0(m)) C SA^^"
1
'
9

"
1
"^

1
)- 

After a further blowing up of X, one has a short exact sequence of vector bundles 

0 -4 Ker(/) -> det Ki ® §VT(S)('+1) -> G -> 0, 

and G C G' such that G'/G is a torsion sheaf and G' C SA^C^"'"
1
'^'

4
*
1
) is a 

sub-bundle. By Lemma 3.1 G' is semi negative. Hence detG = detG' — P' with 
det G' is a semi negative divisor and P' is an effective divisor. 

A calculation of the determinantes gives 

rk(SvT(g>(/'fl))detK/+det§A'T(S)(/+1) = detG+detKer(/) = detG/-P/+detKer(/). 

Further more, we consider the sub-bundle 

F := Ker(/) ® detii:/
v C Sx'T^l+l\ 

By Lemma 3.1 this sub-bundle F is semi negative. Hence, 

-rkKer(/) det Ki + det Ker(/) = det F < 0. 

From those two equalities of divisors we obtain 

(rk(§A<T®(/+1)) - rkKer(/)) det Ki = det § VTV0(Z+1) + det G - P' + det F. 

Since the map / is non-zero, rk(Svr®(/+1>) - rkKer(/) =: r' > 1. And it is 
also clear det§A'T,v<8>^ +1^ = r" detTv, where r" is a positive rational number and 
bounded above by the Hodge type of E. Set Ni := detG + detF, and notice that 
detr*fi^(logS) = detTv 4- P", where P" is an effective divisor, we get 

det if/ = — det r*^ (log 5) - — P" - ^-P' + ^Ni. 

Theorem 0.2 is proved. 
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