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REVIEW OF GEOMETRY AND ANALYSIS* 

S.-T. YAUt 

In this article, we shall discuss what the author considers to be important in 
geometry and related subjects. 

Since the time of the Greek mathematicians, geometry has always been in the 
center of science. Scientists cannot resist explaining natural phenomena in terms of 
the language of geometry. Indeed, it is reasonable to consider geometric objects as 
parts of nature. Practically all elegant theorems in geometry have found applications 
in classical or modern physics. In order to understand the future of geometry, it is 
perhaps useful to review what was known in the past. Clearly what I consider to be 
important may not be viewed to be so by others. Also, we should always keep in mind 
that what is fashionable now may not be so tomorrow. 

A theory can be judged to be successful only if its consequences help us understand 
the basic structure or the beauty of geometry. 

While we shall divide the subject into several categories, the division is artificial, 
as the development of each section depends on other sections heavily. 
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I. Sub manifolds. Many very important questions in classical geometry remain 
unanswered. Descriptions of surfaces in Euclidean three space have been important in 
the subjects of computer graphics and data compression. They also play an important 
role in modern filmmaking. 

Indeed, the theory of surfaces in three space is a central subject in geometry. 
Many difficult questions remain unanswered. Starting from the time of Gauss [63], 
geometers have always been interested in the interplay between the intrinsic internal 
metric structure of surfaces and their extrinsic geometry in the ambient space. 

A. Isometric embedding of surfaces. An important well-known question is 
to characterize those intrinsic metrics on a surface which can be realized as embed- 
dings into three space. Minkowski made the first major progress on this problem by 
proving that any convex polyhedron can be so realized [152]. For smooth surfaces 
with positive curvature, this problem is called the Weyl problem, since Weyl found 
the first significant estimate for the problem [221]. H. Lewy solved the problem in the 
real analytic category [124], and Pogorelov [169] and Nirenberg [162] solved it in the 
smooth category. There is also recent work by Y.Y. Li and P. Guan [85]. 

An important reason that the Weyl problem can be solved is that its solutions 
must be unique-a theorem due to Cohn-Vossen [46] and Pogorelov [168]. Uniqueness 
here means that any isometric embedding of the surface is related to any other by a 
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rigid motion in three space. Such global rigidity is difficult to prove for nonconvex 
surfaces. A.D. Alexandrov studied the next easiest case, namely, those surfaces for 
which the integral of the positive part of the curvature is 47r [1]. He could only prove 
the rigidity for real analytic metrics. Nirenberg made a beautiful attempt to settle 
the smooth case [163]. Nirenberg's argument would succeed if one can prove that 
there is at most one closed asymptotic curve in the surface. It is still an outstanding 
question to understand the behavior of the asymptotic curves on a surface. They are of 
fundamental importance for the global isometric embedding problem for surfaces with 
negative curvature, as they are the characteristic curves for the isometric embedding 
problem. The isometric problem for surfaces of negative curvature is a very interesting 
nonlinear hyperbolic problem. As such, it is very difficult to prove global existence 
theorems for such surfaces. In fact, the celebrated Hilbert-Efimov theorem says that a 
complete surface with strongly negative curvature cannot be isometrically embedded 
into three-dimensional Euclidean space [55]. 

A significant existence theorem was proved by Hong [98], who assumes the cur- 
vature decays in the right way. It is a challenging problem to give a transparent and 
quantitative proof of Efimov's theorem. In other words, take a geodesic disk of radius 
r whose curvature is not greater than —1 and equal to —1 at the center. What is 
the largest r so that it can be embedded into E3 and the second fundamental form is 
bounded by a given constant? 

Global rigidity is false for a general compact surface even when the metric is real 
analytic. However, an important outstanding problem in classical geometry is whether 
there exists a continuous family of isometric embeddings of a compact surfaces in M3 

which does not arise from rigid motions. 
R. Connelly [50] and D. Bleecker [15] gave beautiful counterexamples to this rigid- 

ity conjecture among polyhedra. It is unlikely that those methods can be improved 
to give smooth examples. There should be (extrinsic) invariants for isometric motions 
of closed surfaces. Hopefully there are only a finite number of such invariants, so 
that the space of isometric motions is finite-dimensional. Bleecker's examples show 
that the volume enclosed by such surfaces is not an invariant. One should be able to 
generalize these polyhedral examples to piecewise-smooth examples and understand 
whether the motions are due to the motions of the edges. 

Also, Cohn-Vossen developed a theory of infinitesimal rigidity for closed surfaces 
[47]. The equation involved is linear and thus is easier to handle. But it is only elliptic 
if the curvature is positive. Hence for surfaces whose curvature changes sign, it is a 
difficult problem to understand the equation. 

We know that there do exist non-trivial first order isometric deformations for 
some closed surfaces. The question remains how to characterize such surfaces. These 
are natural uniqueness questions for mixed-type equations on global surfaces. 

Of course, we can also ask all the above questions for open surfaces. Cartan 
proved that every real analytic surface can be locally isometrically embedded into M3 

[35]. The question for a smooth metric is much more difficult. It is an important 
theorem of C.S. Lin that smooth surfaces with non-negative curvature can be locally 
isometrically embedded into E3 [140]. He also settled the problem when the gradient 
of the curvature is not zero [141]. It remains an open problem whether such an 
assumption can be dropped. 

One can formulate a boundary-value problem for isometric embeddings of compact 
surfaces with boundary in two different ways. One is the Neumann problem, which is 
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to require the mean curvature of the boundary to be a given function H. (Clearly we 
require H2 > K.) Of course, one may also require the image of the curve to be a subset 
of some surface. The other is the Dirichlet problem, which is to require the image 
of the boundary to be a given Jordan curve. In the first problem, if the curvature is 
positive, the mean curvature can be bounded and regularity can be guaranteed. In 
the latter problem, an important necessary condition on the given curve is that the 
length of its second fundamental form must dominate the geodesic curvature of the 
original boundary. Hong has made important progress on this problem [97]. 

For closed surfaces with no boundary in E3, there are many constraints on their 
intrinsic metrics. The first important constraint is that the curvature must be positive 
at one point and that /E K

+ > 47r, where K+ = max(iiT, 0). 

Nirenberg [163] proved that if /E K
+ = 47r, each component of the set {K < 0} is 

bounded by two closed convex planar curves. This fact gives a constraint on metrics 
that can be isometrically immersed into E3. Is there any constraint on the topology 
of the sets {K > 0} and {K < 0} in general? 

If S is embedded into E3, it bounds a domain fi. It is interesting to relate the 
spectrum of S to the spectrum of fJ. A simple argument shows that the volume of fi is 

bounded by :^Area(E)A1 
2, where Ai is the first eigenvalue of E. It follows from this 

is the i-th Dirichlet eigenvalue of fi, and Ai(E) is the z-th eigenvalue of E. Here Cg is 
a constant depending only on the genus of E. What is the optimal Cg and is there 
a surface that realizes such an optimal constant? Does the set {/^(fi)} determine 
{Ai(E)} and vice versa? If a surface E can be isometrically embedded into E3, the 
spectrum {Ai(E)} is probably constrained. What is the constraint? It is known that 
asymptotic behavior of {Aj(E)} is closely related to the dynamics of the geodesic flow 
of E. Is the dynamics of geodesic flow constrained? Since E cannot have curvature 
everywhere nonpositive, should the geodesic flow of a closed embedded surface E be 
non-ergodic? If it is not ergodic, can one describe the invariant regions of the geodesic 
flow in terms of extrinsic geometry? What is the entropy of the flow? Is it possible 
to describe the geodesies in terms of the coordinates of E3 ? 

B. Different geometries. One can study properties of surfaces that are invari- 
ant under a bigger group than the orthogonal group. There are the special linear 
group, the conformal group and the projective group each acting on E3. We can ask 
for properties of a surface E that are invariant under these groups. They are called 
affine, conformal and projective geometries respectively. Many interesting questions 
remain unanswered for these geometries. 

For affine geometry, important invariants are the concepts of the affine metric 
(which is the second fundamental form divided by the fourth root of the Gaussian 
curvature) and the affine normal. When the affine normals of the surface focus to a 
point, the surface is called affine sphere. Such surfaces were studied extensively by 
Calabi [23, 24], Calabi-Nirenberg [26], and Cheng-Yau [39, 40]. From these works, we 
know that for any convex cone, there is a complete affine sphere asymptotic to the 
cone. It would be very interesting to construct such an affine sphere efficiently. Can 
one find a representation in terms of pseudoholomorphic functions (see [218])? Are 
there cases that such spheres can be written in closed form? (The surface xyz = 1 is 
asymptotic to the coordinate cone.) This is especially interesting when the cone is a 
polyhedral cone. Can we compute the affine metric in these cases? Of course, one asks 



238 S.-T. YAU 

the same question for higher dimensions, and it is related to the linear optimization 
problem [110]. 

Up to now, most of the progress assumes convexity of the surfaces. What happens 
if the surface has negative curvature? What are those affine spheres whose induced 
metrics are complete with negative curvature? 

There is a concept of an affine maximal surface, which is defined by a fourth-order 
elliptic equation (see e.g. [25]). One can therefore fix the boundary and the normal 
direction along the boundary for the surface. If we fix the boundary to be a triangle, 
is there an efficient way to solve the boundary value problem for the affine maximal 
surface? If we fix a polyhedron in E3, we can attempt to form a C1-surface that 
passes through all the edges of the polyhedron so that in each face, the surface is 
affine maximal. Among all such C1-surfaces, we can try to find one with maximum 
total affine area. Recently, Trudinger and Wang [214] solved the Bernstein problem 
for affine maximal surfaces. Hopefully, the future will bring more estimates for affine 
maximal surfaces. 

As we discuss in Cheng-Yau [40], the affine metric of the affine sphere in En+1 

after a Legendre transform becomes a projective invariant metric on a convex domain 
in W1. It is therefore interesting to relate projective-invariant properties of surfaces in 
En to affine properties of hypersurfaces of the affine sphere in En+1. 

It is known that if a closed surface in E3 is infinitesimally (metrically) rigid, its 
image under a projective transformation is also infinitesimally rigid. Is the statement 
true for the global rigidity of a closed surface? Can one formulate the rigidity problem 
in terms of projective or affine geometry? 

There are many interesting classical questions for curves in complex surfaces in 
QP3. We can also ask them for surfaces in E3 making use of projective geometry. For 
example, for an affine sphere asymptotic to a polyhedral cone of n sides in E3, among 
all closed curves on the affine sphere which are cut out by rational functions on E3, 
which are of lowest possible degree? Of course, one can try to find some way to count 
such curves also. Which affine spheres can be defined by algebraic polynomials? For 
a closed surface in E3 defined by algebraic polynomials, can one classify those which 
admit geodesies defined also by algebraic polynomials? 

Algebraic surfaces in E3 are clearly important surfaces. However, we know vir- 
tually nothing about them. There is some information about the number of their 
components. But their geometry is clearly special. The number of umbilical points, 
the number of closed geodesies, the number of closed asymptotic lines, the topology of 
the regions of positive curvature, and the eigenfunctions of the Laplacian are all inter- 
esting invariants related to the polynomials that define the surface. For example, one 
would like to estimate them in terms of the way that these surfaces intersect straight 
lines. On the one hand, we have techniques and information that we learn from al- 
gebraic geometry. We can complexify the surfaces and obtain information related to 
the topology and the incidence relations among them. On the other hand, we want 
to understand the classical geometry of these surfaces using classical methods-partial 
differential equations or connections from real projective geometry. It will be very 
important to bridge these two approaches. When we complexify the surfaces, in most 
cases, we can find a complete Kahler-Einstein metric with negative scalar curvature 
[207]. Since the metric is invariant under an anti-holomorphic involution, we have a 
canonical metric on the surface. (Canonical in the sense that if there is a non-singular 
bijective algebraic map from one algebraic surface to another one, it is an isometry 
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of the canonical metrics.) Some theorems on real algebraic varieties can be proved 
using the canonical metrics. How do we relate this canonical metric to the Euclidean 
metric induced on the surface? 

In complex algebraic geometry, it is very important to understand algebraic curves 
in an algebraic manifold. What is the role of real algebraic curves in a real algebraic 
surface? What is the topology and geometry of these curves? How do we bound 
the number of components and the geodesic curvatures of the curves in terms of the 
degree of polynomials defining them? 

Potentially, every closed surface can be approximated by a real algebraic surface 
of large degree. What is the minimal degree needed to approximate a given surface? 
In other words, given e > 0, what is the minimal degree of an algebraic surface whose 
Hausdorff distance is less than e from a given surface? Can one estimate it in terms 
of a suitable calculable geometric quantity of the surface (e.g. the L2 norm of the 
mean curvature of the surface)? If we minimize the L2 norm of the mean curvature 
of surfaces with degree less than a given integer, what kind of algebraic surfaces do 
we get? 

Real algebraic surfaces provide a rich class of natural singularities. It is very 
interesting to study the behavior of the principal curvatures near the singularities. 
The behavior of the eigenfunctions of the Laplacian near such points should also be 
very interesting. 

When a surface is defined by a real algebraic set, there is a (singular) foliation 
attached to it. The study of such a continuous family should be very helpful in 
understanding the algebraic surface. 

Conversely if we have an algebraic one-form which defines a (possibly singular) 
foliation, it will be interesting to find the closed leaves and bound the number of such 
leaves. When are the leaves algebraic? 

C. Minimal surfaces. There are several important surfaces studied in the 
literature. Most of these are obtained by variational methods. 

The first major class is minimal surfaces. These are surfaces with mean curvature 
equal to zero. When we are given a closed curve in R3, we look for surfaces bounded 
by this curve which minimize area. We can restrict the topology of these surfaces 
to be within certain classes. For example, we can consider all surfaces of genus g. 
Then the minimum of the area is a number .4^ which may depend on the genus. 
In general, Ag > Ag+i > ••• [149]. When the boundary curve is smooth, it is a 
celebrated theorem of Hardt-Simon that for some go, Ag0 = AgQ+i = • • • [90]. There 
is no effective estimate of #0 and it will be challenging to find such an estimate. 

It is not known whether a smooth simple closed curve in E3 can bound an infinite 
number of minimal surfaces. (If the curve is real analytic, this cannot happen (Tomi 
[212]).) Is there a general algorithm to find all minimal surfaces bounded by a given 
closed curve (or a set of closed curves)? It is still a difficult problem to calculate 
unstable minimal surfaces bounded by given curves. (There is also no efficient way 
to calculate area-minimizing surfaces.) It is not clear how big the genus of a stable 
or unstable minimal surface must be if it is bounded by a given set of smooth curves. 
Can it be arbitrarily large? 

Many fundamental questions remain unsolved regarding the quantitative behavior 
of minimal surfaces. One well-known question is that of the best constant for the 
isoperimetric inequality, i.e. what is the best upper bound of ^g^, where A is the 
area and L is the length of the boundary. Naturally one conjectures it to be 1. This 
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is known if the boundary is a Jordan curve (see Li-Schoen-Yau [132]). This question 
is related to finding the best constant for the Sobolev inequality for minimal surfaces. 
This is the L1 version. It is also interesting to find an Lp version. 

It is a very interesting question to find a lower estimate of the first Neumann 
eigenvalue and an upper estimate of the first Dirichlet eigenvalue of the minimal 
surface. 

While the existence theorem for a single closed curve has been solved, the question 
for multiple boundary components is largely unknown. Also, when the boundary is 
singular, very little is known. 

Given a one-dimensional skeleton of a simplicial complex in M3 which is home- 
omorphic to 52, we can minimize the area of the image of maps from 52 into E3 

passing through this one-dimensional skeleton while counting the area of the image 
with multiplicity one. What type of singularities can there be? For example, for a 
one-dimensional set which is homeomorphic to the skeleton of the tetrahedron, can 
one find a minimal set homeomorphic to the cone over this skeleton? 

The topological classification of complete proper minimal surfaces in E3 is close to 
being complete thanks to the efforts of Meeks, Hoffman, Jorge, Karcher, Rosenberg, 
and others (see e.g. [58, 96, 148]). However, it is still not clear how to classify the 
associated conformal structure together with the quadratic differential associated to 
the second fundamental form (although there has been progress in the recent work 
of Collin-Kusner-Meeks-Rosenberg [49]). Besides the problem of classification, many 
interesting questions about the analysis on these surfaces remain unanswered. 

For example, we can ask questions about harmonic functions defined on complete 
minimal surfaces in E3. If the harmonic function is positive, is it asymptotic to a 
constant at each end of the surface? If a harmonic function U has at most polynomial 
growth, does there exist a constant a so that 

  U(x) 
0<limM->oo^-<oo? 

Is the set of such a's infinite and is it asymptotic to the integers? For each a, there 
should be a finite-dimensional space of such harmonic functions. The space of all 
polynomial-growth harmonic functions should span the space of all polynomial-growth 
functions for a suitable weighted Sobolev norm. 

The spectrum of the Laplacian on a complete, properly embedded minimal surface 
should not differ much from that on E2. Moreover, we want to know how to describe 
the continuous spectrum and the approximate eigenfunctions. 

Perhaps it is interesting to study the spectrum of the operator -A + ||£||2, as it 
is discrete. It should be related to the critical points of ||a:||2 and the classical paths 
joining these critical points. (Classical paths are paths that are critical with respect 
to the Lagrangian / | Vw|2 + / ||x||2u2.) 

Using the construction of conjugate minimal surfaces, it is easy to construct non- 
trivial continuous families of minimal surfaces. However, only isolated members of 
such families are embedded. Some classical examples of embedded minimal surfaces, 
such as the Riemann staircases and Scherck towers, do come in families. Invariants 
derived from these families can be used as moduli for more general constant mean cur- 
vature surfaces (see e.g. the recent work of Grosse-Brauckmann, Kusner and Sullivan 
[83] on classifying constant mean curvature pairs of pants). The work of Kapouleas 
[108, 109] has been fundamental in the moduli theories of both minimal and constant 
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mean curvature surfaces in E3. 

Most complete properly immersed minimal surfaces are asymptotically flat. It 
will be quite interesting to understand the dynamics of the geodesic flow on these 
surfaces: When geodesies emanate from infinity, how are they scattered? 

It is known [160] that there are complete minimal surfaces properly immersed into 
the ball. What is the geometry of these surfaces? Can they be embedded? Since the 
curvature must tend to minus infinity, it is important to find the precise asymptotic 
behavior of these surfaces near their ends. Are their spectrums discrete? 

D. Closed extremal surfaces. The simplest closed extremal surfaces in M3 

are those which extremize area while fixing the enclosed volume. Those surfaces have 
constant mean curvature. Wente solved the classical problem that an immersed torus 
with constant mean curvature does exist [220]. While many more examples have been 
constructed, classification of closed surfaces with constant mean curvature is still far 
from complete. 

The lines of curvature are planar for the Wente surfaces. It will be interesting to 
understand the combinatorial structure of the lines of self-intersection, the topology 
of the regions of positive curvature on the surfaces, and their asymptotic lines. 

Another important class of surfaces are those which are extremal with respect 
to the functional / H2. Leon Simon [189] proved the existence of a torus achieving a 
global minimum and made important steps toward proving existence for surfaces of 
higher genus. It is of course very interesting to compute the possible values of / H2 

for such a surface. It will settle the conjecture of Willmore that the global minimum 
of f H2 for a torus is given by 27r2 [222]. There is also a piecewise-linear version of 
the Willmore problem (see Hsu-Kusner-Sullivan [101]), but it is not yet clear how to 
guarantee the existence of minimizers even in this case. 

In a three-manifold, we can extremize the functional y/A (l — ^ / ||#||2) > where 
A is the area of the surface. Up to a normalization, this quantity is called the Hawking 
mass of the surface [92]. 

E. Motion of surfaces. There are many ways that surfaces move in M3. We 
have already mentioned the very interesting question of how to describe motions of 
surfaces which preserve their intrinsic metric. What is a good way to study these 
motions (modulo the action of Euclidean motions)? If we move the boundary of the 
surfaces, is the motion of the compact surface determined up to finite parameters? 
This is a difficult problem if the curvature of the surface can be negative. 

A more general motion is the motion of surfaces that allow the metric to change 
according to the second fundamental form. In other words, if X(t) is the family of 
embeddings of the surfaces, we request that j-t{dX(t), dX(t)) be determined by a 
symmetric tensor determined by the second fundamental form at X{t). What kind 
of singular behavior of such a family of surfaces do we expect? This question is 
much more well posed for convex surfaces because of the Weyl theorem. What is the 
condition to preserve the convexity of surfaces under such a motion? 

Much more well known motions of surfaces are those equating the velocity ^ with 
some scalar multiple of the normal of the surface. The scalar can be the curvature, 
mean curvature or inverse of the mean curvature with suitable sign attached. A 
beautiful theory has been developed by Hamilton, Huisken and others (e.g. [87], [102]). 
Complete understanding of the singularities has not been accomplished (except the 
work of Huisken and Sinestrari [104] for surfaces of positive mean curvature). What 
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happens to the flow after a singularity develops? 

During the motion of these surfaces, it will be very interesting to watch how basic 
geometric quantities move. These include the behavior of the second fundamental 
form, the geodesies, the umbilical points, the spectrum of the surfaces, etc. 

Singularities that are created by natural motions are perhaps the most natural 
singularities that occur in nature. Perhaps for simple motions, there is a certain 
"resolution of singularities" theorem to help to understand how singularities develop. 
A typical way is to look at the "graph" of the equation and the singularity is obtained 
by projection or intersection with planes. Can one generalize this kind of construction 
to understand the motion of surfaces in three space? 

Besides motions defined by the previous methods, there are wave motions of 
surfaces in three space. When we watch water drops, surface waves, and vibrating 
membranes, we see beautiful geometric pictures. How can we expect to describe these 
pictures even though we poorly understand the equations governing their formation? 

For the vibrating membrane, it is well-known that the wave motion is well ap- 
proximated by the eigenfunction expansion of the membrane. How does one explain 
such an approximation? There are two equations related to a vibrating membrane. 
One is that ^- = —HN, where H is the mean curvature and iV is the normal of the 
surface. One can also study time-like minimal hypersurfaces in the flat Minkowski 
spacetime. In both cases, we know very little about the global time behavior of the 
hypersurfaces. For the linear wave equation, there are obvious waves periodic in time. 
It is not clear what this means for the above nonlinear equations. 

F. Representation of surfaces in Euclidean space. Minkowski gave the 
first systematic way to represent a surface in E3. He successfully treated the case 
of a convex polyhedron [152]. In general, the Minkowski program is to map the 
surface S to the sphere S2 via the translation of the normal vector to the original 
(the Gauss map). If the surface E is strictly convex, the Gauss map is one to one. 
Hence all the information of the surface can be presented on 52 via the Gauss map. 
The Gauss curvature can, in particular, be written as a function on S2. The famous 
Minkowski problem is to reproduce the surface E once we know the curvature on S2. 
The surface E is smooth if the given curvature function is smooth. It is also unique 
up to translation. These statements were proved by Pogorelov [169] and Nirenberg 
[162]. 

There are several important questions which remain to be answered. How do we 
solve the Minkowski problem effectively by numerical means? When we discretize the 
sphere, it is clear that the discretization should be adaptive to the distribution of the 
value of the curvature function. Where the value of the curvature function is large, 
there should be more nodes in a neighborhood of those points. What is the best way to 
choose these points? In many applications of classical geometry, we need to integrate 
over E. Is it possible to give an efficient discretization of E via the discretization of 
S2 so that the integral of any smooth function is best represented by values of the 
function at these points? 

The Minkowski problem is well studied when surface is convex with no boundary. 
It is difficult, however, to drop either the assumption of convexity or that of no 
boundary. 

Given a closed curve r in E3 and a positive function K defined on 52, when can 
we find a convex surface E bounded by r so that the Gauss curvature of E is given 
by K via the Gauss map of E?  There are quite a few compatibility conditions on 
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K and r. First, r has to bound some convex surface S. Second, the integral of j^ 
over D must be greater than the area of the area-minimizing surface bounded by r. 
Third, the difference between 27r and the area of D must be bounded by the integral 
of the length of the second fundamental form of r. It would be interesting to know 
whether these are the only compatibility conditions needed to solve the Minkowski 
problem with Dirichlet boundary data. One can of course formulate a similar problem 
by requiring dT, to be on a given closed surface. 

The Minkowski problem is difficult even for closed surfaces if the curvature is 
allowed to change sign. It is clear that the part of the surface where the curvature is 
equal to zero creates ambiguity. Perhaps one should assume real analyticity of K to 
start out. The Gauss map is no longer one to one. As a result, the Minkowski data 
is a set-valued map. Generically, the value of the curvature function is a finite set 
with some order. The order is obtained according to the value of the support function 
defined by the point on S2. Can this data determine the closed surface if everything 
is real analytic in a suitably defined sense? 

One possible procedure to represent a surface is to dissect the surface into many 
pieces along some sets of curves {r;}. Space curves r* can be parametrized by their cur- 
vature and torsion. The pieces bounded by r* can be parametrized by their Minkowski 
data. Sometimes it may be natural to choose r^ to be defined by the zero locus of 
the curvature or mean curvature. Perhaps the techniques of Guan-Spruck [84] will be 
useful in this regard. 

Let p be a point in M3. Consider the set of all lines / that pass through p. They 
intersect a given surface at some points and then are reflected according to geometric 
optics. The reflection can be continued for a number of times. In this way, we get a 
set-valued map from the unit sphere with center at p to sets on the surface. 

This map gives rise to a density on the unit sphere by pulling back the area 
density of the surface. What can one say about this density? How does it depend on 
the choice of the point p? 

One should be able to answer this question when the surface is closed and convex 
and p is in the interior of the surface. Given a density on S2, can one realize it by a 
closed surface? 

Similarly if we have a plane L disjoint from the surface, it receives light rays 
issued from p and reflected by the surface. One gets a density on L. It is interesting 
to see to what extent this density can be used to determine the surface. By moving 
the locations of p or L, one should be able to determine the surface if it is convex. 
What happens if the surface is not convex? 

G. Minimal surfaces in three-manifolds. Minimal surfaces and extremal 
surfaces for / H2 are the most natural special surfaces in three-manifolds. It should 
not be unreasonable to classify these surfaces in S3. It will also be very interesting 
to estimate geometric invariants of these surfaces. Many years ago, the author con- 
jectured that the first eigenvalue of an embedded minimal surface in S3 is equal to 
two. While the question is still open, progress has been made by Choi and Wang [43]. 
Should the zeta functions of minimal hypersurfaces in 5n behave nicely? Can one 
find arithmetic properties of these zeta functions? Are these analogous to the usual 
functional equations? The determinant of the Laplacian should have special values. 

It will be interesting to see whether there is a non-trivial continuous family of 
closed minimal surfaces in 53. If such a family does not exist, there is a finite number 
of minimal surfaces in S3 for each genus. How does one classify them and what are 
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their areas? 

Besides its own beauty, the study of minimal surfaces in 5n is related to the study 
of isolated singularities of minimal submanifolds in En+1. The cone over a minimal 
submanifold in Sn is a minimal submanifold in Mn+1 with an isolated singularity. 
Therefore there is a close relation between minimal submanifolds in En+1 and minimal 
submanifolds in Sn. The eigenfunctions of a minimal surface in 5n are related to 
homogeneous harmonic functions on the corresponding minimal submanifold in IRn+1. 
The degree of homogeneity a is related to the eigenvalue of the minimal surface in 
5n. In fact the eigenvalues are given by a2 + ka, where k is the dimension of the 
submanifold in W1*1. There are natural questions related to this correspondence. 
The dimension of the space of harmonic functions on minimal submanifolds in En was 
estimated by Peter Li [131] and Colding-Minicozzi [48]. In particular this gives an 
estimate of the multiplicity of the eigenvalues of minimal submanifolds in 5n in terms 
of area. When the minimal submanifold is linear, a is an integer. This follows from 
the removable singularity theorem for harmonic functions. Can one find a reasonable 
constraint on a in terms of the area of the minimal surface? When a is large, it is 
asymptotic to a positive integer with an error; how do we estimate this error? The 
multiplicity of a minimal submanifold is probably largest when the submanifold is the 
geodesic sphere. Can one prove this statement? 

In [133] Peter Li and the author introduced the concept of conformal area of 
conformal structures on a Riemann surface. It is closely related to the eigenvalues of 
the Riemann surface. In general, for a given conformal structure on a closed Riemann 
surface, we can associate to each conformal metric the number A^A, where A* is the 
i-th eigenvalue of the metric and A is the area. By the theorem of N. Korevaar [116], 
there is an upper bound for such a number and it would be very interesting to find an 
extremal metric that achieves such a maximum. Many minimal surfaces in the sphere 
give rise to such extremal metrics. Can one give a precise relation? 

For a closed minimal surface in Sn which does not lie in any S'n~1, is the cn-th 
eigenvalue of the surface > 2, where c depends only on the genus of the surface? Is 
it possible to estimate c? Should it be independent of the genus? In particular, a 
hyperplane in En+1 that passes through the origin should cut the surface into at most 
en components. This would confirm that nontrivial minimal surfaces in S3 are split 
into 2 components by such a hyperplane. 

H. Submanifolds in higher dimensional space. Since the fundamental work 
of John Nash on the isometric embedding of manifolds Mn into RN [161], very little 
progress has been made in understanding such embeddings. The codimension of Mn 

is too high to talk about any meaningful rigidity question. (The large codimension 
helps to prove existence of isometric embeddings by topological methods.) In order 
for the isometric embeddings to be visible, one should find a class of these embeddings 
whose deformations we can describe completely. As we know, the minimum dimension 
for a manifold Mn to be isometrically embedded is n\n^'1). However, for n > 3, no 
meaningful theory of rigidity or isometric deformation theory is known for Mn in 
M^    . (For Mn in E2"-1, there are many more known theorems for rigidity.) 

For sufficiently large iV, we can minimize the quantity / H2 among all isometric 
embeddings of a given manifold Mn into E^. What are the critical points of this 
functional? 

In general, a complete noncompact manifold Mn may not be isometrically embed- 
dable into E^ with bounded mean curvature. It is presumably possible if the Ricci 
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curvature is bounded from below. What is the optimal condition for the manifold 
to be embeddable with bounded mean curvature? By the theorem of Michael-Simon 
[151], a suitable isoperimetric inequality must hold for these manifolds. 

A more tightly constrained problem is to embed a complete noncompact manifold 
as a minimal submanifold in RN. For surfaces, the Weierstrass representation can be 
used to characterize these metrics. For dimension greater than two, the only known 
constraints are that the metric is real analytic, its Ricci curvature is non-positive, and 
the isoperimetric inequality and certain inequalities on the heat kernel [38] hold. (For 
example, the trace of the heat kernel is pointwise bounded by ^-jfr, where n is the 
dimension of the minimal submanifold.) The space of metrics that can be realized 
on some minimal submanifold must be a thin set; how can we describe it? Is every 
noncompact manifold diffeomorphic to a complete minimal submanifold in Euclidean 
space? Is every compact manifold diffeomorphic to a minimal submanifold in the 
sphere? For dimension greater than 3, very few concrete examples are known for 
minimal submanifolds. Even minimal graphs have not been classified. 

A minimal graph has the property that it is a leaf of a foliation of the Euclidean 
space by minimal submanifolds. Conversely can one classify foliations of En whose 
leaves are all minimal submanifolds? Such leaves have to be area-minimizing. Is a 
codimension-one minimal foliation without singularities necessarily a graph? There 
are many minimal foliations with certain singularities. For example, one of the leaves 
can be a minimal cone. It will be interesting to classify minimal codimension-one 
foliations with isolated singularities. 

A rich class of minimal submanifolds with higher codimension comes from com- 
plex submanifolds. In practice, all higher-codimension minimal submanifolds are con- 
structed either by relating them to complex subvarieties or by reducing the problem 
to a lower dimension by a compact group acting on the Euclidean space. For the latter 
method, it is usually related to calculating geodesies for a singular metric. Minimal 
surfaces for such a singular metric should be studied. 

Minimal submanifolds in Euclidean space are closely related to minimal subman- 
ifolds in the sphere. Minimal hypersurfaces in spheres Sn are difficult to construct 
when n > 4. Are there only a finite number of families of nonsingular minimal hyper- 
surfaces in Sn? It is not known whether there is a nontrivial family of nonsingular 
embedded minimal hypersurfaces in 5n. If the cones over such hypersurfaces are sta- 
ble, then this assertion is true. Schoen [179] observed that in this case, the minimal 
hypersurface admits a conformal metric with positive scalar curvature, which gives 
rise to a strong constraint on the geometry and topology of minimal hypersurfaces in 
Sn. One should be able to classify these hypersurfaces. 

The volumes of minimal hypersurfaces in 5n are important invariants. What val- 
ues are possible? The author conjectured that for embedded minimal hypersurfaces, 
the first eigenvalue is equal to n — 1. This should be very much related to an estimate 
of the volume of the submanifold. It follows from the work of Cheng-Li-Yau [38] that 
one can construct an upper estimate of the trace of the heat kernel of a minimal sub- 
manifold Mk in terms of c* Vo\(Mk)t~k/2. Since the coordinate functions of 5n give 
n + 1 eigenfunctions of Mk with eigenvalue fe, one can then prove that Vol(Mfc) has 

a lower estimate in terms of c^1 (|) (n + 1) if Mk is not a subset of any subsphere 
ofSn. 

Is the set of the values of volumes of minimal submanifolds Mk discrete? There 
can be a continuous family of minimal submanifolds with the same volume. A natural 
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example is obtained by taking the inverse image of the Hopf fibration over a continuous 
family of minimal submanifolds in QPn or HP71. It is not clear whether in the sphere 
there is a continuous family of even-dimensional minimal submanifolds M2k with 

Apparently, it is easier to handle the Cauchy-Riemann equations, as they are given 
by a first-order elliptic system. For such a system, the Atiyah-Singer theorem can help 
to compute the dimension of the solution space. Unfortunately minimal submanifolds 
are defined by a second-order elliptic system and it is difficult to understand the 
deformation theory. (Given a Jacobi field on a minimal submanifold, can we find a 
deformation by a family of minimal submanifolds along the field?) There may be a 
class of area-minimizing submanifolds are closely related to some first-order system. 

Usually we require the ambient manifold to have special holonomy group in order 
to find this special class of manifolds. For Kahler manifolds (whose holonomy group is 
U(n)) the idea goes back to Wirtinger's inequality. The idea is to find a closed &-form 
UJ whose pointwise L00 norm is one. Then any /.-dimensional submanifold M such 
that (J\M is the volume form must be volume-minimizing in its homology class. (This 
follows by Stokes' Theorem.) Usually for manifolds with special holonomy group, some 
special closed form can be constructed from the holonomy group. Those forms are in 
fact parallel and hence have constant norm. When the ambient manifold is Euclidean 
space, Harvey and Lawson [91] called the corresponding kind of minimal submanifolds 
calibrated. It is still difficult to construct such submanifolds besides those coming 
from complex subvarieties. An important example is called a special Lagrangian 
submanifold. A submanifold Ln of a Kahler manifold M2n is called Lagrangian if the 
Kahler form restrict to L is trivial. If the holonomy group of M2n is SU(n) (Calabi- 
Yau manifolds), there is a holomorphic n-form Q. We can require ImCl = 0 on L and 
Re QIL to be the volume form of L. Such submanifolds were called special Lagrangian 
manifolds by Harvey-Lawson. They were rediscovered independently in string theory 
a few years ago in the work of Becker-Becker-Strominger [10]. There they want to 
find supersymmetric cycles in Calabi-Yau 3-folds, i.e. those 3-cycles which preserve 
half the supersymmetries. 

The deformation theory of special Lagrangian submanifolds is studied by McLean 
[147], who proves that the Jacobi fields of these submanifolds can be identified with 
harmonic one-forms. It just happens that these classify flat U(l) connections on L. 
In the paper of Strominger-Yau-Zaslow [195], we looked at the moduli space of the 
pair consisting of L and a 17(1) connection over L. The moduli space has a natural 
complex structure and a nice "semi-flat" L2 metric. This moduli space has complex 
dimension equal to bi(L). 

When L is a three-dimensional torus, the moduli space is then complex three- 
dimensional and has a holomorphic three-form. Based on reasons motivated by 
physics, we conjectured that this complex manifold is in fact another Calabi-Yau 
manifold which is the "mirror" of the original one. In particular, the Hodge diagram 
of these two complex manifolds are dual to each other and the calculation of number 
of rational curves can be deduced from the periods of its mirror. 

Some further conjectures on the "quantum" monodromy group were made based 
on their interpretations of the mirror. For example, we conjectured that the semi- 
flat metric mentioned above is supposed to be correctable to a nonsingular Ricci-flat 
Kahler metric by including some contributions of holomorphic disks whose boundaries 
lie on the special Lagrangian torus. Hitchin [94], Gross-Wilson [82], Gross [80, 81], 
Barannikov-Kontsevich [8], and Fukaya-Oh [59] have made progress on this conjecture. 
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It is expected that similar constructions can be done on other manifolds with 
special holonomy group (e.g. G2 or Spm(7)), which in turn may be of great interest 
to string theorists. 

Unfortunately, there are not too many ways to construct special Lagrangian sub- 
manifolds. They can be found by looking at the fixed-point sets of antiholomorphic 
involutions or by looking at complex Lagrangian submanifolds. Also, Schoen and 
Wolfson [181] have developed an approach based on the volume-minimizing property 
of special Lagrangian submanifolds. It would be nice to find a way similar to twistor 
theory to construct these area-minimizing submanifolds. 

Given a bundle on a compact manifold such that both the bundle and the manifold 
have special holonomy groups, we can use the structure of the holonomy groups to 
require the curvature of a connection on the bundle to be special. (For example, if the 
bundle is holomorphic with trivial first Chern class and the connection is Hermitian, 
we can require the trace of the curvature to be zero.) A sequence of these special 
connections need not converge; it may blow up along some minimal subvarieties. In 
general, this may be an uncountable union of open subvarieties; however, Tian has 
a recent preprint [205] stating that the blow-up set is an integral, closed minimizing 
current. In the case of Hermitian-Yang-Mills this implies that the blow-up set is a 
global holomorphic subvariety. In general, this procedure may give a way to construct 
minimal subvarieties by bundle theory. 

Another set of examples of minimal submanifolds are isoparametric submanifolds 
in spheres. They are defined by a set of functions which satisfy an overdetermined 
system of equations. If the codimension is one, their principal curvatures are constant 
and they provide an important class of minimal hypersurfaces with constant scalar 
curvature. For codimension greater than one, one definition requires the normal 
bundle to be (geometrically) flat and the principal curvatures to be constant. All 
compact symmetric spaces can be realized in this way. 

II. Intrinsic geometry. The fact that a nondegenerate quadratic form defined 
on the tangent bundle of a manifold can give so much global information about the 
manifold is rather fascinating. Up to now, the major results on either positive-definite 
quadratic forms or Lorentzian quadratic forms come from either direct geometric 
intuition or the physics of spacetime. There are virtually no results when the signature 
of the quadratic form is different from these two cases. When on a complex manifold, 
it may be interesting to develop some theory of holomorphic quadratic forms. None 
of these theories have achieved much success partially because we do not understand 
the invariantly defined differential operators associated to them. Both the Laplacian 
and the wave operator have much more mature histories. Indeed, we understand 
positive-definite metrics better than Lorentzian metrics partially because the theory 
of the Laplacian has been developed for a whole century while the theory of the wave 
equation has seen less development in terms of the precise quantitative behavior of 
solutions. 

When we discuss these quadratic forms, the first important questions are to create 
quantities that behave well under allowable coordinate transformations. (Sometimes, 
the manifold has a special structure which allows only a certain type of coordinate 
transformation.) Unless we are comparing two different structures, differentiating 
the metric once does not provide an invariant. The most important invariants appear 
when we differentiate the metric twice. Those parts of the second derivatives invariant 
under coordinate transformations form the curvature tensor. The local information 
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given by curvature governs the global structure of the manifold to a large extent, 
at least if we make the natural assumption that every geodesic can be continued 
indefinitely. Can this last assumption be weakened somewhat? For example, if we 
assume only that for all points, the set of unit tangent directions at that point which 
give rise to incomplete geodesies is a closed set with measure zero, (or a subvariety 
with given dimension), can we carry out most of the global theorems? Perhaps we 
can add the assumption that the curvature of the manifold (or part of the curvature 
tensor) is bounded along each incomplete geodesic and ask for the structure of the 
completion of the metric space. 

A. Constraints on the full curvature tensor. There are more components 
of the full curvature tensor than of the metric tensor. Making assumptions on the 
full curvature tensor is therefore an overdetermined condition. Nonetheless, many 
geometrically intuitive questions can be asked. 

A very popular question studied since the time of Rauch [170], Klingenberg [113], 
and Berger [12] concerns the structure of manifolds with positive curvature. Compar- 
ison theorems due to Toponogov [213] are important tools in this field. The following 
basic question remains unanswered: For dimension large enough, are there topologi- 
cally any non-locally-symmetric manifolds with positive curvature? 

For lower dimensions, there are many examples of non-locally-symmetric examples 
created by double coset space constructions. They are in general detected by torsions 
of homology. It would be interesting to know whether the real homology of these 
manifolds is the same as that of the locally symmetric examples. In particular, it is 
interesting to know whether the total sum of Betti numbers is dominated by the torus 
of the same dimension. Gromov did give a bound depending only on the dimension 
[76]. 

It is well known that there is a very delicate distinction between metrics with 
non-negative curvature and those of positive curvature. The famous Hopf problem 
asks whether S2 x 52 admits a metric with positive curvature. Perhaps one should 
ask about more general phenomena. If a manifold M admits a locally free action 
of a torus T*, is it true that any metric with nonnegative curvature must admit a 
point p where the sectional curvature equals zero on a subset K of the Grassmanian 
G(2,Tp(Af)) of all two-planes in the tangent space, with dim(K) > dim(G(2,R*))? 

A related problem is the work of Gromoll-Meyer on an attempt to construct 
metrics with positive curvature on exotic spheres [75]. They construct metrics with 
nonnegative curvature where the sectional curvature vanishes on a thin set. 

It was observed by D. Moore and M. Micallef [150] that the celebrated existence 
theorem of Sacks-Uhlenbeck [177] can be used to study homotopy groups of simply 
connected manifolds with positive isotropic curvature. (This means that after com- 
plexification, the curvature is positive on null planes.) This in particular implies the 
famous pinching theorems of Klingenberg [113], which in turn depend on the triangle 
comparison theorems. It would be interesting to see how much more information 
one can obtain from such variational arguments, including possibly the use of vector 
bundles. 

It is embarrassing that we still do not know whether a manifold with positive 
curvature operator must be a sphere. By using his Ricci flow, Hamilton does classify 
four-manifolds with metrics of positive isotropic curvature and shows that a four- 
manifold with positive curvature operator is a sphere [88]. 

Given a function on the Grassmannnian of two-planes of the tangent bundle of a 
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manifold, when will it be the curvature function given by a Riemannian metric? 

B. The Ricci tensor. The Ricci tensor is obtained by taking the trace of the 
curvature tensor. It is a tensor of the same type as the metric tensor. Also, it is 
obtained by the first variation of the total scalar curvature. This remarkable fact was 
used to give a variational approach to general relativity. The famous Einstein equation 
is to construct from the Ricci tensor a divergence-free tensor which is equated to the 
matter tensor. There have been attempts to generalize the variation of total scalar 
curvature to a variation of the L2 norm of curvature tensor. The resulting equation is 
higher order and has been difficult to understand geometrically. But it does generalize 
the Einstein equation and perhaps will support a rich theory eventually. 

When the Ricci tensor is a constant multiple of the metric tensor, the manifold is 
called an Einstein manifold. This is perhaps the most natural and beautiful class of 
manifolds in geometry. The most fundamental question in geometry is to determine 
which manifolds admit Einstein metrics. If they do exist, how many are there? These 
are meaningful and difficult questions. 

When the dimension of the manifold is greater than five, no obstruction to ex- 
istence is known. Perhaps every manifold in these dimensions admits an Einstein 
metric. It is difficult to tell whether, for a given compact manifold, the moduli space 
of all Einstein metrics has an infinite number of connected components. Continuous 
families of Einstein metrics exist, and known examples are related to metrics with 
special holonomy group. The most notable ones come from Kahler-Einstein metrics. 

For dimension not greater than four, Einstein manifolds are much more rigid. 
There are conditions (see Hitchin [93]) such as x(M) > ||r(M)|, where x(M) and 
T{M) are the Euler number and signature of the manifold respectively. Perhaps there 
is a general structure theorem that every four-manifold is obtained by connecting 
(1) Einstein manifolds, (2) surface bundles over surfaces (with possible controllable 
singularities similar to Seifert fibrations), and (3) circle bundles over three manifolds, 
all connected along three-manifolds which are circle bundles over spheres or tori. This 
may be considered as a generalization of Thurston's program in dimension four. 

One hopes that in dimensions three and four, Hamilton's equation can be used to 
demonstrate both Thurston's hyperbolization conjecture and the above generalization 
(see e.g. [89]). The key problem is to understand the singularities which develop as 
solutions to Hamilton's equation evolve. 

The construction of solutions to the Einstein equation is a difficult task. Physi- 
cists first used the method of symmetry (group actions) to reduce the dimension. 
This has been a very important tool. Unfortunately most such solutions are only 
local and usually have singularities. When the metric is positive definite, McKenzie 
Wang, Ziller, and others have carried out systematic research and have found many 
important Einstein manifolds (see e.g. [219]). Recently Bohm has found examples of 
inhomogeneous Einstein metrics on spheres of dimension five to nine [18]. 

For four-dimensional stationary Lorentzian metrics with axial symmetry, Geroch 
[67] introduced the Backlund transformations, which take one solution to another. 
These transformations are highly nontrivial. Unfortunately most of the theory is 
local. It is highly desirable to understand which metrics constructed by these trans- 
formations are complete. It will also be very interesting to see how Backlund trans- 
formations work for positive definite metrics. 

In fact, in the seventies, Hawking and others [68] proposed a way (called Wick 
rotation) to analytically continue a Lorentzian vacuum solution to a positive defi- 
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nite Einstein metric. It is rather spectacular to see how a singularity of a solution 
to the Einstein equation can be "cured" by the Wick rotation. In particular, the 
Schwarzschild solution becomes a beautiful nonsingular Ricci-flat metric on S2 x M2 

which does not have a Kahler structure. Unfortunately the Wick rotation is not really 
a well-defined procedure, as it seems to depend on a clever choice of local coordinates. 
As a result, it has only been successful for a limited number of examples. A sys- 
tematic study of the effect of Wick rotation on Einstein equations would certainly be 
worthwhile for both physics and geometry. 

Penrose's twistor program and the idea of symplectic reduction have also been 
effective in understanding hyperkahler Ricci-flat metrics [95]. These methods suffer, 
however, the same problem of global understanding of the metric. 

Up to now, the most effective way of constructing Einstein metrics is based on 
Kahler geometry. In such a geometry, the metric is given by ^g^dz01 ® dz^, and 

the Ricci tensor is given by R^ = ^az/     * 
The simplicity of the Ricci tensor led Calabi to believe that it is much easier to 

construct Einstein metrics in Kahler geometry. If we deform a given metric gap by 

dz %- where <p is a scalar function, then the Einstein equation Rap = cga^ is simply 
given by 

0V 
= c Si? + nj   dzidzj 

If there is a volume form V dz1 A • • • dzn A dz1 A • • • A dzn so that 

92logy _   o 

we can rewrite the equation to be 

^ {log Ks„5+JS^) v-'H}=o. 
On a compact manifold, we are forced to conclude that 

where A is a constant which can simply be absorbed into V. The choice of the vol- 
ume form V becomes a very important part of constructing Kahler-Einstein metrics, 
especially for noncompact manifolds (see e.g. [41, 207]). 

Prom the part of view of partial differential equations, it is clear that c < 0 is the 
easiest case of the above equation. In this case, a necessary and sufficient condition 
for M to admit a Kahler-Einstein metric with negative scalar curvature is that the 
canonical line bundle K of the manifold M is ample [6, 225]. When c = 0, the 

hypothesis is that there exists a volume form V so that Q^Q^J = 0. In this case, 
every Kahler class admits a unique Kahler metric with zero Ricci curvature [225]. 
The space of Kahler metrics with zero Ricci curvature is then parametrized by the 
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moduli space of complex structures with flat canonical line bundle and the Kahler 
cone for each such complex structure. 

Two very important consequences of the existence of a Kahler-Einstein metric 
are certain relations between the Chern numbers and the stability of the tangent 
bundle. The stability of a holomorphic bundle is defined by Mumford in terms of 
some polarization of the complex manifold Mn [159]. (A polarization is given by a 
Kahler class [u].) For any vector bundle V of rank r, the degree of V with respect to 
u is defined to be deg(y) = Ci(V) ACJ

71-1
, and the slope of V is defined to be egj: K 

The bundle V is said to be Mumford-stable if the slope of any coherent subsheaf of V 
is less then the slope of V. It is not trivial to check whether a given bundle is stable. 
Observing that curvature decreases when passing to subbundles, Kobayashi [114] and 
Liibke [143] showed that the tangent bundle of a manifold admitting a Kahler-Einstein 
metric u is stable with respect to the polarization defined by u. When the scalar 
curvature is not zero, therefore, the polarization is either ci(M) or —ci(M). In such 
cases, it is rather interesting to determine whether the tangent bundle is stable with 
respect to other polarizations. 

It turns out that the concept of stability makes sense even when u is not closed. 
Since the first Chern form is defined up to ddf, where / is a globally defined function, 
IM 

C
I(^) A wn~l is well defined as long as 99(c<;n"1) = 0. Hermitian metrics u with 

such a property were studied by Gauduchon [61, 62], who proved that the equation 
dd^71"1) = 0 can always be solved by a conformal deformation of a given LJ. 

Right after the author's work on the existence of Kahler-Einstein metrics in the 
mid-seventies, the author and others made attempts to find similar canonical met- 
rics on holomorphic vector bundles. The natural concept is a Hermitian Yang-Mills 
connection. Consider Hermitian connections on a vector bundle V. Contract the two 
base indices of the curvature F, so that tr(JP) becomes an endomorphism of V. We 
require tr(F) = c/y, where c is a constant and ly is the identity endomorphism. 

There is another concept, Gieseker stability, that is equally natural from the view 
of geometric invariant theory. A holomorphic bundle V is Gieseker-stable with respect 
to a positive line bundle L if and only if for any nontrivial coherent subsheaf S of V, 

JL_5>l)<dunir'MS«L*) 
i 

i 

for k large enough. 

By using the Riemann-Roch formula, one knows that 2^(-l)z dim Hl(M, S®Lk) 
is given by a polynomial in k called the Hilbert polynomial of 5 with respect to L. 
Gieseker [69] and Maruyama [145] proved that the space of Gieseker-stable vector 
bundles over a projective surface form a quasiprojective variety. 

To explain how Gieseker stability arises, we note that there is a large integer fco 
depending only on V, so that for k > fco, H^M, V & Lk) = 0 for i > 0, and V 0 Lk 

is generated by global sections. Consider the family of holomorphic bundles V with 
fixed Hilbert polynomial such that ArV is isomorphic to a fixed line bundle H. (Here 
r = rank V.) Let W = H0(M: H 0 Lrk). 

Then by the Riemann-Roch theorem, dim if0 (M, V 0 Lk) is constant and 
iJ0(M, V <g> Lk) can be identified with a fixed vector space 5. We then have a natural 
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homomorphism 

which determines the holomorphic structure of V. The group SL(S) acts on 
Horn (Ar5, W) and the quotient space, suitably defined, is the moduli space of all 
such V. 

Gieseker proved that Gieseker stability is equivalent to the stability of such an 
action of SL(S) in the sense of geometric invariant theory. 

In his thesis my former student Conan Leung [121] considered the space U of 
unitary connections on the bundle to reinterpret Gieseker's work. Let DA be such a 
connection on the bundle V, and let B and C be tangent vectors of U at DA- Also, 
let LJ be the Kahler form on the manifold and k > 0 be an integer. Then we define a 
two-form on U by 

nk(DA)(B, C) = [ tr \B A e(kuIv+^RA) A cl       Td(Af) 
JM    

L J
 
sym 

Here [ ]Sym indicates the graded symmetric product of the forms inside, RA is the 
curvature two-form of DA, W is the Kahler form, ly is the identity endomorphism, 
and Td(M) is the Todd class. 

When k is large enough, ku dominates RA and fifc becomes non-degenerate sym- 
plectic form. The gauge group G acts symplectically on U with respect to these 
symplectic forms. 

The moment map can be computed to be 

Hh-U —» e* 

lik{pA) = [e^+^Td(M)]2n, 

where G-, the Lie algebra of G, can be identified as the space of endomorphism-valued 
top forms on M. 

In general ^ 1(0) may be empty. Hence one chooses a constant multiple of un 

and the moment map equation is given by 

[e5tii*+*wArTd(M)]2n 

-X(M, V^L^Iy. 
rkOO^    ' ' n\ 

This is Leung's equation. He observed that when fc -» oo, it reduces to the equa- 
tion of Donaldson-Uhlenbeck-Yau [52, 215]. He demonstrated that if V is irreducible, 
the existence of uniformly-bounded-curvature solutions to the above equations for 
sufficiently large k is essentially equivalent to Gieseker stability. 

The introduction of the Todd class may not be so essential for the analysis, 
although it does give rise to the Hilbert polynomial, which in turns leads us to the 
concept of Gieseker stability. If we replace the Todd class by some other class, e.g. 
the A class, we may obtain other concepts of stability. 

If the bundle V is the tangent bundle of the manifold M and if the background 
Kahler metric #, as a metric on V, is the one used to define the Donaldson-Uhlenbeck- 
Yau equation, we obtain the Kahler-Einstein equation.  One can therefore interpret 
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the equation of Donaldson-Uhlenbeck-Yau as the (semi-) linearized version of the 
Kahler-Einstein equation, which is itself fully nonlinear. Since bundle stability is 
the criterion for existence for the former equation, it is clear to me that a certain 
nonlinear stability of manifolds must be involved for the existence of Kahler-Einstein 
metrics. Hence in the mid-eighties, I proposed that Gieseker-Mumford stability of an 
algebraic manifold with positive-definite first Chern class should be the criterion for 
the existence of a Kahler-Einstein metric (see [227]). This view has been picked up 
recently by Tian [204]. While he considered a slightly different concept of stability, it 
is most likely that my original conjecture is correct. 

If we let the Hermitian metric on the manifold be g and the (tangent) bundle 
metric to be ft, then g need not be Kahler. However, according to my work with 
Jun Li [129] (see Buchdahl for the case of two dimensions [21]), the Hermitian Yang- 
Mills equation tv(F(h)) = XI makes sense even when g is not Kahler. The concept 
of_stability of a bundle with respect to the metric g also makes sense as long as 
(ddujg) Aujg'1 = 0, where Ug is the (l,l)-form associated to g. If the bundle is 
stable with respect to u^, it can still be proved that there is a Hermitian metric h 
which satisfies the Hermitian Yang-Mills_equation. By a conformal change of ft, we can 
obtain ft which satisfies the condition (dduh) ACJ^

-1
 = 0 (by [61]). Hence if the bundle 

is the tangent bundle, then we have a map from the space of Hermitian metrics g with 
(ddujg) Aujg'1 = 0 to itself. It is tempting to believe that the existence of a fixed point 
of this map is relevant to the question of the existence of a Kahler-Einstein metric. 
A Kahler-Einstein metric is clearly a fixed point. It is interesting to know whether 
there are other, non-Kahler fixed points. The iteration of the above map on the space 
of Hermitian metrics may converge to a fixed point under reasonable conditions on 
the stability of the manifold. The arguments of Uhlenbeck-Yau [215] perhaps can be 
strengthened to provide the needed estimate. This is a worthwhile project: It may 
not only provide the solution to the existence problem for Kahler-Einstein metrics, 
but may also give canonical Hermitian metrics on non-Kahler manifolds. 

While there are only a limited member of non-Kahler surfaces, it is clear that 
many more non-Kahler manifolds exist in higher dimensions. Furthermore, as we 
explain in more detail below, canonical Hermitian metrics on non-Kahler manifolds 
will be useful in string theory since such manifolds, according to an idea of Reid [172], 
may be used to connect the moduli space of all Calabi-Yau threefolds. 

The idea of using such bundle metrics to find canonical Hermitian metrics on 
non-Kahler surfaces was already used by Jun Li, F.Y. Zheng and myself [130] in 
giving the first comprehensive proof of the theorem of Bogomolov [17] that class VIIQ 

surfaces with no holomorphic curves are the Inoue surfaces [105]. A very important 
observation here is that the non-existence of holomorphic curves actually helps to 
establish the stability of the tangent bundle in the sense Jun Li and I described in 
[129]. It remains an unsolved problem to classify those VIIQ surfaces which contain a 
finite number of holomorphic curves. It is tempting to think that a similar argument 
can be applied to the cotangent bundle with poles along those curves. 

For manifolds with many subvarieties, the proof of the stability of the tangent 
bundle may be a nontrivial task. This is especially true for the concept of stability 
we introduced in [129]. 

Rocek, in his paper in Mirror Symmetry I [173], proposed a class of non-Kahler 
manifolds which admit (2,2) supersymmetry. The condition he imposed is rather 
strong and it has been difficult to produce fruitful examples. One condition is that 
the tangent bundle of the manifold M must split into two bundles Vi 0 V2 with detVi 
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isomorphic to det"1^- Furthermore, Vi and V2 are required to define foliations of 
M whose leaves are Kahler, i.e. M admits a global Hermitian metric which is Kahler 
when restricted to those leaves. It is an interesting question to see how restrictive 
such a class of manifolds is. 

When the manifold admits Kahler-Einstein metrics with negative scalar curva- 
ture, I was able to characterize those manifolds uniformized by the ball and other 
Hermitian symmetric domains [224, 228]. The former characterization depends solely 
on the Chern numbers and the latter depends on the existence of nontrivial holo- 
morphic sections of certain bundles. The Chern-number characterization has been 
widely used. However, a very interesting question remains unanswered. Namely, how 
do we characterize geometrically those rank-one Hermitian locally symmetric mani- 
folds that are defined by arithmetic groups? One can probably use the many Hecke 
correspondences, but these conditions are not easy to check. 

It would be a very interesting and difficult task to find a topological characteriza- 
tion of those manifolds that can be covered by symmetric domains. There is of course 
already a difficult theorem of Thurston for three-dimensional manifolds. Naturally 
we can make the problem easier by assuming the manifold is Einstein. Is there a 
suitable concept of stability in Riemannian geometry to help to characterize locally 
symmetric manifolds? Only recently, Besson et al [13], LeBrun [119], Gursky-LeBrun 
[86], and C. Leung [123] were able to make some progress on the characterization of 
those Einstein manifolds that are rank-one locally symmetric spaces. While the first 
work is based on the concept of the center of gravity, the latter works depend on 
the Seiberg-Witten invariants and apply only to four-dimensional manifolds. As we 
mentioned earlier, the major problem is the lack of powerful existence theorems for 
Einstein metrics. 

For an existence theorem rather close to the existence of Einstein metric, Taubes 
[198] proved a remarkable theorem that after blowing up a four-dimensional manifold 
at suitable number of points, there is a metric with self-dual curvature (i.e. a metric 
whose curvature form is invariant under the star operator). It is obtained by a beau- 
tiful singular-perturbation argument. However, the moduli space of such metrics is 
difficult to control, and the topological implications of their existence are unclear. It 
would be very nice if one can apply similar arguments to produce Einstein metrics. 
It should be remarked that Taubes' theorem leads to many complex threefolds which 
are twistor spaces of the four-manifolds with Taubes' metrics. What would be a good 
canonical Hermitian metric on such threefolds, which are not Kahler? 

Let us now discuss several points about Einstein metrics which are also Kahler. 
For such metrics, the case of negative scalar curvature is much better understood, even 
for noncompact Kahler manifolds. However, many questions, especially the relation 
to Arakelov geometry, remain to be pursued. 

For complex one dimension, such metrics are simply Poincare metrics. However, it 
is a difficult problem to find an explicit form of the metric in terms of the homogeneous 
polynomials which define the algebraic curve as a subset of projective space. This 
problem amounts to finding an explicit uniformization of such a curve by the upper 
half plane. We can use the Weierstrass p function to uniformize elliptic curves to C. 
For certain noncompact curves, one can use the Picard-Fuchs equation to help find 
the uniformization through hypergeometric series. In his thesis [53], C. Doran studied 
this kind of question much more extensively by looking at the fiber space over a curve 
whose generic fiber is an elliptic curve or a K3 surface. 
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Many years ago, the author conjectured that such metrics on algebraic manifolds 
can be approximated by the induced metrics of projective embeddings into projective 
spaces by high powers of the canonical line bundle. This was proved by Tian [201] 
in his Harvard thesis using the ^-localization method of Siu-Yau [191]. Zelditch [231] 
improved the estimates in a recent paper using asymptotic spectral analysis. This 
kind of embedding has applications to Arekelov geometry, as was studied by S.W. 
Zhang [232]. 

A related object is the complete Kahler-Einstein metric on a quasiprojective man- 
ifold M\D, studied first by Cheng-Yau [41] and later by Tian-Yau [207] and others. 
(Here M is algebraic, D is a normal-crossing divisor, and KM 0 [D] > 0.) While 
the principal term of the metric near D is known, it should be possible to find an 
asymptotic expansion of the metric along D. 

One of the uses of Kahler-Einstein metrics is to provide analytic tools to study 
the underlying complex manifold. Given a projective manifold M, its universal cover 
is a rather transcendental object. However, one would like to capture the algebraic 
meaning of it. A natural question that the author asked more than ten years ago 
is to find a meromorphic map from the universal cover of M to an open subset 
of another algebraic manifold N so that the covering transformations of M can be 
extended to birational transformations of Ar. While the statement may be too good 
to be true for all projective manifolds, it should not be too far off. An important 
question is how to produce holomorphic functions of slowest growth. For example, if 
we want to realize the universal cover of M as a bounded domain, we need to produce 
bounded holomorphic functions. R. Schoen and the author do have a way of producing 
bounded harmonic functions on a manifold which covers a compact manifold [187]. 
(For manifolds which have strongly negative curvature, this problem was first studied 
by Sullivan [196] and Anderson [2].) On the other hand, holomorphic functions are 
more constrained and no method has been produced to handle their existence. 

In the theory of Kahler-Einstein metrics with negative scalar curvature, the 
Kahler class is canonical and is the negative of the first Chern class. In this case, 
the metric is determined by the complex structure. Therefore, any invariants of the 
Kahler-Einstein metric give intrinsic invariants of the complex structure. For exam- 
ple, such a metric provides Laplacian operators acting on various natural bundles of 
the manifold. The zeta functions associated to the eigenvalues of these Laplacians 
should have interesting properties related to the complex structure. However, besides 
the holomorphic torsion introduced by Ray-Singer [171], little is known about such 
zeta functions. It would be interesting to use information about the eigenvalues to 
give a compactification of the moduli space of such Kahler-Einstein manifolds. Can 
one use methods of differential geometry to prove that there are only a finite number 
of components of the family of projective complex structures over such manifolds? It 
is an interesting result of Catanese-LeBrun [36] and Kotschick [117] that there do exist 
examples of two Kahler-Einstein manifolds diffeomorphic to each other but with op- 
posite signs of scalar curvature. One of the major accomplishments of Seiberg-Witten 
theory is the proof that this is not possible for Kahler surfaces [57]. 

In order to understand the problem of compactifying the moduli space, a natural 
approach is to study its Weil-Petersson metric. In general, the Weil-Petersson met- 
ric is not complete and has unbounded curvature. However, its Ricci tensor may be 
negative-definite outside a compact set and then its behavior should reflect the behav- 
ior of the canonical Kahler-Einstein metric on the moduli space. The Weil-Petersson 
metric for moduli space of Kahler-Einstein metrics with negative scalar curvature is 
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quite different from the one on the moduli space of Kahler-Einstein metrics of zero 
Ricci curvature. In the former case, we probably should expect that the Ricci cur- 
vature has an upper bound; and in the latter case, the Ricci curvature should have 
a lower bound. It should be interesting to prove that they have finite volume. C.-L. 
Wang [217] has understood the condition for the Weil-Petersson metric on the moduli 
space of Ricci-flat Kahler manifolds to be complete near the singular points of the 
moduli space. 

Can one compactify a complete Kahler manifold whose volume is finite and whose 
Ricci curvature is bounded from below? Many years ago, I initiated the program of 
compactifying complete manifolds with finite volume using geometric means. (See 
Siu-Yau [191].) I suggested to Mok-Zhong and my former student F.Y. Zheng to 
work on this program. While it has not been completed, progress has been made by 
Mok-Zhong [154], Mok [153], Yeung [230], and unpublished work of Zheng and myself. 

Since the revolutions of string theory in theoretical physics, the theory of Kahler 
manifolds with zero Ricci curvature (i.e. Calabi-Yau manifolds) has gone through 
a vigorous change. The fundamental paper of Candelas, Horowitz, Strominger and 
Witten [28] studied the Kaluza-Klein model, where one wants to compactify a ten- 
dimensional spacetime to a four-dimensional spacetime by using compact six-dimen- 
sional manifolds with nontrivial parallel spinors. The final analysis shows that the 
compactification is given by a Calabi-Yau manifold of three complex dimensions. This 
famous paper immediately called for a great deal of work on constructing such mani- 
folds, especially those with Euler number equal to ±6 and with nontrivial fundamental 
group. At the beginning, physicists thought that there are only a couple of Calabi- 
Yau manifolds with three dimensions. During the first major conference on string 
theory [226], the author described many ways to construct these manifolds, and the 
physicists were rather surprised to find out that there should be at least on the or- 
der of ten thousand such manifolds. The author proposed to construct a large class 
of these manifolds by taking complete intersections of hypersurfaces in products of 
weighted projective spaces. The first important example is the complete intersection 
of two cubics in OP3 x CP3 and a bidegree (1,1) hypersurface. This manifold has 
Euler number equal to —18. I was able to find a group of order three which acts on it 
with no fixed point. The quotient manifold then has Euler number —6 and non-trivial 
fundamental group. Tian and the author [206] then found more examples in a similar 
way. It was observed by B. Greene that all these constructions lead to manifolds with 
the same topology. Greene and his coauthors even discussed the phenomenological 
implication of those manifolds [3]. 

The first general theory of Calabi-Yau manifolds was the study of two-dimensional 
surfaces due to Piatetski-Shapiro and Shafarevich [167] (Burns-Rapoport [22] for the 
case of Kahler manifolds). They found that the period map must be injective for the 
moduli space of K3 surfaces. The question of surjectivity was done much later and 
was due to Kulikov [118] and Pinkham-Perrson [166]. Both of these papers are deep 
works and require a great deal of algebraic machinery. 

These theorems were drastically simplified by the observations of Todorov [210], 
that the author's existence theorem for Ricci-flat metric can be applied. The key point 
is an observation of Hitchin [93] that the metric provides an S2 family of complex 
structures. This rational curve of complex structures provides a way to move in the 
moduli space. (Much more rigorous and detailed treatments were then given by Siu 
[190].) There were expectations to generalize these methods to higher-dimensional 
Calabi-Yau manifolds. While this has not been carried out, the famous theorem of 



REVIEW OF GEOMETRY AND ANALYSIS 257 

Bogomolov [17] on the unobstructedness of holomorphic symplectic Kahler manifolds 
was generalized to general Calabi-Yau manifolds by Tian [200] in his thesis and by 
Todorov [211] independently. This basic theorem played an important role on the 
later development of Calabi-Yau manifolds. (The analog of the formula for proving 
unobstructedness is being using by Kontsevich, Fukaya, and others to construct higher 
products in their attempts to work out the algebraic formulation of mirror symmetry 
[8, 59].) 

String theory demands extensive calculations on the moduli space of Calabi-Yau 
manifolds. Since the Torelli theorem holds, the period of the top-dimensional holo- 
morphic form determines the local geometry of the moduli space. It was observed 
by Tian [200] and the physicists that the Kahler potential can be written as log ||fi||2 

where fi is a local holomorphic family of top-dimensional holomorphic forms. The 
fact that the holomorphic n-form defines a sub-line bundle of the (flat) bundle of n- 
dimensional cohomology classes gives a way to calculate the Weil-Petersson geometry 
with extra data. The quotient of this flat bundle by the line bundle describes the 
infinitesimal deformation of complex structures and hence gives the tangent bundle 
of the moduli space. 

Two groups studied this kind of geometry (Candelas et al [27] and Strominger 
[194]). Strominger coined the name special geometry for it (he originally called it 
Kahler geometry of restricted type and the author suggested changing it to special 
geometry). Special geometry turns out to play an important role in later calculations 
of mirror symmetry. 

The works of Gepner [66] and Greene-Vafa-Warner [74] show heuristically how to 
attach a conformal field theory and a path integration to certain Calabi-Yau mani- 
folds. Soon after, Dixon [51] and Lerche-Vafa-Warner [120] made the prediction of 
mirror symmetry, which asserts that for any Calabi-Yau manifold M, one can asso- 
ciate another Calabi-Yau manifold M' so that by going from M to the mirror M', 
two three-point correlation functions (one associated to the complex deformations and 
the other associated to the Kahler deformations) are mapped to one another. The 
correlation function for complex deformations of M is simply the natural triple prod- 
uct of ^(TM) (this works since A3T is trivial). The correlation function for Kahler 
deformations is much more complicated. Besides the classical topological cup prod- 
uct on iI1(T^f), one needs to add corrections due to integration over rational curves! 
B. Greene and the author called the last triple product the quantum cup product 
during the first conference on mirror manifolds in 1990 in Berkeley. Vafa called the 
cohomology arising from such a ring structure quantum cohomology. 

For the important example of the quintic in QP , Greene-Plesser [73] demon- 
strated the existence of the mirror based on arguments from conformal field theory. 
Immediately afterwards, Candelas et al [29] carried out the complete detailed calcu- 
lation of the correlation functions based on the mirror statements. The identification 
of the special geometry on both the Kahler and the complex sides plays an impor- 
tant role. The calculation of such an identification is a spectacular piece of work in 
mathematics. It depends on studying the periods of holomorphic three-forms which 
satisfy a Picard-Fuchs equation and on understanding the monodromy associated to 
the degeneration of complex structure. This work of Candelas et al has greatly influ- 
enced the development of Calabi-Yau manifolds in the past ten years. In particular, it 
provides a beautiful formula to calculate the number of rational curves (which needs 
to be defined suitably) on the quintic. Even the existence of this formula was not ex- 
pected in mathematics literature. Later developments due to many mathematicians 
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are all basically reinterpretations of Candelas' formula in various forms. 
Candelas' method of calculation was immediately carried out by many groups 

of mathematicians when the complex deformation space is one-dimensional. When 
the deformation space is multidimensional, the calculation requires a new method 
and this was carried out independently by Hosono-Klemm-Thiesen-Yau [99] and by 
Candelas-de la Ossa-Font-Katz-Morrison [30]. A further generalization was also done 
by Hosono-Lian-Yau [100]. In the former paper the Frobenius method and the hy- 
pergeometric system of Gelfand-Kapranov-Zelevinsky [64, 65] were extensively used. 
The formal parameter in the Frobenius method was later replaced by the hyperplane 
class in equivariant geometry. This gives the right interpretation of Candelas' formula 
in terms of equivariant geometry. 

It makes sense to talk about the quantum cohomology ring structure for any 
Kahler manifolds. For manifolds with positive first Chern class, the associativity of 
quantum cohomology is sometimes enough to determine the instanton sum. This 
statement comes from the WDVV equations, which are due to a group of physicists 
(see [223, 54]). For these manifolds, mathematicians were able to exploit the associa- 
tivity of the quantum cohomology to calculate the instanton sums. The concept of 
a Frobenius manifold was developed to understand these calculations, which in turn 
led to formulas for counting curves in homogeneous manifolds. On the other hand, it 
took a much longer time to actually prove the associativity of quantum cohomology. 

The first proof of this associativity (for semi-positive symplectic manifolds) was 
due to Ruan-Tian [175]. First of all, one needs to define the meaning of the instan- 
ton sum. Ruan [174] defined some special cases for symplectic manifolds when the 
curve has genus zero. Then Ruan-Tian extended this to a complete set of genus-zero 
invariants [175] and generalized it to curves of arbitrary genus [176]. The definition 
is modeled after Donaldson's definition of his gauge invariants for four-dimensional 
manifolds. A basic ingredient is the compactness argument for pseudoholomorphic 
curves essentially due to Sacks-Uhlenbeck [177]. It was observed by Gromov [77] that 
pseudoholomorphic curves can be used to study the rigidity of symplectic manifolds. 
Ruan-Tian's definition and proof of associativity for quantum cohomology works only 
for pseudoholomorphic curves with respect to a generic choice of almost complex 
structure. However integrable complex structures are far away from being generic, 
and therefore the instanton sum needs to be defined differently if we restrict ourselves 
to projective manifolds only. 

Based on the works of Sacks-Uhlenbeck [177], Gromov [77], Parker-Wolfson [165] 
and others, Kontsevich [115] defined the concept of the compactification of the moduli 
space of rational maps from pointed rational curves to a projective manifold. When 
the projective manifold is a complete intersection in a certain homogeneous space, 
there is a way to define a certain obstruction bundle over the above compactified 
space. If the obstruction bundle has the same rank as the moduli space of maps, we 
can take the Euler number of the bundle. In general, however, one has to use the 
construction of the virtual cycle first done by Li-Tian [127] to define such a number. 
For a generic choice of projective hypersurface, the "number" of curves in a fixed 
topology can be defined in terms of these Euler numbers. For the quintic, we get 

k\d 

where Kd is the Euler number and na/k is the expected number of rational curves. 
This formula, called the covering formula, was discovered by Candelas et al [31] and 
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rigorously justified by Aspinwall-Morrison [5] and Manin [144]. The number rii is 
a projective invariant and should be called differently from the symplectic invariant 
mentioned above. A natural name should be the Schubert invariant to honor the 
fundamental work begun by Schubert a century ago. 

In many important cases, Li-Tian [128] and Siebert [188] were able to prove 
these Schubert invariants are the same as the one defined by Ruan-Tian-Gromov. In 
particular, this demonstrates that the associativity law is valid for these Schubert 
invariants. 

Candelas' formula for the quintic threefold is the following equation of formal 
power series in T: 

6    £S 2/0/0/0 

where T = £-, Kd is the Euler number as above, and for i = 0,1,2,3, fo 

5d 
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The fi form a basis for the solution space of L(f) — 0, where L is the hypergeometric 
differential operator 

Many people have made serious attempts to prove this formula. Witten [223] 
defined the concept of a linear sigma model, and Plesser-Morrison [157] made an (un- 
successful) attempt to use this concept to justify Candelas' formula. However, they did 
demonstrate the importance of the linear sigma model. Soon after, Kontsevich made 
a serious attempt to apply the Atiyah-Bott localization to prove Candelas' formula 
[115]. While he succeeded in computing the degree-four invariant for the quintic, his 
formulation is too complicated to be carried out in general. It is important to note that 
the above H used in the Frobenius method (see [99]) is interpreted as the equivariant 
hyperplane class. Following Kontsevich, Givental [70] made another attempt, using 
ideas of Witten and others and introducing quantum differential equations (these are 
just equations for determining a flat section of a certain canonically defined connec- 
tion). However, his claimed proof is far from being complete. Finally, based on the 
works of Witten, Kontsevich, Li-Tian, and some new ideas on the concept of Euler 
data, Lian-Liu-Yau [134] gave the first complete proof of Candelas' formula in 1997. 
Some six months after the publication of [134], two works attempting to complete 
Givental's program appeared. The first one was due to Procesi et al [14] and the 
other one to Pandharipande [164]. The first paper did not claim to prove Candelas' 
formula in its final form, and the second used some ideas of Lian-Liu-Yau. 

While the work of Lian-Liu-Yau does not give a construction of the mirror man- 
ifold, it does raise many interesting mathematical questions. One should interpret 
this theory as a theory of characteristic classes or K-theory over a mapping-space 
sigma model of algebraic manifolds. One advantage of such sigma models is that they 
allow us to restrict the maps to those from curves of a fixed topology, resulting in a 
finite-dimensional mapping space. 
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An important question involved in the theory of Lian-Liu-Yau is the following: 
Given an algebraic bundle V over an algebraic manifold M and the stable moduli space 
of maps M(g, k) from curves of genus g to M with homology class k G H2(M, Z), one 
can form a virtual bundle V over M(g,k) by looking at H0(CJ*V) - H1 (€,/*¥), 
where / : C -> M is a map in M(g, k). Given a theory of characteristic classes, i.e. a 
map b from the ring of holomorphic vector bundles to homology classes (which can be 
refined to algebraic cycles), one can then consider b(V) and consider several numbers 
related to b(V). For example, we can evaluate b(V) over the Li-Tian class [127], 
which was defined by Li-Tian as a virtual moduli cycle (and subsequently understood 
by Behrend-Fantechi [11] using a somewhat different method), or we can consider 
a product of b(V) with the Chern class of the tautological line bundle of Mig, k) 
and then evaluate this product over the Li-Tian cycle. The method of Lian-Liu-Yau 
can be used to compute these numbers for a large class of bundles V and M. This 
class includes, for example, convex and concave bundles over toric varieties or balloon 
manifolds. The computation of b(V) can be considered as part of the K-theory over 
sigma models of algebraic manifolds. 

It is important to carry out the computations of Lian-Liu-Yau in the most general 
possible setting. Equally important is to interpret the geometric meaning of the 
numbers computed. When b is the Euler class and Hl(C, f*V) = 0, the number is 
interpreted to be related to the counting of the "number" of curves of genus g. This is 
how one computes the number of rational curves in a generic quintic in QP4. In that 
case, one takes V to be the line bundle 0(5) over QP4. When V is 0(-3) over OP2, we 
are dealing with numbers which arise in "local mirror symmetry," i.e. the "number" of 
rational curves in QP2 embedded as a hypersurface in a Calabi-Yau manifold (see the 
works of Vafa et al, e.g.[112], and the recent work of Chiang-Klemm-Yau-Zaslow [42]). 
The set of all these characteristic numbers over sigma models is very much related to 
the hypergeometric series of Gelfand-Kapranov-Zelevinsky [64, 65]. It would be very 
interesting to understand the internal structure of these numbers as a map from the 
K-groups of M. 

When 6 is the Euler class, it is a remarkable theorem of Li-Tian that it is the 
same as counting the number (up to sign) of pseudoholomorphic curves of a generic 
almost-complex structure compatible with the given symplectic structure. Using the 
proof of Lian-Liu-Yau, one should be able to extend the methods of Li, Ruan and Tian 
to show that the coefficients rid of the generating function are integers. This should 
have deep interest for both number theorists and combinatoricists. The transforma- 
tion from the hypergeometric series to the generating function is called the mirror 
transformation. It is also a remarkable fact that by choosing the right coordinates, 
the mirror transformation has a good g-expansion whose coefficients are integers (as 
was computed experimentally by Hosono-Klemm-Thiesen-Yau [99] and publicized by 
the authors). When the deformation of the mirror manifold is one-dimensional, this 
integral condition was verified by Lian-Yau [138]. This is a very important fact, as it 
was used by Lian-Yau to prove divisibility properties of the number of rational curves. 
For example, it was proved that n*, the number of rational curves in a quintic, is divis- 
ible by 125 in the case i is not divisible by 5. However, such integral properties of the 
mirror map are not known for the multivariable case and pose a challenging problem. 
Note that when the Calabi-Yau manifold has one or two dimensions, the mirror map 
is related to the j-function. In fact, Lian-Yau [135, 136, 137] observed that when 
the Calabi-Yau manifold is the K3 surface or when the Calabi-Yau manifold contains 
a pencil of K3 surfaces, the mirror map should be related to the automorphic form 
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which appears in the moonshine conjecture related to the monster group. In his Har- 
vard thesis, Chuck Doran made remarkable progress on this question, as he studied 
the Painleve VI equation and its algebraic solutions extensively [53]. 

Duality conjectures in the recent progress of string theory have clear implications 
in number theory as was indicated by work of Moore-Witten [156]. Also G. Moore 
has questions on the values of the mirror maps on certain special points on the moduli 
space determined by a variational principle [155]. All these questions imply that a 
very rich structure of number theory is hidden in the theory of mirror symmetries. 
Klemm-Lian-Roan-Yau [111] developed a generalization of the Schwarzian equation 
for the mirror map. It was based on such equations that the divisibility properties of 
number of rational curves were found. 

While the theory of Lian-Liu-Yau is able to tackle many important questions in 
enumerative geometry, it does not explain the geometric meaning of mirror manifolds. 
As we mentioned above, the construction of Strominger-Yau-Zaslow [195], however, 
does provide such a framework. Vafa [216] has recently extend the SYZ conjecture 
to include vector bundles in the picture. While Gross [80, 81] and Hitchin [93] have 
made significant progress on the SYZ conjecture, a full understanding of the theory of 
SYZ is still far away. Key missing ingredients axe explicit constructions of special La- 
grangian submanifolds in general Calabi-Yau manifolds and holomorphic disks whose 
boundaries lie on given Lagrangian submanifolds. In any case, the SYZ picture is 
likely to be correct and it will be very interesting to combine the rigorous treatment 
of Lian-Liu-Yau with the picture of SYZ. It predicts a construction of a Ricci-flat 
metric and hopefully can be carried out by understanding the instanton corrections 
to the semi-flat metric. 

Many years ago, Mukai [158] observed that the moduli space of SU(n) bundles 
over a K3 surface has natural hyperkahler structure. (This can be generalized to other 
hyperkahler manifolds.) He introduced the concept of the Mukai transform, which 
is clearly related to the above theories. Hopefully, a complete mathematical theory 
encompassing all these ideas can be found soon. 

Another important problem is to classify all three-dimensional Calabi-Yau mani- 
folds and those four-dimensional ones that are elliptic fiber spaces. A very much re- 
lated question is the understanding of construction of manifolds with G2 and Spin(7) 
holonomy groups. 

Only recently Joyce [106, 107] was able to construct non-trivial examples of such 
manifolds. They were obtained by singular perturbation which is similar to the con- 
struction of C. Taubes on self-dual 517(2) connections over four-manifolds [197]. While 
these manifolds clearly play an important role in the recent progress of string theory, 
their global structure is still hard to be understood. How do we parametrize them? 
Are they related to Kahler manifolds in a systematic way? How can we understand 
the moduli space of bundles with special holonomy groups over these manifolds or 
Calabi-Yau manifolds? 

A recent development of string theory demands that a given Calabi-Yau manifold 
can be deformed to another. Since these manifolds may have different topology, one 
must go through singular manifolds to achieve such a goal. One is also allowed to 
identify manifolds which give rise to the same conformal field theory. Aspinwall- 
Greene-Morrison [4] has studied the deformation of conformal field theory of Calabi- 
Yau manifolds when these is a "flop" construction which changes the topology of the 
manifolds.   Greene-Morrison-Strominger [72] also discussed how the quantum field 
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theory changes when the manifold is deformed to acquire conifold points. These 
theories demonstrate the possibility of good physical theories even when the target 
space has singularities. This should mean that we can develop a good geometric 
theory even when the manifolds acquire singularities. This includes a good metric, a 
good Hodge theory, a good bundle theory, and a good enumerative geometry on such 
singular manifolds. Such geometries should reflect the quantum field theory mentioned 
above. In particular, one would like to see new geometric quantities to capture the 
limit of the "quantum" geometry when a smooth manifold approaches a singular one. 
Supersymmetric cycles which represent cycles collapsing to the singularities should 
play an important role in all these discussions. 

In the discussion of connecting different Calabi-Yau manifolds, a particularly 
important process was suggested by M. Reid [172] (some initial ideas date back to 
Clemens [45]). We can destroy the second cohomology of a Calabi-Yau manifold by 
blowing down rational curves with negative normal bundle. There are theorems by 
Clemens [44], Friedman [56] and Tian [203] on how to deform the complex structure 
of the resulting singular manifold to that of a smooth complex manifold. These 
manifolds need not be algebraic (although they are birational to such manifolds). 
By passing through this kind of process, Reid suggests to connect all Calabi-Yau 
threefolds together. It is a rather tempting conjecture. However, since the manifold 
obtained by smoothing is not Kahler, a canonical Hermitian metric has to be defined to 
account for properties similar to those given by the Ricci-flat metric. A Weil-Petersson 
metric on the moduli space based on such canonical metrics would be important 
because it should help to identify the mirror map. 

A few years ago Zaslow and I [229] demonstrated the relation between counting 
singular rational curves with nodes in a K3 surface and automorphic forms. Motivated 
by the formula, Gottsche [71] made the following conjecture for a more general Kahler 
surface X: 

Let C be a sufficiently ample divisor on X, and K be the canonical divisor. Then 
the number of curves of genus g in \C\ passing through r = —KC + g — x(^x) points 
is given by the coefficient of q2C(c-K) in the following power series in q: 

BfB^K{DG2Y 
D2G2 

(A(.D2G2))x(0*)/2' 

where D = qj-, G2 is the Eisenstein series 

G^) = -^ + B£^> 24 
fc>0   d\k 

A is the discriminant 

&{q) = q1[l{l-qk)2 \2A 
±- q 

k>0 

and the Bi (q) are certain universal power series. 

Bryan-Leung [20] made the first step to give rigorous proof of the Yau-Zaslow 
formula for K3 surfaces when the cohomology class is primitive. It is remarkable that 
A.-K. Liu [142] was recently able to obtain the formula for general Kahler surfaces. 
(Some special cases were obtained with T.-J. Li jointly.) Using the idea of a family 
of Seiberg-Witten invariants, he is also able to study a similar question for algebraic 
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threefolds which are elliptic fiber spaces. It is rather mysterious that the generating 
function for counting curves is related to automorphic forms. Perhaps some general- 
ized theory of those forms will be developed in the near future. 

Besides the WDVV equation and the theory of mirror symmetry, there is also the 
theory of Seiberg-Witten equations. Taubes [199] was the first one to demonstrate 
that the Seiberg-Witten invariants are related to counting the number of pseudo- 
holomorphic curves in a symplectic manifold. This theorem lays the foundation for 
the structure of symplectic manifolds in four dimensions. It is basically a trivial 
corollary of Taubes' theorem that there is only one symplectic structure on QP2. (It 
is still not known whether this is true on a homotopy CP2, where I proved it to be 
the case if the symplectic structure is Kahler.) The theorem of Taubes on OP2 was 
generalized by A.-K. Liu and T.-J. Li to other rational surfaces [126]. 

Coming back to the classification of Calabi-Yau manifolds, it may be interesting 
to understand geometric cobordism among such manifolds. When do two Calabi-Yau 
threefolds bound a seven-dimensional manifold with G2 holonomy? For G2-manifolds, 
one can of course look for a Spin(7) manifold to be the total space. 

The recent development of string theory gives rise to the following interesting 
question. If a manifold M is a metric cone over a compact manifold iV such that M 
has special holonomy group, what conditions does this place on N? This is particularly 
interesting in the case when M is Calabi-Yau. 

For manifolds with positive Ricci curvature, my solution of the Calabi conjec- 
ture gave a complete understanding of the topology for compact Kahler manifolds 
with positive Ricci curvature. (While Tian and I did make substantial progress on 
noncompact Kahler manifolds with positive Ricci curvature [208], there is still work 
to be accomplished. For example, it is not clear whether all such manifolds can be 
compactified.) When the manifold is not Kahler, the solution is quite different. Even 
for exotic spheres, this has not been answered. A tempting conjecture is the following: 

An exotic sphere admits a metric with positive scalar curvature if and only if 
it bounds a spin manifold. An exotic sphere admits a metric with positive Ricci 
curvature if and only if it bounds a parallelizable manifold. An exotic sphere admits 
a metric with positive sectional curvature if and only if it can be written as a vector 
bundle over a compact manifold. 

The first statement is true due to the theorem of Stolz [192] using the surgery 
result of Schoen-Yau [184] and Gromov-Lawson [78]. Also, the sufficiency parts of the 
second and third statements are known to be true. 

The famous theorem of Cheeger-Gromoll [37] basically reduces the study of man- 
ifolds with non-negative Ricci curvature to those with finite fundamental group. Does 
every finite group appear as the fundamental group of a compact manifold with pos- 
itive Ricci curvature? Perhaps it is already true for algebraic manifolds with positive 
first Chern class. In particular, it is not clear whether a connect sum of simply con- 
nected manifolds with positive Ricci curvature admits a metric with positive Ricci 
curvature. More generally, for a compact manifold M with finite fundamental group, 
if M admits metrics with positive scalar curvature, does it also admit metrics with 
positive Ricci curvature? Stolz [193] made a proposal to generalize the famous theo- 
rem of Lichnerwicz to loop space in the following way: If the Ricci curvature of M is 
positive and if ^pi(M) is zero, the Witten index of M is zero. Note that ^pi(M) = 0 
is interpreted as the loop space of M is spin. However, there is not enough evidence 
for such a conjecture. 
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It would be very nice to find a condition to see whether there is an obstruction for 
manifolds with positive Ricci curvature to admit Einstein metrics with positive scalar 
curvature. For dimension greater than five, there is presumably no obstruction. Even 
when the manifold is Kahler, the existence of a Kahler-Einstein metric with positive 
scalar curvature is still an open question. While there is known obstruction from the 
fact that the group of automorphisms must be reductive (a theorem of Matsushima 
[146]) and that the Futaki invariants [60] have to be zero, the author believes that 
the key obstruction comes from the stability of the polarized complex structure as 
was defined in geometric invariant theory by Mumford and Giesecker. G. Tian [204] 
made the first major step toward this conjecture (besides settling the problem for two 
complex dimensions [202]) by introducing the notion of if-stability. 

It is possible that the equation of R. Hamilton can be useful for this problem. 
His equation does preserve the complex structure and Cao [32] has shown long-time 
existence of the equation. Basic estimates such as a Harnack inequality were also 
obtained by Cao [33]. Some soliton solutions were also found by Cao [34]. It remains 
an important question to classify all such soliton solutions. Questions of uniqueness of 
Kahler-Einstein metrics and Kahler solitons were treated by Bando-Mabuchi [7] and 
Tian-Zhu [209] respectively. The asymptotic behavior of Hamilton's equation may be 
related to the question of stability. 

Since Kahler-Einstein metrics with positive scalar curvature do not always exist 
for Kahler manifolds with positive scalar curvature, it is perhaps interesting to look 
for slightly more general form of Einstein metrics. The ideas of Conan Leung can lead 
to somewhat more general metrics (see his recent paper [122]). However Leung has 
shown that the existence of such a metric implies the vanishing of Futaki's invariants. 
These may be most general canonical metrics to be studied. It could be useful to 
study the possible relationship with quantum cohomology. 

C. Scalar curvature. While scalar curvature is one of the weakest invariant for 
a compact manifold with dimension greater than two, it plays an important role in 
classical general relativity. Scalar curvature basically represents the matter distribu- 
tion when the Lorentzian metric is restricted to a spacelike hypersurface. (The precise 
matter distribution includes a contribution from the second fundamental form of the 
spacelike hypersurface.) 

The physical interpretation then demands that positivity of the scalar curvature 
is much more significant than negativity, as ordinary matter density is supposed to 
be non-negative. Physical intuition is a very good guide for the development of the 
theory of manifolds with positive scalar curvature. 

The first achievement is the consequence of Dirac operator. Lichnerwicz proved 
the following vanishing theorem [139]: For spin manifolds, positive scalar curvature 
implies, by the Atiyah-Singer index theorem, that a certain KO-characteristic number 
of the manifold must vanish. For quite a long time, this was the only known topo- 
logical constant. Then the question of the positive mass conjecture was raised in the 
Stanford conference on differential geometry in 1973. It was immediately realized that 
a much simpler question is whether there is a metric with positive scalar curvature 
on the three-dimensional torus. Schoen and I managed to prove that a such a metric 
does not exist [182]. The proof depends on the existence theorem of incompressible 
minimal surfaces (which is also due to Sacks-Uhlenbeck independently [177]) and a 
careful study of the second-variation formula. In particular, we prove that there is 
no complete metric with positive scalar curvature on a three-dimensional manifold 
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whose fundamental group admits a subgroup isomorphic to the fundamental group of 
a surface of genus not less than one [185]. 

By 1978, we were able to settle the positive mass conjecture completely [183] and 
we were also able to generalize the theorem on metrics with positive scalar curva- 
ture to higher dimensions [184]. The basic principle is to proceed by induction on 
dimension. We observed that for a stable minimal hypersurface in a manifold with 
positive scalar curvature, one can (by making use of the first eigenfunction of the sec- 
ond variation operator) conformally deform the metric to a metric with positive scalar 
curvature. Topological properties of the ambient manifold must be used to guarantee 
the existence of such minimal hypersurfaces. For example, the first cohomology of 
the manifold must have enough classes to provide nontrivial intersections. 

At the same year, by using ideas from our proof of the positive mass conjecture, 
we showed that, up to codimension three, one can perform surgery in the category 
of manifolds with positive scalar curvature [184]. (Subsequently this basic fact was 
also obtained by Gromov-Lawson using a somewhat different construction [78].) This 
surgery result enables tools from spin cobordism theory to be applied to manifolds 
with positive scalar curvature. Stolz [192] proved the following important result: 
The obstruction from Lichnerwicz's theorem is the only one for the class of simply 
connected manifolds. 

While we had some preliminary results about extending the Lichnerwicz vanishing 
theorem to manifolds with nontrivial fundamental group, Gromov-Lawson were able 
to develop an extensive theory about it. They thought that the vanishing of the 
obstructions from if 0[7ri] would be good enough for the existence of positive scalar 
curvature [79]. The recent work of Schick [178] shows that this is not correct, as the 
obstruction coming from Schoen-Yau on minimal hypersurfaces was not taken into 
account. 

It remains an open question to find a necessary and sufficient condition for a 
manifold to admit a metric with positive scalar curvature. An interesting problem is to 
prove that if a manifold M represents a non-trivial homology class in H*(K(7r, 1), Q) 
for some group TT, then it does not admit a metric with positive scalar curvature. In a 
course that Schoen and I gave in Berkeley on manifolds with positive scalar curvature 
in 1981, we settled this problem when dimM < 4. In the past ten years, there has 
been work by A. Connes and others using ideas from operator algebra (see e.g. [9]). 
However, it has not led to a final solution of the problem. The surgery argument 
is not significant enough when dimM < 4. The result of Schoen-Yau shows that 
three-manifolds with positive scalar curvature must be connect sums of manifolds 
with finite fundamental group [185]. If the Poincare conjecture and the spherical 
space-form conjecture hold, the converse is also true. 

When dimM = 4, the best result is due to A.-K. Liu and T.-J. Li [125]. They 
gave necessary and sufficient conditions for a symplectic manifold to admit a metric 
with positive scalar curvature. 

Besides questions related to topology, the geometry of manifolds with positive 
scalar curvature is a fruitful subject, since it is very much related to questions in 
general relativity. For example, the following statement (of Schoen-Yau [186]) has 
significance in the theory of black holes: 

For a compact three-dimensional manifold M, the first eigenvalue of the oper- 
ator —AM + §#M (with Dirichlet condition) is bounded above by |^-, where r is 
the smallest radius of any tube around a closed Jordan curve a in M so that a is 
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homotopically trivial inside the tube. 

It should be possible to generalize this type of result to higher-dimensional man- 
ifolds. 

A good formulation of the positive mass conjecture for compact manifolds with 
boundary is desirable and is not known. The positive mass theorem, and also the 
solution of the famous Yamabe problem by Schoen [180], have also been applied by 
Schoen and the author to study conformally flat, positive-scalar-curvature metrics on 
domains Q, C Sn [187]. 

Twenty years ago, Penrose made a conjecture in general relativity that the total 
mass is greater than the square root of the area of the black hole up to a constant. 
When the spacelike hypersurface has nonnegative scalar curvature, this conjecture 
has recently been settled by Huisken-Ilmanen [103] and Bray [19]. It remains an open 
problem to deal with the case when the scalar curvature is not nonnegative. 

A rather interesting question which arises in general relativity is the following: 
For a compact three-dimensional manifold M with nonnegative scalar curvature, the 
Hawking mass of dM should not be greater than a fixed multiple of the diameter of 
dM unless there is a closed stable minimal surface inside M. Of course, there is a 
generalization of such a statement to manifolds whose scalar curvature is not positive. 
These statements are related to black-hole formation. 

III. Conclusion. It is perhaps appropriate for me to summarize some of the 
highlights of this report by recording some important questions. 

1. Understand the precise nature of the existence and uniqueness of an isometric 
embedding of an n-dimensional manifold into n\n+1) -dimensional Euclidean space. 
When the manifold is compact with no boundary, can there be nontrivial isometric 
deformations? 

There is clearly a distinction between n = 2 and n > 2, local and global em- 
bedding, real analytic and smooth assumptions on metrics. For global embedding 
with n = 2, there was work by Weyl [221], Nirenberg [162] and Pogorelov [169]. For 
local embedding, there was important work by Lin [140]. The global uniqueness for 
n = 2 was studied by Cohn-Vossen [46]. The uniqueness for the associated linearized 
operator is also very important and studied by Cohn-Vossen. While the linearized 
problem is interesting by itself, it is clearly related to the nonlinear problem. Develop 
a global theory for such linear operators which may neither be elliptic nor hyperbolic. 
Assume the curvature operator of Mn be positive definite and the embedding is in 
R 2 . Does the kernel of the linearized operator consist of only infinitesimal rigid 
motions? Is there any way to apply the index theorem in this setting? 

The isometric embedding problem consisting of finding a Riemannian connection 
on the abstract normal bundle such that after combining with the Levi-Civita con- 
nection on the tangent bundle via the (unknown) second fundamental form, a flat 
connectionis formed. (Both the Gauss equations and the Codazzi equations have to 
be used.) Viewed in this way, one notes that the normal bundle is in general topologi- 
cally decomposable if n > 2. This may be one cause of nonuniqueness of the isometric 
embedding. Perhaps one should decompose the normal bundle into several subbundles 
and construct the desired Riemannian connections and second fundamental form into 
several parts according to the decomposition of the normal bundle. Geometrically, we 
may consider the possibility of structification of the isometric embedding by embed- 
ding Mn into M?1 C M2

n2 C • • • C i?11^ where n< m < n2 < • • • < nirdll. If we 



REVIEW OF GEOMETRY AND ANALYSIS 267 

add certain structification on the isometric embedding, it may force uniqueness and 
the existence theorem can be proved easier. For example, one can isometric embed a 
surface of arbitrary genus by embedding into suitable hyperbolic three manifold first. 
One can also isometric embed a genus one surface into i?4 through a suitable chosen 
three dimensional manifold. 

One should have an effective way to check whether a metric on Mn can be isomet- 
rically embedded into another manifold with dimension m < n\n+1). When n > 2, 
the only known uniqueness theorems occur when the codimension is not greater than 
n — 1. There is virtually no existence theorem known when n > 2. 

An interesting global existence Theorem for codimensional one can be obtained as 
corollary of my work with Schoen [183]: Given a metric on a three dimensional man- 
ifold which is strongly asymptotically flat (the mass is zero). Assume that for some 
symmetric tensor hij which vanishes at infinity quadratically, the following inequality 
holds 

^-£4 + (£M2] 

> 

Then the metric can be isometrically embedded into the flat Mirkonski spacetime 
as a spacelike hypersurface. 

2. Understand the spectrum of the Laplacian of a complete manifold. What is 
the precise condition for a set of discrete numbers in !+ to be the spectrum of the 
Laplacian of some manifold? So far, only necessary conditions are know. When the 
manifold has a special structure, e.g. if it has an Einstein metric or is a minimal 
submanifold, one expects there to be more symmetry. (The symmetry is perhaps 
exhibited in the associated zeta function.) For a generic metric, the spectrum should 
determine the metric. How can we prove such a statement? 

Let {ai,... , an,...} be a sequence of nonnegative numbers. (Some a* may repeat 
itself finite number of times.) There are two well-known important conditions for then 
to be spectrum. 

(a) There is a positive integer n (dimension) so that YnLi exP(~ait) has asymptotic 
series expansion t~n/2 XlSi a***- 

(b) The distribution defined by Y^jLi exP(*y/^jt) has singular support in a sequence 
of countable numbers {k}. 

Both (a) and (b) are asymptotic informations of the sequence {ai}. The first one 
are the heat invariants and the second one are the wave invariants. Unless we have 
more apriori informations of the manifold (e.g. a minimal hypersurface [38]), there is 
no other constrains that we know for {ai} to be spectrum of a manifold. 

Since these are all asymptotic constrains, it will be interesting to see how much 
informations can they provide for the finite part of the sequence if they are spectrum 
of a manifold. If {a^} and {Pi} are two sequences which can be realized as spectrums 
of two manifolds. If t71/2 (£. eait - £* e0it) = 0(tm) for any m > 0 when t -> 0 and 

if 12j (elvXjt -ely0it) has no singularity as a distribution, can we conclude that 

aj = Pj for all j. 



268 S.-T. YAU 

The heat invariants are integrals of local geometric quantities while the wave 
invariants are more global and are related to the lengths of closed geodesies. Is 
it possible to construct more geometric invariants by looking at other functions of 
Laplacian, by studying space of subsequence of eigenvalues or by constructing new 
sequence out of eigenvalues (e.g. taking differences of eigenvalues). 

When we say that we can "hear" a geometric quantity g, we should mean that 
for all e > 0, there is a set of integers {ni,... ,71^} so that n; depends only on 
Ai,... ,\ni-i and £ and there is a function / defind on i?Jfc+1 with 

|/(Ai,... ,Anfc,e)-0| <e. 

At present, it is not clear how to "hear" any geometric quantities of a manifold. 
Unless one has an apriori knowledge of the manifold, it is not even clear that we can 
hear the dimension of the manifold. For a convex domain, Peter Li and the author 
did work out a way to hear its area. It will be nice to be able to hear the volume of 
a manifold if we know its Ricci curvature is bounded form below. 

It is important to complete the full spectrum of known Einstein manifolds or 
closed minimal submanifolds. Only a handful of examples were calculated and they 
are constructed by group theoretical method. 

3. Find an explicit method (similar to the Weierstrass representation method) 
to exhibit a large class of minimal submanifolds in W1 or 5n. Can all calibrated 
minimal submanifolds be produced by such an explicit method? It would be especially 
interesting to produce them in ambient manifolds with special holonomy group. (In 
the case of a Calabi-Yau manifold, we are looking at special Lagrangian submanifolds.) 
Calculate the moduli space of these minimal submanifolds. 

It may also be interesting to find a class of hypersurfaces with constant mean 
curvature that are defined by first order elliptic systems. In most classes, we may 
need to parametrize these calibrated submanifolds with certain geometric structure 
over them. For example, in case of special Lagrangial submanifold in a Calabi-Yau 
manifold, we parametrize then together with a unitary flat line bundle. In some other 
cases, it can be some twisted harmonic spinors. It is an interesting question of finding 
a good compactification of the moduli space of these submanifolds together with the 
exterior structure. The behaviour of the Weyl-Peterson metric near singular point 
should be interesting. Note that sequence of minimal submanifolds always converge 
to a minimal current in the sense of geometricmeasure theory, the question is how 
to generalized flat line bundle or twisted harmonic spinor define on such minimal 
currents. We hope that the compactified moduli space has extra structure such as 
(possibly singular) algebraic structure. Can they be realized as moduli space of some 
algebraic geometric objects? 

4. Classify compact smooth manifolds which admit Einstein metrics. If dimM > 
4, does M always admit an Einstein metric? If so, how can we parametrize them? 

Is there any criterion to guarantee that the moduli space of Einstein metrics has 
finite number of components? For manifolds with odd dimension > 5, there were 
examples of Wang-Ziller in Journal of Diff. Geom., 1990, where infinite number of 
components were found. The problem is interesting already for dimension equal to 
four and six. When we change the topology of M, how does the topology of the 
moduli space of Einstein metrics change? Most manifolds with nontrivial continuous 
family of Einstein metrics come from torus bundle over Kahler-Einstein manifolds 
or special holonomy manifolds. What are others? For dimension 4, can one decom- 
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pose M4 into open pieces of the form (a) Einstein manifold (b) circle bundles over a 
three dimensional manifolds with constant curvature (c) surface bundle over another 
surface. 

The above open pieces are suppose to connected along three manifolds which are 
circle bundles over either S2 or T2. For dimension 3, there is the analogous statement 
of Thurston's geometrization conjecture. 

5. Classify compact Riemannian manifolds with special holonomy group. The 
major holonomy groups are 5C/(n), Spin(7) and G2. Prove that there are only a finite 
number of deformation types of these manifolds for each dimension. 

Most likely, manifolds with holonomy group Spin (7) and G2 can be constructed 
through some geometric construction on those with SU{n) holonomy. It will therefore 
be interesting to find a canonical structure on their module space similar to the special 
geometry on Calabi-Yau manifold. There are also calibrated submanifolds and bundles 
with special holonomy group on these manifolds. What will be the precise "mirror 
symmetry" for these manifolds? For example, can one find a way to "count" those 
calibrated minimal submanifolds in this kind of geometry. What is the condition for 
a holonomy class to be represented by some calibrated submanifold? For the case of 
Lagrangian minimal surface in a Kahler-Einstein surface, this was studied extensively 
by Schoen-Wolfson. 

6. Prove that if M2n admits an almost-complex structure and n > 2, then it also 
admits an integrable complex structure. For n = 2, there are well-known obstructions. 
Any complex surface with even first Betti number can be deformed to an algebraic 
surface, and any algebraic surface admits a Lefschetz fibration (possibly after blowing 
up several times). Therefore, it is interesting to find a sufficient condition for a surface 
bundle (with Morse type singularity) to admit a complex structure. It will also be 
interesting to find a condition on the homotopy type of a four-manifold to admit a 
singular surface-bundle structure. An interesting class of manifolds to be studied in 
this direction is quotients of the complex ball, which we know to be globally rigid. 
A related question is how to glue complex manifolds together. The Seiberg-Witten 
invariants and relative versions of pseudoholomorphic curve theory can perhaps help 
us understand such gluings. Another direction is to find a sufficient condition for a 
four-manifold which branches over QP2 or C?1 x CIP1 to admit a complex structure. 

By the work of Bogomolov and Li-Yau-Zheng [130], one knows how to classify 
those Kodaira class VII surfaces with no curves. It remains to classify those with 
curves. Perhaps the arguments in [124] can be used. 

It is an important problem to find a suitable large class of non Kahler complex 
manifolds with canonical Hermitian metrics. String theory may provide some di- 
rections to look for possible equations for such Hermitian metrics. It is especially 
important to find canonical Hermitian metrics for these complex manifolds obtained 
by smoothing singularities of Calabi-Yau manifold obtained by blowing down a ratio- 
nal curve with negative normal bundle. One likes to find those with "sypersymmetry" 
so that mirror symmetry still exists. 

7. Find necessary and sufficient conditions for a complex manifold to admit a 
Kahler structure. Prove that any Kahler manifold can be deformed to an algebraic 
manifold. 

For a Kahler manifold, we have the well-known theorems of Lefschitz and Hodge 
on it cohomology. The theorem of Deligne-Griffiths-Morgan-Sullivan also demands 
the rational homotopic type to be formally determined. These are unknown general 
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necessary conditions beyond the fact that it is a complex manifold (which also gives 
integrability conditions on Chern numbers based on the index theorem). If a complex 
manifold satisfies all these conditions on its homotopy type, is it homotopic equivalent 
to a Kahler manifold? The corresponding question on the diffeomorphic type is far 
more delicate. For example, the author was able to characterize those Kahler manifold 
homotopic to algebraic manifolds with constant holomorphic sectional curvature in 
terms of Chern number equalities. 

8. Given a complex vector bundle V over an algebraic manifold whose Chern 
classes are of (k, k) type, will V admit a holomorphic structure if we add or subtract 
from it holomorphic bundles in the sense of K theory? Prove the Hodge conjecture 
that rational (fc, /^-classes are Poincare dual to algebraic cycles. 

The only progress of constructing integrable complex structure over a complex 
vector bundle is due to C. Taubes [198] and comes from existence of antiself-dual 
connection over a four dimensional manifold. However, it does not tell much about 
the higher dimensional manifolds. Even in the case of four manifold, one has to restrict 
to the case when the bundle is constructed topologically from bubbling process. It 
is very much desirable to have a construction without using singular perturbation 
from known data. The construction of Uhlenbeck-Yau [215] for Hermitian Yang-Mills 
connections should be applied to general topological bundles. The construction of 
integrable complex structure on bundles may encounter obstructions coming from 
algebraic cycles. A deep understanding of their relationship should be rewarding. 

9. What is the structure of the singular set of an elliptic variational problem? In 
particular, what is the structure of the singular set of an area-minimizing variety? Is 
such a singular set stable under perturbations of the ambient metric? What are the 
singular sets for solutions to the mean curvature flow and the Ricci flow? 

For hyperbolic system, the most important question is the development of singu- 
larity for Einstein equations in general relativity. The nonlinearity of the system has 
exhibited spectacular rich interaction between physics and geometry. 

For a long time, geometers have been interesting in overdetermined systems of 
differential inequalities. For example, the existence of metrics with positive curvature 
on amanifold has been center of activities for a long time. (It is not known, for 
example, that when dimension is large enough, only locally symmetric spaces admit 
metrics with positive sectional curvature. It is still not known whether any nontrivial 
product manifold admit metrics with positive sectional curvature.) It is natural to 
see whether one can develop the concept of weak form of sectional curvature from the 
point of view of differential equations. The idea is to allow weak convergence of such 
metrics. Singularity of such metrics should be very interesting to understand. This 
question of course can be asked for such determinal system as Ricci tensor. 

10. Give a full and rigorous geometric explanation of the concept of mirror sym- 
metry for Calabi-Yau manifolds. Does it exist for other geometric structures without 
special holonomy group? Explain the structure of the generating function of the 
instanton numbers and the structure of the mirror map which come from mirror sym- 
metry. What is the arithmetic meaning of these functions? 

The works of Lian-Liu-Yau called 'Mirror Principle' I, II and III (Asian J. Math., 
1997,1999), do give a beginning of systematic understanding of enumerative geometry 
motivated by mirror symmetry. The work of Strominger-Yau-Zaslow [195] began a 
geometric understanding of mirror symmetry. Lian-Yau [136], [137] did begin to study 
the arithmetic nature of the mirror map. 
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