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SOME NEW OBSERVATION ON INVARIANT THEORY OF PLANE 
QUARTICS* 

TETSUJI SHIODAt 

1. Introduction. Let S(n,m) denote the graded ring of projective invariants 
of an n-ary form (a homogeneous polynomial in n variables) of degree m. We are 
interested in the case n = 3 and m = 4. A ternary quartic form F(xo,xi,X2) defines 
a plane curve of genus 3 if it is nonsingular, and conversely any non-hyperelliptic curve 
of genus 3 can be realized as such a plane quartic via the canonical embedding, which 
is unique up to projective transformations. Thus the structure of the ring 5(3,4) is 
closely related to the moduli of genus 3 curves. (For general background of Invariant 
Theory, see e.g. [4], [13].) 

More than thirty years ago ([5, Appendix]), we calculated the generating function 
(Poincare series) of 5(3,4) and made a few guess (or conjecture?) about the structure 
of the graded ring 5(3,4). More recently, Dixmier [2] has proved the existence of a 
system of parameters for this ring (suggested in [5]) by exhibiting a system of seven 
explicit projective invariants. 

In this paper, we study some close relationship of the ring 5(3,4) of projective 
invariants to another invariant theory, i.e. to the invariant theory for the Weyl groups 
W(I?7) and W(EQ) (cf. [1]). We are led to such a connection from the viewpoint of 
Mordell-Weil lattices ([8], [9]). 

2. Formulation of main results. We consider the case of characterisitic zero. 
Taking 

F(X0,Xi,X2)= J2        a>ioAui2X0Xlx2 
io+ii+i2=4 

with variable coefficients {aio^,^}, we may regard 5(3,4) as a graded subring of 
the polynomial ring ClaiQ^^] graded by the total degree, consisting of those / = 
1(F) G Cfato^iJ which are invariant under 5L(3). Namely, for any g £ 5L(3), let 
(XQ^XIJX^) = (xo1xi,X2)g and rewrite F^X'Q^XI^X^) as a polynomial F,(xo,xi,X2) in 
#0, Xi, X2: 

Ff(x(hX1,X2) = J] CL^j^X^xi2. 
io+ii+£2=4 

We set F9 = Ff. Then, by definition, we have 

/ e 5(3,4) <=> I(F9) = 1(F) {Vg e 5L(3)). 

For any ternary quartic form FQ, we call the map / -» I(FQ) the evaluation map of 
5(3,4) at FQ. 
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Actually the C-algebra 5(3,4) is obtained from the Q-algebra 5(3,4)nQ^io,^^] 
by the scalar extension of Q to C. So, in the following, we change the notation so 
that 5(3,4) will denote this Q-subalgebraof Q[aio,ii,i2] 

Now we recall the following fact on the normal form of a plane quartic with a 
given flex (cf. [8, §1]). Take the inhomogeneous coordinates x, t such that (XQ : xi : 
X2) = (1 : x : t). The normal form of type E7 is 

fx = x3 + x(po + Pit + t3) +qo+ qit + q2t2 4- Qzt3 + qit* 

with A = (po»Pii #0? • • •»#4) € A7, and the normal form of type EQ is 

fx = x3 + x(po + pit + p2t2) +qo+ qit + ^2 + t4 

with A = (pojPi}P2) #0? #1 > Q2) € A6. In either case, let Tx be the plane quartic defined 
by fx = 0; the flex is given by the point (XQ : xi : X2) = (0 : 1 : 0). The fact is that 
every plane quartic with a given flex is isomorphic to Tx for some A € A7 or A6; the 
distinction depends on whether the given flex is ordinary or special1 (i.e. whether the 
tangent line to the curve at the flex intersects the curve with multiplicity 3 or 4). 

It is obvious that the evaluation map / -> /(/A) gives a ring homomorphism 

*:S(3,4)—►Q[A] = Q[pi>fc] 

for either type of fx- Let us call it the evaluation map of type E7 or EQ, and denote 
it by 07 or (pe when we need to specify the cases. 

The main purpose of this paper is to establish less obvious relationship between 
the invariant theory of a plane quartic and the invariant theory of the Weyl group 
W(Er) (r = 6,7). To formulate the results, note first that the ring of invariants of 
W{Er)y say jR(£^r)s can be naturally identified with Q[A] given above (see [1], [6], [7]), 
which is a graded polynomial ring with the weights of pi or qj assigned as follows: 

for £7 case: wt(pi) = 12 - 4i, wt(qj) = 18 - 4j. 

for EQ case: wt(pi) — 8 - 3i, wt(qj) = 12 — 3j. 
On the other hand, let 

5 = 5(3,4) = em5m 

where 5m is the homogeneous part of degree m of 5. It is known that Sm^Q only if 
m is a multiple of 3 (cf. §3). 

THEOREM 1. (i) The evaluation map of type Ej 

fa : 5(3,4) —> m&i) = Q[po,Pi,?o,<?i,22,33,24] 

is a graded homomorphism from 5(3,4) to R{E>?) with weight ratio 3 : 14 in the sense 
that </) sends Ssd to i?(S7)i4d for all d. 

(ii) The evaluation map of type EQ 

06 : S(3,4) —► R(EQ) = Q\pojPi,P2,qo,quq2] 

1see the comments at the end of the paper. 
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is a graded homomorphism from 5(3,4) to R(Ee) with weight ratio 3 : 8 in a similar 
sense. 

THEOREM 2. Let D € 5(3,4) denote the discriminant of a plane quartic: its 
characteristic property is that D G 52? and D(f) ^0 if and only if f = 0 is smooth. 
Then the image <f>(D) under the evaluation map (j) of type Er (r=7,6) is equal, up to a 
constant, to the "discriminant" S of R(Er) which is defined as the square of the basic 
anti-invariant ofW(Er); the weight of 5 is 126 or 72 for r = 7 or 6. 

THEOREM 3. (i) For r = 7, the evaluation map fa is injective. 

(ii)For r = 6, the evaluation map <J)Q has a nontrivial kernel which contains a 
projective invariant J of degree 60.2 

For a graded integral domain R, F(R) will denote the field of fractions of R, and 
F(i?)(o) will denote the subfield of homogeneous fractions (i.e. the fractions a/b with 
a, b e R of the same weight). 

For 5 = 5(3,4), F(5)(o) can be considered as the function field of the moduli 
space Ms of curves of genus 3. 

THEOREM 4. Let P = Q[/i,..., ie, h] be the polynomial subring of S = 5(3,4) 
generated by the Dixmier's system {Id (d= 1,..., 6,9)}, Id being a suitable projective 
invariant of degree 3d. Then we have the algebraic extensions 

F(P){0) C F(5)(o) C F(Q[A])(o) 

with the extension degree 

[F(S)W : F(P)(o)] = 50,    [F(Q[A])(o) : F(S)W] = 24. 

REMARK.   (1) Note that both 

F(P)i0) = Q(Id/lt(d=l,...,6,9)) 

and 

are rational fields (i.e. purely transcendental extensions) over Q. The famous ratio- 
nality question of the moduli space M 3 of curves of genus 3 is equivalent to asking 
whether .F(5)(o) is a rational field or not. This was answered by Katsylo [3] by a 
representation-theoretic method. Our approach might be of some use to this ques- 
tion, from a more geometric point of view. 

(2) The explicit form of the invariants Id in the Dixmier's system is not necessary 
to prove Theorem 4, but we shall give it in [11] for a possible use in future. 

3. Proof of Theorems. We keep the notation introduced in the above. 

First recall that, for any homogeneous invariant I £ S = 5(3,4) of degree m 
(/ € 5m), we have 

I(F°) = det(g)wI(F) (ty € GL(3)) 

2see the comments at the end of the paper 
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for some integer w, which is determined by 4m = Sw (by comparing the degree in 
generic coefficients of g). Thus, if / ^ 0, m = 3d and w = id for some integer d. 

Proof of Theorem 1. The key point is the weighted homogeneity of /A- For the 
normal form of type E7, f\ is a weighted homogeneous polynomial of total weight 18, 
if we fix wt(x) = 6 and wt(t) = 4. Namely we have 

fx(u6x, uH) = ulsfx{x, t)    (Vu e Gm) 

with A' = (u12po, uspi,..., u6q3,u2q4). 

Let g be the diagonal matrix g = [l,i£6,u4] € GL(3)] note det(</) = u10. Then we 
have from the above 

(h')9(x,t) = u18h(x,t). 

For any / 6 53d, we have then 

(U10)idl(fy) = (u1S)3dI(h) 

which implies 

I(fx>) = uudI(fx)    (Vfi€Gm). 

This proves that 07(-0 = -^(/A) has weight 14d for any / G 53d. Thus part (i) of 
Theorem 1 is shown. 

For the normal form of type EQ, fx is a weighted homogeneous polynomial of 
total weight 12 by taking wt(x) = 4 and wt(t) = 3. The same argument as above 
shows part (ii) of Theorem 1. 

Proof of Theorem 2. Since the discriminant D of a plane quartic has degree 27 
(D € 52?), 07 CD) has weight 9 • 14 = 126 and 06(i?) has weight 9 • 8 = 72 by Theorem 
1. Hence 0(.D) 6 Q[A] has the same weight as the discriminant S of R(Er) (= the 
number of the roots in Er) for r = 7,6. 

To prove <f)(D) = 6 (up to a constant), the simplest would be to assume the 
knowledge of singularity theory. From this standpoint, note first that the plane quartic 
Tx is smooth at the points at infinity (i.e. on XQ =0). Thus it will be smooth if and 
only if the affine curve fx = 0 is smooth. By Jacobian criterion, the latter condition 
is equivalent to the smoothness of the affine surface S!

x:y
2 = fx (since char ^ 2). 

Now the singularity theory tells us that the family y2 = fx parametrized by A G 
A7 is a so-called semi-universal deformation of the Er-singularity y2 = x3+xt3 (r = 7) 
or y2 = x3 + t4 (r = 6) and that 5^ is smooth if and only if 5(X) ^ 0. 

Therefore we have 0(D) ^ 0 «=> 5(X) ^ 0, proving the assertion. 

We give here an alternative proof based on the theory of Mordell-Weil lattices 
(MWL) (cf. [6], [7], esp. [8, Th.5]). We consider the elliptic curve 

E = Ex:y2 = fx = x3 + '-' 

defined over K = k(t), k being the algebraic closure of Qfe, qj). To fix the idea, sup- 
pose fx is of type E7 and A is generic over Q (i.e. pi, qj are algebraically independent 
over Q). Then the structure of the Mordell-Weil lattice ^(if) is isomorphic to £y, 
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the dual lattice of the root lattice E7, with the narrow Mordell-Weil lattice E(K)0 

being isomorphic to E7. Corresponding to the 56 minimal vectors of norm 3/2 in Ef, 
there are 56 fc(£)-rational points P = (x, y) of the form: 

x = at + 6,    y = ct2 + dt + e 

([6], Lemma 9.1). A nice fact is that the map P H> C extends to a group homomor- 
phism sp : E(K) -» k (the specialization map at t = 00, up to a constant), which is 
injective for A generic. 

We can choose {PU...,P7} C E{K) such that (Pi,Pj) = Sy + 1/2 (see [8], 
[10]); they generate a subgroup of index 3 in E{K). Then Ci = sp(Pi) E k (i = 
1,..., 7) are algebraically independent over Q, and the Weyl group W(E7) acts on 
the polynomial ring Q[ci,..., C7] in such a way that the ring of invariants is equal to 
QbojPi) (Zo? • • • 5 ^4]- Moreover the coefficients a, 6,..., e defining P = (x, y) belong to 
Q[ci,...,C7] for all P. 

The basic anti-invariant in Q[c;] is the product of 63 linear forms: 

ct - Cj(i < j), Ci-v,v-Ci- Cj - Ck(i <j<k) 

where v = (X)ici)/3, which are the image of half of the 126 roots in E(K)0 ~ £7. 
The discriminant S(X) is the square of this anti-invariant up to a constant. 

Now we consider specializing the generic parameter A to any A' € A7. If the MWL 
does not degenerate under this specialization, we have the 126 roots in E\> (K)0 ~ E7. 
Recall that a root in E7 corresponds to a rational point Q = (x, y) of the form 

x = t2/u2 + at + b,    y = t3/u3 -f ct2 + dt + e 

with u = sp(Q) 7^ 0. Therefore none of the 63 linear forms above corresponding to 
the roots vanish under the specialization, and we have ^(A7) ^ 0. In other words, 
^(A') = 0 implies the degeneration of MWL (this is the MWL-analogue of "vanishing 
cycles" in the singularity theory). 

Further note that the degeneration of MWL occurs if and only if the affine surface 
S\> acquires singularities, since both conditions are equivalent to the existence of a 
reducible fibre in the associated elliptic fibration at t ^ 00. 

Thus we have the implication J(A') = 0 => ^(A') = 0. Comparing the degree, we 
conclude that S = ^(D) up to a constant. 

The case of EQ can be treated in a similar way. D 

REMARK. It is also possible to directly verify p(-D) = S (up to a constant) by 
means of computer algebra (cf. [11]). 

Proof of Theorem 3. The injectivity of the homomorphism ^7 is clear, because 
a generic plane quartic can be put in the normal form T\ : f\ = 0 (over a field of 
rationality of the curve and a flex) ([8, §1]). 

To prove the second part, we use the notation in the above proof of Theorem 2. 
For each of the 56 k(t)-rational points P = (x, y) G E\, we have the identity in t: 

{ct2 + dt + e)2 = fx(at + b.J.). 
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This means that the line L : x = at + b in P2 is a bitangent to the plane quartic 
FA 

: /A = 0, i.e. we have L • T\ = 2^4 + 2B for the two points A, £ G F^, which are 
determined by the equation ct2 + dt + e = 0. In this way, we get all the 28 bitangents 
to FA, since dbP = (rr, iy) give the same bitangent. 

Consider the product 

28 

which is an element of Q[ci,..., c7] of weight 28 • 10 = 280. Since the Weyl group 
W(E'r) acts (transitively) on the 56 minimal vectors, J is an invariant. Hence 

J e Q[ci,...,C7]w(^7) = QtPd.Pi,go, •..,ft]. 

LEMMA 5. For the normal form of type Ej, the vanishing of the invariant J is 
equivalent to the existence of a special flex. 

Proof Assume ./(A') = 0 for A' € A7. Then some factor in the product must be 
0, so the two points of contact of a bitangent coincide. In other words, we have 

L-Tx' = 4A 

for this bitangent L. Then this point A is a special flex of Ty with flex tangent L. 
The converse is clear. D 

By the lemma, the vanishing of J has an invariant meaning in the sense of projec- 
tive geometry. Hence J is a projective invariant, or more precisely, we have J = fa (I) 
for a unique projective invariant / € 5(3,4). In view of Theorem 1, / has degree 60. 
Finally / belongs to the kernel of the map 06, since the normal form of type Ee has 
a special flex by definition. 

This complete the proof of Theorem 3. D 

Presumably the invariant / constructed above should be the generator of Ker((/>6), 
but it is not yet proven. 

Proof of Theorem 4. By [2], P is a polynomial subring of S such that 5 is 
integral over P. Then by [5, Lemma 1], F(S) is an algebraic extension of F(P) of 
degree iV(l) if iV(T) denotes the numerator of the generating function of 5. In our 
case ([5, Appendix]), the generating function is equal to 

N(T) {T = t3) 

nLia-n-a-n 
with 

N(T) = 1 + T3 + T4 + T5 + 2T6 + ST7 + 2TS + 3T9 + AT10 + 3T11 + 4T12 + 4T13 + 
Q'T'14 i ^yis i QyiG i 2T17 + 3T18 4- 2T19 + T20 + T21 4- T22 + T25 

Hence we have iV(l) = 50, which shows [F(S) : F(P)] = 50. It follows easily that 
we have [F(5)(o) : F(P)(0)] = 50. 

On the other hand, we view F(S) as a subfield of Q(POJPI>90)-- • 5^4) via the 
injective map fa (Theorem 3).   Suppose F is a generic plane quartic.   Then it has 
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24 flexes, say £„, which are all ordinary flexes. For each choice of the flex £,,, F 
is isomorphic to Tx for some A = (pi,qj) G A7, with ^ mapped to (0,1,0) G FA; 

moreover A = A^) is uniquely determined by the condition #4 = 1 for the given pair 
(r,f„) (see [8, §1]). Thus the 24 values of A^) corresponding to the 24 flexes are 
mutually conjugate over F(S){0). It follows that [i?(Q[A])(o),i?(5)o] = 24. D 

ACKNOWLEDGEMENT. The author owes the following valuable remarks to the 
referee: 

(1) about the terminology. A point of undulation is a more standard word for a 
special flex used in this paper and [8]. See Salmon's book [12], no. 50, p. 37 and no. 
247, p. 218. 

(2) about a characterization of undulation. Theorem 3 (ii) is classically known, 
and is a special case of the following fact. Salmon describes a projective invariant of 
degree 6(m — 3) (3m — 2) for a plane curve of degree m whose vanishing expresses the 
condition that the curve has a point of undulation ([12], no. 400, p. 362). 
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