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ON A CONJECTURE OF DEMAILLY AND KOLLAR* 

D. H. PHONGt AND JACOB STURM* 

1. Introduction. If / is holomorphic in a neighborhood of a compact set K in 
a complex manifold, define £#(/) to be the supremum of all real numbers c such that 
l/l"20 is integrable on some neighborhood of K. 

In their recent paper [DK], Demailly and Kollar made the following remarkable 
conjectures. 

CONJECTURE A: Fix the compact set K. For every non-zero holomorphic function 
/ and for every compact set L containing K in its interior, there is a number a = 
a(f, K, L) > 0 such that 

sup|0-/|<a    =>    cK{g)>CK(f) 
L 

CONJECTURE B: Let 

C(n) = {co(/)  : / is holomorphic in a neighborhood of the origin of Cn} 

Then C(n) satisfies the ascending chain condition: every convergent increasing se- 
quence in C(n) is stationary. 

A version of Conjecture B in algebraic geometry has been formulated earlier, 
starting with the 1992 work of Shokurov [Sh][Kl-2]. This algebraic geometric version 
of Conjecture B has been established in dimension n = 2 by Shokurov in [Sh], and 
in dimension n = 3 by Alexeev in [A]. Related conjectures and results in algebraic 
geometry can be found in [Kl-2]. The exponents co(/) also play an important role 
in the study of the existence of Kahler-Einstein metrics [CY][TYl-2][Si][Tl-2] [Yl- 
2][DK]. 

In [DK], Demailly and Kollar had proved the following weaker version of Conjec- 
ture A: under the same conditions, for any e > 0, there exists a number a(f,K,L,e) 
such that 

(A€) sup Is-/I <<*(/,#,!,,£)    =*    cK{g)>cK(f)-e 
L 

In dimension n = 2, this last statement had also been obtained in [T2] and in [PS]. 
The purpose of this short note is to show that the methods of [PS] can also give the 
following theorem: 

THEOREM. Conjectures A and B hold when n = 2. 

It was already observed in [DK] that Conjecture A follows from Conjecture B 
combined with the weaker statement (Ae). We shall nevertheless give direct separate 
proofs for both conjectures, since in our approach, the method of proof of Conjecture 
A is no different from that of (^4€). It will also emerge from our proof that a; is a limit 
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point of C(2) if and only if x — 0 or x is a number of the form 2/a where a is a positive 
integer. 

2. Proof of Conjecture A when n = 2. In [PS], an approach was developed 
for the study of integrals of |/|"~2c in n variables, by iterating sharp estimates for 
one-dimensional integrals of the form 

(2.0) j    ^SUli^ZL-dV 
JBi 

£f=il^)le 

Here Pi(z) and Qj{z) are polynomials in the variable z G C, e and 8 are non- 
negative real numbers, dV = dxdy is the Euclidian measure on C, and i?A is the open 
disk of radius A. A key result was that the finite-dimensional space of polynomials 
Pi(z), Qj(z) admits a stratification into algebraic varieties, on each of which the size 
of the above integral is given by expressions of the form 

(sLiiA(fli,--,.BJ,)i
a)* 

(E/=il^(5i.-,^)l2)' 

where Pi(Bi,-— ,BM) and 0j(J5i,--« ,BM) are polynomials in the coefficients J5i, 
• • • , BM of the original polynomials Pi(z) and Qj(z) [PS, Theorem 4]. 

In this note we require the special case of these formulas, when the integrand in 
(2.0) reduces to |Q(^)|~<5 with Q(z) a polynomial of degree JV, and J is a real number 
in the range 2/N < S < 4/N such that 2/5 in non-integral. In this case the formulas 
simplify substantially, and we have [PS, Theorems 2 and 3] 

PROPOSITION 1. Fix a positive integer N. For every r in the range 1 < r < 
(N/2), there exist polynomials Drj E Z[J4I,...,J4JV], with 1 < j < h(r) = N\/(2r)\ 
with the following property. If we let 

h(r) 

Ar = Ar(au...,aN) = £ lA^ai,...,^)!1^1 

q=l 

then for all real numbers S G (2/(iV — r +1), 2/(AT — r)) and every positive real number 
A we have 

(2.1) f 
JB 

dv 
1 

BA  \Q{Z)\' A(JVi-r+l)«-2A2-(iV-r)* 

for all monic polynomials Q(z) = Zl^o0^^-2 whose roots lie in 1?A/2. If S < 2/N 
then 

(2'2) Lmr" ~A'-N' 
The implied constants in (2.1) and (2.2) depend on 8 and A, but they are independent 
of the coefficients of Q. 

We can establish now Conjecture A in 2 dimensions. It suffices to establish it 
when K is a single point 0. Let f(z,w) be a holomorphic function in a neighborhood 
of the origin in C and assume /(0) = 0, f(z,w) is not identically zero. Let M be the 
order of vanishing of f(z1 w) at the origin, i.e., the lowest degree with a non-vanishing 
monomial in the Taylor expansion of f(z,w) at 0. Then, after a suitable rotation of 
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coordinates, the Weierstrass Preparation Theorem says that on some poly disk U x V 
centered at the origin, / can be factored as / = UfPf where Uf is nowhere vanishing 
holomorphic function and 

Pf(z,w)    =   wM + ai(z)wM~1 H aM{z). 

Here ai(z) = aij(z) are holomorphic functions satisfying the condition 

(2.3) af(0) = 0. 

Moreover, there is a polydisk U' x V C U x V, centered at the origin, and an a > 0 
such that if g is holomorphic on U x V and if sup^y \g — f\ < a, then g can be 
factored as g = UgPg on U' x V where Ug is a holomorphic function such that \ug\ is 
bounded below by a positive constant, and 

Pg(z,w)    =   wM + ai,g(z)wM~1 H aM,g(z) 

Here the a^g are holomorphic on V', although they may no longer satisfy (2.3). The 
map g ->• a^g (resp. g ->• u^) is continuous with respect to the sup norm metrics on 
U x V and V' (resp. U xV and [/' x V). Thus we can choose a and [/' sufficiently 
small so that ||<7 — /|| = sup^x^ \g — f\ < a implies that UgUj1 ~ 1 and for every 
z e U1, all the roots of pg(zJw) = 0 are in ^V (see e.g. Lemma 5.2 in [PS]). 

Let N = 2M and define bi,g(z) by the formula 

N 

pg(z,w)2 = Y/bLg(z)wN-i 

i=0 

For every r in the range 1 < r < M, and for every holomorphic function g satisfying 
||<7 — f\\ < a, let Frjg(z) = Ar(&i^,..., biy,g)i and let n(r,g) be the unique real number 
such that 

\z\-nlr'9)Frtg(z) 

is continuous and non-vanishing at the origin. Proposition 1 implies that 

(2.4) n(r,g)(Nl)leZ. 

By shrinking a and Uf even further, we may assume (using, for example, the winding 
number principle) that for all g satisfying ||<7 — /|| < a, and for all r, we have n(r, g) < 
n{r,f). 

Let 

£(/) = {c G R : |/|~2c is integrable on some neighborhood of the origin}. 

It is well-known that £(/) is an open set (using for example Hironaka's theorem on 
resolution of singularities), and thus £(/) = (—oo,co(/)). We must prove that if 
||<7 — /|| < a, then 8 G £(/) implies 8 < co(g). In fact, if T is at most a countably 
infinite set of real numbers, it suffices to prove that 8 G £(/)\T implies 8 < co(g). 

Lemma 5.1 of [PS] guarantees that £(/) C (0,4/iV). Choose 8 G E(/)\T where 
T is the set of 8 in £(/) such that 2/8 is an integer. 

Since Uf is nowhere vanishing, we have 

(2.5) /   , ,   1 „2, dV(w) ~ [   r^j dV(w) 
Jv> W,w)\25 Jv \P2

9\
5 

where the implied constant depends on / and 8, but not on g. 
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If 6 < 21 Ny then (2.2) implies that (2.5) is finite, so that 8 < co(g). 

IiS> 2/N, choose r, 1 < r < M, such that S e (2/(N - r + 1), 2/(N - r)). Then 
applying Proposition 1 to the right hand side of (2.5), we obtain, for every z G Uf, 

I 1 1 
dV{w) 

lv> \9M\26 '    '       Fr+^WN-r+W-lFr^zF-W-r)' 

Thus we see that 8 G T,(g) if and only if 

(2.6) n(r + l,g)((N - r + 1)8 - 2) + n(r,g)(2 - {N - r)<J) < 2. 

Since 8 G £(/), (2.6) holds when g = /. But n(fc,^) < n(fc, /) for all jfe. Thus J G S(p). 

3. Proof of Conjecture B when n = 2. Let C = C(2). It suffices to show that 
for every r > 0, the set {c G C : c > r} satisfies the ascending chain condition. 

If / is holomorphic in a neighborhood of the origin, and if /(0) = 0, then £(/) C 
(0,4). Moreover, if / is a Weierstrass polynomial of degree M, i.e., an expression of 
the form wM + a^w1^"1 + • • • + aM(z), then co(/) < 2/M. Since 2/M < r for M 
sufficiently large, it suffices to prove that for each M > 0, 

(3.1) C(M) = {co(/) : / is a Weierstrass polynomial of degree M } 

satisfies the ascending chain condition. Thus we fix M > 0 and let N = 2M. We have 
shown that C(M) C [1/M, 2/M]. It therefore suffices to show that for every integer r 
such that 1 < r < M, the set C(M) n [2/(N - r +1), 2/(N - r)] satisfies the ascending 
chain condition (since [2/iV,4/iV] is a union of such intervals). 

Thus we fix r such that 1 < r < M, and we let 8 G (2/(N - r + 1), 2/(iV - r)). 
Let / be a Weierstrass polynomial of degree M . It follows from (2.6) that if c is a 
positive real number, then c G C fl (2/(iV - r + 1), 2/(iV - r)) if and only if 

n(r + l)((iV - r + l)c - 2) + n(r)(2 - (TV - r)c) = 2 

2 2 
(3.2) and c G (77; 77,777 7) v     / K(N -r + 1)   (N -r)J 

where we have denoted n(r, /) by n(r) for simplicity. Now (3.2) is equivalent to, via 
simple algebraic manipulations, 

c   =   o n(r + ^ " n^ + 1 and 
n(r + 1)(JV - r + 1) - n(r)(JV - r) 

(3.3) n(r 4-1) > iV - r and n(r) < N - r + 1 

The fact that n(r) < N - r +1, together with (2.4) tells us that there are only finitely 
many possibilities for n(r). For each such choice of n(r), there may be infinitely many 
possibilities for the value of n(r + 1), but these possibilities must also satisfy (2.4). In 
particular, the possible values of n(r + 1) form a subset of 

X = {n G Q : n(N\)\ G Z, n > N - r}. 

Now fix n(r) and let n(r 4-1) range over X in equation (3.3). The key observation 
is that as m G X tend towards infinity, the values of c form a decreasing sequence, 
converging to 2/(N — r + 1). This proves Conjecture B\ in the case n = 2. It also 
shows that the limit points of C(2) are either 0, or rational numbers of the form 2/a 
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with a a positive integer. In other words, the limit set of C(2) is contained in C(l). In 
fact, it is equal to C(l), as we shall see in the next section*. 

4. The limit set of C(n). It follows immediately from the definitions that 
C(n) C C(n + 1) for n > 1. 

PROPOSITION 2. If c e C(n) then c = lima;m, where xi,X2,... G C(n -I-1) forms 
a strictly decreasing sequence. 

Proof.    Let / be holomorphic in a neighborhood of the origin of Cn such that 
co(f) = c.  Let m be a sufficiently large positive integer and let gm(zi, ...,zn,w) = 
wm _ ^ Then 

Thus Co(pm) =c+ ^. 

REMARKS. 1. The same proofs apply in dimension two to give the analogues 
of Conjectures A and B in the real-analytic setting, using the results in [PSS], In 
dimensions 3 and higher, it is known that even the weaker conjecture Ae is not true, 
due to a counterexample of Varchenko. 

2. It is tempting to speculate that C{n) is exactly the limit set of C(n + 1). This 
was also suggested earlier by Kollar, who also formulated Proposition 2 in [K2]. 

3. More specifically, it is likely that the structure of C(n + 1) is determined 
inductively by that of C{n) in the manner suggested above: 

C(n + 1) =C(n) U (J z(c,ra) 
c6C(n),l<m<oo 

where for each c, the x(c,m) forms a strictly decreasing sequence such that 

lim x(c,m) = c. 
m—>oo 
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