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PROJECTIVITY VIA THE DUAL KAHLER 
CONE - HUYBRECHTS' CRITERION* 

KEIJI OGUISOt AND THOMAS PETERNELL* 

Abstract. In this note we give an elementary proof for a remarkable criterion due to Daniel 
Huybrechts for a Kahler surface to be projective. Our proof is based on Kodaira's celebrated work 
on surfaces. 

Introduction. It was Kunihiko Kodaira who first noticed how one can distin- 
guish projective manifolds among Kahler manifolds ([Kdl], [Kd2], [CK]). His cele- 
brated criteria can be restated in terms of cones (cf. (1.4)) as follows: 

KODAIRA'S CRITERION I ([KDI, MAIN THEOREM]). A compact Kahler manifold 
is projective if and only if the Kahler cone contains an integral point. D 

KODAIRA'S CRITERION II ([CK], [KD2, THEOREM (3.1)]). A compact (Kahler) 
surface is projective if and only if the positive cone contains an integral point D 

On the other hand, one of the current tendencies in higher dimensional algebraic 
geometry going back to Kleiman is to study projective varieties via the duality between 
the ample cone and the so-called Kleiman-Mori cone, the cone of effective curves 
[KMM]. 

Quite recently, Daniel Huybrechts [Hul] took this idea into his study of hy- 
perkahler manifolds and found as a byproduct the following remarkable criterion to 
distinguish projective surfaces via the dual Kahler cone: 

HUYBRECHTS' CRITERION ([Hul, REMARK 3.12 (m)]). A compact Kahler sur- 
face is projective if and only if the dual Kahler cone contains an inner integral point 
(For the precise definitions, see (1.4) ^n Section 1.) 

However his original proof relies on powerful but highly advanced techniques in 
complex analysis called Demailly's singular Morse theory and he himself asked in the 
same paper whether or not it is possible to prove this criterion in a more elementary 
way. 

The first purpose of this short note is to answer his question by giving a proof 
based on Kodaira's Criteria I and II and more or less familiar results on surfaces 
found now in standard books, [Bea], [BPV]. Our proof also depends on the notion of 
algebraic dimension due to Kodaira [Kd2, Page 125], while it is almost free from the 
classification of surfaces, which is, needless to say. one of the other monumental works 
again due to Kodaira. 

Although it is clear that the dual Kahler cone contains both the positive cone 
and the Kahler cone (1.5), it might not be so apparent whether or not Huybrechts' 
criterion is really a generalisation of Kodaira's criteria I and II, or more concretely, 
whether there really exists a surface whose dual Kahler cone contains an inner integral 
point of negative self-intersection. This was asked by Catanese [Ca]. 

However such surfaces indeed exist; we shall argue by looking at the dual Kahler 
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cone of K3 surfaces slightly more closely. One reason why we focus on K3 surfaces is 
because all K3 surfaces are Kahler [Su] but some of them are not projective as was 
noticed again by Kodaira [Kd3, Page 778]. (See also Remark (2.4) in Section 3.) Our 
result in this direction is as follows: 

PROPOSITION. Every K3 surface S of maximal Picard number 20 admits an inner 
integral point of negative self-intersection in its dual Kahler cone. 

Note that there exist countably many K3 surfaces of Picard number 20 [SI]. This 
Proposition also answers Catanese's question cited above. See also Remark at the end 
of Section 4 for a slight generalisation. 

Of course, it is very interesting to ask whether or not Huybrechts' criterion also 
holds in higher dimensions, say, in dimension three. We will come back to this question 
in the forthcoming paper [OP]. 
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1. Preliminaries. 
(1.0). Throughout this note, the term surface means a compact, connected com- 

plex manifold of dimension two. We do not assume the minimality. Let 5 be a surface. 
The transcendental degree of the meromorphic function field of 5 over C is called the 
algebraic dimension and is denoted by a(5) [Kd2, Page 125]. It is well known that 
a(S) e {0,1,2} and S is projective if and only if a(S) = 2 by [Kd2, Theorem (3.1)]. 

(1.1). A Hermitian metric g on 5 is called Kahler if the associated positive real 
(1,1) form Ug is d—closed. We call Ug a Kahler form if g is a Kahler metric. A surface 
is called Kahler if it admits at least one Kahler metric. Note that every projective 
surface is Kahler [Kdl, Page 28] but the converse is not true in general. 

Let S be a Kahler surface. 
(1.2). By definition, any Kahler metric g on S determines a de Rham cohomology 

class [ug]. This class lies in the real (1,1) part if1'1(5, E) of the Hodge decomposition 
of #2(S,C). We often abbreviate H^&R) by H1*1. We call an element r) <E H1*1 

a Kahler class if it is represented by a Kahler form, that is, in the case where there 
exists a Kahler metric g such that 77 = [u^]. 

(1.3). The real vector space if1,1 carries a natural symmetric bilinear form (*.*) 
induced by the cup product on the integral cohomology group if2(5,Z). It is well 
known that (*.*) on H1,1 is non-degenerate and is of signature (1, ft1,1 (5) — 1) by the 
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Hodge index Theorem. We also regard the finite dimensional real vector space iJ1,1 as 
a linear topological space using some norm | * |. Therefore we can speak of the closure 
A and the interior A0 of A C i?1'1. For a € ff1'1 and for a positive real number e > 0, 
we set 

B€(a) := {x G H^Wx - a\ <e}. 

Furthermore, let Ue(a) be the interior of Be(a) and dBe(a) its boundary. 
(1.4). 
(1) The positive cone C+(S) is the connected component of {x G iJ1'1|(a;.x) > 0} 

which contains the Kahler classes. 
(2) The Kahler cone /C(5) of 5 is the subset of H1'1 consisting of the Kahler 

classes of 5. By definition, JC(S) is a convex cone of iJ1,1. It is also well known that 
/C(5) is an open subset of fl1,1. 

(3) The dual cone /C*(5) of the Kahler cone fC(S) is the set of elements x G if1,1 

such that (x.7)) > 0 for any 77 G /C(5). 
(4) An element x of /C*(S) is called integral if x G /C*(5) fl L*H

2
(S,Z), where 

L : Z -¥ E is a natural inclusion of sheaves. An integral element is nothing but an 
element of /C*(5) fl NS(5) (1.8). 

(5) An element x of IC*(S) is called an inner point if x G /C*(5)0, that is, there 
exists a positive real number e > 0 such that Ue(x) C /C*(5). 

The following inclusions are clear by the Hodge Index Theorem: 
LEMMA 1.5. K(S) c C+(S) c /C*(5). □ 
LEMMA 1.6. Le^ (if, | * |) be a finite dimensional, real normed vector space 

equipped with a real valued, non-degenerate bilinear form (*.*). Let K C H be a 
non-empty convex cone such that 0 £ K. Set K* C H to be the dual of K with re- 
spect to (*.*). Let x G H. Then x is an inner point of K* if and only if there exists 
a positive real number r > 0 such that (2,77) > r\r]\ for all rj G K.   In particular, 
K* u {0} = Ti^y. __ 

Proof. This follows from the compactness of the space B€(x) x (if fl dBi(0)). D 
The following direct consequence will be applied in our proof: 
COROLLARY 1.7. Let x G if1,1.  Then x is an inner point of JC*(S) if and only 

if there exists a positive real number r > 0 such that (x.rj) > r\r)\ for all 77 G IC(S). 
Moreover, /C*(5) U {0} = /C*(5)0. D 

(1.8). The group H1*1 fl L*H
2
(S,Z) is called the Neron-Severi group of 5 and is 

denoted by NS(5). The rank of NS(5) is called the Picard number of S and is written 
by p(S). By the Lefschetz (1,1) Theorem, each element of NS(5) is represented by 
the first Chern class of some line bundle [Kdl, Theorem 1]. However, contrary to 
the projective case, the natural map from the group of Cartier divisors to the Picard 
group is not surjective in general. Therefore, we CAN NOT say that each element of 
NS(5) is represented by a divisor in the Kahler category. 

2. Kahler cones of K3 surfaces and complex tori. 
THEOREM 2.1 [BEA, PAGE 123, THEOREM 2]. LetS be a K3 surface, that is, a 

(Kahler) surface such that Ks = 0 in Pic(S) and that 7ri(5) = {1}. Then the Kahler 

cone /C(5) coincides with the Kahler chamber IC(S) of C+(S) defined by {x.[C]) > 0 
for all non-singular rational curves C in S, that is, 

K(S) = JC(S) := {x G C+(S)\(x.[C]) > 0 for all C ~ P1 in S}.U 

Remark. It is clear that K,(S) C K,(S). However, the other inclusion A^(5) C /C(5) 
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is non-trivial and the proof given in [Bea] is based on the surjectivity of the period 
mapping. (See also [Hu2, Corollary 3.4] for another proof.) 

THEOREM 2.2. Let S be a complex torus of dimension 2. Then /C(5) = C+(S). 
Remark. This result should be known. However, the authors could not find any 

references. We shall give two proofs: The first one is based on an argument of algebraic 
approximation and the second simpler one is due to Daniel Huybrechts [Hu3]. 

1st proof. Since any (1, l)-class can be represented by a form with constant coeffi- 
cients, IC(S) and C+(S) do not depend on the complex structures of S. Therefore, it is 
sufficient to check the equality for S = Ey/=i x Ey/^i, where E^zj is the elliptic curve 
of period y/^l. Then p(S) = 4 by [SM] and we have iff1'1 = NS(5) ® K. In particular, 
the rational points are dense in ff1,1 and the Kahler cone is then nothing but the 
ample cone. Note also that S contains no effective curves of negative self-intersection. 
Then, the result follows from the usual Nakai's criterion for ampleness (see also [CP]) 
plus the Hodge index Theorem. D 

2nd proof. Again we use the fact that any (l,l)-class can be represented by a 
form with constant coefficients. Suppose /C(5) ^ C+(S). Since JC(S) C C+(5), we 
find a constant (1, l)-form tp such that [ip] € C+(S) fl dlC(S). Then ip is semipositive 
but not positive. Therefore ([^]2) = f§ (p A (p = Js 0 = 0, a contradiction. □ 

In order to prove Huybrechts' criterion, we also need to know the structure of the 
Neron-Severi groups of K3 surfaces and complex tori of algebraic dimension zero. 

PROPOSITION (2.3). Let S be a K3 surface. Assume that a(S) = 0. Then, 
(1) Pic(S) and NS(S) are torsion free and are isomorphic under cj.. Moreover 

NS(S) <S> M is negative definite with respect to (*.*). 
(2) 5 contains at most 19 distinct smooth rational curves and contains no other 

curves. 

Proof of (1). The first part of the assertion is well known. Using a(5) = 0 and 
the Riemann-Roch Theorem, we readily see that L2 < 0 for all L G Pic(S) - {0}. 
Since (*.*) is defined over Z, this implies the result. D 

Proof of (2). Let C be an irreducible curve on 5. Then C ~ P1, because 0 > 
C2 = (Ks + C.C) = 2pa(C) - 2 by (1) and the adjunction formula. 

CLAIM 1. Let Ci,..., Cm be m distinct irreducible curves on S. Then [Ci],..., [Cm] 
are linearly independent in NS(S) (8) E. 

Proof. Since the classes [Ci] defined over Z, it is enough to show that if YlieiPilQ] 
= YljeJ %[£!;]» where / fl J = 0, pi G Z>o and Qj G Z>O then pi = qj = 0. By (1), we 
have 

o > (Ewpa-E^D = (!>[<?;]. XXQD > 0. 

Therefore, Q]i€/Pi[Ci]. ]£i€/Pt[Ci]) = 0. Then again by (1), we have 

in NS(5) and ^ieiPiCi = 0 in Pic(S). This is possible only in the case where pi = 0 
for all i G /. Similarly, qj = 0 for all j G J. □ 

CLAIM 2. 5 contains at most 19 distinct P1 's. 
Proof. Recall that (if1'1, (*.*)) is of dimension 20 and of signature (1,19). 

Assume that 5 contains more than or equal to 20 distinct P^s. Let Ci,...,C2o 
be 20 P^s among them.   Then, since R([Ci],...,[C20]) C NS(5) 0 R C H1*1 and 
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dimRE([C,
1],..., [C20]) = 20 = diniRtf1'1 by Claim 1, we get NS(5) 01' = if1'1. How- 

ever, NS(5) 0 E is of signature (0,20) by (1) while IT1'1 is of signature (1,19), a 
contradiction. D 

Now we are done. D 
Remark (2.4)- For each integer m such that 0 < m < 19, there actually exists a 

K3 surface of a(S) = 0 which contains exactly m distinct P^s and no other curves. 
(See also [Og2, Example 4] for a relevant example.) 

Construction. This construction is much inspired again by the work of Kodaira 
[Kd3, Section 5]. By [OZ], based on [SI], there exists a projective K3 surface T which 
contains 19 P^s, say, Ci,..., C19 whose intersection matrix (Ci.Cj) is of type Aig. Let 
/ : A! ->> B be the Kuranishi family of T. By [Kd3, Theorem 17], we may identify the 
base space B with an open set U of the period domain V of the K3 surfaces under 
some marking r : R2f*Z ~ AKS X B: 

B~llcV:= {H G P(Aic3 0 C)\(u.u) = 0, (u>.ZJ) > 0}. 

Let ci be the element of the K3 lattice AKS which corresponds to the class [Ci] under 
the marking r. Define the subset cj- C U by cj- := {[u] 6 U\(uj.Ci) = 0}. T^t 
0 < m < 19 and choose a very general point P of the space cf- fl... PI c^. Here we note 
that this space is of dimension 20 — m > 0 by (2.3). Then the fiber Ap is a K3 surface 
which contains exactly m distinct P^s whose intersection matrix is of type Am and 
has no other curves. This also implies a(Ap) = 0. D 

PROPOSITION (2.5). Let S be a complex torus of dimension 2. Assume that 
a(S) = 0. Then, NS(S) ® E is negative definite with respect to (*.*). 

Remark. We learned the following proof from Fabrizio Catanese [Ca]. 
Proof. Write S := C2/A, where A is a lattice of rank four. It is clear that 

NS(5) 0 E is negative semi-definite. Suppose, to the contrary, that there exists an 
element L E NS(5) such that L y£ 0 but (L2) = 0. Via the Poincare duality, we regard 
L e A2A = H2(S,Z). Since rankA = 4 and L ^ 0, by considering the alternating 
matrix corresponding to L, we see that there exists a basis (ei)j=1 of A 0 Q such that 
QL coincides with either Qei A62 or Q(ei A 62 + ^3 A64). Since fsLAL= (L2) = 0, 
where we identify L with the corresponding constant differential form, the latter case 
is impossible. Hence we have QL = Qei A 62- Replacing L and ei by their integral 
multiples, we may assume that L = ei A eo and ei,e2 € A. Set A' := Z(61,62) C A. 
Then, rankA' = 2. In addition, by a direct calculation using the global coordinates 
of the universal covering space C2 and the fact that L is of type (1,1) and is real, 
we see that A' is a lattice of a linear subspace V ~ C of C2. In particular, V/A* is a 
complex subtorus of S. Set E := V/A'. Then S/E is an elliptic curve and we have a 
natural surjective map S —> S/E. However, this implies 0 = a(5) > a(S/E) = 1, a 
contradiction. □ 

3. Proof of Huybrechts' Criterion. In this section, we shall give an elemen- 
tary proof of Huybrechts' criterion. 

Proof of the "only if" part. Any ample class gives a desired point. □ 
Proof of the "if" part. Let 5 be a Kahler surface which has an inner integral 

point of JC*(S). It is sufficient to show that a(5) ^ 0,1 by (1.0). 
LEMMA (3.1). a(5) ^ 1. 
Proof. Assume to the contrary that a(S) = 1 and take the algebraic reduction 

f : S -¥ C, which, in the surface case, is a surjective morphism to a non-singular 
curve with connected fibers [Kd2, Theorem 4.1]. Let F be a general fiber of / and set 
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f(F) = P. Then [F] = [/*(P)] € NS(5), where P is regarded as a divisor on C. Since 
P is ample on C, the class [P] is represented by a positive definite real d-closed (1, In- 
form 8. Set 0 := f*0. Then [F] = [0] and 0 is positive semi-definite at each point 
Q € S. Therefore for a Kahler form UJ and for any e > 0, we have [0 + eu] € /C(5). 
Thus, [F] = lime-^o^ + eu] G /C(5). Moreover, since ([P].[u;]) = fFu > 0, we see 
that [F] j=- 0. Let M be an inner integral point of /C*(5). Then, by (1.7), we have 
(M.[P]) > 0, whence (M + n[P])2 = M2 + 2n(M.[P]) > 0 for a large integer n. In 
addition, we have M + n\F\ G NS(5). However, 5 is then projective by Kodaira's 
criterion II, a contradiction. D 

The next Lemma reduces our problem to the case of minimal surfaces. 
LEMMA (3.2). LetriS^Tbe the blow down of a (-l)-curve E. Then, 
(1) 5 is projective if and only if T is projective. 
(2) 5 is Kahler if and only if T is Kahler. 
(3) Assume that there exists an inner integral point x ofX*(S). Then there also 

exists an inner integral point of /C*(T). 

Proof. The assertions (1) and (2) are well known. (However, it might be worth 
reminding here that the "only if" part of both (1) and (2) is false in general if dimension 
is three or higher and the center is not a point. One instructive counterexample is 
found in [Ogl].) Let us show the assertion (3). Recall that H2{S, K) = r*iJ2(T, K) 0 
K[E] ~ H2(T,K) © K[E] for K = Z, R. Moreover, this equality and isomorphism 
are compatible with the cup product and the Hodge decompositions. Let us regard 
P"1,1(5) as a normed space by the product norm of i71'1(r) and M[E]. Set e := [E]. 
Then the inner integral point x G /C*(5) is of the form x = T*y + ae where y G NS(T) 
and a G Z. We show that y is an inner point of /C*(T). Let a G /C(T). Then rV ^ 0 
and T*<T — ee G /C(5) for all sufficiently small positive real numbers e. Therefore r*cr G 
/C(5). Since x is an inner point of /C*(5), there exists r > 0 such that (x.ry) > r|7y| 
for all rj G /C(5) by (1.7). In particular, (x.T*a) > r\T*a\. On the other hand, using 
x = T*2/ + ae and applying the projection formula, we calculate (a;.r*cr) = (y.a). This 
together with the compatibility of the norms implies (t/.cr) > r|cr| for all a G /C(T), 
hence for all a G IC(T). U 

LEMMA (3.3). Let S be a minimal Kahler surface. Assume that a(S) = 0. Then 
S is either a K3 surface or a complex torus of dimension 2. 

Proof. This is of course well known, see, for example, [BPV]. We give a proof to 
convince the reader that no deep result from classification theory is involved. Since 
a(5) = 0, we have ft(5) = 0 or —oo, where K{S) is the Kodaira dimension of S. 
Moreover, if h0(Ks) = 0, then by the Serre duality h2(Os) = 0 and 5 is then projective 
by Kodaira's criterion II (see also [Kd2, Theorem (3.5)]), a contradiction. Therefore 
Ks = 0 in Pic(S) by the minimality of 5. Since S is Kahler, this gives the result. D 

By virtue of (3.1), (3.2) and (3.3), in order to conclude the "if" part, it is now 
sufficient to show the following: 

LEMMA (3.4). 
(1) Let S be a K3 surface. Assume that IC*(S) contains an inner integral point 

x. Then a(S) ^ 0. 
(2) Let S be a complex torus of dimension 2. Assume that /C*(5) contains an 

inner integral point x. Then a(S) ^ 0. 
Proof of (1). Assume to the contrary that a(S) = 0. Let Ci,..., Cm (0 < m < 19) 

denote the distinct smooth rational curves on 5 ((2.3) (2)). We argue dividing into 
two cases: 
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Casel. s€ RtfCi],..., [Cm]); 
Case 2. x £!([Ci],..., [CTO]>. 

Case 1. By (2.3), the subspace of if1-1 

[<71]
±n...n[Cm]-L 

is of signature (1,19 — m) (where J_ is taken with respect to (*.*)). Therefore 

[Cx]xn...n[Cm]-Lnc+(S)9«0. 

Let 7] be an element of this set. Then by (2.1), 77 G /C(5) and rj ^ 0.  On the other 
hand, by our assumption, we have (X.T)) = 0. This contradicts (1.7). 

Case 2. In this case m < 18. Indeed, otherwise we would have R(x, [Ci],..., [C19]) 
= NS(5) 0 E = if1'1 and would get the same contradiction as in Claim 2 of (2.3). 
Therefore the subspace 

ar1 n [d]1- n... n [cy^ 

is of signature (1,19 — m — 1) and then 

x± n [Ci]1- n... n [Cm]1- n c+(S) ^ 0. 

Let r; be an element of x1- fl [d]1- n... n [Cm]-1 nC+(5). Then by (2.1), 77 G /C(5) and 
77 ^ 0. On the other hand, by the choice of 77, we have (x.77) = 0, a contradiction. D 

Proof of (2). Note that (if1,1, (*.*)) is non-degenerate and of signature (1,3). 
Assume to the contrary that a(5) = 0. Then x2 < 0 and x ^ 0 by (2.5). Thus the 
subspace x1- C If1,1 is of index (1,2). Combining this with (2.2), we have x-Ln/C(5) = 
x1- nC+(5) 7^ 0. Therefore there exists an element 77 G IC(S) such that (#.77) = 0. 
However, this contradicts x G /C*(5). D 

4. Proof of Proposition. In this section, we shall prove the Proposition in the 
Introduction. 

Proof of Proposition. Since p(S) = 20, we have if1,1 = NS(5) 0 E. In particular, 
5 is projective and the rational points are dense in H1,1. By the classification of 
K3 surfaces of p = 20 due to [SI] or by the classification of Kleiman-Mori's cones 
of algebraic K3 surfaces due to [Kv], 5 contains a smooth rational curve C. Then 
[C] G /C*(5) and ([C]2) = -2 < 0. Therefore, there exists a neighbourhood U of [C] 
in H1'1 such that (y2) < 0 for all y G U and that U fl £*(5)° ^ 0 by (1.7). By the 
density of rational points, there then exists an inner rational point x of /C*(5) such 
that (x2) < 0. Taking an appropriate integral multiple of this x, we obtain a desired 
point. D 

Remark. 
(1) In this example, the Kahler cone of 5 coincides with the ample cone by 

H1'1 = NS(S) ® E. Therefore, the dual Kahler cone (plus {0}) also coincides with the 
Kleiman-Mori cone. 

(2) For the same reason, any Kahler surface T such that H1,1 = NS(T) (8) E 
which contains a pseudo-effective curve of negative self-intersection admits an inner 
integral point of negative self-intersection in its dual Kaher cone. In particular, any 
non-minimal Kahler surface T such that Pg{T) = 0 satisfies this property. Actually 
every surface T of general type with KT not ample with pg (T) = 0 also shares this 
property. 
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