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A NOTE ON THE COSEGRE CLASS OF A SUBVARIETY*

SOICHI KAWAIt

In this short note we introduce the notion of the cosegre class of a subvariety
of a nonsigular algebraic variety, which is more geometric than the Segre class of a
subvariety, and with it give a proof,which is essentially in the framework of algebraic
geometry, to a theorem of Brylinski,Dubson and Kashiwara[l,Corollary 5).

Let Z be a subvariety of an algebraic variety X and denote by C'zX the normal
cone to Z in X. In Fulton[2] the Segre class s(Z, X) of Z in X is defined to be the Segre
class of CzX. The normal cone CzX is defined to be Spec(}_ Z*/Z*+1), where 7 is
the ideal sheaf defining Z in X and has the projective completion ¢ : P(CzX 1) = Z
with the canonical line bundle O(1). The Segre class s(Z, X) is defined as

5(2,X) = ¢-(3_ e1(0W) N [P(CzX & 1))

Hereafter we assume that X is a nonsingular algebraic variety of dimension n and Z is
an irreducible subvariety of X. For simlplicity’s sake, we assume that dimZ < dimX.
In this note cycles are always algebraic cycles and the intersection of cycles are the
refined intersection of Fulton[2] in Borel-Moore homology groups. Let T ,X be the
conormal bundle to the nonsingular part Zgp, of Z in X. Then the closure of T7 X
in the cotangent bundle T*X is a conic subvariety, which we denote simply by TZX
The closure of T3X in the projective completion P(T*X @ 1) is denoted by T5X.
Let ¢ : P(T*X @ 1) — X be the projection and O(1) the canonical line bundle on
P(T*X ®1). We call

s*(2,X) = q*(zj a(0(1)) N [TEX))

the cosegre class of Z in X. We define linearly the cosegre class s*(z, X) of a cycle
z on X, which is an element of H.(|z|,Z), where |z| is the support of z and Z is the
ring of integers. The following lemma is obtained in Sabbah[7,Lemma 1.2.1].

Lemma. Let ép(Z) be the checked Mather-Chern class of Z and c(T*X) the
Chern class of the cotangent bundle of X. Then we have

éu(Z) =c(T*X)Ns*(Z,X).

Letting M be a bounded complex of Dx modules with regular holonomic coho-
mology. Letting Ch(M") =Y m; Ty, X be the characteristic cycle of M’, where {V}}
is a stratification of X, we define the checked Mather-Chern class ¢ (M) to be

em(M) =Y mjem(V;).
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In this note we denote the cycle > m;Ty X on T*X by the same letter Ch(M’). By
the above lemma we have

En(M) = e(T*X) N5 (3 my ¥, X) = o(T*X) N0. (3 ex(O(1)* 1 Ch(M))),

Let Y be a nonsingular algebraic variety of dimension m and f : X = Y a projective
map. Let gy : f*T*Y — X be the induced bundle, f : f*T*Y — T*Y the projection
and ay the canonical 1-form on T*Y. Then f*(ay) may be considered to be a section

of the induced bundle ¢3 T*X over f*T*Y.

gy (T*X)
Px . l* f
Yy —1Y
o L [
T*X ~ X rE Y

The following theorem is a corollary of a theorem of Ginsburg[3](cf. Kawai[5])
Theorem 1. Let [ f M be the direct image of M" by the map f. Then we have

Ch( /f M) = Fux (Ch(M)) - *(ay)([F*T*Y]).

Here the intersection is the intersection in g% (T*X) and f*(ay)([f*T*Y]) is the
image of the the cycle [f*T*Y] by the section f*(ay). The intersection is considered
to be a cycle in f*T*Y which is identified with the image of the section.

As for the direct image of the cosegre class by the map f we have the following
theorem if we assume for simplicity’s sake that dimX < dimY.

Theorem 2.. Let §y : P(f*T*Y & 1) — X be the projective completion of the
vector bundle f*T*Y — X, i: f*T*Y — P(f*T*Y @ 1) the canonical injection and

p%(T3X) - f*(ay)([f*T*Y]) the cycle which is obtained as the closure of p% (T3X) -
F*(ay)([f*T*Y]) in P(f*T*Y & 1). Then we have

(T*X)Ns*(Z,X) = c(f*T*Y) NGy (s(Ly) N [px (T3X) - F*(ay)((f*T*Y]))),

where Ly is the tautological line bundle on P(f*T*Y & 1).

We have the following corollary which is equivalent to Corollary 5 of Brylin-
ski,Dubson and Kashiwara[l] and the theorem of MacPherson via the Riemann-
Hilbert corresopondence.

Corollary. We have
([ M) = £.ear(M)).
f

Proof of Theorem 2 and Corollary

For the proof of the theorem we prepare a lemma.
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Lemma Let E,F be vector bundles of rank n,m respectively on an algebraic
variety Z. Letp: PE®@ F® 1) - Z(§: P(F & 1) - Z,resp.) be the projective
completion of the vector bundle E®@ F®1(Fa1,resp.). We consider P(F®1) and the
projective bundle P(E) to be the subvarieties of P(E®F®1). Letw : P - P(E®F®1)
be the blow-up of P(E @ F @ 1) along P(E). Then the projection of P(E® F & 1) to
P(F @ 1) with center P(E) induces the morphism 7 : P — P(F @ 1). Let L be the
tautological line bundle on the projective bundle P(F ®1). Thenn: P — P(F &1)
is equivalent to the projective bundle P(TE & L) — P(F & 1). Identifying them, we
have

@*Op(eeren) (1) = Opg-EarL)(1)-

We identify P(*E ® L) = P((L"! ® "E) © 1). Then the exceptional divisor © with
respect to the blowing up is equal to the subvariety P(¢*E) = P(L™' ® ¢*E) and the
line bundle Op(0) associated to the divisor © is m*(L™') ® Opzpor)(1)-

2N

PE®F®1) P(Fo1l)
z

Proof. Let Op(g)(1) be the canonical line bundle of P(E). The normal bundle to
P(E) in P(E® F @ 1) is isomorphic to Op(g)(1) ® (F @ 1). Hence we may consider
P to be the subvariety of P(E® F & 1) xz P(Opp)(1) ® (F®1)) = PE®F ®
1)xz P(F®1)and 7 : P - P(F & 1) to be the projection P(E® F & 1) xz
P(F®1l) — P(F&1l). Let U, be an open subset of Z and E|U, = U, x C*
with fiber coordinates (zq4,0,--- ,Za,n—1) (F|Us = Uy x C™ with fiber coordinates
(Za,ns -« s Tantm—1),1|Ua = Uy x C with fiber coordinates 4, ntm,respectively ) a
local trivialization of the vector bundle E (F), 1, respectively). We consider a copy
of vector bundle F @ 1 and a local trivialization U, x C™*! of the copy with fiber
coordinates (Ya,05-.-sYa,m). Then P is considered to be the subvariety of U, x
P(C* x C™ x C) x P(C™*!) defined by the equations

Tan+tiYa,j = Ta,n+j Ya,is 0<%, <m.

Let Vq,; be the subset of P(E® F @ 1)|U, such that z,,; # 0. A system of coordinate
transformations {g(g,j),(a,i)} of the canonical line bundle Op(ggre1)(1) with respect
to the covering {V,:} is given by 9(3,j),(a.i) = Za,i/Tp,j for VoiNVs; # 0. Let
Wa,i be the open subset of P(F @ 1)|U, such that y,; # 0. Then the map 9, :
7Y (Wa,i) = Wa,i x P", where P™ is a projective space with homogeneous coordinates
(Aa,05- -+ »Aa,n), defined to be

(/\a,Oy <o a/\a,n) = (za,O: ceo sy Ta,n—1, -Ta,n+i)

is a well-defined morphism. In fact, if z4,,+; = 0, by the above defining equa-

yayj

tions of P|U, we have Zo ntj = Ta,nti and hence z4,n4; = 0,forj =0,... ,m.

a,i
Therefore we have (Zq,0,... ,Zan-1) # 0. We infer readily that the morphism v, ;
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is an isomorphism and 7 : P — P(F & 1) is equivalent to the projective bundle
P(@E® L) —» P(F ®1). We identify them. If z4pnt+i # 0 and y,,; = 0, then
Ya,j = Oforj = 0,...,m. Hence we have n(Vonti) C Wy, from which we infer
readily that

n—1
7! (Wa,i) = Va,n+i U U Va,j n W_I(Wa,i)-
Jj=0

If we check the system of coordinate transformations of the line bundles Op(ggre1)(1)
and Op(g- ger)(1) With respect to the refined open covering {Va,n+i, Va,; N~ (Wa,i)},
then we have @*Opggre1)(1) = Opgeor)(1)-

Now we prove the theorem. Let wx : Px - P(T*X & f*T*Y & 1)(wy :
Py - P(T*X @& f*T*Y @ 1),resp.) be the blow-up of P(T*X @ f*T*Y & 1) along
P(f*T*Y)(P(T*X),resp.) and nx : Px = P(T*X @& 1)(xy : Py = P(f*T*Y &
1),resp.) the morphism induced by the projection.

Py —=~PT*X® f'TY®1)~—2— P,

| ! .

P(I*'X 1) — X —— P(f'T"Y ®1)

Then by Lemma 7x : Px = P(T*X & 1)(ry : Py = P(f*T*Y @ 1),resp.) is consid-
ered to be the projective bundle P(gx*f*T*Y @ Lx) - P(T*X & 1)(P(qv*T*X &
Ly) = P(f*T*Y & 1),resp.), where Lx(Ly,resp.) is the tautological line bundle on
P(T*X&®1)(P(f*T*Y ®1),resp.). The vector bundle T*X @ f*T*Y is an open dense
subset of P(T*X & f*T*Y @ 1) and the subvarieties P(f*T*Y), P(T*X) are con-
tained in the complement of 7*X @ f*T*Y. Hence we may consider T*X & f*T*Y =
T*X x x f*T*Y to be an open dense subset of Px and Py, respectively. It is clear that
wx«x (T3 X]) = [T3X xx f*T*Y] on P(T*X @ f*T*Y ® 1). Hence by Fulton[2,
Example 3.2.1.] we have

Gx«mx«(s(Lx) N7x*[TE X]) = Gx+(s(@x*f*T*Y @ Lx)) N [T3X)).
Hence we have

s(fT*Y)Ns*(Z,X) = gxamx+(s(Lx) Nmx* [T X))
= powx.(s(Lx) N7} [T5X]) = pu(s(L) N wx.mx* T3 X))

= pe(s(L) N [T3X xx F*T*Y))

in the Borel-Moore homology group H.(Z,Z).

Meanwhile we show that the section f*ay : f*T*Y - T*X @ f*T*Y = qy*T*X,
where qy : f*T*Y — X is the projection, is extensible to the section ¢ to the
vector bundle Ly ® gy *T*X over P(f*T*Y @ 1). It is sufficient to see this locally.
Hence we assume that X (Y, resp.) is an open subset of C* (C™, resp.) with coordinates

(z:)((y;),resp.) and the morphism f is given by (y;) = f((zi)) = (yj(z;)). Let
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(&)((m;), resp.) the associated fiber coordinates of T* X (T*Y, resp.). Then P(f*T*Y &
1) = X x P(C™ x C), where P(C™ x C) is a projective space with the homogeneous
coordinates (7o, ... ,Nm—1,Mm). Let V; be the open subset of P(C™ x C) such that
n; # 0. We consider my ~1(X x V;) to be X x V; x P(C* x C), where P(C* x C) is a
projective space with homogeneous coordinate ((§;),¢;). Then T*X @ f*T*Y is the
open subset of my 71 (X X V;) such that ; # 0. The 1-form f*ay is expressed as

. Ay
fray = an%dxi‘

Hence the section f*ay is defined by the equations
9y; .
€1=ZB—I'ZT]J, Z=0,...,TL—1.

We define o]V : X x V; = X x V; x P(C* x C) to be

v=m-—

1
(@1V3)(3), (0, -+, 11m)) = ((22), (0s -+ 1), (D %m),m))-

v=0
These {o|V;} give the desired extension.

By the above defining equations of the section we see easily that the image of the
section o is the cone over the image of the restriction of ¢ to P(f*T*Y").

! (P(f*T*Y)) — (Ly' @ gy *T*X) & 1

| |-

P(f*T*Y) P(fT*Y &1)

Hereafter we often use the smame letter for the fundamental cycle of a subvariety.
It is clear that the closure p5T5X of pxT3X in Py is a cone over a subvariety of
7 (P(f*T*Y)), where px is the projecton of g% (T*X) to T*X, for the defining
equations of the subvariety p% 77X in Py do not contain (;) of the above coordinate
systems. Therefore the intersection of p3, 77X and the image of the section o is the
cone over the intersection of the corresponding subvarieties in 73 (P(f*T*Y)). Hence
we have

px(T3X) - f*(ay)((f*T*Y)) = px T3 X - o(P(f*T*Y & 1)).
By Fulton[2, Proposition 3.3.] we have
PRT3X - o(P(fT*Y © 1)) = 7. (ca(¢) N PETEX),

where ¢ is the universal rank n quotient bundle of (L3' ® gy*T*X) @ 1. Since
wy«(© - C) = 0 for any cycle C on Py, we have

Dy (ea(¢) NPRTEX) = @y (ea((L3 ® v T"X) © 1) NP5 T3X),

for, letting Ly be the tautological line bundle on the projective bundle P((Ly' ®
Gy*T*X) & 1), we have the exact sequence

0= Ly »m((Ly' @ gy* (T*X)® 1) = ¢ = 0,
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and by Lemma we have c1(L3!) = ©. From Ly = Op(gy -7+ x@Ly)(1) ® Ly we have
@y.(c1(Ly') NC) = wy«(c1(Op(gy *1 x0Ly) (1)’ N C)

for a positive intager ¢ and a cycle C on Py and hence we have

wy(en((Ly' ® Gy *T*X) & 1) Np T3 X)

=@y (D c1(Opgy 1 xoLy) (1)) eni(@T*X) NP5 T3 X)
=0

n
=Y e1(Oprxer1von (1)) Breni(T*X)NTEX xx [*T°Y.
=0

Therefore we have

Ty «(s(Ly) N [px (T3X) - f*(av)([f*T*YD)))
=p"( Y. a(Op@gy1x0Ly)V)) T8 ani(T*X)NTEX xx *T7Y).
£>0,0<i<n
By the assumption that n < m, noting that
mx+(1(Op(s+1eyer) (1)) N1% (C))) =0

for i <m and a cycle on P(T*X & 1), we have

WX*(Z Z Ci (Op(qy *T*XeaLy)(1))k+i7"3((0n—i(173(T*X) n TEX)
i k>0

=mx:(D_ Y c1(Op(gy 1 x0Ly) (1)) (cni(@%T*X) N T3 X)
i k>0

= mxs(s(Ex) N 7% (T c(T* X) NTEX)) = s(f*T*Y @ Lx)Ge(T*X) N TLX.

Thus we have

dy+(s(Ly) N [px (T3 X) - f(ay)((FT*Y])]) = s(f*T*Y)e(T*X) N 5*(Z, X),

which completes the proof of the theorem.

Remark If, for example, m = 0, we have the following formula
ém0(Z) = 3x+(so(X) - [T3X]),

where s is the zero section to the projective completion P(T*X & 1).
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Finally we prove the corollary. In a similar notations to the above we have the
following fiber square

P(fT'Y®1) — >~ P(T*Y & 1)

| v

X 7 Y.

Let Ly be the tautological line bundle on P(T*Y @ 1). Then the induced bundle
f*Ly is the tautological line bundle on P(f*T*Y & 1). Hence by Theorem 2 we have

fuo(@m (M) = fu(Zm;e(T*X) 0 5*(V}, X))

= £:Q_mie(f*T*Y) N @x«(s(F* Ly) N [px (T3, X) - f*(ay)((F*T*Y])

= o(TY) N @y fo (Y mys(F"Ly) N [px (T3, X) - F*(ay) ((F*T*Y).

By Theorem 1 we have

(S malp3e @530 T ) (7 TYD) = On( | ).

Hence we have

F () (M) = e(T*Y) N G (s(Ly) N [Ch( /f M)

= (T*Y)N s'(/f M,Y) = z‘:M(/fM').
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