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A NOTE ON THE COSEGRE CLASS OF A SUBVARIETY* 

SOICHI KAWAlt 

In this short note we introduce the notion of the cosegre class of a subvariety 
of a nonsigular algebraic variety, which is more geometric than the Segre class of a 
subvariety, and with it give a proof,which is essentially in the framework of algebraic 
geometry, to a theorem of Brylinski,Dubson and Kashiwara[l,Corollary 5]. 

Let Z be a subvariety of an algebraic variety X and denote by CzX the normal 
cone to Z in X. In Fulton[2] the Segre class s(Z, X) of Z in X is defined to be the Segre 
class of CzX. The normal cone CzX is defined to be Spec(^Ife/Ife+1), where 1 is 
the ideal sheaf defining Z in X and has the projective completion q : P(CzX{Bl) -> Z 
with the canonical line bundle 0(1). The Segre class s(Z, X) is defined as 

8(Z,X) = g.(^c1(0(l))in[P(CzX©l)]). 
i 

Hereafter we assume that X is a nonsingular algebraic variety of dimension n and Z is 
an irreducible subvariety of X. For simlplicity's sake, we assume that dimZ < dimX. 
In this note cycles are always algebraic cycles and the intersection of cycles are the 
refined intersection of Fulton[2] in Borel-Moore homology groups. Let T^ X be the 
conormal bundle to the nonsingular part ZSp of Z in X. Then the closure of T^ X 
in the cotangent bundle T*X is a conic subvariety, which we denote simply by T^X. 
The closure of T^X in the projective completion P(T*X © 1) is denoted by T^X. 
Let q : P(T*X 0 1) -» X be the projection and (9(1) the canonical line bundle on 
P(T*X©1). We call 

5*(Z,X)=^(^c1(0(l)rn[7|X]) 
i 

the cosegre class of Z in X. We define linearly the cosegre class s*(z1X) of a cycle 
z on X, which is an element of iJ (|z|,Z), where \z\ is the support of z and Z is the 
ring of integers. The following lemma is obtained in Sabbah[7,Lemma 1.2.1]. 

Lemma. Let CM(Z) be the checked Mather-Chem class of Z and c(T*X) the 
Chern class of the cotangent bundle of X. Then we have 

CM(Z) = c{T*X)ns*(Z,X). 

Letting M' be a bounded complex of Vx modules with regular holonomic coho- 
mology. Letting Ch.(M') = ^mjTy.X be the characteristic cycle of M\ where {V}} 
is a stratification of X, we define the checked Mather-Chern class CM{M') to be 

CM{M') = ^rrijCMiVj). 
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In this note we denote the cycle ^mjTy.X on T*X by the same letter Ch(M'). By 
the above lemma we have 

CM(M') = c(T*X) H s^m^X) = c(T*X)nq*(Y,ci(0(l))i n Ch{M')). 

Let Y be a nonsingular algebraic variety of dimension m and / : X -> Y a projective 
map. Let gy : /*T*Y -> X be the induced bundle, / : f*T*Y -» T*Y the projection 
and ay the canonical 1-form on r*Y. Then /*(ay) may be considered to be a section 
of the induced bundle qyT*X over /*T*Y. 

r*Y 

T*X 

The following theorem is a corollary of a theorem of Ginsburg[3](cf. Kawai[5]) 

Theorem 1. Let JfM' be the direct image of M' by the map f. Then we have 

c*/ M) = /.(pi(Oh(M•)) ■ /•(ayXI/T-y])). 

Here the intersection is the intersection in qx{T*X) and /*(ay)([/*T*Y]) is the 
image of the the cycle [/*T*Y] by the section /*(ay). The intersection is considered 
to be a cycle in f*T*Y which is identified with the image of the section. 

As for the direct image of the cosegre class by the map / we have the following 
theorem if we assume for simplicity's sake that dimX < dimY. 

Theorem 2.. Let qy : P(f*T*Y 0 1) -* X be the projective completion of the 
vector bundle f*T*Y -> X, i : f*T*Y -» P(f*T*Y © 1) the canonical injection and 

PxCTz^O ' f*(aY)([f*T*Y]) the cycle which is obtained as the closure of PxiT^X) • 
/*(ay)([/*T*Y]) in P(f*T*Y © 1). Then we have 

c(T»x) n 8*{z, X) = c(f*T*Y) n HYMLY) n fe(r|X) • /*(ay)([/*r*Y])]), 
where Ly is the tautological line bundle on P(f*T*Y © 1). 

We have the following corollary which is equivalent to Corollary 5 of Brylin- 
ski,Dubson and Kashiwara[l] and the theorem of MacPherson via the Riemann- 
Hilbert corresopondence. 

Corollary.  We have 

CM(J M') f*(cM(M')). 

Proof of Theorem 2 and Corollary 

For the proof of the theorem we prepare a lemma. 
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Lemma Let E, F be vector bundles of rank n, m respectively on an algebraic 
variety Z. Let p : P(E 0 F 0 1) -> Z(q : P(F 0 1)-+ Z.resp.) be the projective 
completion of the vector bundle E®F®l(Fol, resp.). We consider P(F01) and the 
projective bundle P(E) to be the subvarieties ofP(E®F<Sl). Letw : P -> P(E®F®1) 
be the blow-up of P(E 0 F 0 1) along P{E). Then the projection of P(E 0 F 0 1) to 
P(F 0 1) with center P(E) induces the morphism TT : P -> P(F 0 1). Let L be the 
tautological line bundle on the projective bundle P(F 0 1). Then TT : P —> P(F 0 1) 
is equivalent to the projective bundle P(q*E © L) -> P(F 0 1). Identifying them, we 
have 

™*Op(E@F©l){l) = Op(pE®L)0)- 

We identify P(q*E 0 L) = P{(L~l (g) q*E) 0 1). Then the exceptional divisor 0 with 
respect to the blowing up is equal to the subvariety P{q*E) = i^L-1 0 q*E) and the 
line bundle Op(Q) associated to the divisor 0 is 7r*(L~1) (g> Op^EeL)^)- 

P(E0F01) P(F0 1) 

Proof. Let ^p(j5)(l) be the canoniccd line bundle of P(E). The normal bundle to 
P(E) in P(E 0 F 0 1) is isomorphic to Op(E){t) ® (F 0 1). Hence we may consider 
P to be the subvariety of P(E 0 F 0 1) xz P(OpiE)(l) 0 (F 0 1)) = P(£7 0 F 0 
1) xz P(F 0 1) and TT : P -> P(P 0 1) to be the projection P(E 0 F 0 1) xz 

P(P 0 1) -> P(P 0 1). Let Ua be an open subset of Z and E\Ua = Ua x O1 

with fiber coordinates (xa5o?--- ,#a,n-i) (P|C/a = C/a x Cm with fiber coordinates 
(^a,n)--- j^a,n+m-i))l|^a = Ua x C with fiber coordinates a;ajn+mRespectively ) a 
local trivialization of the vector bundle E (P, 1, respectively). We consider a copy 
of vector bundle P 0 1 and a local trivialization Ua x Cm+1 of the copy with fiber 
coordinates (ya^^... ,2/a,ra)- Then P is considered to be the subvariety of Ua x 
P(Cn x Cm x C) x P(C^+1) defined by the equations 

%ac,n+i yaj = %a,n+j 2/a,z?      U ^ 2, J \ 777.. 

Let Vaj be the subset of P(P0P01)|C/Q such that Xaj j£ 0. A system of coordinate 
transformations {</(/?j),(cM)} of the canonical line bundle OP^EQFQI) 0-) with respect 
to the covering {V^,*} is given by g^^^aj) = Xa,i/xPj for Vaj n Vpj ¥" 0- Let 
Wa4 be the open subset of P(P 0 l)\Ua such that yaj ^ 0. Then the map ipa,i ' 
^~'1(Wa,i) ->• W^a,i x P72, where Pn is a projective space with homogeneous coordinates 
(^a,0 5 • • • ) ^at,n)i defined to be 

vAajo> • • • 5 AQ-^J = V^Q,0? • • • j ^Q,?!—1? ^a.n+iJ 

is a well-defined morphism. In fact, if a:a?n+j = 0, by the above defining equa- 

tions of P|C/a we have Xa,n+j = ^a^+i-^- and hence £a)n+j = 0,for j = 0,... ,ra. 
2/a,f 

Therefore we have (xQ)o, • • • ,^a,n-i) 7^ 0. We infer readily that the morphism ipaj 
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is an isomorphism and TT : P ->• P{F 0 1) is equivalent to the projective bundle 
P{q*E © L) -> P(F 0 1). We identify them. If xa,n+i ^ 0 and y^ = 0, then 
2/aj = Oforj = 0,... ,m. Hence we have 7r(Va,n+i) C Waii, from which we infer 
readily that 

n-l 

i=o 

If we check the system of coordinate transformations of the line bundles Op(E®Fei) (1) 
and Op(q*E@L) (1) with respect to the refined open covering {Va,n+i, Va JHTT"

1
 (Wa,2)}, 

then we have vj*Op{EeFel)(l) = Op(rEeL){l). 

Now we prove the theorem. Let ZJX : ^x -> P(T*X 0 /*r*y 0 l)(tuy : 
PY -> P(r*X 0 /*T*y 0 l),resp.) be the blow-up of P(T*X 0 /*r*y 0 1) along 
P(/*T*y)(P(T*X),resp.) and TT* : Px -> P(T*X 0 l)(7ry : Py -> P(f*T*Y 0 
l),resp.) the morphism induced by the projection. 

px —^^-^ p(r*x 0 /*T*r 01) ^_2r— ^ 

TTX TTy 

P(T*X 0 1) ^ X -* P(f*T*Y 0 1) v / qx qy w / 

Then by Lemma TT* : Px -> P(T*X 0 l)(7ry : Py -» P(f*T*Y 0 l),resp.) is consid- 
ered to be the projective bundle P(qx*f*T*Y 0 Lx) -+ P(T*X 0 l)(P(^y*T*X 0 
Ly) -> p(f*T*Y 0 l),resp.), where LxC-kyjresp.) is the tautological line bundle on 
P(T*X0l)(P(/*T*y 0l),resp.). The vector bundle T*X0/*T*Y is an open dense 
subset of P{T*X 0 f*T*Y 0 1) and the subvarieties P(/*T*y),P(T*X) are con- 
tained in the complement of T*X 0 f*T*Y. Hence we may consider T*X 0 /*T*Y = 
T*X Xxf*T*Y to be an open dense subset of Px and Py, respectively. It is clear that 
wx^*x([TpC]) = [T*X xx /*T*Y] on P{T*X 0 /*r*Y 0 1). Hence by Fulton[2, 
Example 3.2.1.] we have 

qx*Kx*(s(Lx) H 7rx*[T|X]) = qxMQx*rT*Y 0 Lx)) n [T}X]). 

Hence we have 

*(/*T*y) ns*(z,x) = fx.wx.W^) n7rx*[T|jn) 

= jw*,(*(£*) n7rJ[r|X]) = p,(«(L) n wx^x*[T*zX]) 

= pML)n[T*zXxxf*T*Y}) 

in the Borel-Moore homology group H.(Z,Z). 

Meanwhile we show that the section /*ay : /*T*Y -> T*X®f*T*Y = qY*T*X, 
where qy : f*T*Y -> X is the projection, is extensible to the section a to the 
vector bundle Ly1 <g> qY*T*X over p(f*T*Y 0 1). It is sufficient to see this locally. 
Hence we assume that X(Y, resp.) is an open subset of Cn (Cm, resp.) with coordinates 
(^)((2/j)J

resP0 and the morphism / is given by (yj) = /((a:»)) = (yjfai)).   Let 
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(6)(fai)> resP0 the associated fiber coordinates of T*X(T*Y, resp.). Then P(/*T*Y© 
1) = X x P(Cm x C), where P(Cm x C) is a projective space with the homogeneous 
coordinates (rjo,... ,?7m-i>?7m)- Let V} be the open subset of P(Cm x C) such that 
rjj y£ 0. We consider Try""1 (A" x P}) to be X x V,- x P(Cn x C), where P(Cn x C) is a 
projective space with homogeneous coordinate ((£i)>0)' Then T*X © f*T*Y is the 
open subset of 7ry~1(X x Vj) such that Q ^ 0. The 1-form /*ay is expressed as 

Hence the section /*Q:y is defined by the equations 

m—1 o 

& = ]C a^"77-7''    * = 0,...,n-l. 

We define a|V} : X x ^ -> X x ^ x P(Cn x C) to be 

i/=7n—1 

H^)((»*)»(»3b»---^m)) = ((a:*),(^o,.-.,qm),((   XI   ^T^^i))- 
i/=o    aa:i 

These {cr|Vj} give the desired extension. 

By the above defining equations of the section we see easily that the image of the 
section a is the cone over the image of the restriction of a to P(f*T*Y). 

Tryl(P(f*T*Y)) *- (Lyl 0 gy*T*X) © 1 

P(f*T*Y)  P(f*T*Y © 1) 

Hereafter we often use the smame letter for the fundamental cycle of a subvariety. 
It is clear that the closure p^T^X of p^T^X in Py is a cone over a subvariety of 
7r-1(P(/*r*y)), where px is the projecton of q*x{T*X) to T*X, for the defining 
equations of the subvariety PxT^X in Py do not contain (rji) of the above coordinate 
systems. Therefore the intersection of p*xT^X and the image of the section a is the 
cone over the intersection of the corresponding subvarieties in Tiy1 (P(f*T*Y)). Hence 
we have 

piCZpO • /*(ay)([/*T*Y]) = p*xT^X ■ cr(P(/*T*F e 1)). 

By Fulton[2, Proposition 3.3.] we have 

p*xT*zX ■ a(P(rT*Y © 1)) = TT.MC) np*xT}X), 

where C is the universal rank n quotient bundle of (Ly1 <g) qy*T*X) © 1.    Since 
mY*{Q - C) = 0 for any cycle C on Py, we have 

W*MC) np*xTZX) = wy^CndLy1 0 gy*T*X) © 1) np^Tpc), 

for, letting Zy be the tautological line bundle on the projective bundle P^Ly1 (8) 
qy*T*X) © 1), we have the exact sequence 

0 -> Ly -> ^((Ly1 ® gy*(T*X) © 1) -> C -> 0, 
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and by Lemma we have ci(Ly1) = 0. Prom Ly1 = 0p(£y*T*x©Ly)(l) ® Ly we have 

nyiciiLy1)' HC) = ts7y*(c1(OpWir.T^©Lir)(l))< nc) 

for a positive intager z and a cycle C on Py and hence we have 

WY.icndLy1 ® ^y*T*x) e i) np^r^x) 

n 

= ^y.(Xlci(Op(?r.T.xeir)(l))iCn-i(rT*X) D^pfX) 
i=0 

= X;ci(Op(T-x©/T-yei)(l))Vcii-i(T*X) nr|X xx /*T*F. 
t=0 

Therefore we have 

gy.(*(Ly) D \p*x(T*zX) ■ f*(aY)([f*T*Y))}) 

= p*(     J2     c1(Op(q-Y.T.X(BLY)(l))k+ip*cn-i(T*X)nT*zX xx f*T*Y). 
k>0,0<i<n 

By the assumption that n < m, noting that 

^.(ci(Op(/.T.y®i)(l))<n7ri(C))) = 0 

for i < m and a cycle on P(T*X 6 1), we have 

i    k>0 

= *X^Y/c1(0PiqY.T.Xs)LY)(l))
k**x(cn-i(q*xT*X)nT*zX) 

i    k>0 

= vxMLx) n 7r^(^c(T*X) n T^X)) = s(rT*Y © Lx)?xc(T'X) n T|X 

Thus we have 

gyMLv) n fe^x) • /*(ay)([/*r*r])]) = s(rT*y)c(T*x) n **(z,x), 

which completes the proof of the theorem. 

Remark If, for example, m = 0, we have the following formula 

where SQ is the zero section to the projective completion P(T*X 0 1). 
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Finally we prove the corollary. In a similar notations to the above we have the 
following fiber square 

p(f*T*Y © i) —£*- p(r*y © 1) 

Qx QY 

X *Y. 

Let Ly be the tautological line bundle on P(r*y © 1).  Then the induced bundle 
f*LY is the tautological line bundle on P{f*T*Y © 1). Hence by Theorem 2 we have 

= /.(EfM/T'y) n qx*(s(rLY) n \p*x(T^x) - /*(ay)([/*r*r])]) 

= c(r*y) n W*(£ rn^riy) n \P*X{T$X) . /*(ay)([/*T*r])]). 

By Theorem 1 we have 

/.(EroMC^X) • /*(ay)([/T*K])]) = Ch( f M*). 
J f 

Hence we have 

MCM)(M') = c(T*y) n QYMLY) n [Chcy ^t-)]) 

= c(r*y) n 5*( / M", Y) = CM(y, ^). 
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