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LINES ON NON-DEGENERATE SURFACES* 

GUANGFENG JIANGt AND MUTSUO OKA* 

Abstract. On an affine variety X defined by homogeneous polynomials, every line in the tangent 
cone of X is a subvariety of X. However there are many other germs of analytic varieties which are 
not of cone type but contain "lines" passing through the origin. In this paper, we give a method to 
determine the existence and the "number" of such lines on non-degenerate surface singuairities. 

1. Introduction. Let (X, O) be a germ of analytic varieties embedded in (C1,0) 
with a singularity at O. By abuse of language, we say that L is a line in (X, O) if 
(L, O) is a smooth curve germ in (X, O) and L \ {0} is contained in the regular part 
ofX. 

In [3, 5], lines on hypersurfaces with simple singularities are classified by using 
the classification machinery. All the hypersurfaces of dimension 2 and 3 with simple 
or simple elliptic singularities passing through x-axis are equivalent to (under the 
coordinate transformation preserving the x-axis) some surfaces defined by explicit 
equations. It turns out that the A,D,E singularities split in this classification. This 
says that different smooth curves on the same surface might have different properties. 

Let TT : X -> (X, O) be a resolution of a surface (X, O) with an isolated singu- 
larity at the origin O and let {Ei,. ..,Er} be the exceptional divisors of TT. For an 
exceptional divisor Ei, let £#; denote the set of lines on (X, 0) whose strict transform 
intersect Ei transversally. It is known that Csi is non-empty if and only if there exist 
a function germ h in the maximal ideal m such that the multiplicity of 7r*h along Ei 
is one and conversely any line in X is contained in some Csi ([1, 2]). We call Ei a 
normally smooth divisor if £#. / 0. Geometrically this implies that d7r(v) ^ 0 for 
any tangent vector v G TpX as long as P G Ei \ [jj^i Ej and v is not tangent to Ei. 
If Ei is normally smooth, any germ of a curve intersecting Ei \ Uj^i Ej transversely 
defines a line in X. Any two lines in the same Z^. can be connected by an analytic 
family of lines in (X, O). 

For a given resolution TT : X ->• X, we consider the integer p(7r) := #{#*; CE^ i1 0}- 
This number depends on the resolution. Put p(X, O) to be the minimal value of p(7r). 
Obviously /?(7r) = p(X, O) if TT : X -> X is a minimal resolution. We call piis) the line 
index of the resolution n : X -)• X and we call p(X, O) the line index of (X, O). 

In this paper, we study p(7r) where TT is a toric resolution of a non-degenerate 
surface singularity. Let (X,0) C (C3,0) be a surface defined by f(zi,Z2,zs) = 0 with 
isolated singularity at the origin. We assume that / is non-degenerate in the sense 
of the Newton boundary ([7]). Let E* be a regular simplicial cone subdivision of 
the dual Newton diagram r*(/) and let TT : Xs* -> (X, 0) be the associated toric 
resolution. We denote p(7r) by p(S*) for simplicity. To each vertex P = t(pi,P2,P3) 
of £*, there corresponds an exceptional divisor E(P) of TT, which may have several 
components. The multiplicity of TT*^ along E(P) is equal to pi ([9]). Thus by the 
result of Gonzalez-Sprinberg and Lejeune-Jalabert ([!]), E(P) is normally smooth if 
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and only if mm(pi,p2,P3) = 1. We observe that p(X)*) is independent of the choice of 
E* under certain conditions (see Proposition 6). This allows us to use the canonical 
toric resolution to determine p(S*). Note that a toric resolution is not necessarily 
minimal. So, in general, /?(£*) may be bigger than p(X, O) (see Example 28). However 
to have the equality />(£*) = p(X, O), it is enough that TT : Xs* -» X is line-equivalent 
to the minimal resolution (see § 2 for the definition). The purpose of this paper is to 
give a method to compute p(D*). 

2. Line-admissible blowing-ups. Let (X, O) be a germ of a surface with an 
isolated singularity at O. Suppose that we have a good resolution TTI : Xi -> X and 
let Ei,...,Er be the exceptional divisors of TTI . Take a divisor Ei0 and a point Q on 
Ei0 and let TTQ : Xi -> Xi be the blowing-up at Q and let EQ be the exceptional 
divisor of TTQ. The following statements are obvious. 

PROPOSITION 1. Take a function hem and let mi be the multiplicity of TT^h 
along Ei. Then the multiplicity TTIQ of the pull-back 'Kq^lh) along EQ is the sum of 
mi for all i such that Q € Ei. In particular, mq > 1, and mq = 1 if and only if 
mio = 1 and Q <E Eio \ (J^ £*. 

COROLLARY 2. Under the situation of Proposition 1, EQ is a normally smooth 
divisor of the composition TTI O TTQ : Xi -> X if and only if Ei0 is a normally smooth 
divisor of TTI : Xi —> X and Q is contained in Ei0 \ Uj-^i0 Ej. 

We call TTQ : Xi -> Xi a line-admissible blowing-up if either the center Q is at 
the intersection of two exceptional divisor or the supporting divisor is not normally 
smooth. Suppose that we have another good resolution 7r2 : X2 -> X. We say 
that 1T2 : X2 -> X is line-equivalent to TTI : Xi —> X if there exist a finite chain of 
resolutions TT^ : Y* -» X, i = 1,..., s such that (1) Yi = Xi and TTJ = TTI and Ys = X2 
and Tr'g = 7T2 and (2) any consecutive resolutions factor by either cr^ : Yi —> Yi+i or 
(Ti : Fi+i ->• Yi, where ai and a^ are line-admissible blowing-ups. 

An immediate consequence of the definition and Corollary 2 is: 

COROLLARY 3. Assume that TT* : Xi ->• X,i = 1,2 are line-equivalent. Then 

pirn) = p(fl2). 

3. Toric resolution and the computation of p(E*). 

3.1. Non-degenerate surfaces. We begin with recalling the toric resolutions 
of surface singularities since this also helps us to fix some notations. We use the 
notations of [9]. Let (X, O) be the germ of a surface in (C3,0) defined by a function 
/ : (C3,0) ->• (C, O). Hereafter we always assume that X has an isolated singularity 
at O. Let Ylv avzl/ be the Taylor expansion of /. The Newton polyhedron T+(f) is 
by definition the convex hull of [Jsu;au^o\{^ + ^3}- The Newton boundary r(/) is by 
definition the union of the compact faces of r_l_(/). 

Let N := Homz(Z3, Z) be the set of covectors. We identify N with Z3 and 
we denote the elements of iV by column vectors. Let iV+ be the set of covectors 
P = t(PuP2,P3) e N with pi >0,t = 1,2,3. Put Ex :=*(!,0,0),E2 :=*((), 1,0) and 
£3 := t(0,0,1). P is called strictly positive covector if pj > 0 for all j. We denote 
the minimal value of the linear function P on r+(/) by d(P; /). Put A(P; /) = {z G 
r+(/) I P(z) = d(P]f)}. The face function of / with respect to P is by definition 
fp(z) = /A(P;/) 

:= llveA(P'j)avzl/'   Tw0 covectors P,Pf e N+ are equivalent if 
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and only if A(P;/) = A^';/). The dual Newton diagram T*(f) of X is a conical 
polyhedral subdivision of N+ given by the above equivalent classes. 

A surface X is called non-degenerate (with respect to the local coordinate z) 
if for any strictly positive covector P € iV+, X*(P) := {z 6 C3 | fp(z) = 0} is a 
reduced non-singular surface in the complex torus C*3. The notion of non-degeneracy 
can be extended to complete intersection varieties (cf. [6, 9]). 

3.2. Canonical subdivisions. We assume that X is defined by f(zi, zz, z^) =0 
and / is non-degenerate. Let r*(/)2~ be the union of the two-dimensional cones 
Cone(P, Q) of r*(/) such that the interior points are strictly positive. Let E* be a 
regular simplicial subdivision of the dual Newton diagram r*(/) and let TT : X^* —» X 
be the associated toric modification. Let V(E*) be the set of strictly positive vertices 
P's of E* such that dim A(P; /) > 1. The exceptional divisors correspond bijectively 
to V(E*) and for each P G V(E*) we denote the corresponding divisor by E(P). Note 
that E(P) need not to be irreducible but it is a disjoint union of rational spheres if 
dim A(P;/) = 1. The number of connected components is given by r(P) + 1, where 
r(P) is the number of integral points on the interior of A(P;/) ([9, III§6]). The 
structure of this resolution TT : X^* ->> X depends only on the restriction of E* to 
r*(/)2~. This follows from the following observation: 

PROPOSITION 4. Assume that E^ is a regular subdivision o/E* such that V(Ei) = 
V(E*). Then the canonical morphism if) : X^* —> Xz*, which is induced by the 
morphism of the ambient toric varieties, is an isomorphism. 

For any two dimensional cone a = Cone(P,Q) G r*(/), there exists a canonical 
regular subdivision of a which is described as follows. Denote by d := det(P, Q) the 
greatest common divisor of the absolute values of the 2x2 minors of the matrix (P, Q). 
If d > 1, there exists a unique integer di, 1 < di < d such that Qi := (P + diQ)/d 
is an integral covector. If di > 1, repeat the process for Cone (P, Qi), until a regular 
subdivision of Cone(P,Q) is obtained. Let Qi,...,Qk be the covectors obtained in 
this way. Let d/di = [mi,... ,m^] be the continuous fraction expansion. Then £ = k 
and the self-intersection number of each component oiE(Qi) is —mi (cf. [9, III]). Note 
that A(<2i; /) = A(P; /) D A(Q; /). This implies r(Qi) is independent of i = 1,..., k 
and we denote this number by r(P, Q). Recall that the continuous fraction is defined 
inductively by [mi] = mi and [mi,m2,...,m&] = mi — l/[m2,...,m^]. 

A regular simplicial cone subdivision of r*(/) is called a canonical regular sub- 
division if its restriction to each cone a in r*(/)2~ is canonical in the above sense, 
and we denote it by E*an. The associated toric resolution is called the canonical toric 
resolution of X. 

Let Q = X^ij^tfs) and P = HP^^PS)- Put Q0 = Q and QAH-I = P and let 
Qj := t(qij,q2j, Qsj),j = 0,..., k +1. The canonical subdivision enjoys the following 
property: 

LEMMA 5. Assume that Cone(P,Q) G r*(/)J. Fix an I — 1,2,3. 
1) tf Qt ^ 1 > then fej}j=o Z5 monotone increasing in j i.e. qtj+i > qtj for 

0<j<k. 
%) U Qi ^ 2, then either {qej} is monotone increasing or monotone decreasing 

in j or there exists a jo (1 < jo < k) such that q£j0 > 1 and 

Pe = qe,k+i >••'•> Qejo+i > Qijo < Qejo-i <      < qe,o = Qt- 

Proof. We prove the assertion 2). If the assertion does not hold, there exists 
an index j, 1 < j < k such that qej-i < qej > qij+i-   This implies that the self 
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intersection number of each component of E(Qj) is —(qtj-i + q£,j+i)/qt,j > —2, 
which is a contradiction (cf. [9, 11(2.3) and 111(6.3)]). The assertion 1) follows from 
2) as Qj,j = 1,..,, k are strictly positive. D 

Let S* be any regular simplicial cone subdivision of r*(/) and let TT : X ->• X be 
the corresponding toric modification. We denote the line index of TT by p(E*). Take a 
two dimensional cone a == Cone(F, Q) € r*(/)£. Let Qo *= Q, Qi,.. • , Qk, Qk+i := P 
be the canonical subdivision of a and let So := Q,5i,... ,5^,5^+1 := P be the 
vertices of E* on this cone. By [9, 11(2.3)], {Qo,...,Q*+i} C {So,...,5^+i}. We 
consider the condition: 

(jt): S* has no vertex in the interior of Cone(Q,<9i). 

We say that E* satisfies the (jt)-condition if it satisfies (j))-condition for any Cone (P, Q) 
in r*(/)2" such that Q is not strictly positive. The inclusion V(E*an) C V(E*) implies 
that the following statements. 

THEOREM 6. There exists a canonical morphism <j): XE* ->• -^E*an. Furthermore 
<j) is a composition of line-admissible blowing-ups if E* satisfies (jj) -condition. In 
particular, the line index p(E*) does not depend on the choice of a toric resolution 
associated with any regular simplicial subdivision satisfying {jj)-condition and p(E*) = 

Proof. Take a two dimensional cone a = Cone(P,<9) € T*(f)2 and assume 
that P is strictly positive. Let Qo := <3,Qi,... ,Q*>Qfc+i := P be the canonical 
subdivision of a and let So := Q,Si,... JS^JS^+I := P be the vertices of E* on 
this cone. Write Si = t(5ijj52,i,53j). Assume that Qi0 — Su and Qi0+i = 5^ 
and /i — v > 1. Take Sj with v < j < /j, and put ctj = det(Qi0,Sj) and /3j = 
det(Sj,(3i04.i). Then a^ and fy are positive integers and Sj = ajQiQ+i + PjQio- 
This implies that 5ij > Si,,, 4- 5i)M. Suppose that sj13* = max{5ij;i/ < j < jj,} and 
put 7 = min{7;si,7 = sfax}. Then by [9, 11(2.3)] the intersection number of (each 
component of) E(S^) is —(§1,7-1 + si,7+i)/si)7 > -2. Then the negativity of the 
intersection number implies that si,7_i + sij7-f-i = 5i>7. Thus each component of 
E(Sy) is a rational sphere of the first kind. This implies also that S7 = S7_i -f 57+i 
and det(S7_i,S7+i) = 1. Put V = V(E*) - {S7}. Then we can extend V to get 
a regular simplicial subdivision E*' such that its restriction to r*(/)J is defined by 
the vertices V. Thus we get a toric resolution TT' : Xs*/ -4 X. Changing E* outside 
of r*(/)2" if necessary, we may assume by Proposition 4 that E* is a subdivision 
of E*'. Thus we get a, canonical morphism ip : Xs* -> Xz*> which factors TT by 
TT'. By the definition, f(p is the composition of blowing-up at r(S7) + 1 intersection 
points of respective components of J5(S7_i) and E(S1+i) in X^>. Note that rp is 
line-admissible unless Q is not strictly positive and Sj, = Qo and S^ = Qi. This is 
the situation where ip is the blowing up at the intersection of E(Qi) and E(Q). This 
does not occur if E* satisfies (tt)-condition. Now the assertion follows by the induction 
on the cardinality of V(E*) \ V(E*an). D 

3.3. Computation of p(E*an). Let TT : Xs* -4 X be a toric resolution. We 
assume that E* satisfies the (jt)-condition. We define Vns(E*) := {P £ V(E*) | 
P has 1 as a coordinate }. We know that E(P) is a normally smooth divisor if 
and only if P E Vns(E*). Thus for each Cone(P,Q) € r*(/)J, we define PPQ := 
#Vns(S*) fl Cone (P, (5)°, where Cone(P,Q)0 is the interior of Cone(P,Q). This 
number is independent of E* by Theorem 6. Recall that r(P, Q) is the number of 
integral points in the interior of A(P; /) fl A(Q; /). By the definition we have 
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(3.1) pCS*) = Jt{P € Vns(E*);dim A(P;/) = 2} + £ (r(Pf Q) + 1)PPQ 

Cone(P,Q)Gr*(/)+ 

Thus we need only to compute PPQ for the calculation of />(£*). Take a cone cr = 
Cone(P, Q) in r*(/)2". The following gives a practical method to compute ppq. 

THEOREM 7. Let P = HPIJP^PS) be strictly positive and let Q = Htfi^gs) 
and assume that d := det(P, Q) > 1. Le£ Qf = KtfM* ^2,ij ^3,i)j * = 0,..., k 4-1 be the 
vertices defining the canonical subdivision from Q with QQ = Q and Qk+i = P- Fix 
ante {1,2,3}. Then 

1. For each 1 < i < k, there exists positive integers 0 < a^fii < d such that 
Qi = ((3iP 4- aiQ)/d. Putting ao = /?*+! = ^ ak+i = A) = 0, fftey sa^^y 
the inequality: 

on > ai+i,    /?» < A+ij    t = 0,..., fc 

5. Let VAs (P, Q) 6e ^fte set of integral covectors R expressed as R = {l3P+aQ)/d 
where a, /? are positive integers satisfying 

,S2) f    aqe + Ppe = d, 0<a,/3<d 

\    ag* + /Jpjfe = 0   mod d   (A; ^ t) 

and let vL (P, Q; S*an) 6e ^e 5ei 0/ covectors Qi, 1 <i < k such that q^i = 1. 

TAen V^P,^) = V$(P,Q; S*an). A^oie that the inequality a,/3 < d follows 
automatically from the positivity if both pt and qt are positive. 

Proof The first assertion follows by an inductive argument. Write Qi = (faP + 
OiiQ)/d with positive rational numbers a*, /%. As det(P, Qi) = c^ and det(Qi, Q) = ft, 
ai,ft are positive integers. By the definition of Qi, we can write Qi = (P 4- aiQ)/d 
for some 0 < ai < d. The assertion for Qi holds and det(P,Qi) = at. Assume that 
Qj = (PjP 4- ajQ)/d with 0 < aj < d. As det(P, Qj) = aj and {Qj,..., Qk+i} is 
the vertices of the canonical subdivision of Cone (P, Qj), there exists a7, 0 < a' < a*, 
such that 

Q.+1 =zLp+^Q.=   lr|   a'djP + QjQ) = (1 + ^)p+ ^Q 
J aj        aj   3     aj        aj d aj      ajd d 

Thus aj+i = a' < aj < d. The inequality fy+i > 3j can be proved similarly by using 
the fact that {P, Qk,..., Qi, Q} is the vertices of the canonical subdivision of the cone 
Cone (P, Q) from P (cf. [9,11(2.3)]). Now we show the second assertion. The inclusion 

Vj? (P, Q; I]*an) C V^ (P, Q) is obvious. Suppose that R = (PP + aQ)/d e V$ (P, Q) 
is not contained in VM (P,0; S*an). Suppose that i? G Cone((3i,(5i+i)0. Then we 
can write P = mQ^ 4- nQi+i for some positive integers m,n. If i > 1, this gives a 
contradiction by comparing the £-th coefficient: 1 = mqij + nqij+i > m4-n. Suppose 
that i = 0. Write Qi = (P 4- aiQ)/d as above. Then k = mQ 4- (P 4- aiQ)n/d = 
nP/d 4- (md 4- nai)Q/d. Thus we get a = md 4- ain > d which contradicts to the 
assumption. □ 

REMARK 8. The computation of VnsCP, Q) is most difficult for the case pi, qi > 1. 
Assume that pe^qt > 0. If we have a solution (ao,,8o), the other solutions are reduce 
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to the following equation. Put a = QQ -I- a7, /3 = flo + /?'. Then 

= 0 f    a'qe + P'pe^ii 

{    a'qk + P'pk = ' 

Let A := A(P;/) n A(Q;/). Let T = ^1^2,^3) be a covector in V$(P,Q) (thus 
te = 1). Geometrically this implies that A(T;/) = A. In particular, r+(/) C 
{(^ij^j^s);*!^! +t2V2 + ts^z > d(T]f)}. This gives a practical way to find such a 
r. 

The case qi = 0 or 1, the computation is much easier. See Corollary 11. 

The canonical subdivision of Cone (P, Q) takes sometimes a lot of computations 
(see Example 9). Theorem 7 gives us a criterion on the existence or non-existence of 
normally smooth divisors, without computing the whole subdivision Qi, i = 1,..., k. 

EXAMPLE 9. For simplicity, we write x = zi,y = z<i,z = 23. Let us consider 
f(x,y,z) = xm + yn + xTyr + z2. We assume that m,n > 2r. Put n = n\r + 
no,ra = rair + mo with 0 < mo,no < r - 1. Then r(/) has two compact faces 
whose covectors are P == t(2(n — r),2r,nr)/Ji and Q — t(2r, 2(m — r),mr)/(52 where 
Ji = gcd(2(n - r),2r,nr) and ($2 = gcd(2r, 2(m — r),mr) and the corresponding 
dual Newton diagram is as in Figure 3.1. Note that d := det(P, Q) is given by 

d = 2(mn -mr - nr)/(i5i($2). We consider Vns (P, Q)- First we consider the covector 
TQ = *(!, l,r), which is a weight vector of xryr + z2. As m,n > 2r, To must be on 
Cone(P, Q). To proceed the further computation, let us assume that n,m,r are odd 
and gcd(m,r) = gcd(n,r) = 1. This implies Si = 62 = 1. By Theorem 7, we have 

2P(n -r) + 2ar = d 

2/3r + 2a(m - r) = 0   mod d 

/3nr + amr = 0    mod d 

First we have a canonical solution (#0, A)) = (n — 2r,m — 2r) which corresponds to 
the covector To = *(!, l,r). Thus putting a = ao 4- a and ft = fio + b, we can reduce 
the equation as 

2b(n -r) + 2ar = 0 

2br + 2a(m — r) = 0   mod d 

bnr + amr = 0   mod d 

Taking the positivity of a, /3 into account, we have the solution 

[mi — 2 {(a,/?)} = {((n 2r) + 2j(n - r), (m - 2r) - 2jr); 0 < j < 

For example, consider the easiest case m = n. This has a unique solution (a, /?) = 

(n - 2r,n - 2r) and V^^PjQ) = {B} where P = *(!, l,r). By symmetry, we have 
V^s  = {B}. Noter(P, Q) = 1. By writing down the equation described by Theorem 7, 

wecanshowV£!)(P,<2)=0. 
Now we look at Cone(P,Ei) and Cone(P,Es). Note that det(P,£,i) = r and 

det(P, E3) = 2. It is easy to see that there are no normally smooth divisor on these 
cones. Observe that the computation of canonical subdivision of Cone (P, Q) is not so 
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r'(f) 

FIG. 3.1.  The Newton polyhedron and the dual Newton diagram 

easy. For example, if r = 15, n = 37, then B = *(!, 1? 15) and first covector Bi (from 
Q) is given by (P 4- 223Q)/518 = ^IS, 19,240) and 518/223 = [3,2,2,12,2,2,3] and 
it takes some computation to complete the subdivision. 

The following lemma describes the covectors corresponding to the non-compact 
faces. 

LEMMA 10. Assume that X = {f{zi,Z2,zs) = 0} and assume that f is non- 
degenerate and r(/) has at least one compact two dimensional face for simplicity. 
Suppose that Z2 = £3 = 0 is a line in X. (So f is not convenient.) Then there is 
a unique covector Q = t{qi,q2)Q3) £ Vertex(r*(f)) such that qi = 0. Furthermore Q 
takes the form t(0,1, gs) or t(0, (72, !)• 

There exists a unique covector P = t{pi,P2,P3) which corresponds to a compact 
divisor and adjacent to Q in T*(f)2- Then we have det(P, Q) =pi. 

Proof As X has an isolated singularity, / must contain a monomial of type 
Z1Z2 or Z1Z3. Suppose that B := (a, 1,0) E r(/). Let C = (6,0,c) be the vertex of 
T(f)n{z2 = 0} adjacent to B by an edge. It is clear that the non-compact face E which 
has BC as a face and is unbounded to the direction of the 21-axis has covector Q = 
t(0, c, 1). One can see that there exists no other non-compact face which is unbounded 
to the zi-axis direction and bounded to 2:2, ^-direction. Let A be the compact face 
which has BC as a boundary and let P = t(piiP2-P3) be the corresponding covector. 
As A(P; /) contains P, C, we need to havepia-}-p2 = bpi+cps. Now the last assertion 
follows from det(P,Q) = gcd(pi,p2 - cps) = gcd(pi?pi(6 - a)) = pi. U 

The following corollary describes explicitly VAs (P. Q) in the case qi = 0 or 1. 

COROLLARY 11.  With the assumptions of Theorem 1, we have the following. 

1) Assume qi = 0. Then V$(P,Q) ^ 0 if and only if d := det(P,Q) > 1 and 

d = p1. In this cases, viJ^P, Q) = {Qi}. If Q # £2, #3, then {y = z = 0} C 
X and d = det(P, Q) = pi. 

2) Assume qi = 1. Then Vns (P,Q) ^ 0 if and only if d > pi. In this case, we 

have Qi = (iP+(d-ip1)Q)/dfori = 1,..., [d/pi] and V^P,©) = {Qi]i = 
^...Jd/pi]}. 

Proo/. Assume that Q7 = (/3P + aQ)/d G V&^P, Q) with 0 < a, (3 < d, 
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1) If qx = 0, we have gcdfa^qs) = 1. As d = gcd(pig2,Pi?3,P2?3 - PstfO = 
gcd(pi,p2<Z3 - P3Q2)i d divides pi. Thus Q' G Vis (P,Q) if and only if d = pi and 
0 = 1. In this case, Q' = Qi and vis(P, <3) = {Qi}. Assume that Q^E2,E3. By the 
definition of r*(/)2~, A((3; /) is a non-compact face with dimension 2. In particular, 
{y — z = 0} C X. By Lemma 10, we have d = pi. 

2) Suppose that qi = 1. Then /3pi + a = d. This implies d > pi. Put d = 
rpi + d' with 0 < d' < pi and r = [d/pi]. Then by the above equality, we have 
(a,/?) = (d-jplyj), j = 1,...,^!]. Put Q'j := (jP + (d - jp1)Q)/d. By the 
definition, d divides the minors of (P, Q) which are piq2 — P2,Piq3 - P3,P2q3 - P3^2- 
Thus f3pj+aqj = /3pj + (d-/3pi)qj = /3(pj -piqj) = 0 mod d for j = 2,3. Thus Q^- is 
an integral covector for /? = 1,..., r. It is clear that Q^ = Qi. Assume that QJ. = QL 

for some t. By the monotonity of the coefficients (Lemma 5), we have Qj G Vis (P, Q) 
for j < i. Thus ^ = r and Q'j = Qj for j < r. D 

REMARK 12. In the case of non-convenient surface with qi = 0, the divisor 
E(Qi) corresponds to the deformations of the line Z2 = Z3 = 0. In fact, E(Q) is 
a non-compact divisor which is the strict transform of zi-axis and E(Q) intersects 
transversely with E(Qi). 

For R e V&\ write R = (0P + aQ)/d. We call 0/d the P-coefficient of R. 

COROLLARY 13.   With the assumptions of Theorem 7, suppose that qi > 1. Let 
Q = (/3P + aQ)/de V^? andQ = (pP + aQ)/d e V^J be the covectors with maximal 

(t) and minimal P-coefficients in Vns - Then 

(3.4) pW=1 + |det((j>fl)| = 1+l&zM 

Proof.   Denote by d' := \det(Q,Q)\.   Suppose that Q = Qi and Q = Qi+j. 

Then Vns = {Qi, • • •, Qi+j} by Lemma 5 and ppQ = j 4-1. By the assumption, we 
have Qi+i = {Qi+j + {d! — l)Qi)/df. As the continuous fraction d'/(d* — 1) is given 
by [2,... ,2] ((d' - 1) copies of 2), we get j - 1 = d' - 1 and the assertion follows 
immediately. D 

4. Applications. 

4.1. Weighted homogeneous surfaces.  In this section we study lines on 
weighted homogeneous surface singularities, which are classified as follows ( [12, 9]): 

Xi:       hi=xa + yb + zc = 0, 
Xn :      hu = xay + yb + zc = 0, 
Xm :     hm = xay + xyh + 2C = 0, 
Xiv :     hiv = xay + 2/6^ + zc = 0, 
Xy :      hy = xay + 2/6z + zcx = 0, 
Xvi :     hyi = xy Hh zc = 0, 
Xvn :    ftvn = xaz + ybz + zc + txCl yC2 = 0,    * ^ 0 
^vni:    ftvin = ^ + xyb + ^c + tyCl ^C2 = 0,    t ^ 0. 

The surface Xi is called a Pham-Brieskorn surface. This type of surfaces have 
been studied in the previous paper [4]. The surface Xvi is an Ac_i type singularity. 
There are exact c— 1 families of lines on this surface (see [1, 2, 4, 5]). On surface Xyn 
and Xvm, the term yClzC2 must be on the supporting plane of the previous three 
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monomials. Thus a, 6, c are not arbitrary. The Newton boundaries of the surfaces 
other than Xyi, Xyn and Xvm are triangles. Note that for a weighted homogeneous 
surface, the Newton boundary has only one compact 2-dimensional face. Let P = 
t(pi,P2,P3) be the corresponding covector. The formula (3.1) in §2 reduces to 

(4.1) ^(Ec*an) =e+ Y, WP>«) + VPPQP™)- 
Cone(P,Q)Gr-(/) + 

where e = 1 if P E Vns(S*an) and e = 0 otherwise. 
For each type of surfaces, one can calculate ppg(Scan) ^0T each Cone (P, Q) in the 

dual Newton diagram by using the method described in the previous sections. 

LEMMA 14.  Assume that Cone(P,Ei) be a cone in T*(f)2-  Then det(P,Ei) is 
given by 5i := gcd(pj,pk) with {i,j, k} = {1,2.3}. Assume that Si > 1. 

1) V$(P, Ei) ^Qif and only if Si > pi and p^ = [^]. 

2) Vns {P,Ei) ^ 0 if and only ifpj\pk- In this case, p^. = 1. 
3) 

PPEi = 
0,    if   IjJ = 0 and Si < min^,^} 

max{l,   |j- },    otherwise 

Proof This follows from Corollary 11. □ 

LEMMA 15.   Let Cone(P,Q) be a cone in T*(f)f with Q = ^c, 1).   Suppose 
that det(P, Q)=pi>l. Then 

PPQ = 
p%+max{l,[%]}-e9    Ol 

where e = 1 if either Qx e V$(P9Q) or Qh G V$(P,Q) with fr := [^] > 1 and 

e = 0 otherwise. 

Proof Let Qi,... , Qk be the primitive covectors in Cone (P, Q) inserted by the 
canonical subdivision from Q. If c = 1, the assertion is immediate from Corollary 
11, as gi,! = 1. We assume that c > 1. If [pi/ps] = 0, the assertion is obvious. 
Assume that [pi/ps] > 1. By Corollary 11, Qj is given by (jP + (pi - JP3)Q)/PI for 
1 < j < ji. Thus q2j = c — j(cps —p2)/pi- If cps —p2 < 0, 22J is monotone increasing 

by Lemma 5 and we see that Vns (P, Q) = 0 and the assertion follows immediately. 
Assume that cps - P2 > 0. Then q2j is monotone decreasing for 0 < j < ji. Thus 

vifiP^Q) fl VLV(P,Q) ^ 0 if and only if q2tjl = 1. If this is the case, Q^ is the 
unique covector in common. Thus the assertion follows from these observations. □ 

4.2. Normally smooth divisors on Xn. By using Lemmas 14 and 15, we can 
compute the number p(Scan)- We show this by considering the surface Xu. One can 
do the same consideration for the other types of surfaces. Let Xn : hii(x,y,z) = 
xay + yb + zc = 0. Put a := gcd(a, 6-l),e := gcd(&,c) and d := gcd(c(b- l),ac,ab) = 
egcd(a,c(b — l)/e). The dual Newton diagram T*(hii)2 consists of three cones: 
Cone(P,<2), Cone (P,£i) and Cone (P, £3) where P := \c(b - l)/d,ac/d,ab/d) and 
Q:=\0,c,l). 
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The following three propositions are special cases of Lemmas 14 and 15. 

PROPOSITION 16. Cone(P)Ei) is regular if and only if a divides c(b — l)/e. 
Assume that a \ (c(6 — l)/e)-. Then 

1) Vns (P,Ei) / 0 if and only ifae > (b-l)c. And in this case p^ =   (6-i)c1 * 

2) V^iP.Ex) # 0 */ and only if c\b. 
3) V${P, Ex) ^ 0 if and only if b\c. 

4) PPE1 = max{p^1, p^, [ (ftzf^]} • □ 

PROPOSITION 17. ^45 det(P,E3) = ca/d, Cone(P,E3) is regular if and only if 
d = ca. Assume that ca > d. Then 

1) V^iP.Es) ? 0 if and only if (6 - l)|a. 

2) viViP.Es) ^ 0 if and only ifa\(b- 1). 
3) V^iP.Es) ^ 0 if and only if ca > ab and p^ = [&]. 

4) PPES = max{p^3,p^3, [^f]}. 

Recall that PpEi < 1 for i = 1,3 and j ^ i by Lemma 5. 

PROPOSITION 18. Cone(P, Q) is regular if and only if (b — l)c divides ae, or 
equivalently (b — l)\a and c\b-^. Assume that Cone(P,Q) is not regular. Then we 
have 

1) V^)(P5Q) = {Q1}. 

2) Vj? (P, Q)^$if and only if c{b - 1) > ab. And in this case p^g = [£^ii]. 

3) Vns (P, Q) 7^ 0 ^/ fl^^ onZt/ i/ ^ftere exz's^ positive integers a and f3 such that 

(4.2) ap + da = b - 1, 

(4.3) a&/3 + da = 0   mod c{b - 1). 

Tfte second condition can be replaced by a/3 + 1 = 0    modulo  c. 

Proo/. The last assertion follows from by (4.2) as abfi + da = (6 — l)(a/? + 1). D 
The non-trivial computation is required only for VAs (P, Q) which we will explain 

more in detail. Write b = ebi and c = eci. 

COROLLARY 19. I. For Vnf(P,Q) ^ 0, it is necessary that 

(4.4) gcd(a,c) = 1,    b > a,c 

In this case, we have d = ea and Vns (P, Q) is the set of covectors T = (aQ 4- f3P)/d 
which satisfies 

(4.5) a/3 + eaa = b - 1 

(4.6) 0<a,/3 

(4.7) b — eaa = 0  modulo c 

II. Furthermore Vns (P, Q) «s non-empty if [b/c] > a 4- a. 

Praa/. From the congruence a/3 -h 1 = 0 modulo c, it is clear that gcd(a, c) = 1. 
Thus d = egcd(a, ci(6 — 1)) = ea. The equality (4.7) results from 

a/3 H-1 = 6 — efo: = e(&i — aa) = 0 modulo c 
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Thus b > a/3 > a and b > c. The last congruence equation is equivalent to 61 — aa = 0 
modulo Ci. 

Assume that [b/c] — a — a > 0. As gcd(d, 61) = 1, there exists positive integer 
ao, 0 < ao < ci, such that 61 — aao = 0 modulo ci. Put 61 — aoa = JQCI. We 
see that jo = bi/ci — aoa/ci > [b/c] — a. Take a which satisfies the congruence 
o/3 + l = 0 modulo c. Then a takes the form a = ao + jci with j G N and thus 
61 — aa = (jo — ia)ci. For the positivity of ,1(3, we need to have 0 < j < jo/fi. The 
integrity of T implies 

e(bi — aa) — 1 = eci(jo — ja) — 1 = 0   modulo a 

As j can move 0 < j < jo/a and jo > [b/c] — a > a or jo/a > a/a, this congruence 
equation has a positive solution ji, 0 < ji < jo/a. Then put /3 = (eci(jo —jio) — l)/a 
for such a solution ji. This gives a covector T = (aQ + /3P) G Vns (-P, Q)> 0 

EXAMPLE 20. Consider Xu : x9y + yb + z8 = 0 with 6 = 22 + 36A:. Then 
e = 2, a = 3 and the equation is 

9/3 + 6a = 21 + 36fc,    9/3 + 1 = 0 modulo 8 

In this case, [6/c]-o-o = (22+36fc)/8-12 > 0 if k > 37/18. For k > 3 (in fact, for fc > 
2), we have a solution (a, /3) = (6fc-7,7). In this case, P = t(28+48&, 12,33+54A;) and 
Q = *((), 8,1) and T := (aQ + PQ)/(28 + 48fc) = '(7,1,8). We leave the computation 
of the other covectors in Vns (P, Q) to the reader. 

4.3. The minimality of the canonical toric resolutions. We study when 
the canonical toric resolution of a weighted homogeneous surface is minimal. Though 
the canonical toric resolution is not always minimal (see Example 28), we can expect 
that the minimality hold for almost all classes of non-degenerate surfaces. By [9, 
111(6.3)], for each weighted homogeneous surface the resolution graph associated with 
the canonical toric resolution is star-shaped. Hence, when the resolution graph has 
at least three arms, the canonical resolution is minimal. 

We have the following general statement which is very helpful to see if a given 
toric modification is minimal. 

LEMMA 21. Let X := /~1(0) be a non-degenerate surface. Suppose that P G 
F* (/) is the strictly positive covector corresponding to a compact face A of the Newton 
boundary T(f). 

1) Let Ai,... , A^ be the boundary edges of A.  The exceptional divisor E(P) is 
rational if and only if 

6Vol(ConeA) + 5>(Al.) + l) = 2 

where Cone A is the cone over A with vertex O and r(A;) is the number of 
integral points in the interior of Ai. 

2) The canonical toric resolution TT : X —> (X, 0) is not minimal if and only if 
there exists a compact face A ofT(f) such thatE(P) is rational, E(P)2 = —1 
and E(P) intersects at most two other exceptional divisors where P is the 
covector corresponding to A. 
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Proof. The first statement is a conclusion of [9,111(6.4)]. The assertion 2) follows 
from the Castelnuovo-Elnriques criterion and [9, III §4(A) and §6]. D 

THEOREM 22. Let X be one of the surfaces of type Xu, Xm, ^iv? Xv> Xvu or 
Xvui. We assume that a, 6,c > 1 in 4-1- Then the canonical toric resolution of X is 
minimal. In particular, p(X,0) = /o(S*an). 

Proof. We first check when the central exceptional divisor E(P) is rational by 
using Lemma 21 (see also [9,111(6.9)]). If this is the case, we compute the number of 
arms from E(P). If this number is less than 3, we show that E(P)2 < —2. Recall that 
the number of arms in the resolution graph is the sum of r(P, Q) + 1 for non-regular 
cones Cone(P,Q) G r*(/)J. 

(II). Let X = Xn : xay + yb + zc = 0. Put e = gcd(6,c),a = gcd(a,6 - 1). Then 
P = \c(b - i),ae,ab)/d with d = egcd(a,c(6 - l)/e). Note that r(P,Q) + 1 = 1, 
r(P,Ei) + 1 = e and r(P,E$) + 1 = a. By loc. cit. E{P) is rational if and only if 
1) e = gcd(c, a/a) = 1 or 2) a = gcd(a,c/e) = 1. If 1) holds, then d = a. We have 
det(P,<2) = c(6 - I) I a > 1, det(P, JS3) = c > 1 and det(P,E1) = a/a. If a = a, 
Cone (P, Ez) gives a = a arms. Hence, in any case the resolution graph of Xn has at 
least three arms centered at E(P). 

In case 2), we have det(P, Q) = c(b — l)/e > 1, det(P,JSi) = a > 1 and 
det(P, Ez) = c/e. If e < c, we have at least three arms in the resolution graph. 
Suppose that e = c. Then the number of arms at E{P) is e + 1 > 3, unless 6 = 2 
and e = c = 2. In this case, the resolution graph has two similar arms and E(P) is 
normally smooth with E(P)2 < —2. 

Outline of other cases: 

(III) Let Xm : xay + xyb + zc = 0. Then P = *(<:(& - l),c(a - l),a& - l)/d with 
d = egcd(c, (ab—l)/e) and e = gcd(a—1,6—1). The dual Newton diagram r*(/)J has 
3 arms Cone (P, £3), Cone (P, Q), Cone (P, R) where Q = *((), c, 1) and R = ^c, 0,1). 
The central divisor E(P) is rational if and only if gcd(c, (a& - l)/e) = 1. If E(P) is 
rational, then d = e and det(P, Q) = c(6 - l)/e > 1, det(P, P) = c(a - l)/e > 1, and 
det(P, Ez) = c > 1. Hence, the resolution graph has at least three arms. 

(IV) Let Xiv : xay + ybz + zc = 0. Then P := ^fcc - c + l,a(c - l),ab)/d with 
d = egcd(a, (6c—c+l)/e) ande := gcd(6,c—1). The dual Newton diagram T*(f)2 has 
3 arms Cone(P,Ei), Cone(P,<2), Cone(P,S) where Q = ^c,!) and 5 = ^1,0,a). 
The divisor E(P) is rational if and only if gcd(a, (6c—c+ l)/e) = 1 which is equivalent 
to d = e. We have det(PJEi) = a > 1, det(P,5) = a(c - l)/e > 1 and det(P,<2) = 
(6c - c + l)/e. As Cone (P,Ei) has e-copies of arms, -E(P) has at least three arms. 

(V) Let Xy : xay + ybz + zcx = 0. Then P := ^ftc - c + 1, ca - a + 1, a6 - 6 + l)/d 
with d = gcd(6c —c+l,ca —a + l,a6 —6+1). The dual Newton diagram r*(/)2~ has 
3 arms Cone(P,<3), Cone(P,5), Cone(P,T) where Q = ^c,!), S = ^O.a) and 
T := *(&, 1,0). The divisor E(P) is rational if and only if d = 1. In this case, we have 
det(P,<2) = 6c-c+l > 1, det(P,5) =ca-a + l> landdet(P,T) =a6-6+l > 1. 
Thus E(P) has three arms. 

(VII) Let Xwii : xaz + ybz + zc + ^Cl2/C2 = 0. Then P = ^(c - l),a(c - l),ab)/6 
with S = gcd(6(c — l),a(c - l),a6). The dual Newton diagram r*(/)2~ has 4 arms 
Cone(P,Q), Cone (P, 5), Cone(P,£i), Cone(P,JB2) where Q = t(0,l,C2) and 5 = 
*(!, 0, ci). By the weighted homogenuity, we have the equality 6(c — l)ci +a(c— l)c2 = 
a6c which implies that (c — l)|a6. Hence S = (c — l)gcd(a,6,a6/(c — 1)). By loc. 
cit., i2(P) is rational if and only if either (i) gcd(a,6) = gcd(a,c — 1) = 1, or (ii) 
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gcd(a,6) = gcd(6,c - 1) = 1. By symmetry, we may assume that the first case (i). 
Then 6 = c - 1, det(P, Q) = b > 1, det(P, 5) = a > 1, det(P, E1) = a> 1. Thus the 
resolution graph has at least three arms. 

(VIII) Let Xvin :xay+xyb+xzc+tyClzc* =0. Then P = ^(b-l),c(a-l),6(a-l))/5 
with (S = gcd(c(6 — l),c(a — l),6(a — 1)). By the weighted homogenuity, we must 
have c(a — l)ci + b(a — l)c2 = c(a6 — 1) which implies that (a — l)|c(a6 — 1) and 
cci + bc2 = be + c(6 - l)/a - 1. Thus 5 = (a - 1) gcd(6, c, c(6 - l)/(a - 1)). The 
dual Newton diagram T*(f)2 has 4 arms Cone(P,E3), Cone(P,Q), Cone (P, 5) and 
Cone(P,T) where Q = ^0,c, 1), 5 = t(c2,0,1) and T = ^ci, 1,0). The divisor E(P) 
is rational if and only if (6 — 1) = k(a — 1) for some k G N and gcd(6,c) = 1. Then 
d = a - 1 and det(P,Q) = ck > 1, det(P,5) = c > 1, det(P,T) = 6 > 1 and 
det(P,E3) = c. Thus the E(P) has at least 3 arms. □ 

4.4. Normally smooth divisors on Tp^^-surfaces. Let Tp)g)r : xp + yq + zr + 
xyz = 0 with l/p + 1/g + 1/r < 1. 

(1) Suppose that p,^,r are pairwisely coprime and p < q < r. The diagram 
r*(/)2" has three strictly positive vertices P := t(rq — r — q,r,q),Q := ^r^pr—p — r^p), 
and R := ^q^p^pq — q — p)> The cones Cone (P,Ei), Cone(Q,E2) and Cone(iJ,E3) 
are regular. Put S := pqr-pr - qr-pq. Then det(PJ Q) = det((5, P) = det(P, R) — 8, 

PROPOSITION 23.  Under the above assumption, we have 

n(X n\- nW   4- n(2) 4- A)(3) 4- /)(2) 4- n(3) 4- ^3)   9  ^ PVAP,«,r J ^j - PQR + Pg/l + PQH + PPR + PPH + ^PQ ~ 2 ~ €J 

where e = 1 i/p = 3, and e = 0 i/p ^ 3. 

Proo/. This is a summary of the following three lemmas. □ 

LEMMA 24. 
1) V® (Q, P) = {Pu = H^ *,p - * - 1) | p/g < k < (rp - r - p)/r}. 
2) V® (Q, R) = {P^ = *(*, l,pfc - A: - 1) | r/(pr -p-r)<k< q/p}. 

3) V&\Q,R) = {P^KKpk-k-l,!) | q/(pq-p-q) <k< r/p}. 

4) vSPiQtR) H viV(Q,R) H VS^Q,/?) ^ 0 i/ and an/y i/p = 3. 
5) PQR = PQ^ + PQR + PQ^ - 1 - e, ly/iere e = 1 z/p = 3, and e = 0 i/p ^ 3. 

Proof. We mainly use Theorem 7. Let P7 := (f3Q + aP)/5 = HPI^^^S). The 
equation is 

fir + aq = piS 

P(pr — p - r) + ap = p2(5      this implies  < 

^p + a(pg-p-g) =P3(J 

a = (pr — p — r)pi — rp2 

,5 = gp2 - ppi 

VP2+P3 = (p-l)pi 

Hence, we have the following conclusions. 
1) Pi = 1 if and only if there exists an integer P2 > 0 such that a > 0 and ft > 0. 

This is equivalent top/q < P2 < (pr—p—r)/r. And in this case P' = (I^JP—1—£2). 
2) P2 = 1 if and only if there exists an integer pi > 0 such that r/(pr — p — r) < 

Pi < q/P- And in this case P' = (pi, 1, (p — l)pi — 1). 
3) pg = 1 if and only if there exists an integer pi > 0 such that q/(pq — p — q) < 

Pi < r/p. And in this case P' = t(pi,ppi — pi — 1,1). 
4) is obvious now. 

5) One can see this by comparing the three sets Vnl (Q, P)- In case p = 2, we have 

V&)(Q,R) = <l)andv£)(Q,R)nV&)(Q,R) = {\2,1,1)}. Hence, pQR = pgjj+pgjj-1. 
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In case p = 3, we have V$(Q,R) n V&^Q.fl) = V^CQ.i?) n vS^Q.fl) n 
V^(Q, R) = {*(!, 1,1)} for » # j. Hence, p0p = pg], + p^R + p^R - 2. 

In case p > 3, we have vS) (Q, -R) n V^ (Q,R) = {*(!, 1,p - 2)} and V^1 (Q, -R) n 
V^ (Q, i?) = Vfi* (<5, i2) n V^ (Q, i?) = 0. Hence, pQp = pg], + pgjj + pg3]j - 1. D 

Similarly, one can prove the following two lemmas. 

LEMMA 25. 
1) V^)(P,i?) = 0. 

2) V^(P,R) = {Q'e = \q-e-1,1,1) \q/r<i< {pq-p-q)/p}. 

3) V^iP, R) = {Q'l = \qt -I-1,1,1) \ p/(pq -P-q)<i< r/q}. 
4) Let Q' = \qi,qz,qz) = {pP + aR)IS. Then (q - l)ga =qi+q3. 

5) PPR=PP
)

R+PP
)

R-1- 

LEMMA 26. 
1) V£)(P,Q) = V£)(P,Q) = <I). 

2) V^(P,Q) = {R'e = Kr-l-lJ,l)\r/q<l< (pr-p-r)/p} andppQ = p%. 

EXAMPLE 27.  (1) Let p = 2, q = 3 and r > 7. By the canonical subdivisions of 
the three cones, we see that PQR = [^Y*-] > 1, PPR = f2-^] ^ 1> and PPQ = f11^]- 
(2) Let p = 3, q = 4 and r > 4. By the canonical subdivisions of the three cones, we 
see that PQR = [§] > 1, ppR = [f] > 1 and PPQ = [f ] - [J] - 1. 

(2) Another case. Let f(x,y,z) = xn + yn -h zn + xyz (n > 4). The dual 
Newton diagram has three covectors Pi, i = 1,2,3 corresponding to the three compact 
faces. They are given by ^n - 2,l,l),t(l,n - 2,l),t(l,l,n - 2). And for i ^ j, 
det(Pi,Pj) = n — 3. Let J3i, ...,Bk be the vertices of the canonical subdivision of 
Cone{puPa) from A. Then Pi = (Pa + (n - 4)Pi)/(n - 3) = ^n - 3,2,1). Thus 
(n - 3)/(n — 4) = [2,..., 2] with (n — 4)-copies of 2. This implies fc = n — 4 and 
Bj = t(n — 2 — j, l+j, l),i = 1,... ,n —4. In fact, by Lemma 5 the third coordinate of 
Bj is always 1 as both of Pi, Pa have 1 as the third coordinate. Hence pp1p2 = n — 4. 
The branch Cone (P^, Ei) is regular. Thus p(V, O) = p(E*an) = 3n — 9 and every 
exceptional divisor is normally smooth. 

5. Remarks. 

5.1. Example of the inequality p(E*an) > p(X,0). Let us consider A2c-i~ 
singularity, X = {x2 + y2 + z2c = 0}. The resolution graph has two arms and the 
central divisor E(P) is a rational curve with E(P)2 = —1. Thus we have to blow- 
down the central divisor once ( Example (6.7.1) in [9, III] ). However in this example, 
the central exceptional divisor is not normally smooth, i.e., the extra blowing-up is 
line-admissible. So p(E;"an) = p(X,0). The following gives an example of /9(E*an) > 
p{X,0). 

EXAMPLE 28. Let X be defined by h = xy + ybc + zc with 6,c > 2. This is an 
^4c_i-singularity and a special case of Xu with P := t(6c - 1,1, b) and Q := ^0,0,1). 

Since det(P, Ei) = det(P, E3) = 1 and det(P, Q) = be - 1, we make the canonical 
subdivision of Cone (P, Q). The first covector Ti from P is given by 

Ti = (Q + (be - c - l)P)/(6c - 1) = "(be - c - 1,1, b - 1) 

We have the continuous fraction expansion (be —l)/(bc — c—l) — [2,..., 2,3,2,..., 2] 
where the number of 2 in the first 2-series (respectively in the second 2-series) is 
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(b - 2) (resp. c — 2). Thus we have c + b - 3 covectors Ti,..., Tt+c-s- The exceptional 
divisor E(P) is rational with E(P)2 = -1 and £(?)) with self intersection number 
EiTj)2 = -2 for j # 6 - 1 and -3 for j = 6 - 1 (see Theorem (6.3), Chapter III, [9]). 
In fact first 6 — 2 covectors are given by 

Qi=
t(c6-jc-l,l,6-i),    j = l,...,b-l 

Qb-i+j = "(c - j - 1, j + 1,1),    i = 1,..., c - 2 

and we see that they are normally minimal. To get a minimal reslution, we need 
to blow down b - 1 divisors E(P),E(Ti),.. .,E(Tb-2) in this order. Then the self- 
intersection number of i£(T&_i) changes to -2 and we get Ac_i graph. In this example, 
we have p(X, O) = c - 1 and p(Scan) = 6 4- c — 2. 

5.2. Parametrization of lines. The normally smooth divisors on a surface X 
correspond to the lines on X. By using a toric resolution, one can give the exact 
parameterizations of the lines on X. This was done already for the Pham-Brieskorn 
surfaces in [4]. 

PROPOSITION 29. Suppose that we have a line L in a non-degenerate surface 
X : f{x,y,z) = 0 and assume that L is parametrized as 

x{t) = oda + ai*0+1...,    y{t) = ptb + p^1 + ...,    z(t) = jtc + 7itc+1 + ... 

with a,/?,7 7^ 0 and min(a,6,c) = 1. Let P = t(a,6,c). Then the pull back of L 
intersects E(P) transversally and /p(a,/?,7) = 0. Conversely any curve in CE(P) 

has such a parametrization. 

EXAMPLE 30. (1) Let X be defined by h = xay + yb - zb = 0 with a = ai(6 - 1) 
and ai > 1. This is a special case of Xn. We use the notations in §4.2. Note that 
P = ^anai), Q = KOiM), det(P,Q) = dettP,^) = 1 and det(P,JS7i) = oi. By 
canonical subdivision of Cone(P,JEi) we have #£ :=*(!,z,2) with z = 0,1,... ,2*1 =ai, 
where PQ := Ei and P^ := P. Hence PPE1 = ai — 1. Since r(P,Ei) + 1 = 6, each 
E(Pi) has 6 components. By [9, 111(6.3)], E{P)2 = — b < —1. Hence TT is minimal 
and p(X, 0) = 6(ai — 1) + 1. The restriction of TT on the toric chart associated with 
ai := Cone (P^Pi-i,^) is given by 

TT^ :     x = uv,    y = ulvl~1w,    z = u'lv1'~1. 

and the pull-back of h is given by 

ft o«„, = «V"1)* ^(o.-OC^D^^-i+Dtc-Du; + «,» _ 1) 

The divisor ^(Pf) is defined by u = 0 and w6 — 1 = 0, hence E(Ri) has 6 components. 
On this toric chart, the resolution X of X is defined by 

hi(u, v, w) := M(«i-0(6-i)v(ai-f-MJtft-i)^ + wb _ 1 = 0 

and in a neighborhood of q G E(Ri) we take u, v to be the local coordinates of X. 
Let q = (0,5) in this coordinates. We consider the lines Cs defined by t h-> (t, s). The 
image of Cs by 7r(7i is given by 

TTff. (Cs) :     x = st,    y = sl~1Wk(t, s)t,    z = s1"1*1, 
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where Wk(t^ s) is the solution of hi(t, s, w) = 0 with Wk{0) = expfinki/b). As a special 
case, take 2 = 1. Then Cs is a normal line on E(Qi). When we moves 5 -> 0, this 
line approaches to E(Ei) and Wk{t) = exp(2kiri/b) and the image is the obvious line 
t-> (x,y,z) = (0,Wkt,t). 

(2) Let X = T2,3,7 : ^2 + y3 + z7 + x?/^ = 0. We have three covectors 

P = t(llJ,S), Q = ^7,5,2), Ji = t(3,2,l) 

and we do not need any other covector. Consider the toric chart a := (Q, i?, E3) with 
coordinates (u,i;,iy). Then the line u = l,v = t produces a line parametrized as 
t^(t3,t2,-2t+l28t2+ ...). 

5.3. Obvious lines on surfaces. We consider a surface X = {f(x,y,z) = 0} 
where / has a non-degenerate Newton boundary. There are surfaces having obvious 
lines which can be read off from the polynomial defining the surface. 
(1) Assume that /(x, 2/, z) is not convenient and assume for example {y = z = 0} C X. 
Then as we have seen in Lemma 10, there is a unique non-compact face, different 
from the coordinate planes, which has the covector of the type Q = t(0, c, 1) or 
t(0,1, c) and a unique covector P such that Cone (P, Q) is in F* (/) J and P corresponds 
to a compact face. Let <3i,...,Qfc be the covectors defining the canonical regular 
subdivision from Q. Then Qi is a normally smooth divisor and CQ1 contains the 
canonical line {y = z = 0}. 
(2) Assume that h(x,y) := /(a;,2/,0) (the section of / with z = 0) is a non-monomial 
homogeneous polynomial of degree d. Then we can factor h(x,y) = cxayb Yli=1(y — 
otix). Thus X has the lines z = 0, y = aix for i = 1,..., k. Combinatorially this says 
the following. There exists a compact face A such that A D A(/i). The corresponding 
covector takes the form. P = t(p,p,r) with gcd(p,r) = 1. Then the first covector Qi 
from E3 in the canonical regular subdivision of Cone (P, ^3) takes the form Qi = 
*(!,!, s) with 5 = 1 + [r/p]. So we can see that <3i G Vns(P,#3). A typical example 
is Tninyn : xn +yn + zn — xyz = 0. Another example is (1) of Example 30. 
(3) Assume that the monomial xA in / such that (A, 0,0) G r(/). We say that xA is 
negligibly truncatable if /*(£, ?/, z) = (/(#, 2/, z) — f(x, 0,0)) + tf(x, 0,0) defines a p,- 
constant family for 0 < t < 1 (cf. [11]). Assume for example, the monomials xay and 
xbzc are on the non-compact face of r(/o). Let Q' := ^c/d.ciA-aj/d, (A — b)/d) with 
d = gcd(c, A — b). The covector Q' corresponds to the negligible compact face of fi 
containing (a, 1,0), (&, 0, c) and (A, 0,0). Then there is a normally smooth divisor on 
Cone(Q,Es). In fact, det(Q',Es) = c/d. If c = d, Q gives normally smooth divisor. 
If c > d, the first covector Q,

1 of the canonical regular subdivision of Cone (Q', E3) is 
normally smooth. An example is given by /(#, y, z) = x2y + y2 + z5 + x5. Then x5 is 
negligibly truncatable. 
(4) Assume that r(/) has a compact face whose covector P has 1 in its coefficients. 
Then E(P) is a normally smooth divisor. This is the case, for example, if P = 
*(!, 1,1) and fp(x,y,z) has a two-dimensional support. We can see easily that E(P) 
is isomorphic to the projective curve fp(x, y, z) = 0 in P2. The tangent cone of X at 
O is given by the cone of fp = 0. 

5.4. Normally smooth divisors on complete intersections. In this paper 
we mainly considered normally smooth divisors on two dimensional hypersurface sin- 
gularities. However every assertion can be generalized to non-degenerate complete in- 
tersections. We give an example. Consider the surface given by X = {fi(x,y,z,w) = 
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/2(#,y,z,w) = 0} where /i and /2 has the same Newton boundary.   Assume that 
fuh are Pham-Brieskorn polynomials of the same type, with generic coefficients: 

fi = dix^ + biy^ + a z^ + dtw^ ,1 = 1,2 

We assume that Pi,... ,P4 > 2 and mutually coprime. Then the dual Newton diagram 
r*(/i,/2) is the same with r*(/i) and r*(/)2" is star-shaped with the center 
P = t{p2P3P4,PiP3PA,PiP2P4,1P1P2P3) and four arms Cone(P,Ei),i = 1,...,4. We 
consider the Cone(P,£i). First det(P,jBi) = pi. By Lemma 11, V${P,Ei) = 0 

for 2 < i < 4. As for Vna (P, JSi) 7^ 0 if and only if P2P3P4 < Pi and putting r = 

[P1/P2P3P4], V^P, Ei) = {Q^- = (jP + (pi - jP2P3P4)£i)/pi; j = 1,..., r}. 
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