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SINGULARITIES AND CHERN-WEIL THEORY, I 
THE LOCAL MACPHERSON FORMULA* 

F. REESE HARVEYt AND H. BLAINE LAWSON* 

Abstract. Let a : E -> F be a smooth bundle map between vector bundles with connection 
on a manifold X, and let ^(fJ) be a Chern-Weil characteristic form of either E or F. A notion of 
"geometric atomicity" for a is introduced. For any such map a we establish a canonical cohomology 

(*) *(n)-53Res*ifc[Efc(a)]   =  dT 
k>0 

where Sfc(a) = {x £ X : dimker(Q) = A;}, Res^ is a smooth residue form along Sfc(a), and T is 
a canonical Lj1

oc-form on X. When rank E = rank F, (*) can be written 

$(nF)-$(nE)  =   J2Res*,k[Xk{<x)] + dT. 
k>0 

Normal sections of Hom(F, F) (those by definition which are transversal to the universal singularity 
sets Ejt) are always geometrically atomic, and for such maps equation (*) expresses a classical formula 
of R. MacPherson at the level of forms and currents. Every real analytic map a is geometrically 
atomic, no matter how misbehaved its singularities. For those where each 12k(a) has the expected 
dimension, analogous formulas are established. In all cases, each term in the sum in equation (*) is 
a d-closed current. Proofs entail a direct application of the methods of singular connections and of 
finite volume flows developed by the authors. 

Geometrically atomic maps prove to be generic or "typical" in all structured situations such as: 
direct sum mappings, tensor product mappings, mappings given by Clifford multiplication, etc. In 
each case the methods yield new formulas. This will be done in Part II. 

0. Introduction. Some of the most useful theorems in topology are those which 
relate singularities of maps to topological invariants, such as Hopf's Theorem on vector 
fields or the Lefschetz Fixed-point Theorem. One of the most general results of this 
type is the beautiful formula of R. MacPherson [Mac*] which relates the topology of 
the primary singularities of a normal smooth bundle map a : E ->• F to characteristic 
classes of E and F. 

In geometry the classical theory of Gauss-Chern-Weil relates topological invari- 
ants to local curvature data. Given two connections on a smooth bundle and a char- 
acteristic polynomial $, the theory produces a formula: <i>(fii) — ^(^2) = dT, where 
Qi is the curvature of the ith connection and T is a canonically defined smooth form. 
The gauge-invariant forms T are important in the study of the space of connections 
and they lead to well-known secondary invariants [CS], [ChS]. 

The aim here is to combine these results and derive MacPherson-type formulas 
locally on the manifold. Assume bundles E and F are equipped with metrics and 
connections, and let a : E -+ F be a smooth bundle map. We shall derive formulas 
which explicitly express each Chern-Weil form $(0) of E or F as a sum 

(0.1) *(n)  =  ^Res^[Efc(a)]+dr 
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where Efe(a) = {x : dimker(ax) = fc},  Res$^ is a smooth residue form defined along 
Ejfe(a),   and T is a canonical transgression form with L^-coefficients. The sum on 
the right in (0.1) is a characteristic current It is the Chern-Weil representative of the 
class $ for a certain singular connection in the sense of [HLi]. 

When rank E = rank F, equation (0.1) has the form 

$(nF)-$(ns)  = ^Res^[E,(a)]-fdT, 
fc>0 

expressing the difference of the ^-characteristic classes of E and F in terms of the 
singularities of a. 

If a is a normal bundle map (cf. Definition 9.3) on a compact manifold, then 
passing to cohomology in (0.1) yields MacPherson's formula. 

However, there are many important types of bundle mappings which are far from 
normal, such as direct sum mappings 

ai ©•••©a/ : E1 0 •••©£/  —> Fiffi---©F/, 

tensor product mappings 

a1®'-®ai:Ei®>~®Ei  —>  Fi ® • • • <g) i^, 

and mappings given by Clifford multiplication. We shall establish MacPherson-type 
formulas in all of these cases. In fact we shall present a method for deriving such for- 
mulas in any case of interest. The method is based on a "finite-volume" property of 
bundle maps called geometric atomicity - one of the key ideas of the paper. This 
property guarantees the existence of formulas for every characteristic polynomial 
$. It holds for normal bundle maps and for all real analytic bundle maps. Further- 
more, it cuts robustly across the cases mentioned above. Within each special case the 
geometrically atomic maps are generic. 

The concept of geometric atomicity strictly generalizes the notion of atomicity 
introduced in [HS], that is, any section a : R -> F which is atomic is geometrically 
atomic. Furthermore, there is an analytic criterion analogous to that in [HS], which 
implies geometric atomicity. This will be discussed in part II. 

A basic feature of geometric atomicity is that it enables the construction of canon- 
ical homologies between universal singularity sets. (See §4.) The main ideas involved 
here carry over to dynamical systems and have yielded a new approach to Morse 
Theory [HL3]. 

Geometric atomicity guarantees the existence of the limit of characteristic forms 
for the families of approximate push-forward connections constructed in [HLi]. Here 
in Part I we examine the resulting formulas (0.1) in detail for normal maps and for 
real analytic maps whose singularity sets have the expected dimension. For each fc, it 
is proved that 

d([Sfc(a)])  = e^Res^p^a)])  -  0. 

We explicitly compute the residue forms in many cases. We also show they are com- 
pletely canonical in the following sense. Along £&(«) there are orthogonal splittings: 

E = ker a © Im a       and       F = coker a © Ima 

with respect to which a = 0 © /. The given connections induce direct sum connections 
with respect to these splittings. This in turn induces a connection on the bundle 
Hom(kera,cokera) which is equivalent to the normal bundle of Ejfe(a). The residue 
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form Res^ is expressed directly, in the spirit of Chern-Weil, from these bundles and 
connections. 

It is a philosophically significant point that all the formulas here drop out di- 
rectly from the methods of singular connections introduced in [HLi]. The idea is 
this. Given any bundle map a : E -> F between bundles with connection, one can 
construct canonical families Ds, 0 < s < oo. of smooth "push-forward" connections 
on F (and "pull-back" connections V s on E) which begin with the given connection 
at infinity and limit to a "singular push-forward connection" (or "pull-back connec- 
tion") at 0. Applying standard Chern-Weil theory to this family essentially yields the 
results. MacPherson's special blow-ups, the canonical residue forms, and (therefore) 
the topological formula all fall out. 

It is possible that versions of the these local formulas over Z/2 can be established 
using ideas and results in [HZ]. 

1. Characteristic currents. Let E and F be smooth vector bundles of rank 
m and n respectively over a manifold X, and let 

a :£-> F 

be a smooth vector bundle map. We suppose that E and F are provided with metrics 
and with connections DE and DF (which need not respect the metrics). From this 
data the authors have constructed in [HLi] certain smooth 1-parameter families of 

connections Dt on E and Dt on F, for 0 < t < oo, which connect the background 
connections 

1i) oo = DE        and        itoo = DF 

at time t = oo to certain "singular" pullback and pushforward connections at time t = 0 
on E and F respectively. These limiting connections are well defined only outside the 
singularities of the map a. However, for Ad-invariant polynomials $ and ^ on the 
Lie algebras of the structure groups of E and F, it is possible that the limits 

(1.1) *((^)) = Km *(JDt)        and       9(0)) = lim 9(fit) 

exist in the space of generalized forms (i.e., currents) on X. Here §\Dt) = $(Slt) 
denotes the smooth characteristic form obtained by applying $ to the curvature 2- 
form 01 of Vt in the standard way. In [HLi^] it is shown that for certain classes of 
bundle mappings these limits, called characteristic currents, do exist and give rise 
to formulas of the sort 

$(ilE) - *($?)) = dT       and       *(ftF) - 9{(fi)) = dT' 

where O^, VtF denote the curvature 2-forms of E and F, and where T, X" are forms 
with Lj^-coefficients on X. Such formulas give a direct relationship between the 
singularities of the bundle map a and characteristic forms of E and F. They generalize 
classical results of Poincare and Hopf and lead to a wide variety of interesting geometric 
residue theorems. (See [HL2].) 

For example in the category of real oriented bundles, suppose that E = R is the 
trivial line bundle and 9 is the normalized Pfaffian, so that ^(fi^) = xi^) is the 
Euler-Chern form of F. Then for cross-sections a : R —> F which are transversal to 
0, one obtains 

x(nF) - Div(a)   = dT 
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where Div(a) is the oriented submanifold of zeros of a. This result extends to quite 
general cross-sections of F, referred to as atomic sections. (See [HS].) 

More generally one can consider the singularity sets 

(1.2) Eife(a) = {x e X : dim (kera) = k} 

for general k. There are similar results relating these singularities to Shur polynomials 
in the Chern classes (or Pontrjagin classes) of E and F (See [HL2]).  One also gets 
local versions of the differentiable Riemann-Roch Theorem for embeddings. 

In the general case one expects to find a formula of the sort 

*(nF)  = 5^Res*fib[Eife] + dr 
A;>0 

where Res^,*. is a smooth form defined on £& universally in terms of *.   When 
rank^) = rank(F), it would have the form 

k>0 

The point of this paper is to derive these general formulas and to establish their 
existence under fairly weak hypotheses on a. For normal maps we recover the for- 
mula of R. MacPherson [Maci^s] concerning characteristic classes and singularities 
of bundle maps. Our formula is "local" on X, in the spirit of modern versions of the 
Atiyah-Singer Index Theorem. It is an equation of forms and currents with an explicit 
transgression term T. The MacPherson formula is obtained by passing to cohomology. 
The class of bundle maps a for which our local formula holds is broad and includes 
arbitrary real analytic maps whose singularity sets have the expected dimension. 

NOTE 1. To simplify exposition we shall assume that E and F are complex 
bundles. Modifications required for the real case will be discussed in the last section 
on real vector bundles. 

NOTE 2. The results in [HLi] allow a choice of approximation mode. Here we 

shall always work with the algebraic approximation mode, where D t has a particularly 
nice form. For example if m < n 

l3t  =  (t2DF + aDEa*){aa* +t2)-1 

2. The universal case. A bundle morphism 

E —% F 
(2.1) \ ^ 

X 

as above can be considered to be a cross-section of the vector bundle 

Rom(E,F)  -^ X. 

Now over the total space of Hom(E, F) there is a tautological bundle morphism 

7r*E —^—> 7r*F 
(2.2) \ ^ 

Hom(£,F) 

which at A e B.om(E.)F) is given by A itself.   Everything is induced by pullback 
from this universal case. In particular a*(a) = a, and the set-up in (2.1), metrics and 
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connections included, is the pullback of that in (2.2). Our methods proceed as follows. 
We first analyse the problems posed in §1 for the universal case. We then examine 
normal maps, which are transversal to the universal singularities, and show that the 
universal formula can essentially be pulled back to X. Finally, using the notion of 
geometric atomicity, we establish results for quite general maps a. 

We now focus our attention on the universal case (2.2). We begin by observing 
that there is a natural compactification 

(2.3) Hom(£,F)  cG 

of Hom(E, F) given by 
G = Gm(E0F)  A X, 

the Grassmann bundle of complex m-planes in E © F. The embedding (2.3) assigns 
to a linear map A : Ex -> Fx at x G X its graph PA in Ex 0 Fx. Over G there is a 
natural orthogonal decomposition 

(2.4) 7r*(£©F)  = U&U1- 

where U is the tautological m-plane bundle over G. 

The multiplicative flow tpt : E © F —> E © F defined by iptfaf) = (te,f) 
naturally induces a flow 

ipt:G —> G for t € C* 

which restricts to the linear flow 

(2.5) <pt(A) = ljA 

on B.om(E,F). The importance of this flow comes from the following fact proved in 
[HLi; Section 1.8]. 

PROPOSITION 2.1. Let Ut and 151 he the families of connections and $; ^ the 
Ad-invariant polynomials discussed in §i.  Then for all t > 0, 

$(^)  =  (pl$(nu) and *(2^)  = ip*ty(nu±). 

NOTE 2.2. In the case where rank(E) = 1 John Zweck [Z] uses 2.1 to calculate 
the characteristic currents associated to a section of P(E © F) over X. 

3. Morse-Stokes kernels. Proposition 2.1 brings us to study the limits of 
differential forms under the flow ipt : G ->• G for 0 < t < oo. (Examination of this 
question led to the new approach to Morse Theory in [HL3].) 

Denote by Ge2 the fibre product of G with itself over X, and consider the standard 
embedding R C P1(R') = R U {00} as an affine algebraic chart. We consider the 
submanifold 

T d=   {(t,^(P),P) G P^R) x Gm   :  0 < t < 00   and  P G G} , 

called the total graph of the flow, and orient T by some choice of orientation on G. 
(We are essentially working locally on X, so its orientability is not a question.) Let 
[7~] denote the current given by integration over T and define 

(3.1) T = prjT] 
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where pr : P1(R) x Ge2 —¥ G®2 is the projection.   Closely related to this is the 
family 

T.,,   =f {(t,<pt(P),P)eT : s<t<s'} 

and its pushforward 

(3.2) T,,,  = pr, [Ts,s'} 

for 0 < s < s' < oo. Note that %,$• is a compact manifold with boundary 

dTs,s' = {s'} x rs, - {s} x rs 

where 

(3.3) Ts ^ {(v#(P),P) e G®2  : P € G}. 

It follows that 

(3.4) dTSiSf = r8, - rs 

in Ge2. This brings us to our main observation. 

PROPOSITION 3.1.7" is a submanifold of finite volume in P1(R) x G®2 over each 
compact subset of X. 

Proof. This follows from real analyticity. In local trivializations of E and F 
and local coordinates on X we have that Hom(JE7, F) = Rp x Hom(Cm, Cn) and G = 
Rp x Gm(Cm+n) where Gm(Cm+n) denotes the Grassmannian of complex m-planes in 
Cm+n and p = dim(X). Now from (2.5) we deduce that in this presentation T has the 
form Rp x A where A is a semi-algebraic subset of P1 (R) x Gm(Cm+n) x Gm(Cm+n). 
Because it is semi-algebraic, A has finite volume. (See, for example [F].) It follows 
that T does also. D 

COROLLARY 3.2. The limit 

(3.5) T =  lim Ts 8, 
S'—¥00 

exists in the mass topology on currents on Ge2. 

Proof. By Proposition 3.1 the analogous limit of Ts,s' exists and equals T on 
P1(R) x Ge2. Now apply the projection pr which decreases mass. □ 

COROLLARY 3.3. The limits 

TQ = lim Ts        and       T^ = lim rs 
s—>0 s-+oo 

exist in integrally flat currents on G®2 and 

(3.6) dT = ^-To. 

4.  Morse-Stokesi operators. Each of the results of the previous section can 
be reinterpreted from the point of view of operators - operating on forms on G (cf. 
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[HP], [HL3]).  As noted above, we want to understand the limit of the pull-back of 
differential forms under the flow ips on G. Consider 

G©2  _?I2_+ Q 

Pri 

where p^ and pr2 are the projections in the fibre product, and note that the subman- 
ifold rs = [graphs] determines the pullback operator ip* via the equation 

(4.1) <,»  =  (pr2).{(prJw)Ar.}. 

This leads us to consider, for each smooth p-form u on G, the smooth (p — l)-form 
defined by the expression 

(4.2) TV(u/)  =  (-l)de^(pr2),{(prta;)Ar^}. 

Note that T5iS/ defines a continuous linear operator of degree -1 

TV :£*(<?)   —> £*{G). 

with "kernel" T8>^, on the space of smooth forms on G. The current equation (3.4) 
gives rise to the following operator equation. 

PROPOSITION 4.1. 

{doTS}S/ +TS,S/ od}(a;)  = ip*,u - (p*u 

for all differential forms OJ € £*{G). 

Proof By (3.4) and (4.1), 

dT8,8,{uj)  = (pr2)*{(-l)de^d{(prta;)AT5,s,}} 

= (pr2), {(-1)**** fay fa A T5)S, + (prj u) A dTs^ } 

= (pr2), {{-Ifwfayfo A rs,s, + (prj u>) A (IV - Ts)} 

= -T.^(du;) + ip*stu - ¥*su U 

As in (4.2) above the current or "kernel" T can be used to define the operator 

(4.3) TH  =  (-l)de^(pr2)»{(prta;)AT}. 

THEOREM 4.2. For any smooth k-form u on G, the limits 

TO(UJ) = linnp*uj        and       ^(UJ) = lim (p*(jj 
s—>0 s->oo 

exist in the space of flat currents on G, and are given by the formulas 
(4.4) 

ToM = (-l)*(pr2). {(pi» ATo}   and T^u) = (-l)k(pr2)t {(prj w) A Too}, 

Furthermore, these limits satisfy the equation 

(4.5) dT(w) + T(dw) = Too (w) - To (w). 
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Proof.   By Corollary 3.2 and equation (4.2) we see that 

T(u;)=  lim T^(a;) 
s—►() 

s'—>oo 

for all u). The result now follows from Corollary 3.3, equation (4.1) and Proposition 
4.1. D 

5. Analysis of the currents FQ and Too - the decomposition. To under- 
stand the operators IQ and Too we must analyse the currents To and Too that define 
them in (4.4). Since these currents are interchanged by time reversal t H* J, it will 
suffice to study FQ. Note that each of the graphs Tt C G®2 is independent of base 
parameters. That is, if C?!^— U x Gm is a local trivialization of G, then over [/, F* has 
the form {(#, ipt{P),P) : x € U and P E Gm}, which is invariant under changes of the 
trivialization of E and F because the flow commutes with such changes. We conclude 
that the limit is similarly independent of base parameters. Consequently we shall drop 
all mention of X and simply analyse the multiplicative flow ipt on G = Gm(Cm 0 Cn) 
induced by the map {z, w) H* (tz,w) on Cm 0 Cn. 

To simplify the formulas we assume that m < n. The results hold in all cases as 
the reader will easily see. 

Our first observation is that the fixed point set of the flow in a disjoint union of 
submanifolds 

fc>0 

where 
(5.1) 

Fk   =   {P 6 Gm(Cm e Cn)  : dim(P n Cm) = k and   dim(P n Cn) = m - k} 

s   G,(Cm)xGm-fc(C") 

Consider the subsets 

Efc  =  {P : dim(P n Cm) = k}       and       T^  = {P : dim(P n Cn) = m - k} 

and note that 

Sfc n Eom(Cm, Cn) = {A : dim(kerA) = k}       and 

{0} = I'm C Sm-l C Sm-2 C Sm-3 C • • • C So = G. 

Furthermore, we observe that 

TfcnHom(Cm,Cn) = 0 if k<m and 

G = Tm D Tm_i D Tm_2 D Tm_3 D ... To = Gm{Cn) 

and furthermore 

(5.2) Hom(E,F) = G-Tm-i- 

NOTE 5.1. Sfc and Tfc are the stable and unstable manifolds of Fk for y^"1, that 
is, 

S* = {P 6 G : lim <pt(P) 6 Fk}       and       Tfc = {P € G :   lim ^(P) e Ffc}. 

This follows immediately from the next Lemma whose proof is easy. 
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LEMMA 5.2. For any P € G, 

Jim n (P) = (PnCm)e prc„ (P)  d^ Tn (P) 

lim MP) = Pre- (P) © (P n Cn)  d= 7r2(P) 

ly/iere prCm and prCn are tte projections of Cm 0 Cn on^o £fte factors. 

The right hand side of the formulas in Lemma 5.2 give us projections 

Tfc —S-* Gfc(C-) x Gm_,(C-) ^i- Efc 

II 

PROPOSITION 5.3. 

Foo = ^2 P* ><Ffc T^        a^d       ro = XI [T* ><^ Efc] 
A;=0 k=0 

where 
rk xFk Efc = {(P,Q) € Tfc x Sjb C G x G : 7r2(P) = 7ri(Q)} 

anrf Efc X|?fc Tfc is defined similarly. 

Proof. We shall only sketch the argument since a similar, more general assertion is 
proved in [HL3]. From its definition (cf. (3.3) and Corollary 3.3) it is straightforward 
to show that suppFo C Y& x jrk £&. Now each of the submanifolds T^ x ph Ek is a Zariski 
dense subset of an algebraic subvariety; in particular it has finite volume in G x G. 
The Federer Flat Support Lemma [F; 4.1.15] now implies that FQ = Ylk ^[^k XFk 2*]. 
Analysis of the limit at points of Fk shows that n* = 1 (cf. (10.2)). □ 

Note that T^ x^fc E^ is a fibre product over Fk embedded diagonally in G x G. 
For x e Fk the fibre 7r^'1(a:,a;) lies in G x {x} and the fibre 7rj"1(a;,a;) lies in {x} x G. 

Combining Proposition 5.3 with (4.4) above gives the following. 

COROLLARY 5.4. The operators To and T^c can be written as 
TO m 

To  =  ^P*        and       T^  =  ^j\ 
k=0 k=0 

where 

P*M = (pr2)* {(price;) A [T* x^ E^]} and Pk{^) = (pr2)* {(prjo;) A [E^ xFk Tfc]} 

for any smooth form u on the Grassmann bundle G. 

6. Analysis of the currents FQ and Too - the residues. We now show that 
the operator P^ in Corollary 5.4 has the form Pjt(u;) = Resfc(u;)[£fc] where Resfc(cj) is 
an explicitly computable residue form defined on Ej; in terms of u;, and analogously 
Pjb(a;) = Res/ib(a;)[TA;] where Res'j^u;) is a smooth residue form on T^. 

We begin with the following observation. 

LEMMA 6.1. Each of the submanifolds T^ and £& has finite volume in G. So 
also do the fibre products Y^ XFk E^. 



80 F. R. HARVEY AND H. B. LAWSON 

Proof.   This is evident from the fact that their closures are algebraic subvari- 
eties. D 

DEFINITION 6.2. Given a smooth differential form CJ defined in a neighborhood 
of Tfe, and a smooth differential form u/ defined in a neighborhood of £&, set 

Resfc(a;)  =  (TTI)* {(T^)*^}        and       Res'*(a/)  =  (T^)* {{ni)*u'} 

using the projections 

We shall show that the maps TTI and ^2 have the natural structure of algebraic 
vector bundles over F^. 

PROPOSITION 6.3. Each operator P^ can be expressed by the formula 

Vk{uj)  = Re8k{u))\Lk]. 

Furthermore} for any smooth form u on G, ReSjk(a;) is a smooth form on £& which 
has finite L^-norm (i.e., finite mass), so that Resk{^)\^k} is & well defined current 
on G. Similarly, P^ can be written as 

Pk(u>)  = Re8'k(u)[rk]. 

where Resf
k(uj) is a smooth L1 form on Tk. 

Proof To begin we note that there is a commutative diagram 

¥& xFk Efc  > Sfc 

(6.1) ^1 [^ 
?k         > Fk 

where pi and P2 are induced from the two projections G x G onto G, i.e., there is a 
commutative diagram 

Tfc *—^— Tk xFk E^ —■—> E^ 

I 
G  ^U-     GxG     -^  G 

Each of the maps TTI and ^2 in (6.1) has the natural structure of an algebraic 
vector bundle over Fk. We show this explicitly as follows. Let 

f —» Gk(C
m)       and       77 —► Gm_fc(C

n) 

be the tautological bundles of rank k and m — k respectively, and extend them by 
pullback to Fk = Gk(C

Tn) x Gm_jfc(Cn). Then there are commutative diagrams 

Hom&ir1-) -^i-» T* Hom^f-L) Jl -»•   sfc 

"2 7r2 »i TTI 

G^C"1) x Gm-*(CB)   -  > ^ Gk{Cm) x Gm-*(CB)   - 
^ 

->     ^ 
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where TTJ and TT^ are bundle projections and where at (£, 77) e Gk x Gm-k 

hifl)  = 7?0graph(a)       and       j^b)  = ^egraph(6). 

The maps ji and J2 are biholomorphisms and give Tk and Sjfe the structure of vector 
bundles as claimed. Consider the Grassmann compactificatons 

Hom(£,77x) C       G^e^) Eomir]^1)       C Gfr®^) 

TT'z \ ,/ 7f2 < \ ,/ TTi 

F* ft 

where G(^ © 7]1-) is the bundle of fc-planes in ^ 0 T/
1

- and £(77 0 £-L) is the bundle of 
(m — fc)-planes in 7/ 0 ^-L. The maps ji extend to surjective algebraic maps 

Gtt©.rL)-^Tfc G^e^j^s* 

given on the fibres above (£, 77) G Gk x Gm_A: by 

(6.2) j2(h) = V®Z2       and       Ji(^i)=$e^i 

NOTE 6.4. The normal bundle to S^ is equivalent to the pullback of the vector 
bundle Y* via the map 7r2. Similarly the normal bundle to Tk is the TTI -pullback of 

£*. 

We now observe that by the commutativity of (6.1) we have 

(pr2)* {(prj u) A [Tk ^Fk Xk]}    =    (pa), {(plw)} 

=     (^l)*{(^2)^} 
=   Res/fe^Jpfc] 

This proves the formula asserted in 6.3. The integrability of Resife(a;) on Ejk is equiv- 
alent to the fact that the current ReSfc(a;)[£fc] has finite mass. This finiteness of mass 
is a consequence of Lemma 6.1, which implies that (prjo;) A [Tk Xf?fc £*.] has finite 
mass, and the fact that pushforward of currents is mass non-increasing. 

This completes the proof of 6.3 for P&. The argument for P* is completely 
analogous. D 

The proof above used the "Grassmann desingularization" of T^ and U^ by the 
maps J2 and j1. This gives us another way to look at the residues which will be useful 
to us when we consider characteristic forms in §9 and onward. 

PROPOSITION 6.5. The form Resfc(u;) can be expressed as 

Resk(uj)  =  (TTI)* {(7r2).2} 

where ^2 : G(€ 0 7]^) —> Fk is the Grassmann compactification above, and where 
UJ = j2u;. The analogous statements hold for Res'k{u')- 

Proof. We have seen that (7r2)*(u;) = (TT^MJ^)- Since the fibres of TT^ are Zariski 
dense, and in particular of full measure, in the fibres of TPZ, we see that integration 
of a smooth form on G(£ 0 r)1) over the fibres of 772 and over the fibres of TT^ are 
equal. D 
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7. The first main theorem. Combining 4.2, 5.4 and 6.3 immediately yields 
our first main result. 

THEOREM 7.1. Let G = Gm(E 0 F) be the Grassmann bundle of m-planes in 
the smooth vector bundle E ® F —> X, and let cpt, 0 < t < oo be the multiplicative 
flow on G engendered by (e, /) »->• (te, /) in E ® F. Then there are continuous linear 
operators IQ, IJ>o, T : £*(G) —> £,*(G) from smooth differential forms to generalized 
differential forms (in fact, flat currents) on G with the following properties. For all 
uje£*(G), 

TQ (u) = lim (ftu = Y] Res* (u) [£*]    and   T^ (w) = lim (pfa = V Res'* (u) [Tk] 

where 
ResA;(a;) = 7ri{(7r2)*a;}        and       Res'fc(a;) = ^{(TTI)*^}. 

Furthermore, T, defined by (4-3), is an operator of degree -1 which satisfies the equa- 
tion 

(7.1) doT + Tod = JToo-ro 

8. The formula in the universal case. Let U —> G be the tautological bun- 
dle and let $ and \I> be Ad-invariant polynomials on the Lie algebras of the structure 
groups of E and F respectively. Because of Proposition 2.1 we want to apply the 
Theorem above to the situation where 

L; = $(nu)        or       u = 9(nuJ~). 

The main point is to compute the residues. For simplicity we will treat the first 
case. According to Proposition 6.3 Res^cj) on £& is computed by restricting u to T^, 
integrating over the projection 7r2 and then pulling back to £& via TTI . Note that by 
the naturality of the Chern construction 

"IT,  = * ' fi H 
From the proof of Proposition 6.3 we see that on Y^ the bundle U splits as 

U\rk ^v^Uk 

where Uk is the restriction to Hom(^,7y-L) C G(£ 0 T]-
1
) of the tautological fc-plane 

bundle 
[4^G(£0 77X). 

Consequently we have from 7.1 that 

(8.0) Res*(a;) = Trjfo),* (ft770^) 

Restricting to the coordinate chart Rom(E, F) we get 

(8.1) Res/kM  =  (7r2)*$(nImaec/fc) 

where Uk is the tautological bundle over the Grassmann compactification G& (kera © 
cokera) of the normal bundle Horn (kera, cokera) to £&. 

On the other hand by (5.2) one sees directly that on the chart Hom(£J,F) 

(8.2) Res'k((j) = 0       for  fc < m 
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and 

(8.3) Res'm(u/) = TTJ (U;|EJ = *(nE) 

THEOREM 8.1. Let E -» X and F -* X be smooth complex vector bundles with 
rank(I?) < rank(i71), and let $ be an invariant polynomial on the Lie algebra of the 
structure group of E. Then for any choice of connections on E and F there exists an 
L\QC-form T on Hom(E,F) so that 

m 

(8.4) $(0*)  =  ^Res^pfc] + dT 
A:=0 

Res*,fc  =  (7r2),$(fiImaeC/fc) 

where a : 7r*E —>• 7r*F denotes the tautological bundle map on Hom(i£, F) and where 
(7^)* denotes integration over the fibres of the Grassmann compactification (?& = 
G&(kera 0 cokera) of the normal bundle Nj:k = Hom(ker a, coker a), and where Uk 
is the tautological k-plane bundle over Gk- 

//rank(E) =rank(F), then formula (8.1) becomes 

m 

*(n^) - $(nF) = 2Res*.*[E*] + dT 

k=l 

If \I> is an invariant polynomial on the Lie algebra of the structure group of F, 
then there exists an L\oc-form T' on Hom(i5, F) so that 

(8.5) *(nF)  =  JTRes^E*] + dT' 
k=0 

Res^,,  =  (7r2)3(p;kerQ)±@^) 

NOTE 8.2. The case where rank(JE?) > rank(F) follows by applying Theorem 8.1 
to the adjoint of a. 

NOTE 8.3. The bundle Horn (coker a, ker a) is the dual of the normal bundle 
Horn(kera, cokera) of £*. 

Proof. If LJ = ${QU), then du = 0. We apply Theorem 7.1 to u and apply (8.1) 
to calculate the term lo(^). We then restrict to Hom(£,i71) c G and apply (8.2) and 
(8.3) to calculate T^u). This proves the first part of the theorem. The calculations 
for ^(Q,17 ) are completely analogous. □ 

REMARK 8.4. The bundle Im(a) is a pull-back to Gk of a bundle defined on E^ 
via the fibration Gk —> Sik. The tautological bundle Uk carries a natural connection 
which along the fibres of Gk -> ^k is the standard connection. In §12 we shall see 
that the connection yielding the curvature form in formula (8.2) for the residue can be 
assumed to be the direct sum of the pull-back connection on Im(a) with the projected 
connection on Uk- This has particularly nice consequences when $ is a multiplicative 
series of characteristic polynomials. 
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9. Existence for normal bundle maps — geometric atomicity. Let E and 
F be smooth complex vector bundles over a manifold X of dimension v, and suppose 
that 

a:E—>F 

is a smooth bundle map. Given Ad-invariant polynomials $ and * as above, one can 
ask when the limits (1.1) exist. We shall now answer this question in some generality, 
and also establish the local MacPherson formula for a. 

The following concept is crucial here. To begin we recall that a Borel measurable 
subset A of a locally compact topological space Z is said to have locally finite /x- 
measure if each point z E Z has a compact neighborhood U such that fi(A D U) < oo. 

DEFINITION 9.1. The section a is called geometrically atomic if the subset 

(9.1) Ta  =  {(\axjax) 6 G®2 : x e X  and 0 < t < oo} 

has locally finite (u + 1)-dimensional measure in G02. 

NOTE. Above the open set X — Zero(a) where a ^ 0, Ta is a submanifold. In fact, 
it is a line bundle over this set. The remaining points of TQ consist of the zeros of a and 
therefore have locally finite ^/-dimensional measure. Hence they can be ignored, and 
the condition in 9.1 can be replaced by requiring that the remaining submanifold have 
locally finite volume in G02. (Thus, the zero-section a = 0 is always geometrically 
atomic.) 

NOTE. The condition in Definition 9.1 is equivalent to the requirement that for 
each compact K C X, the subset 

TKta  =  {(jOix,ax) E G®2 : x e K and 0 < t < oo} 

has finite (v + l)-dimensional measure in G02. 

The generality of Definition 9.1 is clear from the following result. 

PROPOSITION 9.2. If a is real analytic, then it is geometrically atomic. 

Proof. The closure of the submanifold 

(9.2) Ta = {(*, \ax,ax) G R x G02 : x G X  and  0 < * < oo} C P^R) x G02 

is an analytic subvariety of dimension (v + 1) in P1(R) x G02 and hence has locally 
finite (u+l)-measure. It follows that its image Ta = pr* Ta, where pr : P1 (R) x G02 -¥ 
G02 is the projection, also has locally finite (v -f l)-measure. □ 

NOTE. The singularities of a real analytic map can be monstrous. In particular, 
the sets D&(a), defined in (1.2), need not have the expected dimension. 

DEFINITION 9.3. A bundle map a : X —> Hom(E,F) is called normal if it is 
transversal to the submanifolds £& for all k. 

PROPOSITION 9.4. Any normal bundle map is geometrically atomic. 

The proof is postponed to section 10. Our first main result is the following. 

THEOREM 9.5. If a is geometrically atomic, then the limits 

(9.3) $($?)) = lim $(lDt)       and       9{(l$)) = Jim V(i$t) 
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exist on X for all Ad-invariant polynomials $ and * on the Lie algebras of the struc- 
ture groups of E and F. Furthermore, for all $, $ there exist Lloc-forms 7$, T^ on 
X such that 

(9.4) $(nE) - $($?)) = dT*        and       #(ftF) - 9(0)) = dTy 

where SlE, SlF denote the curvature 2-forms E and F respectively. 

Proof. Fix 5' > 5 > 0 and consider the subset 

Ta,s,s'   =  {(\oLx,ax) G G02 : x eX  and  5 < t < s'} . 

(Note that Tai8t8i = pr^ Ta^.s' where 7^,5>S' is the compact submanifold with boundary 
defined as in 9.2 with s < t < s'.) As in §3 the assumption of locally finite volume 
implies that 

lim Ta 8 a'   = Ta 
s-+0 

s'—too 

in locally integral currents on G02, and that 

(9.5) lim dra ../  =    lim ra ./ - lim Tao = ra)00 - ra n 
s^O ' s'->oo s^O 

s'—too 

where 
r«,. = {(ia«,as)6Ge2 :x€X} 

We now reinterpret these equations as operator equations and apply them to the forms 
$(QU) and 9(QU ) as in §4. Specifically, to each integral current S of dimension n + £ 
on G02 we associate the operator S : £*(G) -> £*{X) of degree — £ from forms on G 
to currents on X by setting 

(9.6) S(a;)  = p* {(prj u) A 5} 

where p : G —> X is the bundle projection. Note that rajS(u;) = a*(£>*(u;) where ips is 
the flow on G defined in (2.5). In particular, if LJ = $(Q,U), then by Proposition 2.1 
and the universality of the construction oiVs we have that 

(9.7) rQ>sM =av:$(n£/) = a*$(K) = *(t7.), 

where U 8 is the curvature of the universal pushforward connection on Hom(B,F) C 
G. Consequently (9.5) and (9.7) imply that 

lim $(tys) - lim $(trs)   = dT* 

where T$ = Ta($(nc/)). By the continuity of V s at infinity we have lim^oo $( ft s) = 
$(QE). This proves the result for $. The result for $ is similar. D 

A determination of the limits in (9.3) for all <£ and \I/ will follow from under- 
standing the limiting current ra)o- When a is normal we shall see that this current is 
modeled on the universal case. 

10. The local MacPherson formula. In this section we analyse the current 
ra>o- Our discussion is local on X, so we shall assume that E and F are trivialized 
bundles. Our section a is then just a map from X to Hom(Cm, Cn) C Gm(Cm+n) = 
G. 
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To begin the analysis we give a simple presentation of the flow ip8 in a neighbor- 
hood of Fk = Gk(E) x Gm-k(F) in G. We return to the notation of §6 and consider 
the vector bundle 

Hk= Homforr1) 0 Hom(77,£x) 

I Tr^STri 

Fk. 

There is a map j : Hk -> G defined by 

(10.1) j{a,b)  = gr(a)egr(6) 

where gr(a) denotes the graph of a. This map gives a diffeomorphism from a neigh- 
borhood of the zero-section to a neighborhood of Fk in G. We introduce fibre metrics 
and identify such a neighborhood of Fk with 

U = {(a,b)eHk  :  |a| < 1  and  |6| < 1} 

In this presentation the flow ip8 has the form 

(Ps{a,b)  =  ($a,sb). 

Now in this neighborhood our set T can be written as 

Tn(UxU)  =  {(ia,sM,&)  :  M < 1, \b\ < 1, l^a) < 1, \sb\ < 1, and 0 < s < l} 

= {(a,sMa,&)  :  |a| < 1, \b\ < 1, and 0 < s < 1} 

The boundary of this set is clearly given by 

(10.2) d{Tn(UxU)} = {(a, 0,0, b) :  |a| < 1, |6| < 1}  S Tfc xFjb Efc. 

This is in fact a manifold with boundary inUxU — Fk. We can resolve the singularity 
at Fk by considering 

{(s, a, 56,5a, 6)  :  |a| < 1, |6| < 1, and 0 < s < 1}  C R x G x G. 

This is a manifold with boundary whose projection is the set above. 

Suppose now that a is a normal bundle map and fix XQ G X with aXo G £&. Let 
zQ = 7ri(aXo) € Fk and fix a neighborhood V of zo in Ffc with local trivializations 

£|v S y x Cfc        and       7y|v £ V x C771-^ 

Thus over V we have 

(10.3) Hom^,^) 0 Hom(7y,4J-)|v £ F x Homfcjn_m+A; x Homm_A.,m_A.. 

where Homr>s = Hom(Cr,Cs). In this picture aXo = (zo,0,60) for some point 60 G 
Homm_jk)m_jk, which we may assume (by homothety) to satisfy |6o| < !• Restricting to 
triples (v, a, b) with |a| < 1 and |6| < 1 parameterizes a neighborhood in G containing 
ZQ and aXo. In this neighborhood 

Sfc  ^ y x {0} x liomm-k,m-k' 

Now the transversaiity of a to E^ implies the following. 

LEMMA 10.1. Suppose a is normal and XQ G £&(#)• Then there exist local 
coordinates on a neighborhood U of XQ in X of the form 

(y, a) G R^ x Homfc,n_m+fc 
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where N = v — 2k(n — m + A;), such that in the coordinates (10.3) above 

(10.4) a(j/1a) = (i;(2/)>a>%)). 

Note that in U, £jk(a) is the submanifold corresponding to a = 0. Furthermore, 
Lemma 10.1 shows that in U 

(10.5) E*(a)  = R^ x {a E Hom*,n_m+fc : dimker(a) = (,} 

for all I < k. We conclude the following. 

COROLLARY 10.2. If a is normal , then each E^(a) has locally finite volume in 
X. 

Proof of Proposition 9.4- Fix XQ G Sjt(a) and choose coordinates on G and X as 
above. Note that the map j defined in (10.1) extends smoothly to the compactification 
£?(£ © V1') © G(ri © £-L). In particular, via (10.3) this gives a map 

V x Gk(C
k © cn-m+*) x Hom,^-*^-*  —» G 

which we compose with our coordinate representation of a above. We then consider 
the map 

(0,1] x U —> G x G 

given by 
(5,2/,a)  H>  (v(y),±a,sb(y);v(y),a,b(y)). 

The volume element induced by this map is dominated by the volume element induced 
by the product mapping 

(5,2/,a) H>  (v(y),±a,b(y); v(y),a,b(y)). 

Now the map (5, a) H* (^a, a) is algebraic and its image is a submanifold of finite 
volume in Gk(C

n-m+2k) xGk(C
n-m+2k). This proves that TaiK has finite volume 

for compact subsets K C U. D 

We now consider the local MacPherson formula for a normal bundle map a. We 
have seen that for each k, Sfc(a) is a smooth submanifold of locally finite volume and of 
(real) codimension 2k(n — m + k) in X. Along each T,k(a) it is clear that ker a C E and 
Ima C F are smooth vector bundles. Furthermore, the bundle Hom(kera,cokera) is 
naturally equivalent to the normal bundle of Sfc(a) in X. (See [Maci] for example.) 
Now fix XQ £ £fc(a) and choose coordinates as in Lemma 10.1. Then from (10.5) we 
see that for each £ < k we have a splitting in U: 

E*(a)  = RAr x £* 

where 
E< C Homfcfn-ro+ife C Gk(C

n-m+2k) 

is the universal degeneracy locus (where dim ker a = £). Our section of G02 can now 
be written 

(<^a(2/,a), a(y,a))  =  (v(y),±a,8b(y)]v(y),a,b(y)). 

From here it is straightforward to see that in these coordinates on G®21 ^ 

(10.6) ra,o  = R^ x To 
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where TQ is the current in Gk{Cn-rn+2k) x Gk(C
n-m+2k) defined universally in §3 as 

the limit of the sets rs ~ Cl{(^a,a) : a € Komi^n-m+k} as 5 -> 0. Thus the analysis 
of §§5-6 applies directly and we conclude the following. 

THEOREM 10.3. Let E -> X and F -> X be smooth complex vector bundles with 
rank(E) < rank(F), and let a : E -» F be a normal bundle map. Suppose $ is an 
invariant polynomial on the Lie algebra of the structure group of E. Then for any 
choice of connections on E and F there exists an L\oc-form T on X so that 

m 

(10.7) *(ns)  = 2Res*ifc[Efc(a)] + dT 
k=Q 

Res*,*  =  (7r2)^(nIma®c/fc) 

where (^2)* denotes integration over the fibres of the Grassmann compactification 
Gk = (jrfc(ker a©coker a) of the normal bundle N^k = Hom(ker a, coker a) to £fc(a), 
and where Uk —> Gk is the tautological k-plane bundle. 

Ifiaink(E) = rank(F), then formula (10.7) becomes 

m 

9(nE) - $(nF)  =  ^Res*ffc[E*(a)] + dT 
k=l 

If * is an invariant polynomial on the Lie algebra of the structure group of F, 
then there exists an L\oc-form T1 on X so that 

(10.8) *(nF)  = 5^Res*fife[Efc(a)] + dT' 
k=0 

Res*,*  =  (7r2),*(n(kera)J"e^J") 

11. Real analytic bundle maps. In this section we derive a Local MacPherson 
Formula for real analytic bundle maps under the assumption that the degeneracy loci 
have the expected dimension. We begin with the following general result. 

LEMMA 11.1. Let a : E -> F be a geometrically atomic bundle map over a smooth 
manifold X, and let Ta^ be the current from (9.5). Then 

(11-1) supp ra,o  C  [JT* XF* Sik(a) 

Proof. Fix x G Ejfe(a) and choose local trivializations of E and F in a neigh- 
borhood U of x so that G02]^ U x Gm x Gm where Gm = Gm(Cm+n). Suppose 
(x,Pf,P) G supp rajo. Then there exist sequences Xj ->• x and tj -» 0 such that 

7,- = gv(aXj) —> P       and       7} = gr(fjaXj) = ^Ij —> P' 

where ipt is the flow from §2. It is now an elementary argument (as in [HL3, Lemma 
2.10]) to see that P must be joined to P' by a piecewise flow line in Gm which passes 
through Fk- In particular, P' € T^ and ^(P') = 7ri(P), where TTI and ^ are the 
projections from §6. Thus (P'jP) € T^ xFfc E^a) as claimed. D 
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Suppose now that a : E -> F is a real analytic bundle map between complex 
vector bundles over a ^/-dimensional manifold X, and that 

rank(E) = m < n = rank(F). 

Then for each k the degeneracy locus £/;(a:) is an analytic subset of X of some di- 
mension, say Ua^- Therefore, £*(#) has locally finite i/^-measure, and integration 
over the regular points of £fc(a) defines an integral current [£fc(a:)] of dimension i/a>fc. 
Recall that the "expected" dimension of Efe(a) in X is i/* = v — 2k(n -m + k). 

THEOREM 11.2. Let a : E -» F be as above and suppose that 

(11.2) dim?:k(a) < vk 

for each k. Then there exist integer-valued functions nk on IJA;(a), constant on each 
irreducible component, such that for all <$>, $ as in 10.3 and all connections on E and 
F, there exist Lloc-forms T, T' on X such that 

<f>(nE)  = ^nibRes*fjfc[Ejfe(a)] + dT       and 
k=0 
m 

y(nF)  = ^njfeRes^p^aJl+ca1' 
k=0 

where Res^ and Res^,jfe are smooth forms defined on the regular set of Efc(a) exactly 
as in Theorem 10.3. 

Proof. By Theorem 9.5 and its proof (in particular the discussion from (9.5) to 
(9.7)) we need only to compute 

(11.3) ra,oM  = p,{(pr*a;)Ara,o} 

where u = $(Slu) or ^(ft17 ). Now it follows from assumption (11.2) that 

dim{Tfc xFkYlk(a)}  <  v - dimra)o 

for all k. Hence, from (11.1), the fact that <ira)o = 0, and the Federer Flat Support 
Lemma [F;4.1.15] it follows that 

ra,o = X^P^- xFfc Eife(a)]. 
k 

where n^ : Ilfc(a) -* Z is locally constant on the regular set and 0 on any component 
of dimension < i/&. Computing (11.3) at regular points of £fc(a) gives the residue 
forms as in §8. □ 

NOTE.   The function n^ represents the order of k-degeneracy of a. 

12. Analysis of the currents Res$,*[£*] and residue calculations. In this 
section we shall study the singular currents which appear in our formulas. They have 
a surprizingly regular structure and the residues are explicitly computable in many 
cases. Our first result is that for regular bundle maps, each of the terms Res^pfc] 
occuring in the main formula is a d-closed current of finite mass. We begin with the 
following. 

PROPOSITION 12.1. Let a : E -» F be as in Theorem 10.3 or Theorem 11.2. 
Then for each k, integration over the regular points 0/£fc(a) defines a locally rectifiable 
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current [£&(a)] in X with 

(12.1) dp* (a)]  = 0 

Proof. Corollary 10.2 and the discussion prior to 11.2 show that E^a) has locally 
finite volume in X and therefore defines a locally rectifiable current. Note that 

supp{d[£*(a)]}  C   |j££(a), 
l>k 

and that codiniR X^ = 2l{n -m + £). Since d[£fc(a)] is a flat current of codimension 
2k(n - m + k) - 1, it follows from [F, 4.1.15] that dp* (a)]  =0. D 

PROPOSITION 12.2. Let a : E -► F, $ and ^ 6e as m i^.5 or ii.^. Then for 
each k, the currents 

Rk = Res$life[Ejb(a)]        and       R'k = Res«rlib[Ejfe(a)] 

ftave locally finite mass in X and satisfy 

dRk  = dR'j,  = 0. 

Proof. We begin with the universal case. In Propositions 6.3 and 6.5 it is proved 
that the currents Rk and R^ have locally finite mass. We recall that this is done as 
follows. Consider the desingularization 

of the closure of £& given by the Grassmann compactification of £& = Hom^,^-1) 
(cf. (6.2)). The projection TTI : E* -> Fk extends to a smooth map 

ZnGin®?-)  —> Fk. 
We pull the bundle T* = Hom(^,^-L) back via j1 and take its Grassmann compactifi- 
cation G(^ 0 ry-1). Let Uk -> G(^ 0 r?-1) be the tautological bundle. Then we have the 
identity U = Uk 0 r? (cf. §8), and 

flea*,*  =  Ch)**(nu^). 

Since $ (ft*7*077) is a smooth form on the manifold G(r) 0 £J-), its push-forward by 
j! has finite mass. Furthermore, since $ (ft^077) is d-closed on G(r) 0 £-L), its push- 
forward is d-closed on X. A similar argument applies for iJJ.. This gives the result in 
the universal case. 

The normal case is proved in parallel fashion by using the regular singular struc- 
ture of Efc(a) established in §10. Namely, from Lemma 10.1 we see that Ejfe(a) has 
the same singular structure as E^ in the universal case, and the arguments above 
apply straightforwardly. In the analytic case one replaces the desingularization j1 by 
resolution of singularities. D 

We now address the question of the residue forms themselves. From forumla (8.0) 
we see that it would be particularly nice if the connection on U\r = 77 0 Uk were a 

direct-sum connection D11 0 DUk. Explicit calculation shows that this is not the case. 
However, one could hope that for an invariant form $, there is an equality 

(12.2) Tra**^0^)   = Tra-.S^eft^) 
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where 

n-o" = (n; ^) 
is the curvature of the direct-sum connection obtained from the given connection by 
taking orthogonal projection of the covariant derivative D'n®Uk back onto the factors 
7] and Uk- This is often the case (cf. [HLi], [Z]). However, the work of John Zweck 
[Z, Thm. 4.17] on meromorphic sections of vector bundles shows that (12.2) does not 
always hold. Nevertheless, we do have the following. 

LEMMA 12.3. The general residue form Res^,* on E^ appearing in Theorems 
10.3 and 11.2 can be written as 

(12.3) Res*,*  = 7r2*$ (ftIma 9 SlUk) + dSk 

where Su is a smooth form written universally in terms of the curvature and connection 
of E and F. 

Proof. Consider the linear family D1 = (1 - t)Du + t(DImQ 0 DUk) joining the 
given connection on U = Im a © Uk and the direct-sum connection, and set 5* be the 
standard Chern transgression form (cf. [HLi]). D 

REMARK 12.4. The universal expression (12.3) can be regarded in another way. 
To derive it, it suffices to consider the universal case. In fact via [NS] it suffices 
to consider the case where X = Gm(CA/) x Gn(CN) and E and F are the pull- 
backs of the tautological bundles E -> Gm(CM) and F -> Gn(CN) respectively. 
Here 7r2*$ (Sl7?®^) is a UM 

X
 C/jv-invariant form on the universal kth fixed-point set 

Gk{E) x GN(F). NOW Fk = Gk(E) x GN{F) is a product of two-stage flag manifolds, 
and the invariant forms in a given cohomology class are not unique. However, any two 
cohomologous invariant forms differ by the exterior derivative of an invariant form. To 
derive equation (12.3) explicitly in any given case, it suffices to do it on this particular 
manifold X. 

PROPOSITION 12.5. Let a : E ->- F, $ and $ be as in 10.3 and 11.2. For each 
k let 

Res^ft   =  Res^ + dSk 

be the canonical decomposition of the residue form given in (12.3). Then each of the 
currents 

Rk  = itea*,k[Vk(<x)],        Sfcpjfete)],        and       (dSk)[Zk(a)] 

has locally finite mass in X, and furthermore the following equation holds on X: 

(12.4) d(Sfc[Efc(a)])  = d(5*)[Efc(a)]. 

The parallel results hold for Res^fc. 

Proof. The proof that these currents have finite mass follows exactly the lines of 
the proof of 12.2. Assertion (12.4) then follows from (12.1). □ 

COROLLARY 12.6. The cycles Rk = Res^jfep^a)] andRk = Res$^[E^(a)] are 
cohomologous in the complex of locally flat currents on X. In particular they represent 
the same class in H*(X; R). (The analogous assertion holds for Res^p^a)].,) 

Combining the above gives the following. 
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THEOREM 12.7.Let a : E -> F, $ and * be as in Theorem 10,3 or Theorem 
11.2. Then the following equation holds on X: 

k 

where 

Res*,* = f $(n7r*klma®nUk) 

and where TT* : C?fc(kera © cokera) —> %k((x) is the Grassmann compactification of 
the normal bundle to E^a), Im a G F carries the induced connection, fi^fc1"101 {BftUk 

denotes the curvature of the direct sum connection, and T is a flat current on X. In 
particular, if $ is a multiplicative series, then 

RS*ffc = If *(n£'fc)j*(nIma). 

The analogous result holds for &(QF). 

It is interesting to examine some basic examples. For convenience we shall drop 
the tilde from our notation. 

EXAMPLE 12.8. Let 

$(ft):=c(n)d=fdet(J+^ft) 

be the total Chern class and suppose that m = n. Then 

Resc,i   =  c(ftIma) 

ResCjfc  = 0   for all k > 1. 

EXAMPLE 12.9. Let 

*(n) = ch(n)d^exp{^n)} 

be the Chern character and suppose that m = n. Then 

ch(ftkera)-ch(ncokera) 
Resch,! -     Ci(nkero)_Ci(ncokera) 

ResCM  = 0   for all fc > 1. 

EXAMPLE 12.10. Let 

$(n) = ^(n)<ifdet{(7 + 1Ln)-i} 

be the total dual Chern class and suppose that m = n. Then a calculation shows 
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that for any £>l 

Res(cx),,1  =  -cx(filma) 
\     Ci(ftkera)-C(ficokera)      J 

Res(c±)£f/ = cJ-(nI,na)V(nk8ra)V(ncokera)z 

Res(c-L)*}fc  = 0   for all k > £. 

From this example we get the following pretty formulas for a normal bundle map 
a : E ->- F over a manifold X where rank(-B) = rank(F). Fix any integer £ > 1. Then 
there exists a flat current 5^ on X such that 

cH^Y- -cHnF)e = 

+ ... 

+ c±(nlma)ecA-{nkera)ec±{ncokera)e[Ei] + dSe 

13. Results for real vector bundles. Up to this point the bundles E and 
F have been assumed to be complex. We now re-examine our results under the 
assumption that E and F are real vector bundles. One verifies directly that in this 
case the fundamental constructions presented in §§2—12 carry through with virtually 
no change provided that the fibre diagonal AQ C G92 and its isotopic deformations 
rs, (cf. (3.3)) define currents on G®2, and provided that the projection pr2 induces a 
map (pr2)*on currents (cf. (4.1) and (4.2)). 

We recall that currents of dimension p on a manifold Y are defined as the topo- 
logical dual space of the space £P(Y) of compactly supported, smooth p-forms twisted 
by the orientation bundle Ory of Y (cf. [deR], [S]). Any p-dimensional submanifold 
with oriented normal bundle defines such a current. So also does any smooth form of 
degree n — p on Y, and in fact every current can be considered to be an (n — p)-form 
on Y with generalized coefficients. 

Note that a smooth mapping / : Y -> Y' between smooth manifolds induces a 
continuous linear map /* on currents if and only if /*Ory> = Ory. When / is a 
submersion, this condition is guaranteed if the fibres of / are orientable. 

Now the normal bundle N to the fibre diagonal G = AQ C Ge2 is isomorphic to 
the bundle of tangent vectors to the fibres of the fibration TT : G -> X. That is, there 
is a bundle equivalence 

(13.1) iV £ Hom(C7,LrX) 

We recall an important elementary fact. (See [HL2, A. 13], for example.) 

LEMMA 13.1. Let V, V be real vector bundles over a space Y. //rank(y) — 
rank(y/) is even, then Hom(V, V) is orientable. 

Recall that rank(C/) = rank(i£) and rank(C/-L) = rank(F), and note that the fibres 
of the projections pr^ : G02 —> G are diffeomorphic to the Grassmannian Gm(Rm+n) 
whose tangent bundle is Hom(C/, U^.   Observe also that for a normal bundle map 
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a : E -> F the normal bundle to each Efc(a) is isomorphic to Hom(kera, cokera). 
Thus from (13.1) and the Lemma one deduces 

LEMMA 13.2. Suppose that rank(F) — rank(i?) is even. Then the submanifolds 
Ts C G02 define currents on G02, and the projections pr^ i = 1,2, induce continuous 
maps on currents. Furthermore, if a : E —> F is a normal bundle map, then each 
submanifold E^a) defines a current [£&(a:)] on X. 

Note that these results are independent of all considerations of orientability for 
E and F on X. 

This brings us to the main result of this section. 

THEOREM 13.3. Let E -> X and F -> X be smooth real vector bundles where 
rank(F) — rank(E) is even. Then the analogues of all results in §§#—12 hold for these 
bundles. Furthermore, if E and F are given orthogonal connections, then in formulas 
(6.3), (8.4-5), (10.7-8) and in Theorems 11.2 and 12.6, one has that 

(13.2) Res*  = 0 for all k odd. 

Proof. Once one knows that the submanifolds Ts define currents in G02, that p^ 
induces a continuous map on currents, and that the submanifolds E^ and Tfc define 
currents in X, the discussion given in §§2—12 carries through without change in the 
real case. This gives the first part of the theorem. 

To prove (13.2) we use Theorem 12.6. Observe first that every Om-invariant 
polynomial $ is a polynomial in the Pontrjagin forms and that for the total Pontrjagin 
form we have 

p(pu) = p{nUk)7r*p(nlm«). 

Hence any polynomial in the Pontrjagin classes pj (fi^j can be expressed as a poly- 

nomial in the Pontrjagin classes pj (p,Uk) with coefficients which are pull-backs over 
TT of forms on E/fc(a). Thus to prove (13.2) it will suffice to prove the following. 

LEMMA 13.4. Let V -» Y be a smooth riemannian vector bundle of rank M 
with orthogonal connection, and let G = G£(V) —> Y be the Grassmann bundle of 
unoriented t-planes in V. Let TT : U —> G be the tautological £-plane bundle, and 
write 7r*V = U © U-1-. Give U the connection obtained by projection of the pull-back 
connection on 'K*V. Then if rank(V) is odd, one has 

L *{tou)   = 0 

for all OM-invariant polynomials $ on the Lie algebra DM- 

Proof To begin we observe that the result holds in the special case where V = VQ 

is the tautological bundle over the real Grassmannian GMCR*
1
*) = ^o- This follows 

because the closed form 

' $ (fi^0) l 
(where UQ is the tautological bundle over YQ) is Ojv-invariant and hence harmonic, 
but also of odd degree and therefore zero since i7odd(lo; R) = 0. 

The general case follows from the special one because by [NS] there exists an 
embedding j : Y «-> Yb such that j*Vb = V as bundles with connection. It follows 
from the naturality of the constructions that there exists a bundle map j : G^V) -> 
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G£(Vo) covering j such that j*Uo = U as bundles with connection. Thus there is a 
commutative diagram 

U     —^—>     Uo 

i 
Ge(V) -^-> Gi{V0) 

•I 
Y     -^     YQ 

where j and j are bundle maps. One concludes that 

o = r(7ro)*$(nao) = (7r),(r*(n^)) = 7r,($(n^)). D 

NOTE 13.5.   When F (or £?) is orientable, these results extend to invariant 
polynomials on the Lie Algebra of SOn (or SOm respectively). 
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