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LAGRANGIAN SUB VARIETIES OF ABELIAN FOURFOLDS* 

FEDOR BOGOMOLOVt AND YURI TSCHINKEL* 

1. Introduction. Let (WjCj) be a smooth projective algebraic variety of di- 
mension 2n over C together with a holomorphic (2,0)-form of maximal rank 2n. A 
subvariety X C W is called weakly lagrangian if dim X < n and if the restriction of u 
to X is trivial (notice that X can be singular). An n-dimensional subvariety X C W 
with this property is called lagrangian. For example, any curve C contained in a K3 
or abelian surface S is lagrangian. Further examples of lagrangian subvarieties are 
obtained by taking a curve C C S and by considering the corresponding symmetric 
products. Alternatively, one could look at a product of different curves (of genus > 1) 
inside a product of abelian varieties. We will say that a variety X C W is fibered if it 
admits a dominant map onto a curve of genus > 1. In this note we construct examples 
of nonfibered lagrangian surfaces in abelian varieties. Our motivation comes from the 
following 

PROBLEM 1.1. Find examples of projective surfaces with a nontrivial fundamental 
group. In particular, find examples where the fundamental group has a nontrivial 
nilpotent tower. 

If X is fibered over a curve C of genus > 1 then the fundamental group TTI (X) 
surjects onto a subgroup of finite index in TTI (C) and consequently both TTI (X) and its 
nilpotent tower are big. Therefore, we are interested in examples of surfaces where the 
nontriviality of 7ri(A") is not induced from curves. Consider the map to the Albanese 
variety alb : X -¥ Alb(X). One is interested in situations where the natural map 

#2(Alb(X),C) ->H2{XX) 

has a nontrivial kernel - the triviality of the kernel implies the triviality of the nilpotent 
tower (tensor Q). Such examples were given by Campana ([3], Cor. 1.2) and Sommese- 
Van de Ven ([7]). However, there the kernel was found in the map 

Pic(AlbpO) -> Pic(X). 

In their construction the fundamental group of the variety is a central extension of 
an abelian group (and the lower central series has only two steps). The lagrangian 
property of alb(-X') C Alb(X) implies that there is a nontrivial kernel in if2,0 (rather 
than on the level of the Picard groups). We produce an infinite series of surfaces 
X of different topological types which are contained in abelian varieties and are la- 
grangian (or weakly lagrangian) with respect to a nondegenerate (2,0)-form. The 
weakly lagrangian property for a subvariety X of an abelian variety A is related to 
the nontriviality of the fundamental group TTI (X) as follows: the number of linearly in- 
dependent generators of the second quotient of the central series of TTI (X) is bounded 
from below by the dimension of the rational envelope of the space of those (2,0)-forms 
on A which restrict trivially to X. 
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Our construction uses dominant maps between K3 surfaces. Let 5 be a K3 surface 
and gi, #2 dominant rational maps of 5 to Kummer K3 surfaces Si, S2 (blowups of 
quotients of abelian surfaces Ai,A2 by standard involutions). Then the (birational) 
preimage X of (gi^g2){S) C Si x S2 in Ai x A2 is a lagrangian surface (in general, 
singular). For special choices of ^1,^2 we can compute some basic invariants of X 
and, in particular, show that X is nonfibered. For example, let A be an abelian 
surface which is not isogenous to a product of elliptic curves and 5 the associated 
Kummer surface. Assume that gi : S -> 5 is an isomorphism and #2 • S -¥ S is 
not an isomorphism. Then X C A x A is not fibered, Alb(X) is isogenous to A x A 
and X is lagrangian with respect to exactly one 2-form on A x A. We analyze other 
constructions, with 5 an elliptic Kummer surface and gj induced from the group law. 
We don't determine the actual structure of 7ri(X) (it presumably depends on X), but 
it seems quite plausible that for some X from our list ^(X) has a rather nontrivial 
nilpotent tower. 

Acknowledgments. The first author was partially supported by the NSF. The 
second author was partially supported by the NSA. The paper was motivated by a 
question raised by F. Catanese. We would like to thank him for useful discussions 
in the early stages of this work. We thank the referee for comments which helped to 
improve the exposition. 

2. Preliminaries. Let VQ be a finite dimensional Q-vector space and Vfc its 
complexification. Let w G Vc be a vector. We denote by L(w) C VQ its rational 
envelope, i.e., the smallest linear subspace such that w G L(w)c. More generally, if 
W C Vc is any set, we will denote by L(W) C VQ the smallest linear subspace such 
that L(w) C L(W) for all w G W. An element w G Vc will be called k-generic if the 
dimension of L(w) is dim Vq — k. 

REMARK 2.1. The set of rationally defined subspaces in Vc is countable. There- 
fore, for any linear subspace W C Vc we have L(W) = L(w) for all w G W which are 
not contained in a countable number of linear subspaces. 

PROPOSITION 2.2. Let (A,u) be an abelian variety of dimension 2n together 
with a nondegenerate holomorphic (2,0)-form LJ. Assume that u defines a k-generic 
element in H2>0(A,C) with k < 3. Then there are no weakly lagrangian surfaces in 
A. 

Proof. Assume that we have a weakly lagrangian surface i : X <-* A. Consider 
the induced Q-rational homomorphism 

z* : H2(A,Q)-+H2(X,Q). 

The class of u is contained in the (Q-rationally defined) kernel of i*. Since UJ is k- 
generic in H2'0(A,Q for k < 3 the image of H2(A,C) in H2(X,C) has rank at most 
2. If we had a holomorphic form w' G i/2'0(A,C) restricting nontrivially to X then 
the image of H2 (A, C) in H2{X, C) would contain at least three linearly independent 
forms w'^w1 and the image of a polarization from Pic(^4). Thus the triviality of UJ on 
X implies that all (2,0)-forms restrict trivially to X. Consequently, the dimension of 
X is < 1, contradiction. D 
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We end this section with a simple description of maps of fibered surfaces onto 
curves (see also [4]). 

PROPOSITION 2.3. For every smooth projective algebraic surface V there exists a 
universal algebraic variety U(V) such that every dominant rational map V —> C onto 
a smooth curve of genus > 2 factors through U(V). 

Proof. First observe that the set of dominant rational maps of V onto smooth 
curves with generically irreducible fibers is countable. Indeed, the class f*(L) (where 
L is some polarization on the image-curve) defines /. If two such classes [/] and [/'] 
differ by an element in Pic0(V), then the maps must be the same. Otherwise, some 
fiber of / would surject onto the image of /' and therefore, the degrees of the two 
classes [/] and [/'] on this fiber would be different. 

Further, dominant maps onto smooth curves of genus > 2 define a linear subspace 
W C H0(V, ft1) by the property that wedge-products of linearly independent forms 
w^w' € W are trivial. The set of maximal subspaces W in H0(Vy ft

1) with this 
property is an algebraic variety. Remark that for two forms UJ,U)' with u A a/ = 0 
their ratio u/u' is a nonconstant rational function, which is constant on the fibers 
of the foliations on V defined by u, resp. u/. Thus, any such subspace W defines 
a foliation Fw on V with compact nonintersecting fibers (locally the form defines a 
holomorphic map, its fibers are the fibers of Fw)- Therefore, Fw defines a dominant 
rational map onto a curve Cw (which lifts to a map of V onto the normalization 
of Cw)- Different W define different foliations and different morphisms (the sum of 
two spaces W and W with the same foliations Fw = Fw has the same property, 
contradicting the maximality of W and W). Since the set of such spaces W is on 
the one hand algebraic (a finite union of subvarieties of a Grassmannian) and on the 
other hand countable, it must be finite. □ 

COROLLARY 2.4. For every smooth projective algebraic surface V there exists 
a universal algebraic variety U(V) such that every dominant rational map V -> V, 
where V is a product of smooth curves of genus > 2, factors through U(y). 

Proof. We have shown in Lemma 2.3 that there is a finite number of dominant 
rational maps onto curves of genus > 2. The product of these curves and maps is 
U(y). Universality follows. □ 

3. Construction. Let A be an abelian surface and r the involution r(a) = —a 
(for a G A). This involution acts on A with 16 fixed points. We denote by 5 the 
(singular) quotient A/r. Let A* be the blowup of A in the 16 points. The involution 
r extends to a fixed point free action on A* and the quotient A*/r is a K3 (Kummer) 
surface 5, a blowup of S. It contains 16 exceptional curves and we will denote by 
A = U^Lj A*; their union. We shall denote by 8 : A ->> S the double cover. Every K3 
surface has a unique (up to constants) nondegenerate holomorphic (2,0)-form. 

We start with two simple abelian surfaces Ai and A2 (in particular, Aj don't 
contain elliptic curves - this assumption simplifies the discussion in Section 4). We 
consider the corresponding Kummer surfaces Sj and we assume that there exists 
another K3 surface S together with two dominant rational maps gj : S —> Sj. We 
denote by gj the induced maps S -^ Sj. Now consider the map 

(P = (9u92) : S->Si x52. 
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We have two double covers 

(<Ji,l) : Ai x52^5i XS2 

and 

(1,62) : 5i xA2->5i x52. 

Denote by Yi = (Sul)-l((p(S)) and by y2 = (l,^)"1^^)). Let 

X = Xt:=(61,62)-1mS)) 

be the preimage of 5 in Ai x A2. We see that the (2,2)-covering X -> (p(S) is 

X = Y1 x^(s)F2c Ai x As. 

The surface X is, in general, singular. 

LEMMA 3.1. There exists a nondegenerate holomorphic 2-form u' on Ai x A2 
such that X is lagrangian with respect to a/. 

Proof. The singular surface Sj carries a nondegenerate holomorphic 2-form, which 
we again denote by ujj. Evidently, gjWj = Aj-u; for some nonzero numbers Xj. Consider 
the form 

u/ = \2ijJ1 — X1UJ2 

on 5i x 52- The form u' is identically zero on the image (f(S) (since it is trivial on the 
open part of S where <p is smooth). Since both forms Uj lift to nondegenerate forms 
on the abelian surfaces Aj the form a/ lifts to a nondegenerate form on Ai x A2. The 
restriction of the lift of u/ to X is identically zero on the smooth points of X. D 

EXAMPLE 3.2. If Ai = A2 = A and the maps gj = id then the resulting surface 
X is the abelian surface A, embedded diagonally into A x A. 

EXAMPLE 3.3. Let S be a K3 surface, which is simultaneously Kummer and a 
double cover of P2. Denote by 9 the covering involution on 5. Put Si = S2 = S, 
gi = id and fe = 8. Then the corresponding surface X is lagrangian. A special 
case of this construction is obtained as follows: Let C be a curve of genus 2 and a 
a hyperelliptic involution on C. Consider C x C, together with the involutions: 0-12 
interchanging the factors and 

<7a   :  (C1,C2) -> (<7(c2),<7(ci)). 

Denote by Yi = C x C/cri2 and Y2 = C x C/cra. We see that both Yi and Y2 are 
isomorphic to a symmetric square of C, which is birational to the same abelian surface 
A. Denote by S the quotient of A by the standard involution r. Observe that S is 
realized as a double cover of P2 = P1 x P1/^. Then 

(r,^-1 ((1,0)(S)) = C x C C A x A. 

In the following sections we will show that we can arrange a situation where X is 
not contained in any abelian subvariety of Ai x A2 and where it does not admit any 
dominant morphisms onto a curve of genus > 2. 
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4. Details and proofs. 

4.1. Desingularization. To analyze the surface X constructed in Section 3 we 
will need its sufficiently explicit partial desingularization. It will be constructed in 
two steps. 

Let E be the minimal finite set of points in S such that both maps <7i,<72 are 
well defined on the complement 5° = 5 \ E. On 5° the maps gi and #2 are local 
isomorphisms. Consider the divisors Aj C Sj. The preimages D® of these divisors 
(under the maps gj) in 5° are smooth and the components of D® don't intersect in 5°. 
However, the divisors D® and D% do intersect in 5°, and we denote by pi, ...,pi € 5° 
their intersection points. Let Dj be the closure of D® in S. We fix a blowup 5 of 5 
with centers supported in E such that the preimage of the intersection Di fi D2 in 
the neighborhood of every point in E is a normal crossing divisor. Of course, 5 has 
a map to Sj and we denote by Yj the fibered product 5 x^. Aj. The surface Yj is 

a double cover of S and it has at most Al-singularities (double points), since D^ is 
smooth in 5°. Consider the fibered product X = Yi x^Yz- All singular points of X 
which are not of type Al lie over the intersection points of D® and D® in 5°. The 
surface X has a natural action of Z/2+ Z/2. It admits equivariant surjective maps 
Sj : X -> Yj, where Yj is the quotient of X by the involution fj. We denote by Y12 
the quotient of X by fi2 = f^, it is still singular. 

Let 5 be the minimal blowup of S with support in the points pi, ...,p/ € S0 C S 
such that proper transforms of the irreducible components D® and D^ are disjoint in 
the preimage of 5° in S. Now we define Yj as the induced (from the open part) double 
covers of S. Their ramification is contained in the full transforms of the divisors Dj. 
Define X as the fibered product Yi x^ Y2. We have the induced involutions (again 
denoted by 75, T12) on X and we define Y12 as the quotient of X under T12 (it admits 
a map onto 5). By construction, the surfaces X, Yj and Yi2 all have at most Al- 
singularities. One has surjective regular maps X -> X,Yj -> Yj etc. 

LEMMA 4.1. For all k = 1,...,/ every irreducible component of the preimage of 
Pk in Y12 is a rational curve. 

Proof. Notice that D® are smooth in 5° and that their components don't intersect 
in 5°. Every point pk is a point of intersection of an irreducible component of D® 
with an irreducible component of D®. In the neighborhood of Pk these two divisors 
have a canonical form: Di is given by x = 0 and D2 is given by y = a:n, where n is 
the order of tangency. There is a standard chain of blowups separating the proper 
transforms of Di and D2 over pk (which intersect one of the ends of the chain in two 
distinct points).  The induced double cover on every component of the preimage of 
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Pk is ramified in at most three points (hence in fact, two) and is therefore a rational 
curve. D 

COROLLARY 4.2.  The map alb : Y12 -► Alb(Yi2) factors through Y12. 

Proof. Indeed, the natural map Y12 -> Y12 contracts connected graphs of rational 
curves to distinct points in Y12. Since these connected graphs of rational curves map 
into points in Alb(li2) our claim follows. □ 

4.2. Elliptic fibrations. Let £ -> P1 be a Jacobian elliptic fibration and Mi, M2 
two irreducible horizontal divisors on £. Let M12 C £ be the divisor of pairwise 
differences: M12 fl £& is the set of all points of the form pi — P2, where pj 6 Mj fl 56. 
The divisor M12 may have several irreducible components. We shall say that the 
divisor M12 is torsion if every irreducible component of M12 C £ consists of torsion 
points. 

LEMMA 4.3. Consider the restriction map to the generic fiber 

r)* : Pic(5) -> Pic(^). 

// the divisor Mi2 is torsion then there exists a positive integer N such that the class 
77*([Mi2]) e Pic(0)(^) is annihilated by N. 

Proof For every irreducible component of M12 there exists a positive integer N' 
such that all points p in this component are annihilated by N'. Since the divisor M12 
has only a finite number of irreducible components we can find an N annihilating all 
points in M12. Consider the class iV[Mi2]. The corresponding divisor is trivial upon 
restriction to the generic fiber £T1. U 

COROLLARY 4.4. The kernel of the map rj* : Pic(£) -> Pic(^) is isomorphic to 
the subgroup of Pic(£) generated by the components of the singular fibers. 

LEMMA 4.5. Let £ —> F1 be a Jacobian elliptic fibration with singular fibers 
of simple multiplicative type (irreducible nodal curves). Let Mi,M2,Ms C S be three 
different irreducible horizontal divisors which are linearly independent in Pic(£). Then 
at most one of the divisors M^, (i^j = 1,2,3, and i ^ j) is torsion. 

Proof. Indeed if two of the above divisors, for example M12 and M13, are torsion 
then there is a positive integer N which annihilates both 77*([Mi2]) and ^"([Mis]). 
Hence the kernel of 77* has rank > 2. By assumption, the singular fibers of £ generate 
a subgroup of rank 1. Contradiction. D 

Let £ -> P1 be a nonisotrivial elliptic fibration and r the order of £ in the Tate- 
Shafarevich group of the corresponding Jacobian elliptic fibration J(£). Recall that 
for each integer r' we have a principal homogeneous fibration j(r) (£) of (relative) 
zero cycles of degree r', together with natural maps 

and an identification of J^{£) and J^(£), depending on the choice of a global 
section of the Jacobian fibration J(£) = J^(£). After fixing the identification, we 
get for every integer m = 1  mod r a rational map 

(j)m : £ -> £ 
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of degree m2, well defined up to the action of ^0(IP1,f). This map is regular etale 
on the open (grouplike) part £0 (complement to the singular points of the singular 
fibers), but highly nonregular on £. 

LEMMA 4.6. Let £ -» P1 be a nonisotrivial elliptic fibration and M a horizontal 
irreducible divisor. Then for all but finitely many primes (congruent to 1 mod r) the 
preimage (j)~l(M) is also irreducible. 

Proof. After base change, we can assume that M is a nonzero section. The global 
monodromy group of £M over M is a subgroup of a finite index in SL(2, Z). Let F 
be the fundamental group of the complement M \ Sing where Sing is a subset of M 
corresponding to singular fibers of £ —> M. Every section Mf E £M defines a cocycle 
SM' € i?1(F, (Q/Z)2) (corresponding to the principal (Q/Z)2-fibration, whose fiber 
over b G M \ Sing is the set of points differing from M' fl £b by torsion). This cocycle 
gives an affine action of F on (Q/Z)2 and the orbits of the action of F correspond to 
the irreducible components of the preimages of M' under the maps </>m,M : £M -* £M 

for all m. 
If the section M is not divisible in the group of sections iJ0(M, £M) by a prime p 

and the monodromy map F -> SL(2, Z/p) is surjective then the preimage of M under 
the map ^M ' £M -* £M is irreducible. Indeed in this case either the action is affine 
and its orbit is (Z/p)2 or the action is linear. In the first case the preimage of M is 
irreducible. In the second case there is a section M1 with pM' = M and hence M is 
divisible as a section (see also [2]). D 

LEMMA 4.7. Let £.—>• C be a nonisotrivial Jacobian elliptic fibration over an 
affine connected and smooth curve C. Let Mi, Mo be two irreducible multisections on 
£ with the property that there exists a smooth fiber £& and a pair of points pj G f&nMj 
such thatpi —p2 is nontorsion in £1. Then there exists a positive integer N (depending 
on £, Mi, M2) such that for all positive integers ni, no with ni+n2 > N the preimage 
4)~l{Mi) intersects <f)~l{M2). 

Proof. The proof runs in the analytic category. It uses the following universal 
construction. 

Construction. Consider the universal Jacobian elliptic curve u : £tu -> % which is 
obtained as a quotient % x C/(1,A), where A is a coordinate function in the upper 
halfplane %. This fibration is topologically trivial and has a natural trivialization 
map 

K : ft xC/(l,A) ->T = C/(l,t), 

(where i = y/—i). The map K is not complex analytic; however, the preimages of 
points t G T are analytic sections of the fibration u : £u ->• ft (this gives a nonanalytic 
family of analytic sections). Indeed, the preimage of the point t = a + bi is a section of 
u which is given in a parametric form (A, 6A+a) G ft x C (which descends to f^). The 
torsion sections of u map into points in T (since K is a continuous homomorphism of 
algebraic groups). The construction is equivariant with respect to SL(2,Z). Indeed, 
the action of SL(2,Z) on En transforms torsion sections into torsion sections, (which 
are dense in the family /c~1(T)). For any subgroup T C SL(2, Z) of finite index which 
doesn't contain the center Z/2 we have the induced map 

ur : £u/T -> ft/F 
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and a factorization map zrr. We have the diagram: 

SulT- ■Su 

UT 

n/r- 
For every t G T, which is not a torsion point in T the orbit U7€r7(^) is dense (in 
the usual topology) in T. Thus if t is not torsion in T the intersection of the set 
7rr(tt~1(U7er7(£))) with every fiber £& G Su/F is dense. 

Now we return to the proof of Lemma 4.7. Consider the nonisotrivial Jacobian 
elliptic fibration £ -> C. We have a diagram 

u/r 

Changing the base, we reduce to the case when Mi,M2 are sections of a (topo- 
logically trivial) elliptic fibration £' -> C over some analytic curve C". Moreover, 
we can assume that the fibration £' ->• C" is induced from f^/F -» T^/F under a 
dominant map C -t H/Y. We can identify M{ (the pullback of Mi) with the zero 
section of £' (changing the zero section amounts to changing the argument of K by a 
fiberwise translation). Then the image M^^u of -^2 in £w/r is algebraic, and therefore 
not an orbit of F on (the preimage of) some nontorsion point t G T. This means that 
K^Y 

1{M2,u)) covers some open (in the usual topology) subset V of T. If ni + ^2 is 
sufficiently big, then the translations of the set V by 712 torsion points in T contain 
ni torsion points. D 

4.3. Kummer surfaces. Let A be an abelian surface, r the standard involution, 
A* the blowup of A in the 16 fixed points of r, 5 the associated Kummer K3 surface 
and A the union of the 16 exceptional (—2)-curves on S. We will say that A is generic 
if Pic(A)/Pic0(i4) = Z and if the endomorphism ring End(A) = Z. In particular, A 
is not isogenous to a product of elliptic curves. 

LEMMA 4.8.  We can choose A such that 
1. A is generic; 
2. the elliptic fibration S -¥ P1 is Jacobian; 
3. all singular fibers of the elliptic fibration S ->• F1 are irreducible (consequently, 

the exceptional divisor A is horizontal in S —> P1). 

Proof The Picard lattice of a polarized Kummer surface 5 is given by a sublattice 
(of rank at least 17) in SH © (—JSg) © (—Es), where H is the standard hyperbolic 
lattice. Let HA be the generator (polarization) of the Neron-Severi group of our 
generic abelian surface A. This class is invariant under the involution. It descends to 
the singular surface S and lifts to a class hs G Pic(5). For any even positive integer 
2k there exists a generic A such that h2

s = 2k. For generic A the Picard group of 5 
is a direct sum Z/is © 11, where 11 sits in the exact sequence 

0 -» (-2)Idi6 -> n -> A2((Z/2)4) -> 0. 

The last projection extends naturally to a projection Pic(S) -► A2((Z/2)4) (hs is 
mapped to zero).   Given a lattice vector of square zero we can find a translate of 
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this vector (under involutions of Pic(S) with respect to (—2)-classes) representing an 
elliptic fibration (see [6]). 

Remark that though the lattice 11 is not unimodular, for any primitive element 
e £ Pic(5) with a nontrivial projection to A2((Z/2)4) we can find an element x 6 U 
such that (e,x) = 1. Let e' e Pic(S) be a class obtained from e by reflexion with 
respect to a (-2)-class. Then there still exists a class x' 6 Pic(5) with (ef,xf) = 1. 

Choose a class e of square zero giving an elliptic fibration fe : S -> P1, such 
that the projection of e to A2((Z/2)4) = (Z/2)6 is nonzero. The lattice Ne := {n e 
111 (n, e) = 0} is negative semi-definite. We will choose Ne such that it has no elements 
of square —2. This implies that the singular fibers of fe are irreducible. Simultane- 
ously, we will choose the (affine) lattice Le := {I £ Pic(S) | (l,e) = 1} such that Le 

has (—2)-vectors. Since iVe has no (—2)-classes every class (modulo translations by 
e) of square (—2) in Le corresponds to a section of fe : S -> P1. 

The lattice 11 contains a finite number of (—2)-vectors. Thus a generic vector in 
this lattice is not orthogonal to any (—2)-vector. Take such a primitive vector x and 
choose a polarization hs such that h% = -x2. Now we can choose a (generic) abelian 
surface A (with endomorphisms Z) such that the square of the generator HA of NS(J4.) 

equals 2h%. On the corresponding Kummer K3 surface 5 we have (hs — x)2 = 0. 
It follows that 5 has an elliptic fibration / : S -> P1 and that the lattice Nf is 
isomorphic to Nx ®Zi(hs-x), and therefore has no classes of square (-2) (for any 
x as above). Let z be a vector 11 such that (x,z) = 1 (this is possible since x is 
primitive). Every vector in Lx is equal to z + n H- c(hs - x) where n £ Nx and c G Z. 
Its square is z2 + n2 + 2(z, n) — 2c. Since the lattice 11 is even and c an arbitrary 
integer it follows that Lx always contains classes of square —2. D 

REMARK 4.9. The same proof shows that one can construct Jacobian elliptic 
Kummer surfaces with all singular fibers of simple multiplicative type without requir- 
ing that the associated abelian surface is generic. 

We return to the general setup of Section 3 and Section 4.1. Let S -> P1 be 
a Jacobian elliptic fibration, M a horizontal divisor and Mi,...,Mfc its irreducible 
components. Let r(M) be the "torsion" graph of M - each Mi defines a vertex and 
two vertices Mi and M/, are connected by an edge if the difference divisor Mw is not 
torsion. 

LEMMA 4.10. Let S be a Kummer surface as in the statement of Lemma 4-8. 
Then the torsion graph r(A) is connected. 

Proof. The divisor A consists of 16 irreducible components, their classes are 
linearly independent in Pic(5). The rank of the subgroup of Pic(S) generated by the 
components of singular fibers is 1. Applying Lemma 4.5 we see that every component 
of A is connected to at least 14 other components of A. In particular, every two 
vertices in r(A) are connected by a path of length at most 2. D 

LEMMA 4.11. Consider D^D® C 5°, obtained as preimages of A under the maps 
^qn^qi- For almost all pairs of distinct prime numbers qi,q2 the intersection graph 
of the irreducible components of D® U D® (in S0) is connected. 

Proof. By Lemma 4.6, the preimages of the irredicible components of A under 
(j)qj remain irreducible for almost all pairs of primes gi,^2- Moreover, by Lemma 4.7, 
the intersection graph of the (irreducible) divisors ^"^(A^) is connected for qj big 
enough. Now take an irreducible component Ai C A and a component A&, which is 
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connected to Ai in the torsion graph r(A). Applying Lemma 4.7 with rii = qi and 
^2 = Q2 (and qi + q2 big enough) we see that ^"^(Ai) intersects ^"^(Afc) (in 5°). D 

REMARK 4.12. The difficulty was to show that D^ U 0% is a connected divisor 
in the open surface 5°. The corresponding fact in the closed surface S is trivial. 

4.4. Surfaces in abelian fourfolds. We use the existence of nontrivial maps 
between elliptic Kummer surfaces (see Sections 4.2 and 4.3) to construct interesting 
examples of surfaces in abelian fourfolds. 

Fix a generic abelian surface A such that the associated Kummer surface 5 admits 
a Jacobian elliptic fibration (this is possible by Lemma 4.8). Choose a pair ((/i, (72) of 
positive integers and consider the map 

4>quq2 = (<f>qi > M   :   5 -> 5 X 5. 

Put gi = (ftqugz = (t>q2 and denote by X = Xqiiq2 and by Yi,Y2,Yi2 the surfaces 
obtained through the construction in Sections 3 and 4.1. The surface X is lagrangian 
with respect to some nondegenerate 2-form on A x A. We will show that for appro- 
priate choices of integers qi,q2 the surface X (and consequently X) is not fibered. 

4.5. Uniqueness. PROPOSITION 4.13. Let Ai,A2 be simple abelian surfaces 
and X a lagrangian surface in Ai x A2. Assume that X is not isomorphic to an 
abelian surface, that X projects dominantly onto Ai and A2, that it is stable under the 
involutions f 1, f2 and that it is lagrangian with respect to at least two nonproportional 
nondegenerate forms, one of which is invariant with respect to both involutions fj. 
Then X is a finite unramified cover of a product of two curves. 

Proof. By assumption, every (1,0)-form on Ai x A2 restricts nontrivially to X. If 
there are two nonproportional nondegenerate (2,0)-forms which restrict trivially to X 
then there exists a holomorphic 2-form w of rank 2 on Ai x A2 which restricts trivially 
to X. (Indeed, the (2,0)-forms of rank 2 on the abelian variety Ai x A2 correspond 
to points on a quadric in the projective space P5 = Proj(iJ2'0(^4i x A2,C)). Any 
line in P5 intersects this quadric.) Any such u is equal to w' A w", where w'^w" are 
nonproportional (l,0)-forms on Ai x A2. Thus we have a pencil of curves V^ on X 
such that both w' and w" are equal to zero on the fibers of this pencil. Therefore, 
we have a family of abelian surfaces At C Ai x A2 (where t is a, point in the surface 
Bu = (Ai x ^2)Mo) such that the intersection of X with At is either empty or a 
fiber of the pencil TV Hence, the image of X under the projection to the base of Vu, 
coincides with the image of X in the abelian surface B. The image of X in B is a 
curve Co, of genus > 2. The form u is induced from the holomorphic volume form on 
the abelian surface B. Consider the action of fi,f2 on LJ. Since this action transforms 
(2,0)-forms of rank 2 on Ai x A2 onto themselves, we have the following possibilities: 
either a; is invariant under Z/2+ Z/2 (modulo multiplication by a constant) or there 
is another 2-form d> of rank 2, which is trivial on X. The first case is excluded by the 
assumptions (that both projections on Ai,A2 are dominant). In the second case we 
have another projection of X onto an abelian surface, with fibers transversal to the 
fibers of the first projection. Thus we have an isogeny 

AixA2->Bu,x BQ, 



LAGRANGIAN SUBVARIETIES OF ABELIAN FOURFOLDS 29 

which exhibits X as a finite abelian covering of a product Co, x CQ of two curves of 
genus > 2. D 

COROLLARY 4.14. Let X be a surface obtained as a Z/2-f Z/2-cover of a (sin- 
gular) KS-surface as in Section 3 (in particular, we do not assume that S is elliptic). 
Assume that the conditions of Proposition 4-13 hold for X. Then X is isomorphic to 
C x C, where C is a curve of genus 2 and the quotient map 

X-*S = (Cx C)/(Z/2 + Z/2) 

is described in Example 3.3. 

Proof. Let X be an unramified abelian cover of the product Ci x C2 of curves 
of genus > 2 as in the proof of Proposition 4.13. Our assumption implies that there 
is a unique (Z/2 + Z/2)-equivariant (2,0)-form on X. The involutions TI and T2 
interchange the projections of X to Ci x C2 (since we have two projections of X 
onto abelian surfaces Bi, B2 and Ai, A2 both map surjectively onto Bi, B2 and the 
involution on Ai interchanges the two projections). In particular, Ci = C2 and 
Ci x Ci = C x C. The involution T12 = Tir2 induces an involution on the abelian 
cover of C x C. Therefore, T12 = (o-, cr), where a is some involution on C. Thus we 
have a map 

5 = X/(Z/2+ Z/2) -> Sym2(C)/a. 

The condition /i1'0(5) = 0 implies that cr is a hyperelliptic involution and the condition 
h2,0(S) = 1 implies that g(C) = 2. Moreover, the map X —¥ C x C is in fact an 
isomorphism (unramified covers increase the Euler characteristic and the number of 
invariant 2-forms has to increase as well). □ 

COROLLARY 4.15.  We keep the notations of Section 3. Consider 

(f= (91,92) : 5->5i x52 

(and the associated maps gj : S -> Sj). Assume that at least one of the maps pi,^2 
is not an isomorphism or (if it is) the map gig^1 doesn't lift to an automorphism 
of C x C. Then X is lagrangian with respect to exactly one (up to multiplication by 
constants) nondegenerate form on Ai x A2. 

Proof. Indeed, the proof of Corollary 4.14 shows that in the opposite case, X is 
isomorphic to C x C, with g(C) = 2 and the action of Z/2-h Z/2 is the product of 
the hyperelliptic involution and interchanging of coordinates, modulo automorphisms 
of C x C. D 

4.6.  1-forms. 

LEMMA 4.16. Let S be birational to a K3 surface and Y -> 5 its double cover. 
Assume that Y has at most Al-singularities (double points). Then either h0(Y, ft1) < 
2 or alb(y) C Alb(y) is a hyperelliptic curve C and the (covering) involution on Y 
transforms into a hyperelliptic involution on C. 

Proof. Indeed, since there are no 1-forms on 5, the involution acts by multipli- 
cation with —1 on H0(Y, fi1). Thus the product of any two forms is invariant under 
the involution. Therefore, the map 

a : A2H0(y>n
1)->H0(y>n

2) 
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has image of dimension 1 or 0. If it is 0, then alb(y) has dimension 1. (Indeed, it 
means that any (2,0)-form on Alb(y) pulls back to a 0-form on Y and hence alb(y) 
has dimension 1.) In this case the involution acts on C = alb(y) C Alb(y) as well 
as on H0(Cj Q1) as (—1). It follows that C is hyperelliptic and that the map Y -> C 
transforms the involution on Y into a hyperelliptic involution on C. 

If the dimension of the image of a is 1, then there is a pair of nonproportional 
forms u;,tt/ such their product is nonzero. Assume that there is another form u/', 
linearly independent of a;, a/. Then u/ A u" = fu A a/, where / is a nonconstant 
function, contradiction. D 

COROLLARY 4.17. Let Yj be the double covers ofS as above. Then h0(Yj, O1) = 2 
(for j = 1,2). Moreover, Yj admits no dominant rational maps onto curves of genus 
>0. 

Proof. Indeed, both surfaces Yj admit a dominant map onto an abelian surface A, 
which has two linearly independent 1-forms. Now we apply Lemma 4.16. This proves 
the first statement. By assumption, the abelian surface A contains no elliptic curves. 
By the previous lemma, Alb(Yj) is isogenous to A. The second statement follows. D. 

A priori, we don't know that Y12 does not admit dominant maps onto curves of 
genus > 0. We have to consider the following (mutually exclusive) possibihties: 

h0(Y12ln
1) = o- 

h0(Yi2, Q,1) = 2 and the wedge product of the two forms is nontrivial; 
There is a projection Y12 -> C, where C is a curve of genus > 1. 

We will show that the surfaces Xqiiq2 constructed in Section 4.4 are not of the 
last two types for almost all pairs of primes </i,g2- The surfaces of the first type are 
nonfibered; and there are simple examples such surfaces: 

LEMMA 4.18. Assume that the map gi : S --*• Si is an isomorphism. Then 
h0(Y12,U

1) = 0. 

Proof. The covering Yi is (birational to) the abelian surface Ai. The variety X 
is (birational to) a fiber product of Ai and some surface Y2 over 5. Consider the 
product 

H0(Y2^1) x H^Y^n1) -+ H0(X,n2). 

The image is at most 1-dimensional, since it consists of n-invariant forms and since 
there is exactly one such form which is induced from Yi = Ai. The space H0(Y2, Q1) 
has dimension 2 and hence for any nontrivial form U12 in ^(YujCl1) its product 
with some form &% G ff^Y^fi1) is zero. This means that LJ2 is trivial on the fibers 
of some pencil of curves on X. This pencil covers (birationally) A2. The image of 
a generic fiber of the pencil must be an elliptic curve in A2 (being the zero set of a 
1-form on A2). This leads to a contradiction, since A2 doesn't contain elliptic curves 
by assumption. Thus there are no holomorphic 1-forms on Y12. 0 

COROLLARY 4.19. Assume that gi is an isomorphism and that either g2 is not 
an isomorphism or (if it is) gig^1 : S -¥ S is not an involution on S. Then the 
associated surface X is not fibered and X is lagrangian with respect to exactly one 
2-form on Ax A. 

Proof. By Corollary 4.14, X is lagrangian with respect to exactly one nondegen- 
erate 2-form, unless X = C x C, where C is a curve of genus 2. Thus it suffices to 



LAGRANGIAN SUBVARIETIES OF ABELIAN FOURFOLDS 31 

prove that X is not fibered. Notice that h?(X, fi1) =4. By Lemma 4.18, the Albanese 
Alb(X) is isogenous to Ai x A2. The image alb(X) in the Albanese is also lagrangian 
with respect to exactly one nondegenerate 2-form. If X were fibered over a curve 
of genus > 1 there would be another (a degenerate) 2-form on Alb{X) which would 
be trivial on alb(X). This is a contradiction. Notice also that X doesn't admit any 
dominant maps onto elliptic curves since Alb(X) doesn't map onto elliptic curves. D 

In the following sections we will give further (more complicated) examples of 
nonfibered lagrangian surfaces in Ai x Ao. 

4.7. Weakly lagrangian structures. Let X C Ai x A2 be as in Section 3 and 
X its (partial) desingularization as in Section 4.1. Consider the set Lx of (possibly 
degenerate) holomorphic (2,0)-forms on Alb(X) which restrict trivially to alb(X). It 
contains the set of weakly lagrangian structures on alb(X). Since the condition is 
linear, Lx is a linear subspace of iI2'0(Alb(X),C), The Z/2 + Z/2-action on X lifts 
to an action on Alb(X), leaving the space Lx invariant. 

Prom now on we assume that X is not isomorphic to C x C, where C is a curve 
of genus 2 (since in this case dimL* = 2, see Proposition 4.13). Furthermore, we will 
assume that h0^,fi1) ^ 0 (if X ± C x C and h0{Yl2,H

1) = 0 then dimL* = 1). 
We have to consider the following cases: 

1. hP(¥i2,Sll) 7^ 0 and the wedge product is degenerate; 
2. /^(Y^ft1) = 2 and the wedge product 

A : tfO^fi1) x HQ{Yl2,Q}) -> tf0(F12,ft2) 

is nondegenerate. 

REMARK 4.20. Notice however, that examples of surfaces X such that 

^(ria.fi1)^ 

are somewhat pathological. In particular, almost all surfaces Xqi^2 are not of this 
type. 

sum 
The space Lx is invariant under Z/2-f Z/2 and hence decomposes into the direct 

L    ~ L/Q 0 L/^ © ho  © J-J12 j 

where Lx stands for a subspace of Z/24- Z/2-invariant forms in Lx, the space Lx is 
the space of Tj-invariant forms and L^ is the space of T12 invariant forms. 

This decomposition arises from the decomposition of the space H2,0 of (2,0)-forms 
on Alb(-X') under the Z/2 4- Z/2-action. We will denote these spaces using the same 
indices. We know that 

iJ1'0(Alb(X))o    = 0, 
JT^AlbtX-))!    =    tf1'0^), 
H^(Alb(X))2    =    H^iAJ, 

Thus by taking the exterior product we obtain that 

ff0
2'0 = A^H^iAlbiX))! + A2H 1'0(Alb(X))2 + A2H ^(AlbiX))^. 



32 F. BOGOMOLOV AND Y. TSCHINKEL 

We also have the decompositions 

fT^AlbpT))! = ff^AlbpOha x H^0(A2), 
H2>0(A\b(X))2 = H^iAlbiX))^ x Hl^(A2)1 

H2>0(A\b(X))12    = H^iAx) x fT1'0^). 

PROPOSITION 4.21. If ^(Y^^1) ^ 0 and the wedge product is degenerate then 

dimLx = dimA2H0(Y12,n
1) + 1. 

Proof. We subdivide the proof into a sequence of lemmas. 

LEMMA 4.22.   Under the conditions in Proposition 4-21 we have 

Li  = L2  = L^ — 0. 

Proof Since the space L^ is induced from Ai x A2 it has dimension 0 (by- 
Proposition 4.13 there is a unique lagrangian structure on X C Ai x A2). We have 

Lf C jr2'0(Alb(X))i = H^iAlbiX))^ x ff1'0^). 

Since dim i/1,0^) = 2 for any element / G L* there are two forms wi, W2 G H1'0(A2) 
and two forms ^1,^2 G i:r1'0(Alb(X))i2 with the property 

Wi Aui +W2 AU2 = I. 

We know that the forms Uj are induced from a map f : X —> C, where C is some 
hyperelliptic curve. 

If wi, W2 are linearly dependent then wi is trivial on the images of the fibers of 
the projection / : X -» C. Since X surjects upon Ai and A2 this means that wi 
is trivial on a family of curves in A2. This can happen only if A2 is isogenous to a 
product of elliptic curves. This contradicts the assumption that A2 is simple. 

Consider the case when wi, W2 are linearly independent. Since the wedge product 
on i?0'1(Alb(X))i2 is trivial we can write U2 = fui for some rational function f on X 
and hence Wi 4- fw2 A ui = 0. The function / is constant on the fibers of the family 
X -¥ C and the fibers map into Ai. Since the generic fiber is not an elliptic curve the 
forms Wi,W2 G il1,0^) are not linearly dependent on the fibers which contradicts 
the assumption. 

Similar argument yields L^ =0. □ 

COROLLARY 4.23. Under the conditions of Proposition 4-21 we have 

Lx =1* = A2iJ1'0(Alb(X))12 + LA, 

where dimi^ = 1. The subspace LA = 1 is induced from Ai x A2. A generic 
element in Lx is nondegenerate if dim Alb(X) is even and is degenerate of corank 1 
ifdimAlb(X) is odd. 

Proof. If 

v = v-x 4- V2, V! G LAl V2 G A2ff1'0(Alb(X))i2 
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then rkv = rkvi + rkv2 (since the spaces LA, LQ belong to the second exterior powers 
of complementary linear subspaces in H1,0(A\b(X))). 

The nonzero element of LA is induced from a nondegenerate form on Ai x A2 and 
has rank 4. We are in the case when Y12 (and consequently X) admits a dominant 
map onto a curve C of genus > 1. If g(C) is even the generic element of Lx is a 
nondegenerate form on Alb(X). The dimension of Alb(X) is even iff g(C) is even. 
Similarly when g(C) is odd. D 

This finishes the proof of Proposition 4.21. 

LEMMA 4.24. Under the conditions of Proposition 4-21 any dominant map h : 
X —»> C of X onto a curve with giC) > 0 is a composition 

h = 8f,f:X->C,s:C->C'. 

Proof. Repeating the previous argument we see that the rank of a nonzero form 
in LA is 2 and hence rkv > 2 for v = vi + U2, vi G LA, V2 € A2iy1'0(Alb(-X'))i2 with 
vi ^ 0. Thus any form of rank 1 in Lx belongs to A2H1'0(Alb(X))i2. Since any map 
h : X -> C", <?(C") > 2 gives a nontrivial form of rank 1 we obtain the result in this 
case. 

If g(C') — 1 then there is a map Alb(X) -> C". The variety Alb(X) is isogenous 
to the product J(C) x Ai x A2 and any map from Ai x A2 to a curve of genus 1 is 
trivial. Hence the map J^(C) x Ai x A2 -* C is induced from the projection onto 
J{C). It means that the holomorphic (1,0)-form lifted from C" on X is induced from 
/ : X -> C. This yields the result for g{C') = 1. D 

COROLLARY 4.25. Under the conditions of Proposition 4-21 every map X —> C 
factors through the map X -4 Y12 -> C -t C. 

We consider the case when /i0(Fi2,n1) = 2 and the wedge product on 1-forms is 
nondegenerate on Y12. It follows that the Albanese variety Alb(X) is isogenous to 
a product of three abelian surfaces to Ai x .42 x A12. Indeed, for all 3 quotients 
Yi,Y2,Yi2 of X by the nontrivial involutions the corresponding Albanese varieties 
have dimension 2. These are very strong conditions; though we are not sure that such 
examples exist, we would like to analyze this potential possibility: 

In this case Y12 admits a Z /2-equivariant map Y12 -> A12, which descends to a 
map S -> §12 (here 5i2 is the K3 surface obtained as the quotient A12/Z/2). The 
ramification over 5° is the union of D® U D® - It follows that the preimage D^ of A12 
in 5° (under the map 5° -» S12) is equal to Z?? U D^. It follows that D^ is a smooth 
divisor and hence JDJ and D® have no intersection in 5°. 

COROLLARY 4.26. The intersection graph of the irreducible components of D^ 
in 5° is totally disconnected. 

4.8. Nonfibered lagrangian surfaces. In this section we show that for in- 
finitely many pairs of integers (71,(72 the surface X = Xqi.q2 is not fibered (in partic- 
ular, the lagrangian surface Xqiiq2 C Ai x Ao is also not fibered). 

LEMMA 4.27. Assume that Y12 admits a dominant Z/2-equivariant (with respect 
to the covering Y12 —> S) map p onto a hyperelliptic curve C of genus > 0. Then p 
descends to a dominant map p : Y12 —> C which is also equivariant with respect to 
the covering involution Y12 —» 5. 
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Proof. Indeed, the map p is a composition of a map Y12 ->• Alb(li2) and 
Alb(Yi2) -> J{C). Now we apply Corollary 4.2. D 

After factorization of Y12 by the involution f we obtain a map p^ : 5 -> P1 = 
C/cr, (where cr is the hyperelliptic involution on C). Notice that the fibers of p^ are 
connected (since the same property holds for p). Denote by R = {pi, ...^29+2) C C 
the ramification divisor of C -» P1. 

LEMMA 4.28. Tfte irreducible components of D® U D2 are contained in the fibers 
of pa. Moreover, they lie over R C P1. 

Proof. Since the map p commutes with the covering involution on Y12 the image 
of the ramification divisor in 5° C 5 under the map pa is contained in R. The divisors 
D® are exactly the ramification divisors of the double cover on 5°. □ 

COROLLARY 4.29. Let Jf C D® and 1$ C D® be two irreducible components of 
the divisors .Dj,/^. Assume that the intersection ij fl JT^ ^ S0 ^ 0. Then I® and I® 
are mapped to the same point in R C P1. 

Now we describe the structure of those fibers of pa which lie over a point p G R. 

LEMMA 4.30. All the components of a fiber in S0 over a point p G R, apart from 
components in D® have even multiplicities. 

Proof Indeed, the double cover Y12 -^ Sis induced from the double cover C -> P1. 
Therefore, the ramification divisor of the former is the preimage of R. Since we know 
that the ramification divisor in 5° is D® UD® all the other components of the preimage 
of R have even multiplicities. D 

LEMMA 4.31. Assume that the graph of components of D® U D^ is connected in 
5°. Then there are no dominant maps 0/I12 onto curves of genus > 0. Moreover, 
Alb(Yi2) = 0. 

Proof. Assume first that dimAlb(Yi2) = 2 and that the wedge product of 1- 
forms on 1^2 is nondegenerate. Then, by the Corollary 4.26 - this contradicts the 
assumptions. Thus we have to consider the remaining case when Y12 does admit a 
dominant Z/2-equivariant (with respect to the covering) map p onto a hyperelliptic 
curve C of genus > 0. Then 5° has a regular map onto P1 such that components of 
Di and D2 are mapped onto ramification points pi, ...,^2^+2 C R. By Corollary 4.29, 
all connected (in 5°) components of the union of the divisors Dj and D® are mapped 
to one point, which we can assume to be pi. Consider the singular symmetric tensor 
on C, which is equal to 0 at P1 and has the singularity dz2n/zn at P2, •••jP2p+2- Since 
the preimages of points P2, ...,p2g+2 consist of components of multiplicity two this 
tensor lifts into a nonsingular symmetric tensor on 5°. Since the complement to 5° 
in the K3 surface 5 consists of finitely many points we can extend this tensor to a 
holomorphic symmetric tensor on 5. However, there are no such tensors on a K3 
surface, contradiction. □ 
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4.9. Maps to curves. 

THEOREM 4.32. For almost all pairs of distinct prime numbers (qi, #2) the surface 
X = Xq1 iq2 is not fibered. 

Proof By Lemma 4.11, we can insure (for almost all pairs of distinct primes 
Qi,Q2) that the intersection graph D® U D® is connected in 5°. By Lemma 4.31, we 
have Alb(Yi2) = 0. This implies that X has a dominant map onto a curve only if X 
is isomorphic to C x C, where C is a curve of genus 2. Contradiction. D 

4.10. Fundamental groups. 

PROPOSITION 4.33. Let X C Ai x A2 be a surface constructed in Section 3. 
Assume that X is not isomorphic to C x C, where C is a curve of genus > 2. Then 
7ri(X) admits a surjective homomorphism onto a group G, where G is a nontrivial 
central extension ofZ8 by Z5. //Alb(X) is isogenous to Ai x A2 then 

G = *i{X)/[[nl(X)1MX)U1{X)] 

(modulo torsion). 

Proof. For generic Aj the Q-linear envelope of Uj G H2,0(Aj) has dimension 5. 
Same holds for X2UJ1 — \1UJ2 on Ai XA2 (for Xj G Q). Thus the kernel is Z5. The image 
is Z8 = i/1(X)/torsion. It remains to recall a general fact from group cohomology: 
Consider the exact sequences 

1 >■ Kx ^ F2(G/[G,G],Z) ^ if2(G,Z) 

1 ^K2 ^£r2(G/[G,G],Z) -#2(G/[[G,G],G],Z) 
Then Ki and K2 are isomorphic and, by duality, K2 is isomorphic to 

[G,G]/[[G,G],G] (tensor Q). 

REMARK 4.34. There are two other potential cases: when Y12 admits a surjective 
map onto a curve C of genus g(C) = g and when Alb(X) is isogenous to a product of 
3 abelian surfaces. In the first case we have an exact sequence 

0 _> zH-i+0(20-l) _> G -> Z8+2^ -► 0. 

In the second case 

0->z4+^-+G->Z12->0 

Here in both cases 0 < i < 3. We believe that these cases do occur if Ai, A2 have 
Picard groups of higher rank or admit nontrivial endomorphisms. Then the rational 
envelope of (2,0)-forms has smaller dimension. 
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