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EXCEPTIONAL MODULI PROBLEMS II* 

WALTER L. BAILY, JR.t 

1. Introduction, Notation. In this note we attempt to formulate moduli prob- 
lems connected with some arithmetic quotients of each of the four irreducible (real) 
rank 3 hermitian symmetric tube domains corresponding to the four R-division- 
algebras R, C,H, and C: the reals,complex numbers, Hamilton quaternions, and 
Cayley division algebra respectively. The ideas in this note were largely inspired 
by the work of Professors Kunihiko Kodaira and Donald Spencer on the moduli of 
algebraic varieties [K], [KS]. 

First some notation. Let V = Rn be an n—dimensional real vector space and V 
be a self-adjoint homogeneous convex cone such that the tube domain T = V + iV is a 
complex Hermitian symmetric domain whose group G of holomorphic automorphisms 
is a semi-simple real algebraic Lie group defined over Q. Let F .«-> G(Q) be an 
arithmetic subgroup of G^Q). 

In the following discussion, V will most frequently be one of the four Jordan 
algebras Jo of 3-by-3 hermitian matrices over D = R, C,H, or C, each of which 
carries a standard, positive involution a t-* a, and VD will be the cone of strictly 
positive elements of JD> Thus, 

TD = JD+iVDCCnD 

is one of the four rank 3 irreducible hermitian symmetric domains and TT-R = 6, nc = 
9,nH = 15,nc = 27. 

Now if T = Tin is the Siegel upper half-space and F = rn, the Siegel modular 
group of degree n, then the orbits of rn in 7{n correspond one-to-one to the isomor- 
phism classes of principally polarized Abelian varieties (p.p.A.v's) of dimension n. 
Moreover [Ba2], there is a rn—invariant complex analytic closed subset Jn oiHn and 
a Zariski-open, rn-invariant subset Jf of it such that the space of orbits of rn in 
Jf is in one-to-one correspondence with isomorphism classes of canonically polarized 
Jacobian varieties of curves of genus n, hence, via Torelli's theorem, with the isomor- 
phism classes of non-singular curves of genus n. If n — 3, then Jz — Hn = Tis, and 
this special case is important for the considerations which follow. 

Now it can be proved [Bal] that there is a certain "nice" unicuspidal arithmetic 
subgroup Fc ofHol(Tc) for which the associated Eisenstein series have rational Fourier 
coefficients, thus the quasi-projective variety Tc/^c is defined over Q. However, I do 
not know of any interpretation of the space of orbits of TQ in Tc as the space of moduli 
of some family of polarized algebraic varieties (possibly with additional structures). 
The main problem to be discussed here is how to determine such a family if one exists. 

2. Approach. There is a quite remarkable coincidence, so far unexplained in 
satisfactory depth, between these four symmetric tube domains and the four Severi 
varieties of Zak et al. [LaZ], 5n, n — 1,2,3,4, where dim(Sn) = 2n. These are given 
explicitly as follows (here Pn is the projective space of dimension n): 

Sx — P2 <-+ P5(Veronese imbedding); 
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52 = P2 x P2 M> P8 (Segre imbedding); 

53 = G(2,6) ^> P14(Plucker imbedding); and 

54 = CP2->P26, 

where G(2,6) is the Grassmannian of planes in 6~space, C stands for the Cayley 
numbers, and CP2 is the Cayley projective plane, realized as the projective variety 
of the primitive idempotents in the exceptional 27—dimensional Jordan algebra J of 
three-by-three hermitian matrices over C, whose projective space is P26, viewed as a 
27-dimensional irreducible module of .Ee- 

Now observe that the generic quadric hypersurface section QnSi of 5i as imbed- 
ded in P5, where Q is a quadric in P5, is a non-singular, non-hyperelliptic plane 
quartic curve C of genus 3 in P2. Then, as mentioned above, the moduli of such 
curves are essentially given, via Torelli's theorem, by the orbits of Ts in Tis. By 
"essentially" we mean that this correspondence holds on the complement of a divi- 
sor on the Satake compactification (Fs^s)* of the moduli space r3\%3 of normally 
polarized abelian varieties of dimension 3. 

This leads us to consider the four irreducible symmetric Hermitian domains of 
R—rank 3, of which H3 is that of lowest dimension, and of which Tc is that of the 
highest dimension, 27. The four domains referred to are: 

Di='Hz= Sp(3, R)/i^i , where Ki = C/(3), the group of three-by-three complex 
unitary matrices. 

D2 = iTs, the 9-dimensional tube domain in C9 = M3(C), the three-by-three 
complex matrices Z = X + iY, where X and Y are complex Hermitian three-by-three 
matrices, and H3 consists of those for which Y is positive definite, and can be written 
as U(3,3)/K2, where K<2 = 1/(3) x 17(3). 

D3 = Q3 is the tube domain in C15 analogous to H3 with quaternion Hermitian 
3x3 matrices in place of complex Hermitian matrices, and Q3 can be written as 
S0*(12)/K3, with K3 = £7(6). (The notation 50*(2n) is from Helgason: "Differential 
Geometry and Symmetric Spaces", First Ed., p. 354.) 

D4 = Tc is the tube domain {Z = X+iY\X, Y £ 27— dimensional real exceptional 
Jordan algebra J of 3 x 3 Hermitian matrices over C such that Y is positive definite 
(written Y > 0)}. We may write D4 = E7(_25)/Kti, where K4 = E^-TS) X C", C 
being the unit circle. 

We note in each of the above cases that there is a natural action of Kn on the 
ambient manifold ofSn, if we identify that ambient manifold with the projective space 
of the complexification of the appropriate Jordan algebra of Hermitian matrices over 
R,C, H, or C, thus: 

P5 = P(5]3c), S3 being the 3x3 symmetric real matrices, where A G [7(3) 
operates by 

A : M(G £3) ^ AM A] 

P8 = P(H3c), H3 being the complex hermitian 3x3 matricesiHsc = {Z = 
X + iY\X, Y : 3 x 3 hermitian} S MstC), and if Z e MsiC) and A, B G [7(3), then 
(A,B) : Z i-)> AZB, where in the identification between H3C and Ms(C), one must 
be careful about the "real" and "imaginary" parts of Z G M3(C) = Hso 

P14 = P(Q3c), Q3 being the quaternion Hermitian 3x3 matrices, dimiiQ3 = 15. 
(For the explicit action of [7(6), see Helgason [He],p.350.) 

p26 _ p(j'3C)) J3 being the 3x3 Cayley Hermitian matrices, viewed as the 
minimal dimensional (> 0) irreducible module of EQC 
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3. First step. Certain 9-dimensional domains. Motivated by these consid- 
erations, we try the simplest first step. Namely, we examine the configurations of 
algebraic varieties which arise when, for a generic quadric hypersurface Q C P8, we 
construct the non-singular 3-fold 

F = FQ = Qn(P2 xP2)cP8. 

Here Q is a generic quadric hypersurface in P8. Let if be a generic hyperplane in P8. 
There are (at least) two different ways of seeing that FH = F fl H is a K-3 surface. 
On the one hand, one sees by using the adjunction formula that the three-fold F is 
a Fano 3-fold because its hyperplane section is the negative of its canonical divisor, 
and from this, again by the adjunction formula, one sees that the canonical sheaf of 
FH is trivial, while FH itself is simply connected by Lefschetz' theorem. Moreover, 
the generic hyperplane section of FH is easily seen to be a canonical curve of genus 
7 in P6; thus, FH is a K-3 surface of genus 7 and one can calculate that its degree is 
2.7 - 2 = 12. 

On the other hand, FH is generically a double cover of P2 in two independent 
ways, via the projections pri and pr2 of it onto the two factors of P2 x P2, and the 
branch locus of each projection is a sextic curve in P2. The number of moduli m(FH) 
is 18, as is not hard to show because the family of all K-3 surfaces has 20 moduli, 
and since the two projections are independent, one has generically pic(FH) = 2. We 
now explain more in detail the realization of F as a double cover of P2 with a sextic 
branch curve. Explicitly, F is fibered into conies over P2 as follows: 

7r = 7rQ:Qn(P2xP2)—> P2, 

where TTQ is the restriction of pr2 to F = FQ. For s G P2 , 7r~1(s) = Q D (P2 x {s}) 
which is a plane conic in the coordinates of the first factor by virtue of the nature 
of the Segre imbedding P2 x P2 —> P8. Let A^ be the locus of s e P2 such that 
7r~1(5) = Fs is the union of two lines. Let r = [ro : ri : r2] resp. s = [so : si : §2] 
be the coordinates of the first resp. second factor P2, and tij,i,j = 0,1,2, be the 
coordinates in P8. Suppose the quadric hypersurface Q in P8 is given by A(t) = 0, 
where A is the quadratic form 

^(*) ~ /,aijkltijtkl 

so that with tij = riSj we have 

Fs : ]r bikrirk = 0, 

with bik = YljiaijMSjSi' The conic degenerates to two lines if and only if the dis- 
criminant \bik\ = det(bik) = 0, and \bik\ is a homogeneous cubic polynomial in {bik}, 
hence (for fixed aijki) is a homogeneous sextic polynomial in so, si,$2. Therefore, An 

is a sextic plane curve in P2. It then follows from known formulae [Is, sec.14.5] that 
the third Betti number 63(F) is equal to 18. "In general", A^ is non-singular (for 
generic choice of a^ki). Therefore, by [Be, Theoreme 2.1 (with n = 1)] the level 3 
Hodge structure of F is of the form 

H3(F) = H^iF) ® H^iF), 

so that the intermediate Jacobian J(F) = H2'l(F)/H3(F, Z) is a normally polarized 
Abelian variety of dimension (1/2)&3(F) = 9. In fact, the family of varieties: 
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{FQ\Q a quadric hypersurface in P8} 
does not seem as well suited to the investigation of moduli problems as the family 
{FH = FQ fl H\Q a quadric hypersurface and H, a hyperplane in P8}. For example, 
there is no apparent natural relationship between FQ and any particular one of its 
hyperplane sections FH , whereas the latter seem more naturally related to the moduli 
problems we wish to study, as we shall see. 

So let Q' = Q fl H be a generic irreducible quadric variety of codimension 2 in 
P8. As before, 52 = P2 x P2 M> P8 is a Severi variety and we let 

F' = FQ, = Q' n 52 C P8 

and define TT' = TTQ/ : F' —> P2, where TT' is the restriction oi pr2 to F'. This 
exhibits F' as a double covering of P2, with a branch curve C : A^ = 0 which 
is the zero-locus of the discriminant of the quadratic equation whose roots are the 
coordinates of the two points of Ff over a given point s of P2. Direct calculation 
shows that A^ is homogeneous of degree two in both the coefficients of Q and in 
the coefficients of iJ, after factoring out a quadratic polynomial depending on the 
homogeneous coordinate system, which is nowhere vanishing on a given Zariski-open 
subset of P2. Hence, Ant is homogeneous of degree 6 in the homogeneous coordinates 
of 5, and therefore the branch curve C is a sextic curve. Generically C is non-singular 
and the desingularization of F' is a K-3-surface. 

We know the following [V:§§2.7,2.8; Be:§6.23; Di] the following: 

PROPOSITION 3.1. A sufficiently general homogeneous sextic polynomial 

E(s) = £(so,si,$2) 

can be expressed as a symmetric determinant 

det({bik)(s)),bik(s) = 6^(5), 

where bik(s) are quadratic forms in s = (SQ, 81,82). Moreover; given a sufficiently 
general sextic £(5), one may reconstruct uniquely the Fano 3-fold as a fibering by 
conies with the curve A,T : £(s) = 0 as the base locus of its singular fibers. Further, 
one may reconstruct the (possibly singular) K-3 surface F' as a double cover of P2 

having the given sextic branch curve A^/ in P2. 

Now it should be eraphasized that the sextic curves A^ and A^/ are in general 
distinct. More generally, we should replace F' by its minimal desingularization, which 
will then also be a K-3 surface. Thus, one obtains a family of K-3 surfaces FH = 
F', generically as double covers of P2, and realized as minimal desingularizations 
of the intersections Q' fl 52. The generic member F' of this family has m(F/) = 18 
moduli, as we have already said. In a written communication [T], sent to me following 
the Yaroslavl' conference on algebraic geometry in 1992, S. Tregub explained how it 
should be possible to single out a subfamily of such FH having 9 moduli. This is 
important because we should like, if possible, to link this set-up with the second 
symmetric hermitian space H3 and Hermitian modular functions, for the reasons 
suggested earlier. The 9-dimensional family described to me by him is the family 
of K-3 surfaces in our family which may be described as follows: Let J7 be the 18- 
dimensional family of K-3 surfaces FH described above, let £ be the family of all K-3 
surfaces having a fixed-point-free involution, which are therefore the 2-fold unramified 
covers of Enriques surfaces E. Put J*^ = J7 fl £. Each of the families J7, £, and Ts 
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can be characterized by a property of its Hodge structure. Then using this, Tregub 
suggests how one can show that Ts has a component Te$ = M, say, such that 
dimM = 9 and that the Enriques surfaces E corresponding to K-3 surfaces from the 
family M are exactly those which contain a smooth rational curve (cf. [N]). In fact, 
the family M is generically the family of Reye congruences described by Cossec [Co]. 
Thus, if FH is the double cover of an Enriques surface E containing a non-singular 
rational curve, then m(FH) = m(E) = 9. Such an E is a 2-fold branched covering of 
a 4-nodal (Cayley) cubic hypersurface C in P3 and the branch locus of TT : E —> C is 
C U sing(C), where, as 1. Dolgachev has informed me, C is one of a determined finite 
number of smooth curves of genus 4. (To be more precise, according to him, there is, 
in another way, a natural map of degree 24 from the moduli space of nodal Enriques 
surfaces to M4, the moduli space of smooth curves of genus 4. He has outlined a proof 
of this in a longer written communication [D].) 

Tregub's first proposed proof of the existence of the component J^s.o = M was 
based on Hodge theory and the cohomology group L = iJ2(5, Z). He improved his 
first ideas which lacked a demonstration of the ampleness of certain divisors. But 
it turns out, as Brendan Hassett explained to me using F. Cossec's paper "Reye 
Congruences"[Co], that there is a more geometric, direct way of seeing this based on 
Cossec's description of the K-3 double cover 5 of a generic nodal Enriques surface 
as a double cover of P2. In this description, the branch curve C of 5 as a double 
cover of P2 has the form C = Ei U E2, where each Ej is a plane cubic such that 
Ei and E2 intersect transversally and C has a totally tangent conic K such that 
K H Ei fl E2 = 0. Using this description it is easy to see, by counting constants, that 
the number of moduli of this family is in fact 9 (vide infra). 

4. A Certain Construction. One starts from a quartic Cayley symmetroid 
X ='H(W) defined as a quartic surface in P3 by an equation det(\ij) = 0,Xij = Xji, 
each Xij being a linear form in four variables. The following facts may be verified 
from F. Cossec's paper "Reye Congruences". Generically X = H(W) has 10 ordinary 
double points or nodes of the type given in local affine coordinates by x2 +y2 + z2 — 0. 
Denote these nodes by Pi,..., P10 and let S{W) — X be the minimal desingularization 
of X described by Cossec, with TT : X —> X the canonical projection. Then Ei — 
7r~1(Pi) is a nodal rational curve with E2 = -2J = 1,... 10. Let L = 7r*(9x(+l), 
the invertible sheaf pulled back from the sheaf associated to the hyperplane section 
on X. Then L2 = 4 since X is a quartic surface. The following discussion follows 
the written communication [T] from S. Tregub. Let Lj = L — Ej, which is the 
proper transform of L under the quadratic transform TTJ blowing up the node at 
Pj, j = 1,..., 10. Thus Lj is an irreducible curve on the K-3 surface X. Now L.Ej = 0 
because Ej = 7r*Pj and Pj.(hyperplane) = 0, and Ei.Ej = 0foTi^j because Ei and 
Ej are disjoint. Hence we have the relations L2 = 2, Li.Lj = 4 for all i / j. Therefore 
the linear system \Lj\ = \L—Ej\ defines a finite morphism (it has no fixed components, 

hence no base points; cf.[S-D], Theorem 3.1) ipj : S -k P2, which corresponds to the 
projection of X from its singular point Pj onto P2. Then it is geometrically clear that 
ipi x ipj : S —y P2 x P2 is a finite, birational morphism, and the image, contained in 
P8 by way of the Veronese imbedding of P2 x P2 is of the form 

(P2 x p2) n Q n H c P8 

for a hyperplane H and quadric hypersurface Q in P8. To get H, note that by 
the Riemann-Roch   formula  for   K-3 surfaces,   we   have dim\Li + Lj\ = 7,   while 
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dim\Op2xP2(Ijl)! == 8, which implies that the image of 5 is contained in a unique 
hyperplane (of a form of bi-degree (1,1) on P2 x P2). To obtain a quadric hypersurface 
Q such that the above inclusion holds, one proceeds as follows: It is well known and 
easy to prove via the Kiinneth formula that /i0(P2 x P2,0(2)) = 36. On the other 
hand, h0(XJO(2L1 + 2L2)) = 26 because dim\2Li + 2L2I = 24 + 1 = 25, which is 
the projective dimension. Hence the family of quadrics containing (the image of) X 
has (projective) dimension greater than 9. But the family of degenerate quadrics, 
splitting into two hyperplanes, has dimension 8. Therefore, there exists an irreducible 
quadric containing X. Thus, generically, the non-singular K-3 surface X(W) can be 
realized in the form 

(P2 xP2)n'QnfrcP8. 

Now the family of branch curves C of the form C = Ei U E2, having a totally tangent 
conic K, and where Ei and E2 are transversal smooth cubic plane curves, and such 
that Ei fl E2 fl K = 0, has 9 moduli as we now prove. Since the choice of conic is 
arbitrary, we can fix it once for all, call it if, and consider the family of all plane 
cubics to which K is totally tangent. By elementary elimination, one can see that 
the family of such cubics for the fixed K is six-dimensional. Since one may apply 
any element of the orthogonal group of K to the plane coordinates, and hence to 
the two cubics, the number of moduli for the pairs of cubics totally tangent to K is 
6 + 6 — 3 = 9 (3 being the dimension of the complex orthogonal group of K). 

5. Comparison of two 9-dimensional domains. The 9-dimensional moduli 
space of such nodal Enriques surfaces is a Zariski-open set on an arithmetic quotient 
of a symmetric tube domain of type IV [N]. Also, a generic smooth curve C of genus 
4 is a space sextic realized as Q fl C , where the quadric hypersurface Q is determined 
up to an element of the finite group of projective automorphisms of C, and the nodal 
Enriques surface can be recovered from the genus 4 curve C C C. 

We want to connect naturally the Zariski-open subset of an arithmetic quotient 
of a domain of type IV and dimension 9 with (a Zariski-open subset of) an arithmetic 
quotient of the irreducible type I domain if 3 of dimension 9. If I^ is the usual Hermi- 
tian modular group, then FaXffs parametrizes norraally polarized Abelian varieties 
(A, i) of dimension 6 with complex multiplication by i of type (i,i,i,—i,—i, —i) in the 
tangent space Te(A) to A at e. Thus we have the relations or finite correspondences: 

FH —► E H- C C C 

and we want some finite set of (A, i)'s corresponding to the curve C of genus 4. This 
brings us to the subject of Janus-type varieties. (Janus: Ancient Roman god of gates 
and doorways, depicted with two faces looking in opposite directions.) 

There are examples of pairs of quite different symmetric domains, say Di resp. 
D2 on which arithmetic groups Fi resp. r2 operate, such that if (D/r)# is a suitable 
smooth toroidal compactification of D/T, then there are normal crossings divisors Ai 
and A2 on the respective smooth compactifications (D/Ti)* and (D/r2)# such that 
the latter two toroidal compactifications are both isomorphic to a compact projective 
variety V, and such that 

(i)   v - A1 = DjruV- A2 = £>2/r2. 

Such examples are given by B. Hunt in [H] and by Hunt and S. Weintraub in [H-W]. 
Moreover, there is a natural geometric interpretation of both terms in (1) and the 
geometric relation is not random. 
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Supposing the genus g(C) = 4, let C** be a 4-fold unramified cyclic covering of 
C, and C* be the intermediate covering of C of degree 2. There are only finitely 
many C** for the given C, corresponding to the points of order 4 on J(C). We have 
g(C**) = 13 and g(C*) = 7. The Jacobian J(C*) is naturally a subvariety of J(C**), 
and B. van Geemen [vGl, vG2] has shown that 

A(C**) = J(C**)/J(C*) 

is a normally polarized Abelian variety of dimension 6 and that the period-four au- 
tomorphism of C** over C induces complex multiplication of A(C**) of type 
(i,i,i, — i, — i, — i), thus determining an orbit of Fs in H3. At this point, the first 
question was whether the correspondence C** —> ^4(C**) is generically finite. Now, 
0. Debarre [De] has given a positive answer to this question, and we have 

F« _> E ^ c [1^81 C" ^ A(C**)- 

One obvious question is to describe the boundary points of the finiteness domain/range 
of TT, as well as the fibers of positive dimension. 

But from the point of view of our original motivation, we should like to know 
what kind of analogous phenomena might take place in the cases Q3 and 7^?? Might 
we reasonably, for example, take a generic section of the respective Severi variety in 
its ambient space P^ by a smooth quadric variety of suitable co-dimension in P^. If 
so, then can we find some objects contained in the complex Cayley projective plane 
whose moduli are connected with an arithmetic quotient of 7^? 

6. The 15-dimensional domain. Now we want to offer some discussion of 
what we think might be true in case of the tube domain Q3 of dimension 15. 

Let us then consider what the first two cases had in common and how this might 
be extended to the case of the domain Q3. In the first case one has the moduli of non- 
hyperelliptic curves C3 of genus 3, realized as the intersections of quadric hypersurfaces 
with the Veronese surface, the first Severi variety, in P5. One has dim(Cs) = 1, the 
canonical class on C3 is very ample when C3 is not hyperelliptic, and each C3 has 
its Jacobian variety JCCs) of dimension 3. In the second case, one considers the 
family J7 of intersections of the second Severi variety P2 x P2 c P8 with quadrics 
Q' of codimension 2, and these intersections are K-3 surfaces, of which we consider 
the subfamily, having 9 moduli, of those which are double covers of nodal Enriques 
surfaces. The canonical class of a K-3 surface or of an Enriques surface is trivial. 
We have seen how there is generically a finite correspondence between these and the 
isomorphism classes of 6-dimensional p.p.A.v.'s with complex multiplication by y/^l. 

Therefore, in the third case let us consider the third Severi variety G = G(2,6), 
also denoted G(l, 5) with projective dimensions, which is contained in P14 and con- 
sider its intersections with quadrics Q" of codimension 4 in P14, Q" = QnHDH'nH", 
where Q is a (generic) quadric hypersurface and H,H',H" are hyperplanes in P14. 
Generically G fl Q" = F is a Fano 4-fold and its anti-canonical class is very am- 
ple and equivalent to a hyperplane section. According to calculations of Brendan 
Hassett we have m{F) < 63 = 15 + 4.12 : Hassett obtained the number 63 by com- 
puting the dimension of the Hilbert scheme of these Fano fourfolds (as subvarieties 
of the Grassmanian) and subtracting the dimension of the automorphism group of 
the Grassmannian; implicitly he uses the fact that each small deformation of the 
Fano fourfolds actually lies in the Grassmannian (cf. [Bo, Se, Ku2]). Moreover, ac- 
cording to Oliver Kuechle [Kul,2,3], its non-zero Hodge numbers are determined by 
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ft(l, 1) = h(0,0) = 1, A(l, 3) = 15, and ft(2,2) = 106. Therefore we would like to see if 
there might be a 15-dimensional family of such Fano 4-folds Ff such that for each F' 
in the family there is a finite set of naturally corresponding p.p.A.v.'s of dimension 12 
admitting complex multiplication by the Hurwitz quaternions. In this case also one 
may conjecture the need to consider a subfamily of Ffs having certain automorphisms, 
just as the K-3 double cover of a (nodal) Enriques surface has a fixed-point-free in- 
volution. In general there are technical problems with constructing a moduli space 
for arbitrary Fano varieties which, in general, may have many automorphisms. At 
this point, our main efforts, with significant cooperation from Brendan Hassett, are 
concentrated on trying to construct some more or less reasonable moduli space for 
the particular Fano 4-folds F' = G fl Q" which we have just been describing. Since 
H2{F',TF>) = 0 by application of a vanishing theorem of Kodaira-Akizuki-Nakano, 
where Tp' is the holomorphic tangent bundle to F', a local moduli space should exist. 
One thing that still has to be checked is whether the candidate local moduli space is 
non-singular, on which Hassett has some ideas related to the analogous case of the 
Fano variety of lines on a cubic 4-fold. Moreover,the problem would be simpler if we 
could also prove that H0

(F',TF>) = 0, for in this case, the criteria of Kodaira and 
Spencer [K,Theorem 6.4], [KS] for the existence of moduli for Ff are satisfied. Then 
one can try to construct a global moduli space and see if some part of the conjec- 
tured moduli space may be identified with an arithmetic quotient of some symmetric 
domain. As for the question of whether iJ0(F,,Tp/) = 0, there are results of Carrell 
and Friedman [CF] which imply that for any non-zero holomorphic tangent field X on 
F' the variety V of zeros of X must be non-empty (since H 1'0(X) = 0 by [Kul]) and 
of complex dimension > 2. While this does not prove that a non-zero holomorphic 
vector field X cannot exist on F', it implies some restrictions on the existence of such. 
One might hope from further such restrictions to prove that X must in fact be 0, and 
thus H0(F/,rF0=0. 

In any event, we do consider it an interesting problem to see what the nature 
might be of some moduli- or parameter space for a suitable subfamily of these Fano 
4-folds, similar to the situation described earlier of a subfamily of the K-3 surfaces 

FH = (P2 xP2)nQniJcP8, 

where we considered the subfamily of those which are double covers of nodal Enriques 
surfaces. We hope someone can see something interesting in these problems and 
suggestions. 
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