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ANOMALIES IN STRING THEORY WITH D-BRANES* 

DANIEL S. FREEDt AND EDWARD WITTEN* 

Introduction. This paper is devoted to studying global anomalies in the world- 
sheet path integral of Type II superstring theory in the presence of D-branes. We will 
not consider orientifolds (or Type I superstrings) and so our string worldsheets will 
be oriented Riemann surfaces, mapped to a spacetime manifold Y, which is endowed 
with a spin structure since the model contains fermions. The first case to consider is 
that of closed worldsheets, without boundary. In this case, global anomalies cancel, 
and the worldsheet measure is globally well-defined, given that Y is spin. This is the 
content of Corollary 4.7 of the present paper; for Y = M10 one has (Theorem 4.8) 
the further result, related to conformal invariance, that the global anomaly vanishes 
separately for left- and right-moving degrees of freedom. By contrast, for heterotic 
strings, global anomaly cancellation gives a restriction that is not evident from the 
point of view of the low energy effective field theory [W2,F2]. 

But we will find that Type II global worldsheet anomalies give some novel results 
when D-branes are present. Thus, we assume the existence of an oriented submanifold 
Q of spacetime on which strings can end. We then consider a string worldsheet 
consisting of an oriented surface X that is mapped to Y with <9£ mapped to Q. On 
Q, there is a field A that is conventionally regarded as a U(l) gauge field, though as 
we will explain this is not the correct interpretation globally. Another important part 
of the story is the Neveu-Schwarz i?-field, which propagates in the bulk of spacetime. 
Assume for simplicity that B = 0. In this case, the worldsheet measure contains two 
interesting factors which we write as follows: 

(1) pfaffCD) • exp li <b    A 

Here pfaff (£)) is the pfaffian (or square root of the determinant) of the worldsheet Dirac 
operator D. The second factor is, in the conventional interpretation, the holonomy of 
A around the boundary of S. 

Our main result, Theorem 5.6, computes the anomaly in pfaff(D). Namely, 
pfaff (D) is naturally not a function, but rather a section of a line bundle over the 
space of parameters—the space of maps of the worldsheet into spacetime and world- 
sheet metrics. This bundle carries a natural metric and connection, and the anomaly 
is the obstruction to the existence of a global flat section of unit norm. We will 
show that this connection is flat, but there is holonomy ±1 determined by the second 
Stiefel-Whitney class W2{v) of the normal bundle v to the .D-brane Q in spacetime.1 

This means that for (1) to be well-defined (for 5 = 0) there must be a compen- 
sating anomaly in the ^4-field. If Wz(v) = 0, then this is achieved by interpreting A as 
a Spinc connection rather than an ordinary 17(1) gauge field. When Ws(iy) / 0 (and 
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B is topologically trivial) the anomaly rules out Q as a possible D-brane in the theory. 
This result from string perturbation theory matches the nonperturbative description 
of .D-brane charge as an element of if-theory [MM,W4]: the normal bundle v must 
have Ws (v) — 0 in order to define the charge. If B ^ 0 there is another term in (1) and 
a correspondingly more complicated interpretation of the A-field, leading to a gener- 
alization of the condition Wz{v) — 0 which is stated in equations (1.12) and (6.9). 
Also, when 5/0, D-brane charge takes values in a twisted form of if-theory, as 
explained in section 5.3 of [W4]. The net effect is always that the Q's that make sense 
in perturbative string theory are the ones that have Thorn classes in the appropriate 
if-group. 

Therefore, our major tasks are to prove the anomaly formula and to properly 
interpret the A- and .B-fields. Since the results here are of direct interest in string 
theory, we begin in section 1 by explaining the physical implications of the anomaly. 
Here we analyze the B / 0 case as well as the simpler case when B vanishes. We 
give examples to show that the anomaly can occur, and we also show how it relates 
to D-brane charge. Section 2 contains a heuristic argument for the anomaly in terms 
perhaps more palatable to physicists than the proofs which follow. From a mathe- 
matical point of view the proof, which is contained in section 5, combines ideas from 
topological index theory (1960s) and geometric index theory (1980s). The pertinent 
background material is quickly summarized in section 3. The analysis of anomalies 
for closed strings is contained in section 4; some of those results are needed in sec- 
tion 5 as well. Section 6 is a commentary, in mathematical language, on some of the 
issues raised in the main part of the paper. First, we give a more precise description 
of the A- and 5-fields in terms of Cech theory. (A general mathematical framework 
which would apply to all occurrences of p-form fields in quantum field theory, string 
theory, and M-theory is still lacking, so we settle for the Cech description.) Second, 
we remark on some general features of Dirac operators on manifolds with boundary 
where the boundary conditions are local. 

With great pleasure we dedicate this paper to Michael Atiyah. His influence is 
evident in every section. Not only did he (and his collaborators) develop topological 
if-theory and topological index theory, which are used here to compute a subtle sign 
whose definition is analytic, but he was also a pioneer in the application of these ideas 
to anomalies and to other problems in quantum field theory. Thus we hope that the 
mix of mathematics and theoretical physics in this paper is an appropriate tribute to 
him. 

1. Role Of The Anomaly In String Theory. We consider the Type II 
superstring theory on a spacetime F, beginning with the case that B = 0. Recall that 
Y is an oriented spin manifold. The D-brane is an oriented submanifold Q C Y. (Q is 
oriented because in Type II superstring theory, D-biane worldvolumes, being sources 
of Ramond-Ramond flux, must be oriented.) The string worldsheet £ is endowed with 
spin structures a and (3 for the left and right-movers. We consider maps of S into Y 
which send the boundary <9£ to Q. Our goal is to assess the well-definedness of the 
worldsheet path integral. The relevant factors are 

(1.1) pfaff{D) • exp (i &   A\ 

(where pfaff (D) is the Pfaffian of the world-sheet Dirac operator D and A is the "17(1) 
gauge field" on Q). Type II global anomaly cancellation for closed surfaces (applied 
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to the double of S, which is closed) shows that the result does not depend on the 
spin structures (see Theorem 4.6). So we may as well assume that /3 = a. Once this 
is done, the Dirac operator becomes real. So pfaff(D) is real. Its absolute value is 
well-defined, for example by zeta function or Pauli-Villars regularization. However, 
there is in general no natural way to define the sign of pfaff (D) as a number. We pick 
a particular sign, and proceed to see if we will run into a contradiction. For this, we 
consider a one-parameter family of E's, parametrized by a circle C. Thus, altogether 
we have a map (f> : E x C ->■ Y, with 0(<9£ x C) C Q. The question is now whether, 
when one goes around the loop (7, pfaff (D) comes back to itself or changes sign. Our 
main result (Theorem 5.6) is that under going around C, 

(1.2) pfaff(D) -> (-l)a pfaff(D). 

with 

a= (0£xC,0*(«;2(Q))). 

Here wziQ) is the second Stiefel-Whitney class of Q. If 0 : <9£ x C -> Q is an 
embedding, we can just write 

= /        w2(Q) = (dXxC,w2(Q)). 
JdY,xC 

In particular, if 1^2 (Q) is non-zero,2 pfaff(D) is not well-defined by as a number. 
Let v be the normal bundle to Q in Y. Because Y is spin (wi(Y) = W2QO = 0) 

and Q is oriented (wi(Q) = 0), the Whitney sum formula 

(1 + W! (Y) + w2(Y) + ...) = (1 + wi(Q) + W2(Q) + ...)(! + ^iM + M") + • • •) 

gives wi(i/)  = 0 and u^M  = W2(Q)'    Hence we can restate the above anomaly 
formulas, for example 

a = (SExC,0*(^2M)). 

This formulation turns out to be more natural in if-theory. 
When pfaff (D) is not well-defined, the string theory is well-defined only if the 

second factor in (1.1) has precisely the same ambiguity. In other words, A must not 
be globally a conventional U(l) gauge field, for which the holonomy around a loop is 
well-defined as an element of U(l). Rather, the holonomy around <9£ 

exp licb   A 

must be well-defined only up to multiplication by ±1, and must change sign whenever 
pfaff (D) does. 

There is another important differential-geometric object that has the same sign 
ambiguity. Let LO be the Levi-Civita connection of the manifold Q. Its structure 
group is SO(n), n being the dimension of Q.   Consider the trace of the holonomy 

2 And can be detected by a map from dT, X C, which is a two-torus. By analogy with many 
other problems involving global anomalies, we expect, though we will not try to prove here, that if 
W2(Q) is nonzero but can only be detected by a map from a surface of higher genus, then the same 
consequences will follow upon analyzing the factorization of the string measure when S breaks into 
pieces, or in other words by analyzing unitarity of string scattering amplitudes. 



822 D. S. FREED AND E. WITTEN 

of this connection in the spin representation S of the double cover Spin(n).  This is 
customarily denoted 

Lu) (1.3) TrPexp 

This holonomy is well-defined only up to sign (because there are two ways to lift 
an element of SO(n) to Spin{n)). In going around a one-parameter family of loops, 
parametrized by a circle C, the holonomy (1.3) is multiplied by exactly the same 
sign factor that appears in (1.2). The upshot, then, is that if A is the right kind 
of geometrical object to make the worldsheet string measure well-defined, then the 
product 

(1.4) Tr Pexp ( j>    UJ j • exp U <b    A] 

is likewise well-defined. 
What appears in (1.4) is the trace of the holonomy in going around the loop <9£, 

not for ordinary spinors on Q, but for spinors of charge 1 with respect to A. Such 
charged spinors are sections not of S(Q), the "spin bundle" of Q, but of S(Q) 0 £, 
where £ is the "line bundle" on which A is a connection. The meaning of the global 
anomaly (for topologically trivial P-field) is thus that the globally defined object is 
not in general S(Q) or £, but the tensor product S(Q) (g> £. 

Such a tensor product defines a so-called "Spinc structure" of Q. The global 
anomaly thus implies that (again, for trivial P-field) Q must be Spinc, and more 
specifically a Spin0 structure can be constructed from the physical data, namely from 
the Levi-Civita connection u and the field A. 

Since, as we have seen above, wziQ) = W2(v), it is equivalent to endow Q with a 
Spin0 structure or to endow its normal bundle with such a structure. In other words, 
being given a bundle S(Q) (8) £ determines a bundle S(u) 0 £, where S(i/) are the 
spinors of the normal bundle. 

Physical Interpretation 

The phenomenon just indicated was first encountered by hand in a very special 
case [W3], but it has a theoretical interpretation that we will now recall. 

Naively speaking, the conserved charges associated with wrapping of D-branes 
in a spacetime manifold Y take values in H*(Y;Z), the cohomology of Y. A closer 
look shows, however [MM,W4], that, when the P-field is topologically trivial, JD-brane 
charge takes values in iiT-theory, in fact in K(Y) or /^1(F) for Type IIB or Type IIA 
string theory. 

However, for a JD-brane wrapped on Q to define a class in K(Y) (or iir1(F)), its 
normal bundle v must be endowed with a Spinc structure. This results from a standard 
construction of Atiyah, Bott, and Shapiro; see [W4], section 4.3 for an explanation in 
the context of the application to string theory. Hence, if the if-theory interpretation 
of .D-branes is correct, Type II .D-branes (at B = 0) must be naturally endowed with a 
Spin0 structure on the normal bundle. Equivalently, since W2(Q) = ^2(^)5 the Type II 
.D-brane world-volume Q must carry a Spin0 structure. As we have just explained, the 
global anomaly formula (1.2) has exactly this consequence; because of this anomaly, 
a D-brane is endowed not with 3,17(1) gauge field, as it naively appears, but with a 
Spin0 structure. 
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Let us now analyze the conditions under which Q admits a Spinc structure. Con- 
sider the exact sequence of abelian groups 

(1.5) 0-^Z^ZAZ2->0, 

with the first map being multiplication by 2 and the second reduction modulo 2. This 
short exact sequence leads to a long exact cohomology sequence: 

(1.6) ...H2(Q;Z)^H2(Q'1Z2)^H3(Q-Z)->... 

The object /3(w2(Q)) G #3(<2;Z) is the third Stiefel-Whitney class W3(Q). 
Vanishing of Ws(Q) is equivalent to Q admitting Spinc structure. Indeed, exact- 

ness of (1.6) says that W2(Q) = r(x) for some x e H2(Q', Z) if and only if WaCQ) = 0. 
When there is no two-torsion in H2(Q',Z), there is precisely one Spin0 structure on 
Q for every such x. In fact, given a Spinc connection u + A, if C is the "line bundle" 
on which A is a connection, then M = C? is an honest line bundle, and x — c\[M) 
obeys r(x) — W2(Q). Conversely, given x with r(x) = ^(Q), we let M be a com- 
plex line bundle with Ci(M) — x, and we let A be a connection on the "line bundle" 
C = M,1/2. (When there is two-torsion in H2(Q;Z), there are different square roots 
of M and hence more than one Spin0 structure for given x.) 

Inclusion Of B-Field 

Now let us discuss what to do when Wz{Q) ^ 0, so that the anomaly cannot 
be cancelled by picking a Spin0 structure on Q. So far we have assumed that the 
.B-field is topologically trivial, in which case it can simply be ignored in analyzing the 
anomalies. But now we must include it. The B-field couples to the world-sheet E 
in bulk, and in its presence an additional term must be added to (1.4), which now 
becomes 

(1.7) pfaff (D) exp (i <b   A + i f B j . 

This expression has the gauge invariance 

(1.8) A -+ A - A, B -> B + dA, 

where A is any connection on an arbitrary complex line bundle M. 
Let us discuss, in stages, the meaning of (1.7). First we consider the f?-field in 

the theory of closed oriented bosonic strings. In this theory, for a closed surface E, 
the i?-field gives a phase 

(1.9) T^(E;5)=exp ■JW- 
This is a complex number of modulus one, an element of (7(1); we can think of it as the 
holonomy of B over E. On the other hand, if E has a boundary, then VF(E; B) is not 
gauge-invariant. It must be regarded as an element of a complex line CB associated 
to 9E by B. The line CB depends on <9E, but we do not show this in the notation. 
For example, if <9E is a single circle, then CB varies as <9E varies to give a complex line 
bundle over the loop space of Y (or over a component of this loop space determined 
by the homotopy class of E). We write LY for the loop space of Y. 

The interpretation of W(E;B) as taking values in a complex line CB may seem 
slightly abstract, but it actually reflects an idea that is familiar to physicists.   The 
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two-form field B in spacetime determines (by integration over the loop) a one-form 
field or abelian gauge field on loop space; this abelian gauge field is a connection on a 
complex line bundle CB over LY. 

Now we introduce in the bosonic string a .D-brane with world-volume Q. We 
require <9£ C Q. In this situation, there is a completely gauge-invariant extension of 
(1.9), namely 

(1.10) W(Z]B,A)=exp(i(£   A + i f B). 

We interpret this expression to mean that A gives a trivialization of the restriction 
of CB to loops that lie in Q. In other words, A trivializes the restriction of CB to 
LQ, the loop space of Q; when <9E C Q, W(?}]B,A) is a gauge-invariant version of 
W(£;5). 

Now, let us consider the superstring and the problem of defining the product 

(1.11) pfaff (D) • exp (i [ B j • exp (ii   A J . 

For simplicity of exposition in what follows, we suppose that the boundary of U is 
a single circle; the generalization is evident. In the mathematical theory, pfaff(D), 
though not well-defined as a number, is defined as a section of a Pfaffian line bundle 
Pfaff over LQ. As we have already discussed, the second factor in (1.11) must likewise 
be interpreted as a section of a line bundle CB- We also have just explained that, in 
the bosonic string theory, the last factor in (1.11) should be interpreted as trivializing 
the restriction of CB to LQ. For the superstring, since there is an extra factor in 
(1.11), the interpretation is different. The last factor in (1.11) must in this case be 
understood as giving a trivialization of Pfaff 0 CB, restricted to LQ. 

This means in particular that for the bosonic string, the restriction of B to Q 
must be topologically trivial. For the superstring, the restriction of B to Q is in 
general topologically nontrivial, but its topological type is uniquely determined, by 
the fact that Pfaff (g) CB (restricted to loops in Q) must be topologically trivial. 

Topological Classification Of B-Fields 
To make this somewhat more explicit, we recall the topological classification of B- 

fields. Topologically, i?-fields on Y are classified by a characteristic class Q G i?3(Y; Z). 
At the level of differential forms, (" is represented by iJ/27r, where H = dB is the 
curvature of B. By integrating £ over a loop, we get a two-dimensional characteristic 
class on LY\ which in fact equals CI(CB)> Flat ^-fields, that is, 5-fields whose field 
strength H vanishes, are classified by the holonomy around closed surfaces, which 
gives a cohomology class in H2(Y;R/Z). A flat 5-field has a torsion characteristic 
class C computed by the "Bockstein" map (3: H2(Y:R/Z) -> H3(Y]Z). (A similar (3 
appears in (1.6).) Notice by comparison the analogous classification of abelian gauge 
fields, where the degree is shifted down by one. 

Pfaff ®CB is trivial if3 

(1.12) C\Q = W3(Q), 

3 In fact, (1.12) is only a sufficient condition, but is the only cohomological condition that implies 
triviality of Pfaff (QCB- AS in footnote 2 at the beginning of section 1, we expect that factorization 
and unitarity will lead to the full requirement of (1.12). 
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and we claim that this is the right topological condition on the 5-field. The integral 
of the left hand side over <9E is the first Chern class of CB • The holonomy of Pfaff 
was stated in (1.2), and this may be reinterpreted to say that the class of Pfaff as a 
flat line bundle in Hl{LQ] E/Z) is the integral of u^ (Q) over <9£. Using the remark 
following (1.6) and the fact that the Bockstein commutes with integration, we see that 
the first Chern class of Pfaff is the integral of W^{Q) over <9£. 

In particular, B restricted to Q is topologically trivial if and only if W^{Q) = 0, 
or in other words (given what we have seen above) if and only if Q is Spinc. 

To be explicit, we will give an example of a 5-field on Q (or on any spacetime 
Y over which W2(Q) extends) with £ = Ws(Q). Just as an abelian gauge field is 
completely determined up to isomorphism by its holonomy around closed loops, a B- 
field is completely determined up to isomorphism by its holonomy over closed surfaces. 
Since W3(Q) = f3(w2(Q)) is a torsion class, there exists a flat l?-field, whose holonomy 
over a closed surface S depends only on the homology class of S, with £ = W3(Q). 
Such a flat E-field is indeed described by the elegant formula 

(1.13) W(X;B) = (-1)P>W2M\ 

In other words, the isomorphism class of this flat jB-field is the image of W2(Q) under 
H2(Q] Z2) —> H2(Q] M/Z). Its characteristic class £ is then computed by the Bockstein 
map to be W3(Q). 

Examples 

We will give a few concrete examples to which the discussion applies. 
Every oriented manifold of dimension < 3 is spin. A simple example of a four- 

manifold that is not spin is Q = CP2. Then #2(Q;Z) = Z, and #2(Q;Z2) = Z2. 
The second Stiefel-Whitney class W2(Q) is the nonzero element of H2(Q]Z2). Since 
H3(Q;Z) = 0, we have Ws(Q) = 0 and Q is Spinc. In fact, the map r : H2(Q]1) -> 
H2{Q]rL2) is just reduction modulo 2; the elements x G H2(Q;Z) with r(x) = w^iQ) 
correspond to the odd integers in H2(Q] Z) = Z. 

If a D-brane has world-volume Q = CP2, then (assuming that the .B-field van- 
ishes) the global anomaly means that the UU(1) gauge field" A does not obey standard 
Dirac quantization. Rather, A is a connection on a "line bundle" whose square has 
an odd first Chern class x (congruent to W2(Q) mod 2). If L C Q is a generator of 
H2(Q] Z), then we have (L, W2(Q)) ^ 0 and hence 

27r      2' /. 
with x an odd integer. In particular, x cannot be zero. 

Every oriented manifold of dimension < 4 is Spinc. To give a simple example of 
a five-manifold that is not Spinc, let Q' = QxS1 be a CP2 bundle over S1 in which, 
as one goes around the S1, the fiber CP2 undergoes complex conjugation. Complex 
conjugation acts on H2(Q]Z) by multiplication by —1. Q' is not a Spinc manifold, 
for the following reason. An x € iJ2(Q';Z) obeying r(x) = W2(Q') would have to 
reduce on each fiber of the projection Q' ->• S1 to an odd element x G H2(Q] Z) = Z. 
Because of the monodromy, x would have to change sign in going around the S1, which 
is impossible. So Q' is not Spinc. 

To illustrate the ideas of the present paper requires considering topologically 
non-trivial D-brane world-volumes such as Q or Q'. But spacetime itself can be very 
simple, for example Y = R10.   Since Y is contractible, the P-field is automatically 
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topologically trivial and can be ignored. We will give examples of .D-brane states in 
M10 which are or are not allowed. 

On general grounds, any manifold of dimension < 5 can be embedded in R10. For 
completeness, we will describe a simple embedding of Q and Q'. Identify Q = CP2 

with the space of vectors 0 of unit norm in C3, modulo phase rotations. Let Aa be a 
suitably normalized basis of the Lie algebra of 5?7(3), and 

<t>a = <V|Aa|V>. 

Then X)a=i ^a — 1? so using the 0a as coordinates, we get an embedding of CP2 in 
S7, which obviously embeds in M10. To embed Q' in R10, first note that §8 x S1 can be 
embedded in R10 (for instance as the set of points a distance e from a circle S1 C R10, 
for suitably small e). Hence it suffices to embed Qf in §8 x S1. For this, we first add 
one more coordinate y to the <f)a, to get a copy of S8 defined by J2a ^a + V2 = 1? ari(l 
embed Q in §8 as the subset with y = 0 and <^a as before. Now, complex conjugation 
of CP2 acts on the set of eight 0O with determinant —1 (three eigenvalues +1 and five 
— 1), so if we take it to act on y as multiplication by —1, we get an element T G 5(9(9). 
50(9) is a connected group of symmetries of S8. Let R(9), 0 < 6 < 27r be a path in 
50(9) with R(0) = 1 and i?(27r) = T. Finally, embed Q' in S8 x S1 by mapping (P, 6) 
(with P G CP2 C §8 and <9 G S1) to (R(6)P,6) G §8 x S1. 

Now, given a D-brane in R10 with world-volume Q or Q', we will explain how to 
construct a family of string worldsheets that detects the global anomaly. We take S 
to be a disc; its boundary is a circle 9E. Letting C be another circle, the boundary 
of E x C is W = dT, x C, a two-torus. For a generator of ^(0; Z) or ^(Q'; Z) we 
can take a two-sphere L. We pick a degree one map </>o : W —>- L; then, since R10 is 
contractible, one can extend <^o to a map <j> : E x C —> R10. This gives a relatively 
simple example of a family of worldsheets for which there is a global anomaly. Hence, 
the .D-brane Q' C R10 is not allowed, and the I}-brane Q C R10 is allowed but must 
support a "£7(1) gauge field" with half-integral flux. 

Conservation Laws And The Anomaly 

By further discussion of D-branes in R10, we can show the relation of the anomaly 
to D-brane charges. 

We work in Lorentz signature, and split R10 as R x R9, where R parametrizes 
"time" and R9 is "space." We consider a D-brane whose world-volume near time zero 
is approximately Q = Rx Qo, with QQ C R9. We will focus on Type IIA superstrings, 
so Qo is of even dimension. To detect the anomaly, the dimension is at least four. 

The world-volume of the D-brane will not look like R x QQ for all time. The 
D-brane will oscillate, emit radiation, and contract. In the far future, it will decay to 
a final state consisting of outgoing stable particles. The only known stable particles 
in Type IIA superstring theory in R10 are massless particles (the graviton and its su- 
perpartners) and DO-branes, together with the familiar multi-DO-brane bound states. 
(There are no conserved charges for higher branes because R10 is contractible.) If there 
are no additional stable particles, then our initial state will decay to an assortment of 
the known ones. 

If so, we can predict how many net DO-branes will be produced - that is the 
difference between the number of DO-branes and anti-DO-branes in the final state. It 



ANOMALIES IN STRING THEORY WITH D-BRANES 827 

must equal the DO-brane charge of the initial state, which [GHM,CY,MM] is 

No= [   JA(Q)-^= exp (ciOC)): 

\[M^ 
where A is the total A-roof class, and c\(C) is the first Chern class of the "complex line 
bundle" C on which the "£/(!) gauge field" A of the .D-brane is a connection. Now, 
using the fact that the tangent bundle of R10 is trivial, and splits as TQ 0 v (with TQ 
the tangent bundle to Q), we have A(y) = A(Q)~1. So we rewrite the formula for the 
total DO-brane charge as 

(1.14) iVo= /   i(Qo)exp(ci(£)). 
JQo 

(We have written here A(Qo) rather that A(Q)i the two are equal as TQ — TQQ 0 e, 
where e is a trivial real line bundle that incorporates the "time" direction.) 

Now, if C were a complex line bundle, then in general JVo would not be an integer. 
For example, for Qo = CP2 and £ trivial, we would have NQ = ±1/8 (depending on 
orientation). When iVo is not integral, the initial D-brane state cannot decay to known 
stable particles. 

We either must postulate the existence of new conservation laws for Type IIA 
strings in R10 or achieve integrality of iVo by some other modification of the rules. As 
we have seen, the global anomaly means that A is not a U(l) connection, but rather 
determines a Spinc structure S(Q)®C on Q or equivalently a Spinc structure S(Qo)®£ 
on QQ. With this interpretation of A and £, the Atiyah-Singer index theorem states 
that the right hand side of (1.14) is the index of the Dirac operator (for spinors on Qo 
valued in S(Qo) <8> £), so that iVo is always integral. 

Thus, the anomaly enables us to avoid having to postulate new conservation laws 
for D-branes in R10. 

2. Qualitative Explanation Of Anomaly. To give a qualitative explanation 
of the anomaly, we consider a Dp-bvane with oriented world-volume Q in a spacetime 
Y. If the given D-brane is the only one in spacetime, then a consideration of the string 
spectrum will not lead in an obvious way to a result involving ^(Q)- In fact, if there 
is only one -D-brane, the only open strings are the p-p open strings with both ends on 
Q. The ground state of the p-p open strings in the Ramond sector consists of sections 
of S(Q) 0 S(u) where S(Q) is the bundle of spinors on Q, and S(u) is the bundle of 
spinors on the normal bundle z/ to Q in Y. This tensor product exists whether Q is 
spin or not (given only that Y is spin), so merely by quantizing the p-p open strings, 
we get no condition involving W2{Q). To obtain such a condition, we will study global 
worldsheet anomalies, as explained in the introduction. 

Suppose, however, that an additional pair of D-branes, consisting of a space-filling 
9-9 pair, is present.4 We suppose that the gauge fields on the 9-brane and 9-brane 
are trivial. In the presence of the additional branes, there are additional open strings 
such as the 9-p open strings. The ground state Ramond sector 9-p strings are sections 
of S(Q) (8) £, where again S{Q) are the spinors on Q and C is the "line bundle" on 
which the "?7(1) gauge field" A on Q is a connection. 

4 For Type IIB, these can be ordinary supersymmetric branes. For Type IIA, we could in this 
argument use instead the nonsupersymmetric 9-brane considered in [H]. 
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So the tensor product S(Q) ® C must exist, and we learn what was promised in 
the introduction: Q must be Spin0, and the "gauge field" on Q really defines a Spinc 

structure. 
In our actual problem, such additional branes are absent. We do not want to 

assume continuous creation and annihilation of brane-antibrane pairs along the lines 
of [S], for this involves somewhat speculative physics. If one is willing to make such 
assumptions, the relation of branes to K-theory and the Spinc character of Q can 
indeed be deduced, as in [W4]. Our intent here is to show that the requirement for Q 
to carry a Spinc structure can be deduced with only conservative assumptions about 
physics, by computing the global worldsheet anomaly. 

Nevertheless, the fact that in the presence of a 9-brane, the quantization of the 
9-p open strings would make our result obvious is a starting point for a precise math- 
ematical computation of the global anomaly. In essence, whether or not 9-branes can 
be continuously created in the physics, we can create them in the math, at least for 
the purposes of computing a global anomaly. This may be done as follows. 

Consider any family of open string worldsheets E with specified boundary condi- 
tions on the boundary components of E. The change in the global anomaly under a 
change in the boundary conditions is local, that is it only depends on the properties 
near the boundary of E. Such locality is perhaps more familiar for perturbative anom- 
alies, which are expressed as integrals of differential forms. Global anomalies, however, 
also obey a suitable form of locality. They are computed topologically as "integrals" 
in if-theory, which obey the following excision property: If two if-theory classes agree 
outside an open set Lr, then the difference of their "integrals" can be computed on 
U. Geometrically, global anomalies are adiabatic limits of 77-invariants, which also 
obey a factorization relation, though a more delicate one [DF]. These relations give 
the locality we want for the global anomaly. 

Using this locality, we can reduce to a convenient set of boundary conditions. 
In fact, if one places 9-brane boundary conditions on all components of <9E, there is 
no global anomaly. This statement is proved in Proposition 5.10, again using fac- 
torization. The statement is closely related to Type II global anomaly cancellation 
for closed surfaces without i^-branes, because with 9-brane boundary conditions on 
all boundaries, the Dirac equation on the surface-with-boundary E is equivalent to a 
chiral Dirac equation (acting on spinors of one chirality only) on the double of E. 

Hence, the anomaly for the family E x C of open string world-sheets, with a map 
<f) : E x C -> Y, depends only on the restriction of </) to <9E x C and the boundary 
conditions on <9E x C. Once this is known, the anomaly can be evaluated by the 
following sleight of hand. We let 0 be an annulus. We select one distinguished 
component d& of the boundary of 0, and we select an isomorphism of 90' to <9E 
(assuming <9E connected, in which case both of them are circles; the generalization to 
arbitrary 9E is clear). Then we pick a map <^ : 0 x C —> Y which coincides with (f) in 
a neighborhood of 90' x C. 

Now, we will compare the global anomalies for two different sets of Dirac operators 
that differ only by changes of boundary conditions: 

(1) In the first case, we consider a Dirac operator on E with p-brane boundary 
conditions, plus a Dirac operator on 0 with 9-brane boundary conditions at each 
boundary. 

(2) In the second case, we consider a Dirac operator on E with 9-brane boundary 
conditions, and a Dirac operator on 0 with p-brane boundary conditions on d& and 
9-brane boundary conditions on the other boundary component. 
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The total global anomaly in going around the loop C, summed over the two Dirac 
operators that are considered in each case, is the same in case (1) and case (2), because 
the union of all the boundaries and boundary maps are the same in the two cases. 
All we have done in going from case (1) to case (2) is to cut out neighborhoods of 
boundary components of E x C and 0 x C and exchange them. 

We also observe the following: 
(I) In case (1), the global anomaly comes entirely from the Dirac operator on E, 

since the Dirac operator on 0 has 9-brane boundary conditions on each component. 
Hence, in case (1), the global anomaly is equal to what we want to calculate. 

(II) In case (2), the global anomaly comes entirely from the Dirac operator on 0, 
since the Dirac operator on E has 9-brane boundary conditions on each component. 

In case (2), because 0 is an annulus with 9-brane boundary conditions at one 
end and p-brane boundary conditions at the other, it describes the propagation of 
9-p strings. As we remarked before, the ground states of such strings are sections 
of S(Q) <8> C in the Ramond sector (or of S(v) <g> C in the Neveu-Schwarz sector). 
Absence of global anomalies in their propagation is equivalent (as in the analysis of 
global anomalies in quantum mechanics in [W2]) to the existence of S(Q) (8) £ (or of 
S(i/)®£). 

Thus, absence of the global anomaly for the Dirac operator on E with p-brane 
boundary conditions is equivalent to existence of S(Q) 0 £, as we wished to show. A 
rigorous argument can be found in section 5. 

3. Anomalies and Index Theory. The path integral over a fermionic field / 
is the regularized pfaffian, or5 determinant, of a Dirac operator D. It depends on the 
bosonic fields b which couple to /, but rather than being a complex-valued function on 
the space B of these bosons it is a section pfaff D of a complex line bundle Pfaff D —> B. 
This section is part of the effective action we must integrate over 5, and to do so 
we must find a global nonzero section 1: B —>• Pfaff D and integrate instead the 
function pfaff D/I. The anomaly is the obstruction to finding the trivializing section 1. 
(More precisely, we must trivialize the product of the pfaffian line bundle and line 
bundles from other terms in the effective action, such as the additional contributions 
to (1.11).) This may be interpreted topologically, in which case the Atiyah-Singer 
index theorem is used to determine the topology of the pfaffian line bundle. More 
relevant to the physics is a geometric interpretation, in which we seek a flat section 1 
of unit norm relative to the natural metric and connection on Pfaff D. (This distinction 
is important in our problem—compare Theorem 5.5 and Theorem 5.6.) For that we 
use differential geometric index theorems involving curvature forms and ^-invariants. 
If the anomaly vanishes then 1, and so the effective action, is determined up to a phase 
on each connected component of B. See [Fl], [F2] for more details. In this section we 
briefly summarize results from index theory—both topological and geometric—in the 
form we need. 

Suppose TT: X ->> Z is a fiber bundle whose fibers6 X/Z are closed manifolds 
endowed with a spin structure. Recall that KO(X) is the group of virtual real vector 

5 In Minkowski space all fields are real and we can write the fermionic kinetic term as ^iplpip, so 
that the path integral over ip gives a real pfaffian. Often a pfaffian may be written as a determinant 
of a "smaller" Dirac operator. Since under Wick rotation the fermions are usually complexified, in 
Euclidean field theory the pfaffians and determinants are usually complex. 

6 Here X/Z denotes the fiber of X —> Z. As usual, a spin structure on a manifold means a spin 
structure on its tangent bundle, here the tangent bundle T(X/Z) along the fibers. 
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bundles on X up to equivalence, and KO~n(X) C KO(Sn x X) is the subspace of 
isomorphism classes of virtual bundles trivial on Sn V X. The spin structure on the 
fibers determines a pushforward map 

7rf/Z : KO(X) —+ KO-n(Z), 

where n = dimX/Z. Given a real vector bundle E -> X, the family of Dirac op- 
erators on X/Z coupled to E has an index in KO~n(Z). The Atiyah-Singer index 

theorem [AS2] asserts that this analytic index equals TTJ ([E]), where [E] E KO(X) 
is the isomorphism class of E. For Dirac operators coupled to complex bundles we 
have a similar picture with complex if-theory replacing real K (9-theory. In general 
there is no cohomological formula for the integral or mod 2 characteristic classes of 
the index; over the rationals we can express the Chern character of the index (in 
if-theory) in terms of the Chern character of E: 

ch 7rf/z([E]) = -K*
12

 {A{XIZ) ch(£)), 

where TT* is the pushforward map in rational cohomology. Until further notice we 
restrict to complex bundles and if-theory. 

The simplest invariant of an element of K(Z) after the rank, which is a continuous 
function Z —> Z, is the determinant line bundle, which is a smooth complex line bundle 
over Z. In this topological context it is only defined up to equivalence. 

A geometric family of Dirac operators parametrized by Z is specified by a fiber 
bundle TT: X —)• Z, a spin structure on X/Z, a Riemannian metric on X/Z, and a 
distribution of horizontal planes on X (transverse to the fibers X/Z). If we couple to 
a vector bundle E -> X, we require that E have a metric and compatible connection. 
Then if the fibers X/Z are closed, the determinant line bundle Det DX/Z{E) is well- 
defined as a smooth line bundle, and it carries a canonical metric and connection [BF]. 
If the fibers X/Z are odd dimensional, so that the (complex) Dirac operator is self- 
adjoint, then there is a geometric invariant £x/z(E): Z -^ W^ defined by Atiyah- 
Patodi-Singer. (It is half the sum of the 77-invariant and the dimension of the kernel.) 
Multiplying by 2iTy/^l and exponentiating we obtain Tx/z(E)'- % -> T, where T C C 
is the unit circle. 

The curvature of the determinant line bundle is the 2-form 

(3.1)        QpetDX/*{E) = r27rx/ri f   A(nx/Z)ch(o*)l    E ft2(z), 
L Jx/Z J (2) 

where flx/z,QE are the indicated curvature forms. As for the holonomy, consider a 
loop TT: X ->• 51 of manifolds in this geometric setup. Endow 51 with a metric and 
the bounding spin structure; then we induce a metric and spin structure on X. The 
holonomy of the determinant line bundle around this loop is 

(3.2) hoi Det Dx/sl (E) = a-lim r"1 (£), 

where the adiabatic limit a-lim is the limit as the metric on 51 blows up (#51 —> #51 /e2 

and e —> 0). If the determinant line bundle is flat, then no adiabatic limit is required. 
Equation (3.2) is the global anomaly formula [Wl]; cf. [BF]. 

If X is a spin manifold of odd dimension n, and F —> X a flat unitary bundle 
of rank r, then for any complex hermitian bundle E -> X with connection the ratio 
TX(E 0 (F — r))/Tx(E) is a topological invariant independent of the geometrical 
quantities. The flat index theorem of Atiyah-Patodi-Singer [APS2] gives a if-theory 
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formula for this ratio. Namely, the bundle F determines a class [F — r] G K~1(Z] M/Z) 
and the difference of ^-invariants is TTJ*([E] • [F — r]), where now 

(3.3) TT,*: K^iZiR/Z) -> If-^^ptjR/Z) = R/Z. 

If X is an odd dimensional spin manifold with boundary, one can still define 
Tx{E), but now it is an element of the inverse determinant line of the boundary, 
viewed as a Z/2Z-graded one dimensional vector space [DF]. Here we use the global 
boundary conditions of Atiyah-Patodi-Singer [APS1]. The invariant TX(E) satisfies 
a gluing law. We need the formula for r_x, where —X is the manifold X with 
the opposite orientation.7 Let k be the number of components of OX on which the 
boundary Dirac operator has odd index. Then 

(3.4) T_X(£) = (-1)G)TX(£). 

Let Xd be the (spin) double of X, obtained by gluing X and —X along dX. Then 
the gluing theorem and (3.4) imply 

(3.5) TXC!=(-1)(S). 

Turning now to real bundles and if O-theory, there is a square root which one 
can canonically extract in certain dimensions (see [Fl,§3]). Namely, if a geometric 
family TT: X ->> Z has dimX/Z = 2 (mod 8), and if E -> X is a real vector bundle, 
then the determinant line bundle has a natural square root, the pfaffian line bun- 
dle FfaffDx/z(E). Also, if X is a closed spin manifold with dimX = 3 (mod 8), 
and if E —> X is a real vector bundle, then rx(E) E T has a natural square root 
Tj/ (E) E T. The curvature of the pfaffian line bundle is given by one-half times (3.1), 
and the holonomy by (3.2) with the r-1/2-invariant replacing the r_1-invariant. For- 
mulas (3.4) and (3.5) hold for the r~1/2-invariant, but now k denotes the number 
of components of dX with nonzero mod 2 index. (Note that the T

1
/

2
 -invariant of 

a manifold with boundary lives in the inverse pfaffian line of the boundary. That 
pfaffian line is Z/2Z-graded by the mod 2 index.) There is a version of the flat index 
theorem (3.3) which applies to this square root; it uses KO in place of K. 

There is a special low dimensional situation in which the topological isomorphism 
class of the pfaffian line bundle (over the integers) is computed by a cohomological for- 
mula. Suppose TT: X —> Z is a family of closed spin 2-manifolds, and E —> X a virtual 
real vector bundle of rank 0 which is endowed with a spin structure. Then [Fl,§5] 

(3.6) ci PfaEDx/z{E) = ir?/Z\{E), 

where A is the degree four characteristic class of spin bundles with 2A = pi. As a 
corollary, even if E is not spin we have a cohomological formula for the determinant 
line bundle, which is the square of the pfaffian bundle: 

(3.7) ci I>etDx'z(E) = n^p^E). 

In (5.22) we compute an analogous formula for the pfaffian line bundle of a family of 
Dirac operators on the circle. 

7 Unfortunately, the sign in (3.4) is missing from [DF]; it will be corrected in a forthcoming 
erratum. 
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4. Closed Superstrings. 

Statement of Results 

In this section we study a closed superstring propagating in a curved background 
Riemannian manifold Y. Assume that Y is an oriented manifold. Let S be an oriented 
closed surface. We need not assume that either Y or S is connected. The space of 
bosons is the product 

£ = Met(£) xMap(E,y) 

of Riemannian metrics g on E and maps 0: E —>• Y. A metric g on E induces a 
complex structure, since S is assumed oriented, and so a 8 operator dg: O0,0 —> ^o'1- 
Let Kg denote the canonical bundle, which is the cotangent bundle T*E viewed as a 
complex line bundle. A spin structure a on E, which we can describe on the oriented 
surface independent of any metric, gives rise to a complex line bundle Haig which 

satisfies H®^ = Kg. It is natural to denote Haig as Ka\g. Spinor fields are sections 
1/2 1/2 

of Ko/rf © Ka,g • The chiral Dirac operators on E may be expressed in terms of the 
8 operator and its conjugate: 

Note that D~ = —D+. Also, D+ = —(D+)* is a complex skew-adjoint operator. For 
this we identify fi0,1^1/2) as the dual space to fl0,0(K1/f2): the duality pairing is 
pointwise multiplication followed by integration. The determinant of a skew-adjoint 
operator has a canonical square root, the pfaffian, as explained in §3. For any vector 
bundle with connection E —)■ E we can form the coupled Dirac operators D±(E). The 
coupled operator is skew-adjoint if E is real. 

For a line bundle £ we denote the dual by C-1 and the nth tensor power £<8,n 

by C71. Thus if"1 is the holomorphic tangent bundle of S and KaJ is the 3rd power 

of the dual to Ka\g . 
Fix a spin structure a. Then for a pair (g,(t>) £ B define the complex line 

(4.2) L+0/,0) = FfaSD+JfTY) ® [Vet DtJK;1)]®^ ® Deta^1) 

and its complex conjugate 

(4.3) L-(g,<fi) = PfaQD-JpTY) ® [Detfl-^lTj1)]®^ ® Deta^1). 

As (#,</>) vary these define smooth complex line bundles L^ —>• B with metric and 
connection. We remark that the last operator in (4.2) may be rewritten in terms of 
spinor s: 

dg(K-1) = Dlg(K-^) 

for any spin structure a. 
In superstring theory, the spin structures on right- and left-movers are chosen 

independently and are summed over with appropriate weighting. The path integral 
over the right-moving fermions is a section of L+, and the path integral over the left- 
moving fermions is a section of L^, for two independently chosen spin structures a and 
/?. The first factor in the definition of L^ corresponds to the physical spinor field, the 
last factor to the ghosts from gauge fixing the diffeomorphism group, and the middle 
factor to the ghosts from gauge fixing the remainder of the superdiffeomorphism group. 
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The path integral in the effective theory is carried out over the quotient of the space 
of bosons by the subgroup of superdiffeomorphisms of E which preserve the chosen 
spin structure. Thus to detect possible anomalies we consider smooth fiber bundles 
IT: X -> Z with typical fiber E together with a map to Y: 

X —^ Y 

(4-4) J. 
z 

Furthermore, we assume that the relative tangent bundle carries a Riemannian metric 
and spin structure, and that there is a distribution of horizontal planes on X. This is 
enough to define the line bundles (4.2) and (4.3) with metric and connection. In the 
application to physics Z maps into the quotient of B by the subgroup of diffeomor- 
phisms fixing the given spin structure. Such families of surfaces are "probes" which 
determine the structure of the line bundles Lj. It suffices to take Z finite dimensional 
and compact. The path integral over both right- and left-moving fermions is a section 
of I/+ 0 LQ , and it is the triviality of this line bundle over arbitrary families (4.4) 
which we investigate. 

We now state the basic results for closed oriented surfaces; the proofs follow below. 
In these theorems isomorphism means an invertible linear map which preserves the 
metric and connection. A trivializable bundle is isomorphic to the trivial bundle with 
product metric and connection. 

THEOREM 4.5. Suppose Y is spin and dimY = 10. Then for any two spin 
structures a,/3 there exists an isomorphism 

Since L~ is the complex conjugate of L+, it follows that L~ is also independent of 
the spin structure a. 

COROLLARY 4.6. Suppose Y is spin and dimF = 10. Then L+ 0 Lg is trivial- 
izable for any spin structures a, (3. 

For a = 0 the hermitian metric provides the desired trivialization. The result for a / 
/? follows immediately from Theorem 4.5. The triviality of L+ 0 LI is the vanishing 
of the anomaly. 

The next result is relevant to the conformal anomaly, but does not enter into the 
considerations of §5. We include it for completeness. 

THEOREM 4.7. Suppose Y = R10. Then L+ <g> (Det^)^-5) is trivializable. 

The factor of (~Detdg)®(~^ comes from integrating the boson 0. (See [F2,§2] for a 
discussion of the conformal anomaly in the context of the bosonic string.) 

Proofs 

The proof8 of Theorem 4.5 is modelled on [FM]. which treats a similar proposition 
for complex vector bundles. The real case treated here is simpler. First, the curvature 
formula (3.1) does not depend on the spin structure, so the ratio L+/L~p is flat. Thus 

?For an alternative proof, see [W2]. 
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we must show that the holonomy of this ratio vanishes. Now the holonomy of a pfaffian 
line bundle is given by the adiabatic limit of the exponentiated — £/2-invariant of the 
Dirac operator on a 3-mamfold which fibers over the circle (see (3.2)). Theorem 4.5 
follows from a more general statement.9 

LEMMA 4.8. Suppose P is any compact oriented 3-manifold with two spin struc- 
tures a and $, and V -> P is a real vector bundle with rank divisible by 8 and with 
w1(V)=W2(y) = 0. Then 

(4.9) ^--| = 0    (m0c11)- 

To prove Theorem 4.5 from this lemma, note first that the last factor in (4.2) does not 
depend on the spin structure. Next, use the fact that D+ = D- and T)<dtD~(E) = 
(Det D+(E)) for any complex vector bundle E to rewrite the second factor in (4.2) 
as a pfaffian: 

(4.10) Det^+^K"1) - Pfaff D+^R-1 © i^"1). 

In this expression K'1 © Kg ~1 refers to a rank two real vector bundle. Now apply 
the lemma to [V] = ^[TY] - [Kg1 e^"-1]. Assuming y10 to be oriented and spin, 
this has rank 8 and vanishing wi and ^2- 

Proof of Lemma 4-8. A ifO-theory version of the index theorem for flat bun- 
dles [APS2] gives a topological formula for this difference of £/2-invariants (see (3.3)). 
Let [V] £ KO(P) denote the i^O-class of V. The difference of spin structures is a flat 
real bundle, and gives rise to a class [a-fi] G KO^iPiQ/Z.). Let TT. : KO^iP'.Q/Z) 
->> Q/Z be the direct image map defined by the spin structure /3. Then the flat index 
theorem asserts 

(4.11) ^r-f =?n([^Ha-/3])    (modi). 

In fact, we will show that 

(4.12) [V] • [a - /3] = 0       in ircr^PjQ/Z). 

First, an element [V] e KO(P) is determined by rank([Vr]), ^^[F]), and ^([V]). 
(An element of KO(P) is a homotopy class of maps P -> Z x BO, and if the rank and 
first two Stiefel-Whitney classes are trivial the map lands in BSpin, which has trivial 
3-skeleton.) So with our hypotheses [V] = Sk for some k G Z. Next, the difference 
of spin structures is given by a homotopy class of maps P —> MP00, and since P is 
3-dimensional by a map P ->■ MP4. The rational (reduced) KO groups of MP4 vanish, 
and the reduced group iiT0(MP4) = Z/8Z, as was computed by Adams [A]. Hence 
ifO-^MP4; Q/Z) ^ ^(IP4) £ Z/8Z. It follows that 8[d - $] = 0, whence (4.12). 

Proof of Theorem ^.7. We must show that for any family TT: X —> Z of spin 
surfaces with the usual geometric data, the line bundle 

£ = (Det£>+)5 (8) (Beta)"5 ® DetBiK'1) ® (DetD+(K'1))'1 

9
 It seems that there is no cohomological formula for this ratio of holonomies (i.e., the left hand 

side of (4.9)) if we relax the hypotheses wi(V) = W2(V) = 0, as we learned in a conversation with 
John Morgan. Our proof of Lemma 4.8 is based on the if O-theory formula (4.11). 
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over Z is trivial. (For readability, we omit the metric g and spin structure a from the 
notation in this proof.) That C is topologically trivial follows from a cohomological 
computation, thanks to (3.7). Namely, we can write C as the determinant line bundle 
of the Dirac operator D+ coupled to the virtual complex vector bundle 

\W\ = [5 - 5K-1/2 + K"3/2 - if"1] € K{X). 

Let x = ciO^"1/2) G H2(X). Then 

(4.13) pi ([W]) = -5x2 4- 9a;2 - 4a;2 = 0, 

and so ci(C) = 7r*pi(W) = 0. The curvature of the natural connection on C also 
vanishes, since the curvature (3.1) is computed by a combination of differential forms 
with the same coefficients as in (4.13). 

It remains to show that the holonomy is trivial. For this we rewrite C (canonically) 
as a product of pfaffian line bundles of Dirac operators coupled to real vector bundles. 
(For the last factor, see (4.10)): 

(4.14) C = (PfaffD+)10 0 (Pfaff D+iK'1'2 ©Z"1/2))"5 

(8) (Pfaff D+ (if"3/2 0F-3/2)) 0 (Pfaff D+iK"1 0F"1))"1. 

Consider a family of surfaces P -» 51 fibered over the circle. The holonomy of C 
around 51 is the adiabatic limit of the product of r-1//2-invariants of the Dirac opera- 
tor Dp on P coupled to the real vector bundles indicated in (4.14). These bundles are 
associated to the relative tangent bundle of the fibering P —>■ 51. We rewrite these cou- 
pled Dirac operators as operators which make sense on any spin 3-manifold. (Below we 
write P = dW for a spin 4-manifold W and we want to extend the operators over W, 
which may not fiber over the circle.) For example, since TP (g) C = K~1 0 K ~1 0 1c, 
the operators which appear in the first and last factors in (4.14) may be combined as 

(4.15) Dp(ll-rP), 

where 11 is the trivial real bundle of rank 11. (What we really compute is the 
11th power of the r-1/2-invariant of Dp divided by the r-1/2-invariant of Dp(TP)1 

but it is convenient to use virtual bundles as a shorthand for this.) For the second 
factor in (4.14) we rewrite Dp^'1/2 0 if-1/2) on the fibered manifold P -> S1 as 
the operator10 

Bev = (-l)*(*d-d*) 

acting on ft0(P) 0ft2(P), where p = 0 on ft0 and p = 1 on fi2. This operator is "half" 
the boundary of the four dimensional signature operator, as explained in [APS1]. An 
important point for us is that its ^-invariant is well-defined as a real number, since 
the kernel of Bev has a cohomological interpretation so has constant dimension in 
families. Hence £/2 (mod 1) is well-defined. For the third term of (4.14) we rewrite 
Dp{K-^/2 0 i?"3/2) on the fibered manifold as 

Bev(TP) - 2Bev. 

Thus the operators which appear in the second and third factors in (4.14) may be 
combined as 

(4.16) BeY(TP-7). 

'The notation "£ev" is taken from [APS1]. 
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Now we use the fact that any spin 3-manifold P bounds a spin 4-manifold W. 
Then by the Atiyah-Patodi-Singer index theorem for manifolds with boundary [APS1], 
the r-1/2-invariant is the exponential of a curvature integral over W. The particular 
curvature polynomial is determined from (4.15) and (4.16) to be the degree four part 
of a form we denote schematically by 

(4.17) ~A(W)(\2-di(TWJ) - ^L(W)((&(TW)-%). 

Note that TW\p^ TP® 1, which explains the "12" and "8" in (4.17). Also, L(W) is 
the unstable characteristic class based on the formal expression tan^ ,2, as explained 
in [ASl,p. 577]. Expressed in terms of the first Pontrjagin polynomial pi in the 
curvature, the degree four part of (4.17) is the coefficient of pi in 

-^(l-|)(8-w)-^(4+|)(pi-4), 

which vanishes. Thus the holonomy of £ is trivial. 

5. Open Superstrings and D-Branes. 

Statement of Results 

Fix a Riemannian manifold Y, which we assume to be oriented, spin, and of 
dimension 10. As before, this is the background in which the string propagates; now 
we want to add a D-brane. Thus let Q C Y be an oriented submanifold, which we 
need not assume to be connected. The oriented (not necessarily connected) surface S 
is now permitted to have a (not necessarily connected) boundary, and we require the 
boundary of £ to map to Q. In other words, the space of bosons is 

B = Met(E) xMap((£,<9£),(r,<2)). 

Asking that <9£ map to Q imposes a mixture of Dirichlet and Neumann boundary 
conditions. To define the determinant lines (4.2) and (4.3), we need to impose bound- 
ary conditions on the fermions; the desired boundary conditions are local boundary 
conditions that are determined by supersymmetry. These boundary conditions mix 
right- and left-handed spinor fields, so it is only the tensor product of the lines £+ 

and C~ which makes sense if the boundary is nonempty. 
To describe precisely the desired Dirac operators on E, we first recall that a spin 

structure a on E induces a spin structure on 9E. To see this, fix a metric g on E and 
consider the principal S^-bundle of oriented orthonormal frames 50(E) ->• E. Its 
restriction to <9E is canonically trivialized by the oriented orthonormal frame whose 
first element is the outward pointing unit normal. A spin structure a induces a double 
cover Spin(E) —> 50(E), and the inverse image of the trivialization at the boundary 
is a spin structure on the boundary. That inverse image is a double cover of <9£. 
There are two possibilities on each component of <9£. If the double cover is connected, 
then we say that the spin structure on that component is trivial, since it bounds 
a spin structure on a disk. If the double cover is not connected, then we say that 
the spin structure on that component is nontrivial. The spin structure on the entire 
boundary <9£ is constrained by the fact that it is the boundary of a spin structure 

1/2 on E. As for the complex line bundle Ka\g, it follows from this discussion that its 
restriction to 9E has a canonical real structure, i.e., 

(5.1) K1'? 3 KX*       on as. 
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The underlying real bundle determines the spin structure on <9£. 
As for closed strings we allow different spin structures on the right- and left- 

movers. Thus we consider pairs of spin structures a, (5 such that the induced spin 
structures on <9£ are isomorphic. Now an isomorphism of spin structures on 911 is 
only determined up to a sign on each component of <9£, and we need to fix that sign. 
(The overall sign is irrelevant.) Thus part of the data we need is an isomorphism 

(5-2) e-.KyX^K^. 

Once the isomorphism is chosen for some metric it is determined for all metrics, so 
(5.2) is a discrete topological choice. Thus the topological data is a triple (a, (3,6). 

Let D denote the total Dirac operator, which is the sum of the two chiral opera- 
tors (4.1). For a map <j):Yi->Y with </>(<9£) C Q and a metric g on S, consider the to- 
tal Dirac operator Da^j,g((f)*TY), where we use the spin structure a on right-handed 
spinors and the spin structure /? on left-handed spinor fields. The isomorphism 6 does 
not enter into the definition of the Dirac operator, but is included in the notation 
since it does enter into the boundary condition (5.3) below. A spinor field ip with 
values in 0*TY decomposes as I/J = ^ +,0- according to the chiral decomposition of 
spinors on S. The restriction di/i of ip to <9£ takes values in (jf(TYL). Now 

TY\Q^TQ®v, 

where v is the normal bundle to Q in Y. Thus at the boundary we can write 

The boundary condition for the operator Da^ye,g((f>*TY) is then 

(5-3) DeMgifTY) : 
0(A+) = -A; 

The operator Darff^gffiTY) with these boundary conditions is complex skew-adjoint. 
There are two other operators—acting on the ghost fields—which enter.   They 

appear in the determinant line of interest: 

LaMdA) = Pfaff Da90t9tg(<l>*TY) 0 [BetD^eAKg1 © i^-1)]"1 

QDetidgiK^QdgtK-g-1)). 

For each of the last two factors we ask that the two fields which appear be equal 
on 9S. This boundary condition makes sense, since on <9£ there is a natural real 
structure on the inverse canonical bundle K~l. Note that in the second factor the 
boundary condition involves the isomorphism 0, as in (5.3). The field in the third 
factor is a complexified tangent vector to the surface, and the boundary condition 
is the complexification of the condition that a real tangent vector be tangent to the 
boundary. Thus the domain of the operator is the complexification of the group of 
infinitesimal diffeomorphisms. The boundary condition in the second factor is the odd 
analog for super diffeomorphisms. 

We study £a,/?,0 as a line bundle over Z for families (4.4), where now X has a 
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boundary which fibers over Z with typical fiber <9£ and (j>(dX) C Q: 

dx ^L> Q 

(5.4) 

Our first result computes the topology—that is, the first Chern class—of the line 
bundle La^^. 

THEOREM 5.5. The isomorphism class of the complex line bundle L^pj equals 
(<97r)*(<9(/>)*l/F3(y) in i72(Z;Z); where Ws is the third Stiefel-Whitney class. In fact, 
this line bundle is the complexification of a real line bundle, and the isomorphism class 
in Hl(Z',Z/2Z) of the underlying real line bundle equals {d'K)*{d(f))*W2{i'). 

Here (<97r)* denotes integration along the fibers of dK. The first statement follows 
from the second by applying the Bockstein homomorphism, which commutes with 
pushforward and pullback. 

As explained at the beginning of §3, for the application to anomalies the topologi- 
cal isomorphism class is not fine enough. One needs also to compute the isomorphism 
class of the canonical connection—its curvature and holonomy. The theory of the 
Quillen metric and canonical connection on the determinant line bundle only exists 
in the literature for families of closed manifolds [BF], or families of manifolds with 
boundary and global boundary conditions of Atiyah-Patodi-Singer type [P]. In our 
problem we have a family of manifolds with boundary and local boundary conditions. 
As we will see below, by gluing we identify the index problem on surfaces with bound- 
ary with an index problem on the double manifold, and then we can apply the usual 
geometric theory of determinant line bundles on closed manifolds. In §6 we describe 
a general class of Dirac operators with local boundary conditions and the associated 
doubling. 

Let Xd -» Z be the family of doubled surfaces, and 7 = j(a,/3,6) the spin 
structure on the double obtained by gluing a, (3 using 0. As part of the proof of 
Theorem 5.5 we identify La,(3,9 with a twisted version L+ of (4.2). Of course, the 
topology of L+ is determined by W^u), as in Theorem 5.5, but our main result asserts 
that the holonomy of its natural connection is given by the second Stiefel-Whitney 
class W2(i'). 

THEOREM 5.6. The canonical connection on L+ is flat. Consider a family of 
surfaces with boundary ir: X -> 51 and the associated family of doubles 7rd: Xd ->■ S1. 
Then the holonomy of the canonical connection around this loop is ±1 with the sign 
given by (90)*if2(i/)[9X]. (See (5.4) for the notation.) 

Proofs 

The proof of Theorem 5.5 proceeds in two main steps. Define an operator 
D'afif (<I)*TY) which differs from Darff^ffiTY) only by a sign in the boundary 
condition: 

(5-7) D'Mg(cl>*TY) : 
0(A+) 
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The operator D'a Q e   ((j)*TY) is also complex skew adjoint. Then set 

L'CMM) = Pfaff^i/j>flifl(^2T) ® [DetD^ejK-1 e^"1)]"1 

^Det^^-1)©^,^-1)). 

We first show the following. 

PROPOSITION 5.8. The ratio La^j ® (^L,/?,^)1 Z5 ^e complexification of a real 
line bundle whose isomorphism class in iJ1(Z;Z/2Z) is (d'K)*{d(j))*W2(v). 

In the process of proving Proposition 5.8 we identify L'a^^ with the line bun- 
dle Z/+ (see (4.2)) on the double Xd, where as above 7 = 7(0:, /?, 9) is the spin structure 
on the double obtained by gluing a,/? using 9. We also identify I/c*,/?,6> with a twisted 
version IA. The first step towards proving Theorem 5.6 is a geometric version of 
Proposition 5.8. 

PROPOSITION 5.9. The canonical connection on the ratio L+ 0 C^)-1 is flat, 
and the holonomy for any family of closed surfaces TT : Xd —>• 51 is ±1 with the sign 
given by (90)*W2(^)[9A']. 

The second step in the proofs of Theorem 5.5 and Theorem 5.6 is the following. 

PROPOSITION 5.10. L+ is trivializable (as a bundle with metric and connection) 
over a family of doubled surfaces. 

We prove Proposition 5.10 directly only for the symmetric case a = /3; the result for 
arbitrary a,/3 then follows from Theorem 4.5. 

We give three proofs of Proposition 5.8. Notice that the line bundle in question 
is 

(5.11) Ca,0,9 := (Pfaff Daj/M) ® (Pfeff U^)"1. 

First Proof of Proposition 5.8. A general result [BW, Theorem 21.2] for elliptic 
boundary-value problems (the "Agranovic-Dynin formula") describes the dependence 
of the index on local boundary conditions. The version we need is for families of 
complex skew-adjoint Dirac operators, and it follows from [N,Theorem 6.2]. It com- 
putes the difference of the KO-indices of Da^j and D' p e as the index of a family 
of operators on the boundary family (5.4): 

(5.12) ind^A*,^) - indx/z(JD^/?^) - indax/zGRPir)     € if 0-2(Z). 

We must explain the operators P,R,R' on the right hand side. 
First, P is a zeroth order pseudodifferential operator, the C alder on projector. We 

only need its principal symbol. For that, recall that the spinor fields on the boundary 
are sections of 

(5.13) (Kl!2 (BK1/2) 0 (d</>r(TQ © v). 

Also, using (5.1) and (5.2) we identify the two spinor bundles as a single real line 
bundle 5. For simplicity introduce the notation 

(5-14) F' := m-v. 
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Then we rewrite (5.13) as the real bundle 

(5.15) (SeS)®^®^)*^®^®^)) © (S®(F@F')). 

Let ^be the standard Dirac operator on the boundary circle. Then the operator which 
acts on (5.14)—the  "boundary operator" associated to Da^j (see [BW,Theorem 

12.4])—is ( _#)) relative to the decomposition (5.15). The principal symbol of 

this operator is invertible and self-adjoint. The Calderon projector P has a principal 
symbol (T(P) which is the projection onto the sum of the eigenspaces with positive 
eigenvalues. Thus for a nonzero cotangent vector £ on the boundary, 

f Co)' ^>0; 
(5.i6) <r(pm = { ;n ( 

l(\)> £<0> 
where we use the orientation of the boundary to give meaning to the sign of £. 

The operators R, R' in (5.12) are vector bundle maps 

(5.17) R, R': (S ® (F 0 F')) 0 (S 0 (F 0 F')) —^ S ® (F 0 F') 

whose kernel consists of spinor fields which satisfy the local boundary conditions (5.3), 
(5.7). Relative to the decompositions shown in (5.17), we write these operators as the 
matrices 

iJ=(l©l    -101), 
(518» * = (!    -1). 

Since R, R' are vector bundle maps, they are equal to their principal symbols. 
Now the principal symbol of the operator RPR1"" which appears in (5.12) is easily 

computed from (5.16) and (5.18): 

(5.19) a{RPB!*m = \ )    0()     ( 
l(i©i -i©i)(0 ,){-{) =(1®-1),  ^<o. 

These matrices act on S ® (F 0 Ff). Observe that (5.19) is also the symbol of the 
family of operators 

ids®F 0 WF') 

on dX —> Z. Since the index only depends on the symbol, and since the index of the 
identity operator is trivial, we see that (5.12) reduces to 

mdx'z(DaM) - ind*/*^,,) = ind8*/* (#**)). 

The index we are computing lies in KO~2(Z)'1 it is the index of a family of complex 
skew-adjoint operators. But ^{F') is a family of real skew-adjoint operators, so its 
index lies naturally in KO~1{Z). The index we seek in KO~2(Z) is thus the image 
of inddx/z ]p(Ff) under the natural map 

(5.20) KO-HZ) ^-^ KO^ipt) <g> KO-1^) * KO'^Z), 

where rj £ KOiS1) is the Mobius bundle. We are interested in the complex pfaffian 
line bundle, which in this situation is the complexification of the real pfaffian line 
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bundle: 

KO-^Z)    ^% KO-2(Z) 

(5.21) Pfaffp PfafFr 

ff^ZjZ^Z)   —£—►   H2(Z-Z) 

Here /3 is the Bockstein map. So we are reduced to demonstrating a well-known result: 
for any fibering p: W —> Z of spin 1-manifolds and any oriented real vector bundle 
Fl ^ W, 

(5.22) PfaffR^^^') = p*W2(F'). 

To check (5.22) it suffices to take Z = S1, so W = S1 x 51. Endow Z with the 
bounding spin structure; then the left hand side of (5.22), evaluated on the fundamen- 
tal class of Z, is the image of ind   '   Ip(F') under 

(5.23) ir?: KO-^S1) —> KO-2{vt) ^ Z/2Z. 

By the multiplicative property of the direct image—essentially the Thorn isomorphism 
in KO-theory—this is TT^ ([F'}) for 

TT^: KO(W) —^ KO-2(vt) 9* Z/2Z 

the direct image map. (By the index theorem [AS2] this is the mod 2 index of the 
Dirac operator on W coupled to the real vector bundle F'.) Since W bounds a spin 
manifold, we have ^"^([l]) = 0, and so 

7^lv([F,))=7^1v{[F,-dimF,]). 

Now x = [F' — dimF7] G KO(W) satisfies wi(x) = wi^') = 0, so is determined by 
W2(x) = wziF'). We can arrange the support of x to be contained in a disk in W, 
and by excision it follows that TT^(x) = TT,

5
 (y) for y G KO(S2) with W2(y)[S2] = 

W2(x)[W]. Finally, the direct image map 

(5.24) TT?
2
 : Kd{S2) —> KO-2(pt) ^ Z/2Z 

is an isomorphism, and the generator of KO(S2) is a bundle with W2 ^ 0. 
For the other proofs of Proposition 5.8 we introduce the fibered double Xd —> Z, 

which is a family of closed oriented surfaces obtained by gluing X U —X along the 
boundary dX. Also, the spin structure a on X/Z and (3 on —X/Z glue to a spin 
structure 7 on Xd/Z via the isomorphism 0 in (5.2). A right-handed spinor field 
on Xd/Z can be identified with a pair (V^,^-): ^+ is a right-handed spinor field 
on Xa, ip~ is a left-handed spinor field on Xp, and ip^ = T/?

-
 on dX using 8. So 

the operator Df p e ffiTY) (see (5.7)) may be identified11 with the chiral Dirac 
operator D^g((j)*TY) on the double. Note that Xd/Z has an orientation-reversing 
involution, but it does not lift to the spin bundle unless a — 13 and 6 is the identity. 

Next, we rewrite the twisted boundary conditions (5.3) on the double, for sim- 
plicity on a single surface E.  Then in the double Erf there is a collar neighborhood 

11 The identification of the indices under gluing is discussed in a similar situation in [F3,§2]. 
The gluing indicated here only gives continuous spinor fields on the double; it is nicer to glue along 
an open cylinder near the boundary, as in [DF,§IV]. We generalize and give more details in the second 
part of section 6. 



842 D. S. FREED AND E. WITTEN 

/ x 9S c Sd of 9S, where / ~ (—1,1). Over that neighborhood we have a splitting 
(f)*TY = F 0 F1, using the notation of (5.14). Let rj be the real line bundle on Ed ob- 
tained by identifying the trivial real line bundle on S with the trivial real line bundle 
on — £ via the isomorphism —1 on the collar region. Then rj is canonically trivial away 
from the collar, and there is a real vector bundle E —> Sd which is canonically (f)*TY 
away from the collar and F (B (rj ® F') on the collar. We identify D^pj^ffiTY) on E 
with D+g(E) on Srf; the line bundle rj incorporates the sign in (5.3). Therefore, the 
ratio (5.11) for a family X —> Z of surfaces with boundary is 

(5.25) Pfaffc^+^-l)®^) 

for the family of chiral Dirac operators on the relative double Xd -> Z. Note that 
rj — 1 is supported in the collar region / x dX and is pulled back from the first factor. 
We identify 

[T)-i\eKO(i,di) 

as the (Hopf bundle) generator. Also, up to isomorphism F' is pulled back from the 
second factor dX: 

[F'] = [(30)*!/] G KO{dX). 

Second proof of Proposition 5.8. By the excision property of the index, (5.25) is 

Pfaffc7r!
(/'a/)xaX/Z((7?-l)®r]), 

where 
^(/.o/jxex/z. Ko((I,dI) x dX) -^ KO-2(Z) 

is the direct image map. This factors as 
(5.26) 
7r(/,o/)xax/z((??_1)0[F/]) = ^.W)^-!]) .7r1

ex^([F']) 6 ^O-^pt)®^-1^). 

Multiplication by [77 — 1] is (5.20), and the computation of TT, 
/ ([F']) proceeds as in 

the first proof. (See (5.22) and the argument which follows.) 
Third proof of Proposition 5.8. Assume first that rankF' is even. Write x = 

(77 — 1) 0 F'. Then from the Whitney sum formula we compute the Stiefel-Whitney 
classes of the virtual bundle x: 

Wi(x) = W2(x) = ws(x) = 0, 

W4(x) = wi(rf) ^ wsiF'). 

Thus x is orientable and spinable, so by (3.6) the isomorphism class of the pfafhan 
line bundle is a pushforward in cohomology: 

c1PfaffD+(a;)=7rfd/Z(A(^)), 

where 
7r?d/Z:H4(Xd)-^H2(Z) 

and A is the characteristic class of a spin bundle with 2A = pi. By excision, we 
compute on the tubular neighborhood (/, dl) x dX and extend to Xd. We claim 

(5.27) X(x) = (3(w1(r]) - w2(F
f)) G F4((/,5/) x dX); 

then Proposition 5.8 follows from (5.21) and the fact that the Bockstein /? commutes 
with pushforward. To prove the claim, we work in the universal situation where the 
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bundle x — (rj — 1) (g) Ff lives over 51 x BSO. First, since rj © rj is trivial, it follows 
that X(x) is torsion of order two. Since all of the torsion in Hm(BSO) has order two 
(see [BH,§30]) it follows that \(x) is determined by its image in real cohomology, which 
vanishes, and its image in Z/2Z cohomology, which is W4(x) = Wi(r)) ^ Ws^F'). The 
integral class in (5.27) is also torsion of order two and reduces mod 2 to Wi(rj) ^ 
ws(Ff). 

If rankF7 is odd, we replace F' with F' plus a trivial line bundle and apply the 
previous. So we are reduced to proving that Pfaff D^(rj — 1) is trivial. This follows 
from excision and the factorization (5.26). 

We now prove Proposition 5.9. Notice that the ratio of bundles which appears in 
this proposition is (5.25). 

Proof of Proposition 5.9. The curvature (3.1) vanishes since virtual bundle (77 — 
1) 0 F' has rank zero and is flat. To compute the holonomy (3.2) around a family of 
closed manifolds TT : Af -> 51, we endow the base 51 with the bounding spin structure 
and induce a spin structure on Af; then the holonomy is the ratio of the r-1/2-invariant 
of 77(8)Fl —> X to the T_1//2-invariant of F1 -» X. (There is no adiabatic limit necessary 
since the connection is flat.) By a real version of the flat index theorem [APS2], the 
difference of these bundles determines a class x G KO~1(X; Z/2Z), and the ratio of the 
holonomies is n*(x) G i;CO~4(pt; Z/2Z) = Z/2Z (see (3.3)). As in previous arguments 
we use excision to localize the computation to (I,dl) x dX, where we write x as the 
product of [77 - 1] G KO-1((7,a/);Z/2Z) and [F'] G KO(dX). Thus 

irftx) = ^dI) {[rj - 1]) • TT?*([F1]) G Z/2Z. 

The first factor is 1 and the second is computed in (5.23)-(5.24) to be (9(/))*w;2(^)[9A'], 
as desired. 

We proceed to the second step of the proof of Theorem 5.5, which is the proof of 
Proposition 5.10. We demonstrate that L+ is trivializable geometrically, that is, as a 
bundle with metric and connection. 

Proof of Proposition 5.10. Consider first the case when a = /3 and 8 is the identity 
map. Then the orientation-reversing involution of the double manifold lifts to the spin 
bundle. In this case we claim that each of the three factors in (4.2) is trivializable. 
First, consider a family of surfaces with boundary TT: X —> Z and the associated 
family of doubles 7rd: Xd -» Z. The determinant and pfaffian bundles are flat since 
the curvature (3.1) is the integral over the fibers of 7rd of a differential form which is 
invariant under the orientation-reversing involution on the double, so vanishes. Next, 
we investigate the holonomy. Consider a family of surfaces with boundary TT : X —)■ S1 

and the associated double 7rd: Xd -+ S1. We endow S1 with the bounding spin 
structure and lift to a spin structure on Xd. The holonomy of the first factor of (4.2) 
is computed by a certain r-1/2-invariant and that of each of the last two factors by a 
r-invariant. Since Xd is the spin double of X, we compute these invariants using (3.5). 

Thus in each case the invariant is (—1) W 5 where k is the number of components of dX 
with a nontrivial index (or mod 2 index) of the appropriate boundary Dirac operator. 
For the last factor the operator on any component of the boundary is the boundary 
of a family of operators on the disk, so the index vanishes. For the first factor we note 
that the bundle (90)*(TY) ->• dX is trivializable, since it is oriented and spin, and 
now since the base 51 bounds a disk the mod 2 index vanishes. A similar argument 
applies to the second factor: rewrite the determinant line bundle as a pfaffian line 
bundle, as in (4.10). 
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For general a, (3,6 the result now follows from Theorem 4.5. 
This completes the proofs of Theorem 5.5 and Theorem 5.6. 

6. Additional Remarks. 

The A- and B-Fields 

Fields which are locally differential forms often have a nontrivial global structure. 
This was explained a bit in §1; here we add a few details. Mathematical foundations 
for the low degree case needed here are developed in [B], though we do not use that 
language.12 For a related exposition, see [DeF,§6]. 

We distinguish four types of p-form fields, two types with nontrivial global struc- 
ture together with their field strengths. For p small we can say what they are in 
familiar geometric language: 

(6.1) 

notation p global description global p-form? 

e1 
1 connection on principal T-bundle no 

n| 2 curvature of connection yes 

ro 0 
section of principal T-bundle 

with connection 
no 

ft1 1 covariant derivative of section yes 

A principal circle (T) bundle over a manifold M is a manifold P on which T acts 
freely with quotient M. The bundle P -> M is classified topologically by its first 
Chern class in integral degree two cohomology. Equivalently, we can view P as the 
set of unit vectors in a hermitian line bundle over M. A connection is an imaginary 
1-form on P which satisfies some affine equations—it is not a differential form on 
the base M. The notion that a 1-form in field theory is often such a connection is 
quite familiar. The curvature is a closed 2-form on the base M whose periods are 
integer multiples of 27ri. A section, or trivialization, of P is a map M —> P which 
splits the projection P -> M. Equivalently, it is a unit norm section of the associated 
hermitian line bundle. In general such sections exist locally; the Chern class of P is an 
obstruction to global existence. The covariant derivative of a section is the pullback 
of the connection form to M, a global 1-form which is not necessarily closed. 

The analog of the first two lines in lower degree may also be stated in familiar 
terms: 

(6.2) 

An object in the first line is a map g: M —» T. The corresponding field strength dlog# 
is a global closed 1-form on M whose periods are integer multiples of 27rz. Note that 
(6.2) is the special case of the last two lines of (6.1) when the circle bundle with 
connection is trivial and trivialized. 

notation p global description global p-form? 

©o 0 map to T no 

n1 
i log derivative of map yes 

12 As remarked in the introduction, a non-Cech mathematical theory adequate for all examples 
in string theory and M-theory is lacking. 
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The .B-field on spacetime Y is an element of 02(Y). In other words, it is the 
p = 2 analog of the first line of (6.1) and (6.2). Topologically, it is classified by a 
characteristic class £# £ iI3(Y;Z), analogous to the Chern class of a circle bundle in 
integral H2. Geometrically, we describe B in terms of an open cover {[/$} of Y. On 
each open set Ui there is a 2-form Bi G Q2(Yi), but on overlaps Uij —Uid Uj they do 
not necessarily agree. Rather, there is a 1-form aij G ft1 (Uij) such that 

(6.3) Bi — Bj — dajj        on Uj ij. 

Similarly, on the triple intersection Uijk = Ui fl Uj fl Uk there is given a circle-valued 
function p^ : U^k -> T such that 

(6.4) dloggijk = exp[\/zT(at7-A; - aiife + OLIJ)]        on I7iiA.. 

The ^jfe satisfy the cocycle relation 

(6-5) 9jkt oTkt 9W 9m = 1        on Uyki. 

The .B-field is the triple B = {jBi,a;j,<7;jfc}, which may be conveniently placed in a 
double complex: 

(6.6) 

2 Bi -¥ 0 

t 
1 atj ->■ 0 

t 
0 ffyft -»•      0 

Ui Uij uijk Uijke 

Note dB; = d^Bj = if is a global 3-form which is closed with 27rzZ periods; it is the 
field strength of the .B-field. The boxes around the three zeros in (6.6) are shorthand 
for equations (6.3)-(6.5). The horizontal arrows denote the Cech differential and the 
vertical arrows denote plus or minus the de Rham differential d. 

In the bosonic string with a D-brane, the A-field on the brane i: Q c-^ Y is an 
element of r1((5), that is, a generalization of the third line of (6.1) to p = 1. However, 
it is related to the restriction of the B-field to the brane in a specific way. Namely, 
in terms of the restriction of the covering {Ui} to Q, we write A = {Ai,hij} in the 
diagram: 

(6.7) 

2 fBi 

Ai -)■ 

-> 

1 l* Uij 

t 
hij 0 i*0»j* 

i*Ui i*Uij ?Uiik 

We impose equations at the two boxes. Specifically. 

Aj — Ai — dloghij = i*aij        on b*Uij, 

hjk Kk  hij = L*9m       on i*Uijk. 
(6.8) 
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We make two remarks about these equations. First, if B = 0 so that the right hand 
sides of (6.8) vanish, then {hij} are the transition functions of a circle bundle and 
{Ai} patch to a connection on it. In other words, if B = 0 then the >l-field is a 
connection on a circle bundle—an element of 01(Q) as in the first line of (6.1). This 
is the usual interpretation of the gauge field on the brane. Second, for general B- 
fields we can say that A is a "trivialization" of the restriction £*#, where the precise 
meaning of "trivialization" is (6.8). By analogy consider the case one degree lower, 
where B is a circle bundle with connection and A a trivialization. There are two 
possible meanings to "trivialization" in this context: topological and geometric. A 
topological trivialization corresponds to the second equation of (6.8) only. A geometric 
trivialization corresponds to imposing three equations—the equations of (6.8) plus the 
equation dAi = i*Bi. The intermediate case of two equations which we use has no 
analog one degree lower. Note that in our case the difference dAi — L*Bi is a global 
2-form which is not necessarily closed. It is the analog of the covariant derivative in 
the fourth line of (6.1). For B = 0 it is the curvature of the abelian gauge field A. 

Now we make contact with the discussion in §1. For the bosonic string the 
term (1.10) in the action is a well-defined number for each field configuration. One 
degree down, where B is a connection on a circle bundle and A a trivialization of t*B, 
this term corresponds to the parallel transport along a path viewed as a number using 
the trivialization on the boundary. Hence this part of the action is well-defined as a 
function—not a section of a line bundle—so does not contribute to the anomaly. 

In the super string what was explained in §1 is that since the first factor in (1.11) is 
a section of a nontrivial line bundle (over the space of metrics on S and maps E -> Y), 
we must modify the global interpretation of the ^4-field in order that the product of the 
last two factors be a section of the inverse line bundle with connection. In our present 
context we describe the modification as follows. First, the second Stiefel-Whitney 
class u^M of the normal bundle v to Q in Y determines a flat BW2^ G @2(Q), 
defined in (1.13). In terms of the open covering {L*Ui} it can be written as 

3 0 

t 
2 0 -)• 0 

t 
1 0     -»• 

t 
0 Wijk -> 0 

fUi SUij i*Uijk fUijki 

where {wijk = ±1} is a Cech cocycle for W2{v). Then the ^4-field is an isomorphism 

A'.B< W2(v) L*B, 

where "isomorphism" is understood in the sense of equations (6.8), as explained above. 
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In other words, A = {A^, hij} fits into a slight modification of (6.7): 

847 

2 i*Bi 

Ai -> 

-¥ 

1 t*aij 

t 
0 fgijk/wijk 

i*Ui fUij i*Uijk 

With this A-field (1.10) is no longer a function, but rather a section of a flat line 
bundle with connection over the space of parameters. The holonomy of that bundle is 
computed by integrating — W2{v) = ^{y) over the boundary of the surface mapping 
in, and this precisely cancels the line bundle with connection from the fermionic de- 
terminants (as computed in Theorem 5.6). Thus the product of terms in (1.11) is a 
section of a trivializable line bundle with connection: there is no anomaly. 

The existence of an isomorphism in the sense of equations (6.8) is equivalent to 
the existence of a topological isomorphism, which only exists if 

(6.9) I*CB = WM, 

where £# E H^iY] Z) is the topological characteristic class of the ^-field and W^{v) is 
the third Stiefel-Whitney class of the normal bundle. Equation (6.9), which is the same 
as (1.12), is a topological restriction on branes which may occur in a spacetime Y with 
given 5-field. It was first discovered in a nonperturbative setting in [W3]; the present 
paper derives (6.9) from the perturbative string. 

Note in particular that if B = 0, then (6.9) asserts that v admits a Spinc structure. 
In that case the A-field, which trivializes BW2^ in the sense we described here, is a 
Spinc connection. (The reader should relate our Cech description with other definitions 
of Spinc connections.) 

Dirac Operators with Local Boundary Conditions13 

Immediately following the first proof of the index theorem on closed manifolds, 
Atiyah, Bott, and Singer [AB] proved a topological index theorem for general elliptic 
operators with local boundary conditions. They observed that there is a topological 
obstruction to the existence of local boundary conditions, and that local boundary 
conditions, when they exist, lift the symbol class of the operator in K-theory to a 
relative class. It is in terms of this lifted class that one obtains a topological index 
formula. Later, Atiyah, Patodi, and Singer [APS1] introduced global boundary condi- 
tions for first-order Dirac operators, and these always exist. Perhaps for that reason 
it is global, rather than local, boundary conditions which appear in most of the in- 
dex theory literature. In this subsection we generalize the local boundary conditions 
discussed in §5 to Dirac operators in arbitrary even dimensions, and then we indicate 
how geometric aspects of index theory may be treated by doubling. (Doubling is a 
common technique in the theory of elliptic boundary-value problems in flat space as 
well, and it is also the main technique in the Atiyah-Bott paper.) We only indicate a 

13 We are indebted to Xianzhe Dai for discussions about the issues treated here. 
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rough outline of the arguments; we have not carried through the details. For simplic- 
ity we deal only with complex Dirac operators, though the discussion applies to real 
Dirac operators as well. 

As an aside, we remark that generally in physics boundary conditions play at 
least two different roles. An object (such as a D-brane or the Earth's ocean) may 
have a boundary, at which one imposes local boundary conditions. The normal vector 
to such a boundary is ordinarily spacelike. On the other hand, an important physical 
and mathematical technique is to "cut" on a spacelike surface to reveal a quantum 
state. The normal vector to such a boundary is generally timelike if we work with 
Lorentz signature, and otherwise spacelike. On such a cut, one uses global boundary 
conditions, similar to those used in index theory in factorization theorems, such as the 
one leading to (3.5). 

Consider an even-dimensional Spinc manifold X with boundary. Let S± denote 
the spinor bundles on X. Let £ be the unit outward normal vector field at the bound- 
ary. The Clifford multiplication 

(6.10) c{0:S+\dx-^S-\dx 

is an isomorphism. Suppose E± ->- X are complex vector bundles (with connection) 
and we are given an isomorphism 

T:E+\dx^E-\ax 

at the boundary. Then the Dirac operator 

(6.11) Dx : S+ <g> E+ 0 S- 0 E- —+ S- 0 E+ © 5+ 0 E' 

admits the local boundary condition 

(6.12) (c(C)®r)ty+|8Jf)=r|ex 

on a pair (^+, i/?-) of sections of (5+ (8) i£+, S~ 0 E"). The boundary-value problems 
considered in section 5 are special cases. Note that different spin (or spinc) structures 
on 5+,5~ may be accommodated by tensoring E~ with a real (or complex) line 
bundle. We propose that this class of Dirac operators has a good geometric index 
theory, analogous to that of Dirac operators on closed manifolds. 

It is not hard to check that (6.12) defines elliptic boundary conditions (as de- 
scribed in [AB], for example). Therefore, the Dirac operator enjoys the same basic 
analytic properties as those of a Dirac operator on a closed manifold: the spectrum 
is discrete, there is a meromorphic ("-function, etc. There is no problem carrying out 
geometric constructions, such as the determinant line bundle with metric and connec- 
tion, in families of such operators. From such constructions one will obtain formulas 
for geometric invariants, such as curvature and holonomy of the determinant line bun- 
dle, directly on X. In the remainder of this section we indicate how to reduce these 
constructions to the closed case by doubling. 

We restrict to manifolds X whose Riemannian metric is a product near the bound- 
ary. Let Xd denote the smooth closed Riemannian manifold obtained by gluing X 
to -X along dX. We glue 5+ -* X and S~ ->> -X using (6.10) to obtain the plus 
spinor bundle 5jd ->■ Xd, and similarly glue E+ -> X to E~ —)► —X to form a 
complex vector bundle E —>■ Xd (with connection). O'ur goal is to precisely relate the 
boundary-value problem (6.11), (6.12) with the Dirac operator D^cd(E) on the double. 
We adapt the gluing argument of [DF,§IV], which we summarize in Figures 1 and 2. 
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FIGURE 1: GLUING SPINOR FIELDS 

FIGURE 2: CUTOFF FUNCTIONS 

Let F denote the space of smooth sections, regarded as an inner product space using 
the L2 metric. The figures summarize a gluing map 

[/:rx(5+(g)E+ e S-&E-) -^Txd(s+®E) e YCZ(S+®E), 

which for appropriate cutoff functions is an isometry.  The spinor fields (ip+^~) in 
the domain satisfy the boundary condition (6.12), and the spinor field x 0I1 C3 satisfies 

x(t = i) = -x(* = -i), 
where t is the axial coordinate on the cylinder.  More explicitly, the gluing map on 
cylinders is 

The cutoff functions /L, fn: [—1,1] —>• [0,1] satisfy 

/L([-l,-1/2]) = /fl ([1/2,1]) = 1 /L ([1/2,1]) =/fl([-l,-l/2]) =0 

fl + f2R = l fL(-x) = fR(x). 
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The same gluing works in a family of operators; the result is an isometry of infinite 
dimensional vector bundles of spinor fields. 

The claim is that the determinant line bundle for the Dirac operator on C3 is 
canonically trivial, and so, after some more argument, in such a family the determinant 
line bundle (with its metric and connection) for the boundary-value problem on X is 
canonically isomorphic to the determinant line bundle for the closed manifold Xd. 

So as not to rely on the details of this argument, which we may present else- 
where, in this paper we adapted the practical point of view of defining the metric and 
connection directly from the Dirac operator on the double. 
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