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A PALEY-WIENER THEOREM FOR 
THE ANALYTIC WAVE FRONT SET* 

JAN BOMANt AND LARS HORMANDER* 

1. Introduction. Let u be a hyperfunction with compact support in Rn and 
let iu be the indicator function of its Fourier-Laplace transform u, 

(1.1) u(0 = u(e-^>), C 6 Cn;    ifl(C) = pE   Em   log \u(t0\/t, C e Cn. 

(One can think of u as an analytic functional supported by a compact set in Rn; in 
particular u could be a distribution in ^'(R™).) We recall that iu is plurisubharmonic 
and positively homogeneous of degree 1. By an extension of the Paley-Wiener theorem 

(1.2) *fi(C)<ff(ImO, 

where H is the supporting function of (the convex hull of) suppw, 

(1.3) H(r1)=    sup   (x,T}), 
x&uppu 

and there is equality in (1.2) on CRn = {z&z E C,£ G Rn}. Since i^ is convex on 
every complex line through the origin we have 

(1.2)' -tf(-Im<) < tfl(C) < H(TmO, 

and in particular i^ vanishes in Rn. 
By Theorem 2.3.1 of Sigurdsson [6], if £,77 E Rn \ {0}, then i^ + irj) = H(rj) 

if and only if (#,£) E WFA{U) for some x E Rn with {x,rj) — H(r)), that is, there is 
an analytic singularity of u with frequency £ in the supporting plane of supp u with 
exterior conormal 77. In this paper we shall prove that one can in fact determine the 
convex hull of WFA (U) for fixed frequency by means of the asymptotic behavior of iu 
at Rn and obtain Sigurdsson's theorem as a corollary. Let H^ denote the supporting 
function of the fiber of WFA{U) for the frequency £, 

(1.4) Hz(ri)=8up{(x,ri)',(x,0eWFA(u)},    £,7?ERn, £ / 0. 

That WFA(U) is closed means that H^(rj) is upper semicontinuous in (£, 77). Our main 
result is: 

THEOREM 1.1. If u is a hyperfunction with compact support in Rn and iu is the 
indicator function of the Fourier-Laplace transform u, then 

(1.5) H^(r)) =  lim   lim     sup   iu(£ + itr])/t 
*-++0i->+0|f-£|<<5 

=      lim     iu(t-+itr))/t= lim iu(£ + itfj)/t, 

where H^(rj) is the supporting function for WF^(u) defined by (1.4), and £,rj E Rn, 

Theorem 1.1 will be proved in Section 2. Here is a simple example: 
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Example. Let x be the characteristic function for the unit ball in Rn and set 
u = x + da, where a G Rn. Since the indicator function for x is C ^ I Im V^CTOl (see 

e.g. [6, p. 278]), it follows easily that 

hit) = max{|Imv/(C,C)|,(MmC)}- 

For ^ E Rn \ {0} and rj G Rn we have 

with uniform convergence for £ in compact subsets of Rn \ {0} and 77 bounded. Hence 
(1.5) gives 

HZ(TI) =max{\(Z,r,)\/\Z\, Mh 

which is the supporting function of the set consisting of the three points ±£/|£| and 
a, in agreement with (1.4). 

The theorem of Sigurdsson [6] already mentioned follows easily from Theorem 1.1: 

COROLLARY 1.2. If^rj e Rn\{0} thenizfe + irj) = H{rj) if and only if H^rf) = 

Proof. If iu^ + irj) — H(r}) then the nonpositive subharmonic function z *-> 
iu(fi + zrj) — lmzH(r]) in the upper half plane of C vanishes identically since it 
vanishes at i. Thus z&(f + itrj) = tH(rj) for t > 0, so H^rf) > H(rj) by (1.5). The 
opposite inequality is obvious so H^(rj) = H(rj). The proof that H^(rj) = H(r]) implies 
iu(^ + irj) = H(r]) requires a small part of Lemma 3.2 so it will be postponed until the 
end of Section 3. 

By Theorem 3.1.4 of Sigurdsson [6], for every plurisubharmonic function p in 
Cn which is positively homogeneous of degree 1 and vanishes in Rn, there exists 
a distribution u G E'CRJ1) such that p — in. Hence (1.5) with iu replaced by p, 
assigns to every such function p a supporting function H^ depending on £ G Rn, 
which corresponds to a closed conic set in T*(Rn). It is in no way obvious that the 
three definitions of H£(r)) in (1.5) are equivalent and give an upper semicontinuous 
function. However, in Section 3 we shall give a direct proof which is applicable to 
arbitrary plurisubharmonic functions q in Cn satisfying an analogue of (1.2), 

(1.6) q(0<C\Im(l     {eC"-     q(0 = 0,     £ G Rn. 

Although Theorem 1.1 allows one to determine the convex hull of {#;(£,£) G 
WFA{U)}, which may be much smaller than the convex hull of supp u as in the example 
above, it gives no non-trivial information on the analytic singular support of u. In 
fact, in Section 4 we shall prove that 

(1.7) (J ch{£; (#,£) G WFA(U)} = chsuppw, 

where ch denotes the convex hull. We are grateful to Michael Atiyah for a lemma on 
vector fields on the sphere which is the main point in the proof. 

2. Proof of Theorem 1.1. Since it is obvious that 

lim   lim     sup   z&(£ 4- itrj)/t <      lim     i&(£ + itrj)/t < lim in^ + itfj)/t, 
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it is sufficient to prove that 

lim Zfl(£ + itrfj/t < H^(rj) <  lim   lim     sup   ^(^ + itrj)/t. 

Using the homogeneity of iu we can write these inequalities in the form 

(2.1) BE H(ri + ifj)<Hz(7i), 
r —>-+oo,£—>■£,77—>• 77 

(2.2) H^(rj) <  lim    lim     sup   iu(r^ + ir]). 
5-*'+0r-».+oo||_^|<d- 

To prove (2.1) we must show that if £,77 G R" \ {0} and 7 > H^(rj) then there 
are open neighborhoods V^ and VJ, of ^ and 77 such that for some R 

(2.3) iu(r£ + if}) < 7   when | E T^5 77 G T^, r > R. 

This will follow if we prove that there exist constants Cr such that 
(2.4) 

|«(A(r|+ *»?)) I = \u(ex^^-ir(-<^)\ < Cre
Xj    when A > 0, r > R, | e V^, fj € V,. 

To express the hypothesis on the analytic wave front set we shall use the Fourier- 
Bros-Iagolnitzer (FBI) transform 

(2.5) U(\,y,9) = u(exp(-A(!| • -y\2 +*(•,«)))). 

If K is a compact set and (a;, rj) > H^rj), x G if, then (K x {£}) n WFAM = 0, hence 

(2.6) |C/(A,?/,a|<Ce-cA,    ifA>0, y e K, IGT^, 

where c > 0 and V^ is an open bounded neighborhood of £. (Cf. [1, Theorem 
9.6.3].) We shall estimate u(X(r^ 4- 277)), that is, the action of u on the function 
x 1-* exp(A(#, 77) — i\r(x, ^)), by expressing it in terms of the FBI transform using the 
formula 

dy, (2.7) ex{x^ = (Ar/27r)ine-A^|2/2r /   g-iAr^-t/p+A^,^) 

which follows since j e-^\y-x-v/r\2/2 dy = (27r/Ar)n/2. 
If if^ = suppii + {y G Rn; |2/| < ^} and ^ is sufficiently large, then 

l\x - 2/|2 > |77||7/| + 1    when x G A'i, z/ ^ if^, thus 

g-jArloj-yr+Aty,© < e-iXre-iXr\x-y\\      when ^ e Ku  y £ KQ,  T > 2, 

if 1771 < 21771. For the entire analytic function 

F(z) = (Ar/27r)ine-Al^2/2r /     e-hW*-v>*-v)+*<v«) dy 
hKQ 

we therefore obtain the estimate 

(2.8) \F(Z)\ < 2^e-2Ar+|Ar|Imz|2;      if Re z ^ ^ 

From (2.7) it follows that 

fi(A(r| + if])) = u(Fe-irX(-&) + (Ar/27r) i^e-Mv\2/^  f   JJ^ y^ Qe\(y,fi) dy, 
JK0 
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Here \F(z)e-irX^\ < ?Me-iXr if Rez e Ki and |Imz||£| + ||Imz|2 < \. When 
r + 47 > 0 it follows that \u(Fe-irX('&)\ < Ce^x. 

Choose 70 with H^(7]) < 70 < 7 and let K be the compact set {y E KQ] (y, rj) >7o}- 
Since (K x {£}) D WFA{U) = 0 we can then apply (2.6) and obtain 

A2f / ^(Ar,2/,^)eA<^>^| < CeA7,     if re+ 7 > 2|?j| sup |y|. 

For every (5 > 0 we have 

|tf(A,2/,0l<<VA,    when^/EK,. 
Since (y, rj) < 70 in KQ \ K we can choose a neighborhood V^ of 77 such that |7)| < 2|77| 
as above when f\ € V^ and in addition (2/,77) < (7o+7)/2 when 7) G V^ and 7/ € KQ\K. 
Then we obtain 

A*n / tr(Ar,7/,OeA<2/'^ dyl < ^e(5A(r+1)+A(70+7)/2 < ^eA7, 
JyeKe\K I 

if (J = |(7 - 7o)/(r + 1). This completes the proof of (2.4) and of (2.1). 

To prove (2.2) assume that the right-hand side is smaller than F. Then we can 
find 6 > 0 and an unbounded set R C (1,00) such that iu(r(-+ir}) < F when |£ — £| < J 
and r € R. By a classical theorem of Hartogs (see e.g. [2, Theorem 3.2.13] or (3.6) in 
Lemma 3.1 below, with ut(0 — ^~1 log |fi(tC)|, K = {r^ + irj] \i — €\ < S}), it follows 
that when r € R one can find Ar such that 

(2.9) |fl(A(r| + iri))\ < eAr,    if r <E ii, || - £| < 5, A > Ar. 

We must prove that H^rj) < F, that is, that WFA(u) fl {(2/,0; (y^) > r} = 0- To 

do so we shall estimate the FBI transform (2.5). 
The hypothesis (2.9) can be written 

^.gy |fiA(Ar|)| < eAr,    if r e ii, \£-t\< 8, A > Ar, where ux = ex{'^u. 

We must prove that U(\,y,£) is exponentially decreasing when A —> 00 if (y,ri) > F 
and £ is sufficiently close to £. We have 

[7(Ar,j/,0 =7/(eA^-il-yl2-^'^), 

which is the Fourier transform at Ar£ of u\e~Q where 

Q(x) = A(|r|x - 7/|2 + (a;,r/)) = \\r\x -y + rj/r\2 - X\ri\2/2r + A(y,77). 

Hence the absolute value of the Fourier transform of e-^ is 

6 t-> (2iT/\r)n/2 exp(A|77|2/2r - A(y,7?} - |^|2/2Ar), 

which gives 
(2.10) 

mXr,y,i)\ < (27rAr)-"/2 J |uA(Ar| - (9)| exp {\\V\2/2r - \{y,r,) - \6\2/2Ar) cW. 

When |£ — || < (S/2 and r e R, \ > Ar, the integral for |0| < Ar<5/2 can be estimated 
using (2.9)', so this contribution to U(\r,y,€) is bounded by 

(2.11) exp(A(r-(2/,7y) + |7?|
2/2r)). 
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If (yo,v) > r and r is sufficiently large, it is exponentially decreasing when A —¥ +00, 
uniformly for all y in a compact neighborhood VQ of yo- What remains is to estimate 
the integral for \9\ > XrS/2. To do so we note that 

\u\(0)\ <C£e
KX+£W,    0eRn, 

if K, > sup{(y, 77); y G supp u} and e is an arbitrary positive number. For the remaining 
part of the right-hand side of (2.10) we obtain the bound 

(2.12) 

(2nXr)-n/2Ce f exp (X(K + e|r| - 8/\\ - (y, v) + \v\2/2r) - \0\2/2\r) d6 
J\e\>\r8/2 

< {\rl2it)nl2Cee
Xb [        eXr(s\i-9\-\e\y2) ^ if r > 1; b = ^^-(y^ + frf^). 

J\e\>5/2 y&Vo 

If e(4\Z\/82 + 2/6) < 1/4 then e|| - 9\ < \6\2/4 when \9\ > 6/2, so (2.12) can be 
estimated by 

(Xr/27r)n/2C£e
Xb [ e'^^ dO < C'e^'^^. 

J\6\>5/2 

Hence (2.12) is exponentially decreasing as A -> +00 if r > l7b/82, so t/(Ar, |/,|) 
is uniformly exponentially decreasing when A -* +00 if |^ — £| < 8/2 and y ^ VQ. 

This proves that (yQ,£) £ WFA(u) if (2/0,^) > T (cf. [1, Theorem 9.6.3]), that is, 
H^(rj) < F. The proof of (2.2) and of Theorem 1.1 is now complete. 

3. Remarks on plurisubharmonic functions. As mentioned in the introduc- 
tion, for every plurisubharmonic function p which is positively homogeneous of degree 
1 and vanishes in Rn there exists by Theorem 3.1.4 of Sigurdsson [6] a distribution 
u G £'(TU1) such that z& = p. Thus Theorem 1.1 shows that with every such p are asso- 
ciated supporting functions H^ in Rn, f 6 Rn \ {0}, defined by (1.5) with i& replaced 
by p, such that H^rj) is upper semicontinuous as a function of (£, 77). The equivalence 
of the three definitions in (1.5) is not obvious but will be proved here directly under 
weakened hypotheses without using Theorem 1.1 and Sigurdsson's theorem. 

From the three line theorem and the Phragmen-Lindelof theorem it follows that 
H(rj) = p(irj) is a supporting function in Rn and that p(£ + irj) < H(r]) for £, 77 € Rn. 
Since the restriction to a complex line through the origin is a convex function we have 

(3.1) -H(-ri)<p(€ + iri)<H(r,),    ^ £ R", 

and p(£ + irj) — H(rj) when £ + irj G CRn, for the nonpositive subharmonic func- 
tion p(zri) — lmzH(r}) in the upper half plane vanishes on the imaginary axis, hence 
identically. 

With £ G Rn and C € Cn, (1.5) concerns the limits of p(f + tQ/t as t -> +0. 
However, in studying them we shall drop the homogeneity assumption on p in view 
of some potential applications. In what follows we shall denote by q an arbitrary 
plurisubharmonic function in Cn such that for some constant C 

(3.2) q(Q<C\1mC\,     C € Cn;     q(0 = 0,    £ € R". 

We shall need some well-known facts concerning plurisubharmonic functions summed 
up in the following lemma. 



762 J. BOMAN AND L. HORMANDER 

LEMMA 3.1. Let ut, t > 0, be plurisubharmonic functions in the connected open 
set ft C Cn which are uniformly bounded above on every compact subset of ft, and set 

(3.3) u(C)=Enout(C). 

Then either u = —oo or else the upper semicontinuous regularization u*(Q = 
limz^ufy is plurisubharmonic and equal to u(Q > —oo except in a pluripolar set, 
which is also a Lebesgue null set for fixed Im ( (or Re (), and we have 

(3.4) ti*(C)=   BS   u(£ + C),   Ceft- 

// U is a plurisubharmonic function in a ball B = {£ E Cn; |C| < i?} a^rf U < M in 
B,U<m<MinBn Rn, then 

(3.5) U(Z + irj) <m + 2(M - m)|Tj|/(iJ - |f|)s     i/ Ifl + |q| < i?. 

// K is a compact subset of Q, and f is a continuous function on K, then 

(3.6) m supK(C) - /(C)) < sup(U*(C) - /(C)). 

Proof. With the possible exception of (3.4), (3.5) the statements are well known. 
Proofs can be found for example in Sections 3.2 and 4.1 of [2] apart from the basic 
result of pluripotential theory that negligible sets are pluripolar. (Cf. Klimek [4, 
Theorem 4.7.6].) To prove (3.5) we assume at first that £ = 0 and that n = 1 so that 
U is a subharmonic function < M in {z E C; \z\ < R} and u < m on (—R, R). Then 
it follows from the maximum principle that 

2       R + z 
U(z) < m.H- (M -m)-arg— ,     \z\ < R, Imz > 0, 

TT R — Z 

for the right-hand side is a harmonic function equal to m on (—R,R) and equal to M 
when 121 = R and Imz > 0. Hence 

4 
I7(z2/) < m + (M - m)- arg(ii + iy) < m + 2(M - rh)y/R,    0 < y < R. 

We obtain (3.5) if we apply this estimate to the subharmonic function U(t;-\-zr)) when 
z E C and \r]\\z\ + |£| < R, taking y = 1 and replacing i? by (R - \^\)/\rj\. 

For the function u in (3.3) it follows for small R that 

«*« + C + ^) < sup u(C + 0) + C|r?|/(i? - Id),     |C| + M < B, 
\0\<R 

where d € R. In fact, if 0 < x £ C7§0(Rn), /x(0 ^ = 1> and |^| < 1 if £ e suppx, 
then 

ue (C) = / «(C - eOx(0 « = / «* (C - eOx(0 # 

is plurisubharmonic where it is defined, and 

^(C + £ + n?) < sup u(C + fl) + C|T7|/(B - |£| - e),    if |£| + |ry| + 6 < R, 
\0\<R 

which implies that 

u*(C + e + if]) < sup «(C + 6) + C\f]\/(R - \Z\) 
\8\<R 
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for almost every (£,77) with |£| + |r/| < R. Hence 

u*(0 < sup u(C + 0) I Um M(C + 0)    when i? | 0. 
|0|<.R 9-+0 

Remark Using [2, Proposition 4.1.9] it is also easy to prove that U(C) is the limit 
as R -»- 0 of the mean value over the reaZ ball with center ( and radius iJ if U is 
plurisubharmonic in a neighborhood of £. This implies (3.4), but we chose a proof 
using (3.5) since this inequality will be needed in another context below. 

For an arbitrary plurisubharmonic function q in Cn satisfying (3.2) with some 
constant C we set 

(3.7) g€(0= Eno«(£ + iO/*,    C e C". 

It is clear that (3.2) remains valid with q replaced by q^ or the upper semicontinuous 
plurisubharmonic regularization g|. Since q^ and g| are positively homogeneous of 
degree 1, it follows from the remarks at the beginning of the section that h^(r)) = q^(irj) 
is a supporting function, and that 

(3.8) -M-ImC)<^(C)<MlniC),    C e C";    g|(C) = ^(ImC),    C £ CRn. 

We have h^(r]) = q^(irj) — q^(irj) for almost all rj G Rn, and since h^ is continuous it 
follows that 

(3.9) he(ri) = Ihn qMfj),    r] G Rn. 

By Lemma 3.1 we also have 

(3.9)' hi(r1)=    BE   ^d + if?),-   ??€Rn. 
Rn3C->0 

When n = 1 we have %(C) = ft$(ImC) > -00 for all C G C, for q^(C) and ^(Imf) = 
^(C) ^e both homogeneous and equal almost everywhere on every ray through the 
origin in C. For general n we can apply this observation to C 3 z 1-* q(£ + £77), where 
£, ry G Rn, and conclude that 

(3.10) %(C)=tS5o^ + *C)A>-oo,   C^CR". 

The following lemma will show that q(€ -h tQ/t converges to h^(IiRQ on CRn in 
suitable topologies. 

LEMMA 3.2. Let v be a subharmonic function in C+ = {z G C;Im^ > 0} such 
that v(z) < Clm^ when z G C+ and the boundary measure lim^+o v(x + iy) dx on 
R vanishes. Then 

(3.11) iimt;(te)/* = 7lm^      z G C+;    7 = r--/    ^MC), 

where dfi = Av is a positive measure and 

(3.12) r=   lim   v(iy)/y=   lim   snpv(x -\-iy)/y. 
y-++oo y-^+oo    x 
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If 7 > — 00 and ^ is a positive measure with compact support in C+ such that the 
logarithmic potential /log \z — (\ dv^) is locally bounded, then 

(3.13) 

(3.14) 

Km   / t 1v(tz)du(z) =7 / Imzdz/(z), 

lim      \v(tz)/t — jlm.z\di/(z)=0. 

We have 7 = T if and only if v(z) = Tlmz, z G C+- 
Proof. The hypothesis implies that we have the Riesz representation 

(3.15) v(z) = Tim 2; + i/c+
l0S z-< 

s-C 
dAi(C),    z 6 C+. 

(See e.g. [3, Theorem 2.2].) Hence 

v(tz)/t = TImz+-—        log 
27rt Jc+ 

tz-C 
tz-C dAi(C), 

and since 

(3.16) \tz - C|2/l^ - Cl2 = 1 + 4:tlmzlm(/\tz - C|2 

we can rewrite this formula as 

v(tz)/t = rimz-— /    log(l + 4tIm^ImC/|^-C|2)^(C)- 47rt Jc+ 

When t ->• +0 Fatou's lemma gives 

iim i;(t0)/t <rim^ / 
i->+o        - TT yc. 

ImzImC ,  ^        T 

/c+      Id2 

which proves (3.11) when 7 = — 00. If 7 > — 00, that is, if the integral in (3.11) 
converges, we only get an inequality instead. To prove the opposite inequality we 
shall accept (3.13) for the moment, take % > 0 in Co(R+), and apply Fatou's lemma 
to the special case of (3.13) where dv = J Sszx(s) ds/s, that is, 

lim   / v(tsz)x(s) ds/ts = jlmz / x(s)ds. 

Since v(tsz)x{s)/ts is bounded above we obtain 

7lmz / x{s)ds <  I x(s)ds lim V(TZ)/T, 
J J r-^+0 

hence limt^+o v(tz)/t > jlmz. This will prove (3.11) when we have verified (3.13). 
To do so we write 

/    t-1v(tz)dv{z)^Y f    Imzdv{z) + ^- [    d^Q j    \og]^—Mdv{z) 
Jc+ Jc+ *ntJc+ Jc+       \tz-(;\ tz-C 

f 

where 

^(0 = -/ ^ Jc+ 

log z-t 
z-C 

= T j    lmzdu(z)+        t^wiC/^dniO, 
Jc+ Jc+ 

di/(z) = --i- /    log(l + 4ImzImC/|C-.2|2)<M*) 
w Jc+ 
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the equality follows from (3.16). This gives at once that 

ImC KOI < cv ICI2 + i 

outside a compact subset of C+, and since the logarithmic potential of dv is lo- 
cally bounded by assumption, we have such a bound in C+. Hence |t/;(£/£)|/£ < 
C^ImC/KI2, and since w((/t)/t -> -TT

-1
 ImCICI"2 Jlmzdu(z) when t -> +0, the 

dominated convergence theorem proves that 

-[    w(C/t)d^0^-- [    Imzdv(z) [    ^dMC) 
t Jc+ n Jc+ Jc+ ICr 

as t -> +0, 

which completes the proof of (3.13). 
If 8 > 0 it follows from (3.11), which is uniform for z G supped, that v(tz)/t < 

7 Im z + S when z G supp dv and t is sufficiently small. Hence 

/ \v(tz)/t -jlmz-S] dv(z) =     (jlmz + S- v(tz)/t) dv(z) -> 5 / dv(z) 

by (3.13) when t —> +0, which proves that 

lim   / \v(tz)lt — 7lm£| dv{z) < 25 / di/(z), 

and completes the proof of (3.14). 
Finally, 7 = F is equivalent to dfj, = 0 by (3.11), hence equivalent to v(z) = Flmz 

by the Riesz representation. The proof of the lemma is complete. 

Remark. We can take for dv the Lebesgue measure in any compact subset of C+ 

and conclude that v(tz)/t -> 7lm£ in L1
1
0C(C+) when t —> +0. We could also take for 

dv the one dimensional Lebesgue measure on an interval z + I C C+ where / is an 
interval on R with finite length |/|. Then (3.13) gives 

lim      t~1v(t(s + z))ds = jlmz\l\, 

which implies that 7lmz < limt^+01
-1 supsG/ v(t(s + z)) and in view of (3.11) 

(3.17) lim t'1 supv(t(s + z))='y1mz,    z G C+. 

Let us also note that the hypotheses of Lemma 3.2 are fulfilled by v(z) = qi^+zrj) 
for arbitrary £,r] G Rn, if q is plurisubharmonic in Cn and satisfies (3.2), and that 
7 > -00 then by (3.10). 

We can now give a direct proof of the equalities in (1.5) for more general plurisub- 
harmonic functions. 

THEOREM 3.3. If q is a plurisubharmonic function in Cn satisfying (3.2), then 

(3.18) lim   lim     sup   q(£ + itrj)/t 
*-H-0t-H-0||--£|<j 

=      lim     q(€ + itri)/t= lim q(i + itrj)/t,    ^rjeRn. 

Here^fj ell71. 
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Proof. It is obvious that (3.18) is valid with = replaced by <, so what must be 
proved is that 

(3.19) iim q(t-+itf))/t<  lim   lim    sup   q(i + itrj)/t. 

Let F be larger than the right-hand side, that is, assume that for some 8 > 0 

(3.20) lim   sup q(Z + £ + itTj)/t < T. 
t^+0lCl<35 

Set, with | € Rn as in (3.19), (3.20), 

(3.21) Q(0=  sup g(C + 0, 
\£\<28 

which is an upper semicontinuous, hence plurisubharmonic function satisfying (3.2). 
By (3.20) we have 

lim   sup Q(£ + (s + i)tr))/t < T, 
t->+0|s|<l 

which by (3.17) implies 
mKoQ^ + itrj)/t<T: 

that is, lim^+o sup|||<2(5 q(^ + £ + itri)/t < F. Thus we can find T > 0 such that 

(3.22) qfc + i + itri)/t < T,    if 0 < t < T, \i\ < 26. 

Hence 
q(Z +1 + t(| + ii/))/* < r,    if 0 < t < T, ||| < 5, r||| < 6, 

and since we have a uniform upper bound for #(£ + £ + t()/t when Im£ is bounded, 
it follows from (3.5) if f > T that for some 5' > 0 

0(£ + l + itf?)/t<f,    if0<t<r, |||<J, h-TyKJ'. 

This means that 
Em q(Z + £ + itfj)/t<r, 

which proves (3.19) and the theorem. 

For the function H^(rj) defined by (3.18) we have 

Hdv) = Piirj),    r) e Rn,    where p(C) =      lim     q(£ + tQ/t. 

Since 
p(<9 + i77)=      lim     q(i + tO + itri)/t = p(iri),    6>,7/GRn, 

it follows from (3.4) that p*(0 + irj) = p(ir]), so H^(rj) = p(irj) is a convex positively 
homogeneous function, and it is obviously upper semicontinuous as a function of (£, 77). 
Hence 

(3.23) W = {(x,Q; (x,r,) < H^Vr, € R"} 

is a closed subset of Rn x Rn which is convex with supporting function H^ when £ is 
fixed. If q is positively homogeneous of degree 1 then H^rj) is positively homogeneous 
of degree 0 in £, so W is conic in the second variable when £ ^ 0. For £ = 0 the fiber 
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of W becomes the set with supporting function equal to q(i'), which agrees with the 
common convention to define a fiber of WFA (U) over the frequency 0 as the support 
of u. 

For the supporting function h^ defined by (3.9) or (3.9)' we have 

(3.24) ht{t,)<Hz(Ti) 

in view of the last expression for H^(rj) in (3.18). However, there is no obvious rea- 
son why h^(r)) should be upper semicontinuous as a function of (£,77). The upper 
semicontinuous regularization 

(3.25) hl(71) = ]hKh;{ri) 

is also a supporting function for fixed £, and we have 

(3.26) hl(r,) < H^n). 

We have not been able to decide whether there is always equality in (3.26), but this 
question is not really relevant in the context of Theorem 1.1. 

If u G S'CRJ1) then the description of the asymptotic behavior of u given by 
the indicator function i^ can be refined by studying the set L00(^) of limits of the 
plurisubharmonic functions £ i-> £_1 log |&(££)| as t —> +00. If if is the supporting 
function of suppu defined by (1.3), then L00(11) is a compact subset of the set PH of 
plurisubharmonic functions q in Cn such that 

(3.27) q(0<H(ImO,    (eCn;    u(0 = H(lmO,    (€ CRn. 

(See [3], Sections 3 and 4.) We have 

H(C)=   max   O(C),    CeC". 

Every q G PH satisfies the hypotheses of Theorem 3.3. When q £ L^u) the set 
in T*(Rn) corresponding to the function H^(rj) defined by q according to (3.18) is a 
closed subset of WFA(U). The sets so obtained might contain additional information 
on the analytic singularities of u. 

We shall finally complete the proof of Corollary 1.2 using no results obtained in 
this section except the last and very elementary statement in Lemma 3.2. 

Proof of Corollary 1.2. Assuming that H^(rj) = H(ri), where £, r) G Rn \ {0}, we 
must prove that i^ + irj) = H(r)). Using the first expression for H^rj) in (1.5) we 
have by the hypothesis 

lim   lim     sup   £&(£ + itr])/t = H(r]). 

Thus we have for every S > 0 

H(rj) < Urn q5(itrj)lt = 7, T =   lim  qsiittf/t < H(r)),    if ^(C) =   sup   z&(f+C), 

for iu(6 + itr))/t < H(r]) when 0 e Rn and t > 0. Since 7 < T by Lemma 3.2 it follows 
that 7 = F = H(rj), which proves that q5(zrj) = H(ri) Imz when Imz > 0, by the last 
statement in Lemma 3.2. When z = i and 8■-» 0 we conclude that iu(t; + ir]) > H(rj), 
for iu is upper semicontinuous. The opposite inequality is valid for all £, 77 € Rn, 
which completes the proof of Corollary 1.2. 
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4. Proof of (1.7). If u is a hyperfunction in Rn with compact support K, and 
x 6 K is a boundary point of the convex hull chK, then (x — y, £) > 0 when y € K, 
for some £ G Rn \ {0}. By Holmgren's uniqueness theorem (cf. [1, Theorem 8.5.6]) 
this implies that (x,±£) G WFA(U). Hence (1.7) follows from the following purely 
geometrical fact: 

THEOREM 4.1. Let K C Rn be a compact set, and define for £ G Rn \ {0} 

(4.1) Kt = {x G K; (x-y,Z)>0 for y G K}. 

Then it follows that 

(4.2) (J ch(^ U K-z) = ch K, 

where ch denotes the convex hull. 

The main point in the proof of the theorem is the following lemma which we owe 
to Michael Atiyah: 

LEMMA 4.2. On the unit sphere 5n_1 = {x^x G Rn, |x| = 1} there is no non- 
vanishing continuous tangential vector field v such that v(x) = v(—x), x G 5n-1. 

Proof If n is odd it is well known that there is no non-vanishing continuous 
tangential vector field at all, so we could assume that n is even. However, the following 
proof works for every n. Assume that there is a vector field v as in the statement. 
The tangent bundle T of the real projective space Pn_1 is equal to 

{for);a? G S""1^ G Rn, <a?,r> = 0} 

with the identification (X,T) ~ (—x, — r). Since (x,v(x)} = 0 and v(x) = v(—x), 
x G Sn~1, the vector field v generates a line subbundle H of T equal to 

{(x,tv(x)); xeSn-\ ten}, 

with the identification (x)tv(x)) ~ (—a;, —tv(x)) = (—x, —tv(—x)). It is isomorphic to 
the line bundle over P71-1 defined by 5n~1 xR with the identification (#, t) ~ (—x, -t). 
But this is also isomorphic to the tautological line bundle on P71-1 obtained from the 
normal bundle of S71-1 by the identification (x, Xx) ~ (—x, Xx) = (—x, —X(—x)). This 
proves that the Stiefel-Whitney class w(H) of H is equal to that of the tautological 
line bundle, hence equal to 1 + a where a is the element in H1(Pn~1,Z2) generating 
H*{Pn-1

1Z2), thus a"1'1 ^ 0 and an = 0. (See e.g. Milnor and Stasheff [5].) 
With H1- denoting the subbundle of T orthogonal to H we have T = H 0 iJ-1, 

hence 
(1 + a)n = w(T) = w(H) - w{H^) = (1 + a)w(H^). 

This implies that 
w(H^) = (1 + a)71"1 = 1 + • • • + a""1, 

which is a contradiction since a71-1 ^0 and H1- has rank n — 2. 

Proof o/ Theorem 4-1- We shall argue in three steps. 
1. Assume that K is a convex set with C00 boundary having strictly positive 

Gaussian curvature. When £ G 5n_1 we denote by #(£) the boundary point with 
exterior conormal £. Then #(£) is a C00 function of £, and K^ — {a;(£)}, which means 
that ch(i<r^ U if-^) is the interval between #(£) and x{—£) on the line Z^ through 
these points.  The staterient (4.2) will follow if we prove that U^sn-iZ^ = Rn.  If 
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this were not true we could find a point x £ U^^n-iL^. Then we denote by ?/(£) the 
intersection of L^ and the hyperplane {y, (y — x,€) = 0}, which is not parallel to L^ 
since (x(£) — #(—£)>£) / 0. It is now clear that y(g) is a C00 function of ^ and that 
v(0 — y(0 - ^ is a non-zero tangent vector of 5n~1 at £, with v(£) = v(—€) since 
L^ = L-£. This contradicts Lemma 4.2 and proves Theorem 4.1 in this special case. 

2. If K is just convex we can choose a sequence Kj 4- K of convex sets with (7°° 
boundaries having strictly positive Gaussian curvature. Given x G if we can choose 
£j G S'n~1 so that x is on the interval between the points x^ on dKj with exterior 
conormal zb^-. Passing to a subsequence we can assume that xf converge to limits 
x± G dK and £j ->> ^. Then ^^ G K±£ and a; is on the interval between x+ and x~, 
which proves the statement in the convex case. 

3. If if is an arbitrary compact set we denote the convex hull by K and note 
that the theorem follows from its validity for K if we prove that 

(4.3) ch(Kz U K-z) D ch(i^ U K-z),    £ G Sn'K 

It suffices to prove that K^ C chif^, so assume that x G K^ thus x G K and 
(x — y,^) > 0, y G K. This implies that x is in the convex hull of M = {y G 
if; {y — x, £) =0} C if^, which completes the proof. 
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