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ON RICCI-FLAT TWISTOR THEORY* 

ROGER PENROSEt 

1. Background. In the autumn of 1952, I had the honour to be taken on as a 
research student at the University of Cambridge, to work in algebraic geometry under 
the supervision of the renowned mathematician William V.D. Hodge. As I recall it, 
there were four of us, starting under Hodge at the same time. The research that 
then interested him was broadly divided into that which was centred on algebraic 
geometry and a more topological line arising from his work on harmonic integrals. I 
had specifically started on the algebraic geometry side, but I was finding things rather 
too strictly "algebraic", for my tastes, with not much of a realization of this algebra 
into what I thought of as "geometry". Noticing that I was not entirely happy with 
spending my time dealing with questions in ideal theory, local rings, and so on, Hodge 
suggested that I might like to sit in on a supervision session, the supervisee being the 
only one of the four of us who was working on the harmonic integrals side of things. 
The idea intrigued me because that work seemed to be rather more geometrical in 
nature than the problems that I had been looking at, so with considerable expectations 
I turned up. The student was a "Mr Attia"—or, at least, that is how Hodge used to 
refer to him—and I remember being totally snowed under by Mr Attia's breadth of 
knowledge and comprehension; indeed, I recall not understanding a single word of 
what was going on. Of course "Attia" was really "Atiyah"-and one of the difficulties 
about being a research student, especially at a place like Cambridge, is that one never 
knows who one's co-research students really are (or will be)! "Not understanding a 
single word" may perhaps be nothing to be ashamed of under such circumstances. 

Over my research-student period, there was much interest in what was then re- 
ferred to as "the theory of stacks". I remember trying to struggle with stacks, for a 
little, but I then made life easier for myself by deciding that my interests lay largely 
elsewhere, so I spent a good deal of my time learning about general relativity, quantum 
mechanics, mathematical logic, and various other matters purely mathematical. After 
I left Cambridge, in 1959, my interests had moved more and more in the direction 
of theoretical physics, mainly general relativity, but also quantum mechanics. Later 
I developed my interest in what I referred to as the theory of "twistors", which took 
advantage of many algebraic/geometrical notions that I had learned about during my 
student days—most particularly the Klein representation of lines in projective 3-space 
as points of a 4-quadric. 

The basic idea of twistor theory (for flat Minkowski space-time M) was, in ef- 
fect, to take the Klein representation "in reverse", where the conformally compactified 
space-time M# is, roughly speaking, taken as the "Klein Quadric" of another space 
PN (Penrose 1967). More precisely, we regard the natural complexification CM#, 
of M#, as the Klein representation of complex straight lines in a certain CP3 called 
projective twistor space PT.   The space PiV is a real 5-submanifold (given by the 
vanishing of a Hermitian quadratic form of signature -H ) of the real 6-manifold 
PT. The projective lines which lie in PN are "Klein-represented" by the points of 
of the real 4-manifold M#. Then, using this description, the basic physical notions 
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of space-time, particles, fields, etc. would be interpreted in terms of the protective 
geometry of PT or PN, or of the geometry/analysis of the underlying vector space T, 
simply called twistor space. It later turned out (Penrose 1969) that massless fields, in 
particular, find an elegant description in terms of contour integrals in twistor space. 
In particular, linearized gravitational fields (massless fields of spin 2) can be neatly 
accommodated within this scheme. (See Penrose 1987, for an account of the curious 
history of all this.) 

Yet, this approach did not directly cope with the space-time curvature which 
would be needed in order that the gravitational field proper could be incorporated 
into twistor theory, in accordance with Einstein's general relativity. However, through 
a roundabout route, originating with an idea due to E.T. Newman (Newman 1976, 
cf. Penrose 1992 for the relvant history), I had come to the conclusion that "half 
of the gravitational field—the "left-handed" half that is described by an anti-self-dual 
(ASD) Weyl curvature—can indeed be incorporated into twistor geometry, where the 
notion of twistor space has to be generalized away from the flat twistor model PT (or 
T) to a "curved" one PT (or T), this "curvature" not being anything that shows up at 
the local level (T and T being locally identical), but arising from the global structure 
of PT. I had realized that I needed to understand how to describe defomations of 
complex manifolds (particularly non-compact ones) and that this could indeed ac- 
commodate genuine ASD Weyl curvature into the (complex) "space-time". Moreover, 
the condition of Ricci-flatness for such ASD complex-Riemannian 4-manifolds can be 
easily incorporated. I consulted a few people about how to describe such deforma- 
tions and under what circumstances the needed ^-parameter family of "Klein" lines 
would persist in PT, but it was not until Michael Atiyah explained Kodaira's various 
theorems on this question to me—and more importantly, how to use these theorems 
in the context that I needed, that I began to see what all those "stacks"—now called 
sheaves—had really been about, all the time. This provided the necessary background 
for the construction that I referred to as "the non-linear graviton" (Penrose 1976) in 
which complex ASD Ricci-flat 4-manifolds can be described in terms of a kind of 
"Klein representation" of lines in appropriate complex 3-manifolds. 

By then I had been in Oxford for several years, where Michael now was, and 
he made a special point of providing me and my research group with illuminating 
expository sessions, in which he explained to us, in his characteristically revealing 
way, the beauty, the essential simplicity, and the relevant uses of sheaf cohomology. 
One point, in particular, that I found valuable was Michael's deliberate use of Cech 
cohomology in his expositions, rather than the more frequently used Dolbeault ap- 
proach. In my opinion, the Cech approach provided a much greater clarity, in the 
context of the problems of relevance to us, and it was certainly sufficient for our im- 
mediate needs. It soon emerged, on the basis of Michael's encouraging insights, that 
the contour integral expressions that I had previously adopted for the description of 
(linear) massless fields really were themselves expressions of (Cech) sheaf cohomology. 
Accordingly, an (analytic) massless field of helicity n/2 in M would be interpreted as 
an element of i71((5,0(-n - 2)), where Q is some suitable open subregion of FT, 
related to the domain of definition (assumed appropriate) of the massless field in M, 
and where 0(—n — 2) is the sheaf of twisted holomorphic functions on PT, locally 
given by holomorphic functions on T of homogeneity degree — n — 2 (cf. Eastwood, 
Penrose, and Wells 1981; here n is an integer, the spin of the field being |n|/2, where 
the sign of n tells us the "handedness" of the field). This clarified numerous points of 
previous confusion. 
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These insights also led to a direct interpretation of the linear massless fields of 
helicity—2 (linearized ASD gravity) as providing infinitesimal deformations of (regions 
of) projective twistor space PT (cf. Penrose and Rindler 1986), this being a weak- 
field version of the above "non-linear graviton". A point to note is that we are here 
concerned with transition functions that are constructed from holomorphic twistor 
functions fij(Za) that are homogeneous of degree +2 (corresponding to helicity n/2 = 
—2). (Here, I am beginning to use the standard 2-spinor/twistor index-notation of 
Penrose and Rindler 1986. The twistor Za is an element of flat twistor space T, 
"a" being a 4-dimensional abstract index.) Thus, the family of Cech representative 
functions {fij}, for the iJ1((5,0(—n — 2)) element, defined on the overlaps Ui fl Uj 
of a suitable Cech cover {Ui} of Q (with fy = —fji, and fy — /^ 4- fjk = 0 on triple 
overlaps), directly provides the family of infinitesimal transition functions for piecing 
together the infinitesimally curved twistor space T. These infinitesimal transition 
functions are provided by "sliding infinitesimally along" the vector field 

cAB^fij d  
du;A duoB' 

where I now adopt the 2-spinor/twistor index-notation (ct;A, -KA
1
 ) for the spinor parts of 

the twistor Za, taken with respect to some origin O in M. Note that the homogeneity 
degree +2 of fij exactly balances the two d/duj contributions, each of degree -1. 

2. The Googly problem. Although all this was remarkably satisfying, a defi- 
nite problem began to loom large. For if twistor theory is to be taken to be a physical 
theory, the gravitational field as it is actually understood, must be described by a 
(Weyl) curvature for a space-time which possesses both an SD (self-dual) and an ASD 
part. In the case of weak-field gravity, regarded as a massless field of spin 2, this is 
neatly accommodated because the 0{—6) Cech cohomology handles the right-handed 
(SD) part of the gravitational field in a closely analogous way to the O(+2) Cech 
cohomology description the left-handed (ASD) part of the gravitational field. More- 
over, if we regard these as referring to the non-projective twistor space T rather than 
to the projective PT, then there is an easy way of expressing the sum of the SD and 
ASD parts, to obtain a twistor-cohomological description of full (neither SD nor ASD) 
weak-field gravity. Yet, for this to provide an actual deformation of twistor space, we 
need an active role for the 0(—6)-cohomology, analogous, in some appropriate way, to 
the way in which the 0(+2)-cohomology infinitesimally deforms twistor space, thus 
leading to the "non-linear graviton" construction referred to above. The problem of 
introducing SD Weyl curvature into the geometry of twistor space has been referred to 
as the (gravitational) googly problem of twistor theory—in reference to the cricketing 
term "googly" for a ball that spins in a right-handed sense even though the bowling 
action suggests a left-handed spin. Taking the cricketing analogy further, I now refer 
to the original "non-linear graviton" (mentioned above; as given in Penrose 1976) as 
the leg-break construction. 

Somewhat over a year ago, a new approach to the relevant googly geometry has 
come about (see Penrose 1999), in which the googly (SD) information is encoded in 
the way that the twistor space T sits above its "projective" version PT, where the 
leg-break (ASD) information resides in the structure of PT, essentially just as before. 
In 1978 Michael and his colleagues showed (Atiyah, Hitchin, and Singer 1978) how my 
original leg-break construction could be adapted to the case of an ordinary (positive- 
definite) ASD Riemannian Ricci-flat 4-space (the ASD condition being non-trivial in 
the positive-definite case, unlike the situation with the Lorentzian signature of general 
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relativity). The purpose of this article is to point out that there is also a Riemannian 
version of the new googly geometry, although I have not worked out all the require- 
ments for this. It is my hope that these ideas will be taken up seriously by someone, 
and that there may be some interesting new things to say about general (neither SD 
nor ASD) Ricci-flat Riemannian 4-spaces in accordance with these twistorial ideas. 

I can give only a very brief account of the new googly geometry here; otherwise 
there is danger of things getting unhelpfully bogged down in the notation. In any 
case, it is probable that any Riemannian geometric approach would rely upon some 
different concepts which might be better expressed in ways other than those that 
naturally suit Lorentzian space-time geometry. It should be made clear, also, that 
there are still major unresolved issues with regard to the googly geometry, parts of 
the programme being still in a conjectural state. Moreover, there are some aspects of 
the construction that rely upon conditions of asymptotic flatness that are appropriate 
in the Lorentzian case, whereas I do not know to what extent these Lorentzian ideas 
can be taken over to the case of a Riemannian Ricci-flat 4-space. 

The Riemannian case does have one clear advantage over the Lorentzian case, in 
relation to the ideas of twistor theory. Since the condition of Ricci-flatness becomes a 
set of elliptic equations, we must expect that the solutions are analytic in the interior 
regions. Indeed, this is the case (see Kazdan 1983). Thus, for any Riemannian Ricci- 
flat 4-manifold M, there exists a (local) complexification CM, which need be merely 
a "thickening" of the real 4-manifold M into a (non-compact) real 8-manifold which 
is a complex 4-manifold CM of topology M x i?4. 

The first step in the proposed construction of a "twistor space" T = T(M)y for 
M is to produce the relative twistor space Tp, where p is any point of M. This is a 
perfectly rigorous procedure, which I shall outline shortly. The second step would be 
to attempt to provide a local identification between what I shall call a "comprehensive" 
(open) region of 7^, and an analogous comprehensive region of Tq, for different points 
p,q E M for which p and q are close enough to each other for this to be achieved. 
I shall describe the idea behind the notion of "comprehensive" in a moment. In the 
absence of a more satisfactory procedure, this identification could be via some "ideal" 
twistor space Too, which we try to think of as being defined as a limit of Tp, as p —>• oo, 
there being identifications of compehensive regions of each of Tp and Tq with one and 
the same compehensive region of Too- 

The idea behind this "compehensive" notion is that such a comprehensive region 
contains the essential global structure that is to be carried from Tp to Tq (perhaps 
via Too)- This is to be analogous to what happens in the procedure of analytic 
continuation, as applied to CM. In fact, something of this very nature is already 
part of the original leg-break construction, although this point does not seem to have 
been particularly emphasized before. In that case (now taking CM to be ASD), 
we can construct the standard leg-break twistor spaces Ta, % of intersecting open 
neighbourhoods of points a, b € CM. The twistor space of the intersection of these 
neighbourhoods, provides an identification between open regions of Ta and Tb that 
is sufficiently "comprehensive" that the essential analytic geometry of CM is carried 
from TatoTb via this region. In simple enough ASD situations, it is possible to "glue" 
all the Tx-spaces together so as to obtain one all-inclusive (Hausdorff) twistor space 
T, but there are other situations when this is not possible, at least if one requires a 
Hausdorff geometry. When CM is not ASD, the situation appears to be like this, but 
essentially more complicated, and some appropriate attitude towards this geometry 
(not yet fully formulated) seems to be required. 
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It is not yet clear to me how all this is to work, for general Ricci-flat Riemannian 4- 
spaces, but there is a "generic" family of Lorentzian space-times for which it can indeed 
be carried out. These are the space-times that I refer to as "strongly asymptotically 
flat" radiative analytic vacuums. Think of a sourceless (analytic) gravitational wave 
that comes in from infinity and then finally disperses out to infinity again, leaving no 
remnant in the form of a black hole or ay other kind of undispersed localized curvature. 
In fact, it is only the final dispersing of the wave out to infinity that is needed here, 
and the work of Friedrich (1986, 1998) is sufficient to establish the "generic" nature of 
solutions of the Einstein vaccum equations satisfying the needed conditions. What is 
required is an analytic future-null conformal infinity X+, with a regular future vertex 
i+ (see Penrose and Rindler 1986, Chapter 9). In this case, the required twistor space 
"T00" actually does exist, this being the space 71+, and for points a, &, • • • of CM, 
"close enough" to i+, there will indeed be comprehensive regions of 7^, Tb, • • * that can 
be identified with comprehensive regions of this T00. It is probably not appropriate 
to go into the details, here, of why this appears to work in the Lorentzian case, but 
in any case I do not see any reason to expect that this should directly carry over to 
the Reimannian situation. 

Let me leave this issue aside as largely unresolved. However, I should try to 
explain, briefly, how the relative twistor spaces 7^, are to be constructed. Here, there 
is no real difference between the Lorentzian and Riemannian cases. In CM, each 
point a G CM has its light cone Ca, consisting of all the points of CM that lie on 
null geodesies through a. On Ca, there are curves known as a-lines, which are the 
curves that "appear intrinsically" to be the intersections of Ca with a-planes in CM 
(SD totally null complex 2-sufaces), even though there may be no actual a-planes in 
CM. The equation of an a-line, with tangent vector 0A/

K
A
  can be expressed as 

B' T-l 

on Ca.   Here suffixes 0 and O7 are to denote components obtained by contraction 
A ~ A' with spinors 0A and with 6    , respectively, where the tangents to the null geodesies 

A -A' through a (i.e. generators of Ca) are the null vectors 0 0 . (When M is SD the 
twistor lines are null geodesies on Ca, but in the general case they are not.) It should 
be remarked that the definition of a twistor line is conformally invariant 

The points of the projective relative twistor space PTa are just the a-lines on Ca. 
We define the non-projective relative twistor space Ta by fixing the proportionality 
scale in the above equation according to the conformally invariant equation 

TT6 VoB'TTA'    =    K TTA'  X (TTQ/ )~5Pc^0'0'0'0'   , 

along the a-lines on Ca. Here C is the conformally invariant "thorn" operator defined 
in Spinors and Space-Time, Vol. 1 (Penrose and Rindler 1984) p. 395, which is a 
modified version of the covariant derivative operator VQO'J and ^A'B'C'D' is the (con- 
formally invariant) helicity +2 massless field related to the SD Weyl spinor ^A'B'CD' 

by 

^A'B'C'D'    —   fi~  ^A'B'C'D'  •> 

where n is a conformal factor which is needed when we go to a new metric fl2g which 
is regular on X+, where g is the given metric of M. We shall require this for T00, 
though for Ta we can take $7 = 1. The quantity K is a particular numerical constant 
whose value has not yet been determined, at the time of writing. 
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For the detailed meaning of all these quantities, see Penrose and Rindler (1986), 
Penrose (1999). Apart from the precise (as yet undetermined) value of K, the form 
of this equation is dictated by requirements of conformal invariance. The space T00 

(and hence, each To) has a structure determined from a 1-form i and a 3-form 6 (just 
given up to proportionality), subject to 

t A <fc = 0 , L/\6 = 0 

and a further condition that can be given as 

d0<gu = -26(Z)dL 

where the bilinear operator 0, acting between an n-form and a 2-form, is defined by 

rj 0 {dp A dq)   =  rj A dp 0 dq — 77 A dq 0 dp . 

In the original leg-break construction, the forms 8 and 1 provide the essential local 
structure of T. In flat space we have 

£ = SA'B'^ dir3   , 

6 =  1/6 £a^5 Za A dZ^ A dZ7 A dZ* . 

Here, we merely have 

11 = dB 0 L and E = d0 0 d0 0 9 

(or something equivalent) as being specified as local structure assigned to T+. We 
also retain the condition dd 0 1 = —26 0 di. For any particular choice of 1 and 9, 
consistent with these relations, we can provide a definition of the "Euler vector field" 
T = 9 4- </>, and the projective space PT+ is the factor space of T+ by the integral 
curves of T. For further details, see Penrose (1999). 
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