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THE HOLOMORPHIC KERNEL OF THE 
RANKIN-SELBERG CONVOLUTION* 

DORIAN GOLDFELDt AND SHOUWU ZHANG* 

1.   Introduction.  Fix positive integers k:£,N,D.   Let Sk(To(N)) denote the 
C-vector space of holomorphic cusp forms of weight k for the congruence subgroup 

-{(: roWHr  ^   eSL(2,z) c = 0 (mod iV) 

For a Dirichlet character e of (Z/DZ)X, let A'Ic(To(D),e) denote the C-vector space 
of holomorphic modular forms of weight £ with character e for the congruence group 

Let / e Sk(To(N)) and g G M^(ro(i?),€) have Fourier expansions of the form 

CO oo 

f(z) = ^2 a(n) n^e2™*,       g(z) = 6(0) + ^ b(n) n^e2*™2. 

Rankin and Selberg [R], [SI] proved that the convolution L-function (in the case of 
equal weights k = I) 

a(n)b{n) 
L(sJ®g) = J2 

n=l 

converges absolutely for complex s with Re(s) > 1, has a meromorphic continuation 
in s with at most a simple pole at s = 1, and satisfies a functional equation s —> 1 — s. 
This result was later generalized [L] to more general situations, and in particular, to 
arbitrary pairs of weights k, £. 

The proof of the meromorphic continuation and the functional equation of 
£(55 / ® g) was obtained by expressing L(s, / 0 g) as an inner product of / • g with a 
nonholomorphic Eisenstein series. We shall give a new proof of this result which does 
not use Eisenstein series at all, but instead expresses the Rankin-Selberg convolution 
L-function as an inner product of / with a holomorphic kernel function which de- 
pends on g and s. The main result of the paper is the Fourier expansion of the kernel 
function (when D is squarefree) which is given in Theorem 6.5. In the case where e is 
a quadratic Dirichlet character (mod .D), a simpler and more explicit version of this 
result is given in Theorem 9.1. The functional equation of the kernel is stated and 
proved in various important cases in sections §10, §11. 

In the special case that g is a theta function attached to the imaginary quadratic 
extension Q(y/—D), the value of the holomorphic kernel function (or its derivative) at 
5 = | coincides with the kernel function computed by Gross and Zagier [G-Z] in their 
celebrated formula relating the derivative of an L-function of an elliptic curve with 
the height of a certain Heegner point. Thus, our method simultaneously gives a new 
simplified proof of the L-value computation in the Gross-Zagier formula together with 
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a new proof of the meromorphic continuation and functional equation of the Rankin- 
Selberg convolution. The original method of Gross-Zagier used non-holomorphic 
Eisenstein series defined on a smaller group. The kernel was then obtained by a trace 
map and a holomorphic projection. In our method, all calculations are done directly 
on 5jk(ro(iV)) and it is not necessary to go outside the holomorphic space with different 
level and then project back in later. 

2. Poincare Series. For 7 = ( a    bj   G 5L(2,Z)let 

JtiiZ) =cz + d 

denote the one-cocycle which satisfies j(j • 7', z) = j(7> j'z) • j(7/, z) for all matrices 
7,7' € SL(2,li). Fix positive integers m, k. For Re(s) > 1 — |, the series 

Pm(z, s) = m^       ^       e™™*** i(7, z)-h (lm7z)s. 
TerooXroW 

converges absolutely and. uniformly to an automorphic form of weight k on ro(iV). 
This series was first introduced by Selberg [S2] and shown to have a meromorphic 
continuation to the entire complex s-plane. We define the holomorphic Poincare series 

Pm(z) = \imPm{z,s) 
s—>0 

by analytic continuation. 

Fourier Expansion: The Fourier coefficients pm(n) of 

00 

n=l 

are given by the formula (see [Sa]), 

/oi\' / \      c c   -k       v^        5(m,n;c) _       /4n^/mrl\ 
(2.1) pm{n) = Sm,n + 2mk       ^ c   —

Jk-i ( —^—) > 
c=l 

c=0 (mod JV) 

where (5m5n (Kronecker's delta function) is 1 if m = n and zero otherwise; 5(m,n;c) 
is the Kloosterman sum 

(2.2) ■5(m,n;c)=        ^ 
ad= 1  (mod c) 

e^i(ma+nd) 

and 

€ 2 -—zoo 

is the Bessel function. 

Petersson Formula By unfolding the integral, one can show that for any cusp form 
00 

h(z) = ^ c(m)m^e2™TOZ £ Sk(T0(N)), 
m=l 
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we have 

(Air)*-1 

(2.4) c(m) = i_L_T</l5Pm>. 

3. Outline of the Method. Let (•, •) denote the Weil-Petersson inner product 
on Sk(To(N)). Now, fix s G C and 

oo 

g = 6(0) + J2 Hn) n^e2-"-"   €   Me(To(D), e). 
n=l 

Consider the linear map 

(3.1) f-*L(8,f®g)  =<^,/> 

for a unique holomorphic Riesz kernel (cusp form) $s^ E 5A;(ro(A^)) with Fourier 
expansion 

oo 

(3.2) $8,9(z) = £<^>)n^e2^ 
n=l 

We now use the properties of the Poincare series (Fourier expansion and Petersson 
formula) to obtain a formula for the Fourier coefficients of the Riesz kernel $Sj5 given 
in formula (3.2). 

Set h = $s,g in formula (2.4). It immediately follows from (3.1) that 

(3-3) &,g(m)= ;u    ^L(8,Pm®g). 
(47r)A;-1 

By the Fourier expansion (2.1) for the Poincare series, we have for complex s with 
Re(s) > 1 + *fi that 

(3.4) L(s, Pm®g) = b(m)m-s + 2mk Tm(s) 

where 

Tm{s) ■■ y,y,5(m,»:c)6(n)      1          f       T(^+w) /2^mn\   2w 

'^i^i       c       nS    27ri     J      r(*±i-«;)V    c    / 
N\c                                                        e-^-ioo 

(3.5) 

^     ^    ^imr      i           /•      r(^i+U,)(27rv^)-2-r   /    , 
-2^   2^      c     27ri     J     rCt1   w)    <*-*«>    ^n*"1"1 

dw 

and 
CO 

^ (s' ^) = IZ ^We21^?!" 
c'      „=i 

with rf = 1 (mod c). 
In the remainder of this section we briefly illustrate our method in the special 

case N — D = 1, k = I, and g is a cusp form. Complete details for the more general 
case are given in §4 through §10. 
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Our assumptions imply that in this case Lg(s,^) has holomorphic continuation 
to all s G C and satisfies the functional equation (see Proposition 4.2) 

c-        I2J      r(^i + s)   
9 ^•■^-^(s)' t1--!) 

where a is the inverse of a (mod c). If we apply this functional equation to the formula 
for Tm(s), given in (3.5), we obtain 

where 

^  , x      (27r)2s 1 v^ Kn)  n, x -r  (™>\ T^) = '-^T- E ^7 S(s,m - n) I. (-) 
n=l 

c=l re(Z/c2 

is the classical Ramanujan sum, and 

V   c 

T(^+W)T(^-s-W) 
'W     2m       J        r(*±i-«;)r(*=i u) T (*=i + a + w) 

y-^dK; 

is a hypergeometric function. 

Formula for S(s,B): The formula 

*(«'*) = 77^ E* 
-2s 

C(2s) d|B 

was first given by Ramanujan [Ra]. When B = 0, 

cr, n^     ^-1) _   o._3/2 r(l - a) C(2(l-g)) 

Formula for /§(#): We will show in Proposition 8.3 that 

r(k-s) 
T(k)r(s) 

r(fc-s)22-2r(s-i) 

r jitoix^1^-^)^^(1-5,5,^;^),   if o<x<i 

hix) = < if x = 1 r(s)     ^Fr(A;+s-l) : 

InM*^^-1)"^^--'-'*'^)' if aJ>1' 
where F(a,j3,7;2;) denotes the Gauss hypergeometric function defined for \z\ < 1 by 
the absolutely convergent series 

7-1 7(7 + 1)-1-2 

and for all values of z by analytic continuation. 
Combining these formulas we obtain: 
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PROPOSITION 3.6. Define 7(5) = T^r^p^- Then we have 

00 

7(s)L(s, Pm (8) g) = ^2 b(n) j(rn, n; s), 
n=l 

where 

' (^)4il^_2a(m-n)F(l-a,S,fc;^)    ifn<m, 

7(m,n;s) = <  j(s)m~s + 7(1 — s)?™5-1 if n = m, 

and a-*(n) = n"^- ^rfjn cf /or positive integers n and complex v. 
Note that Proposition (3.6) (for the group T = ro(l)) is also easily obtained by 

the standard Rankin-Selberg method. By unfolding the Poincare series Pm instead of 
the Eisenstein series E(z,s) we obtain 

/    ykP^)g(z)E(z,s)^-=mk-^ [    yk^^g(z) E(z9s) ^$- 
JT\\> y Mb v 

00 poo 

= J2(mn)k-^b(n) /     Z"2 e'^^+^e^^^^^, 
n=l J0 

where er(s,y) denotes the coefRcient of e27rirx in the Fourier expansion of E(z,s). 
The formula for these Fourier coefficients is well-known: er(s,y) is the product of 
(Ti_2s(\rI) anci a simple analytic function of \r\y for r ^ 0, and a linear combination 
of ((2s)ys and C(2s — l)?/1-8 for r = 0. Substituting this into the above unfolding 
identity immediately gives (3.6). 

REMARKS. The expression for 7(5)1/(5, Pm®g) (on the right hand side in Propo- 
sition (3.6)) is absolutely convergent for all s and each term is invariant under s —>> 1 —s 
except the first two, which are interchanged, so one immediately deduces the meromor- 
phic continuation and functional equation. It follows that L(s,Pm®g) is holomorphic 
everywhere except for a simple pole at 5 = 1 with residue proportional to 6(m). The 
classical results of Rankin [R] and Selberg [Si] are immediately recovered. 

The classical Rankin-Selberg proof is simpler than our new method if / and g 
are the same level and if g is a cusp form. Otherwise, unfolding Pm will force one to 
take the trace of gE first, and it will be necessary to truncate Tr(gE) in order to make 
the integral convergent. This is more complicated than our new method given here 
and is very close to the original Gross-Zagier method. Our method was discovered 
by trying to simplify the proof of the Gross-Zagier formula. In that case g is a theta 
function (not a cusp form) of different level than / and our method avoids taking the 
trace and doing a holomorphic projection. 

The formula (3.6) may yield new applications. For example, the rapid convergence 
of this formula, and the fact that that it is true also for s outside the region of 
convergence of the original Dirichlet series L(s,f®g), might make it suitable for 
certain theoretical or computational applications. Also, the fact that F(l — 5, s, k] x) 
becomes a polynomial for integral values of s might be useful for obtaining new results, 
or new proofs of known results, about special values of L(s, / 0 g) at such arguments. 
It would also be of interest to see if our new method can be used to obtain higher 
convolutions of Rankin-Selberg type. 
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4. Functional Equation for Lg(s, £). In this section we derive the functional 
equation for 

oo 

n=l 

where g G Mi(ro(D),e). Here, we assume that £ is a fixed positive integer and that e 
is a Dirichlet character of (Z/DZ)X. 

Let 7 = ( , ) be a matrix with real entries and positive determinant. Given, 

F(z) a holomorphic function on the upper half plane, define 

F\  (z) = (ad - bc)2(cz -f dytFiz) 

which satisfies F\  I . = F\    ,. I'yl'y' I'yy' 

Assume now that D is square free. Let e = rLijD ep ^e ^^ie decomposition of e. 
Set 

Since (5,5') = 1 it follows that there exist x^y G Z such that xd — yd' — 1. Define a 
matrix u^ by the formula 

_ (x    y\ fS    0> 

Then ws normalizes the subgroup ToiD). 
Define 

Then gs belongs to Mt{ro{D),es) where 

(4.1) e^e-i.e5, ^JJe^-H^- 

PROPOSITION 4.2.   The function Lg(s, ^) /ias a meromorphic continuation to the 

2    *    2 en^re complex s-plane with simple poles at s = ^jp. ^-^ (with residue —6(0) at s = 
^y^ >) ^nc? satisfies the functional equation 

where 

e(^)=r'e<5(|)^1(aJ) 

and a zs the inverse of a (mod c). 

Proof. Since (c, S) = 1, there exists a matrix 7 = I 1  G SL(Z) with £|d. 

Write 
, _    / x    y\      _ / aS — bS'    —ay + bx \ 

7"7U/    S)      '{cS-dS'    -cy + dxj' 
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Then 7' G r0(£>) since 8\d, 6'\c, and 56' = D. Since 

,    fs-1   0 
7 = 7 w<5 (   o     1 / ' 

we obtain 

Here 

Write 

e(-cy + da;) = €j5(-q/)6<j/(da:) = e^ ^-J e^^o*). 

az + b     a 1 
cz + d      c     c(cz + d) 

and make the substitution z -¥ — ^ — ^. We have 

^(^+z)M^e,(|)6,-VM-^ z      c 8c2 

where a' = — d/S. 
Let L*(s,^) denote the Mellin transformation 

where 6(0) = 0 if g is a cusp form. Then we have 

o     r(^ + s)        o _      '■2 

Now 

On the other hand, from the functional equation of g and g6, we have 

2/ 

+ A6(0)(d)-f(cV5)-s+'*1-—^   -   6(0)(cv^)-8-^ . -J1-T 

(ciyy'y^^ 

2 

where 

A = e6^esl
1(a5)5  i 
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If we make the substitution y —> -^-, we obtain 

y 

= A^[/^ + ty J-6(0) 
y 

+ Abmci)-i(cVd)-s+^'—Ij—   -   b(0)(cV6)-s- 
s — 

£-1 
2 

s + £-1 ' 

y ' 

The functional equation 

L; (S, H) = r'c, (|) ejMWW-L-, (l-sAc 

and Proposition (4.2) immediately follow. 

5.    Generalized Ramanujan Sums. In this section we fix a decomposition 
D = S • Sf of the square-free integer D. For any integer A we decompose 

(5.1) A = A1A2 

so that Ai is positive with prime factors dividing 5' and A2 is prime to 5'. 

DEFINITION 5.2.  We define 

p|$' VJP/
  re{Z/pZ)x 

Let c be a positive integer and B £ Z. The sum 

E 27r»Br 

re(Z/c2 

is a generalized Ramanujan sum. We evaluate it in the next lemma using the notation 
ex = exp(x). 

LEMMA 5.3. Let c,B positive integers with c > 0, (c,D) = 5', and B 7^ 0.  Set 
c = C1C2, B = B1B2 as in (5.1).  Then the sum 

2^     e5/(r)exp(  rj 
re{z/c: 

is equal to (with G(5) given in Definition 5.2) 

'B2 G{6)B1es' 

if ci = BiS'; otherwise it is zero. 

C2 S ."(?)■ 
d|(c2,£2) 
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Proof. Let c = n*=i PT ^e ^ihe prime decomposition of c with n^ > 0. Then every 
r e {TLjcLY can be uniquely written as Y,iri(cIPT) witl:i r^ G ^IvT^Y- Since 

Pi 15' 

one has 

^     ^(r^exp (^H = 11       E       ^((c/^DOexp (^p?n 
r€(Z/cZ)x ^ '        Pi\5f reiZ/p^Z) 

1,   exp ^^r 

Pt^ rG(Z/p"z'2 

Let's evaluate the two products separately. If ^l^', then every element in Z/p^*Z can 
be uniquely written as r + tpi with r G (Z/^Z)X and t G Z/p^_ Z. It follows that 

E       e;/((cM>)expf^r) 
re(Z/p?iZ)x V     * 

re(z/p,F)>< v ^      / t&fp^z       XPi       / 

If ordp; (5) < rij — 1, the last sum is zero; otherwise it is 

P?-1      E      e^((c/pHr)exp(2p2r). 
r€(Z/pt-Z)x V  ft        / 

Again this sum is 0 if ord^. (B) > m. Otherwise, replace r by r(B/p^i~1)~1 (mod pi) 
to obtain 

It follows that 

tf-^Bpilc)      E      ^(Oexp (^r) . 
r€(Z/piZ)x \ ft     / 

11        E       ^(WMexp^r) 
Pi\8' refr/p^Z)* 

is nonzero only if Bi8' = ci; in this case, it is equal to 

B1e5l{B2lc2)G{5). 

Now, we assume that pi /(J7, then 

E/27r^ \ v-^ (2mB \ v^ (2mB    \ 

re(z/ppz)x 4 rGZ/ppZ rG 

- E .m* 
It follows that 

/27ri5 n   E   ^ (-pr^j = E A* Gj) * 
Pz^,rG(Z/p^Z)x V  ^        / d|(c2,B) 
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This completes the proof of Lemma 5.3. 

6.   The Holomorphic Kernel $s,5. We recall formulas (3.4), (3.5) which we 
now relabel as (6.1), 6.2). 

(6.1) L(a, Pm®g) = b(m)m-s + 27rik Tm(s), 

€_*LzI+ioo 

hh c ns'l-Ki       I        T{^--w)\      c      ) 
dw 

^z—J c n*     ^TTZ       ,/        l1!^1"-^) \      c      J 
c=l n=l !._, v    2 /    x ^ 

(6.2) 

^ airt.mr      i r      r(^+^) (27rv/m)-2u;,   / f\  7 

^     ^ 2m       J        r(N^-w)      cl-2w        g\ ' cJ 
c=lrG(Z/cZ)* e_^. 

and 
oo 

Ly V'c) =S^n)e22L^Ilg 

n=l 

with rf = 1 (mod c). Since Lg (s,^) is holomorphic in s, formula (6.2) holds for all s. 
In (6.2) we will apply the functional equation given in Proposition 4.2.   The 

Mellin-Barnes integral (for x > 0, s € C, Re(s) > 1) 

€-■^+200 

(6 3) 7(»)-J-     /■     r(^ + w)r(m-g-w) 

ii—^^—ioo 

naturally appears. This integral is evaluated in Proposition 8.3. Further, the Kloost- 
erman sums then turn into generalized Ramanujan sums (here B E Z,s € C with 
i?e(5) > 1) 

(6.4) 5d(5,^)=    ^    ^27-     L     c,, (r)exp(—rl. 
c=l r€(Z/cZ)x V / 

These sums are evaluated by Lemma 5.3 in Proposition 7.1. This is the key idea for 
obtaining the final formula for the holomorphic kernel as given in Theorem 6.5 which 
is the main Theorem of this paper. 

THEOREM 6.5. Fix positive integers k,£,N,D and 

oo 

g(z)=b(0) + Y/
b(n)n^1e 2'ivinz 

n=l 

in M^(ro(i)),e).   Assume that D is square free, e a Dirichlet character   (mod D), 
and s G C.   Then we have: 
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(a) The kernel function $S}g(z) defined in (3.1), (3.2) has the Fourier expansion 

(b) The function L(s, Pm 0 g) is given by 

L(s,Pm®g) = b(m)m-s + 2mkY,T5
m{s) 

5\D 

with 

^ ^ n=l ^        ^ 

tyftere ^(n) are fourier coefficients of g5 defined in §5, I six) is the Mellin-Barnes 
integral (6.3), and S6is,B) is the generalized Ramanujan sum 6.4- 

Proof. It follows from the functional equation given in Proposition 4.2 that 

(27rVm)-2w r   ( f\ 

a, (JrnTl (J_\ *- L (^ - , - u,)    ^ ^ ^ _ _ ^ _a5 
c 

If we use this identity in equation (6.2) and recall that 

gs(z) = y£b5(n)n^e JZirinz j yityn   *   C 

n>0 

and 

it follows that 

CO 
nr      _ 

n 
n=l 

(6.6) Tmis) = ^TLis) 
6\D 

where 

(6.7) lie, = i- (A) '" ^W t ^ S'(S,m. - „) I, (£) . 

7. Evaluation of SdisJB). As before, we work with a fixed decomposition 
D = S-S' of the square-free integer D and e is a Dirichlet character (mod D). Recall 
the definition of es given in (4.1): 

J = ejl-e6. =Y[e-1   Y[ep. 
p\8 p\5' 
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For any given number e prime to D, let Ld
e (s) denote the Dirichlet L-function 

(n,De)=l 

When e = 1 we simply denote it by Ld (s). 

PROPOSITION 7.1. Let B be an integer with decomposition B = B1B2 as in (5.1). 
Let N = N1N2 as in (5.1). Define 

Sl{8,B) = { 
(d,D)=l 

L6(2s - 1) B = 0, 5 = D, (N,D) = 1 

0 otherwise 

Then 

Proo/. Assume that B ^ 0 first. By Lemma 5.3, if Ss(s,B) / 0 then there is 
a positive integer c such that JV|c, (c, D) = 5', and ci = BiS'. This implies that 
iVilBiJ'. Assuming this, Lemma 5.3 then gives 

Ss(a,B)=    ^     {^2
2

)LG(S)B1esl(B2/c2)    ^    »(c2/d)d. 
N2\C2 

(C2,I>) = 1 

Interchanging the summation, we obtain 

Ar2|c2 ^[(02,-62) 
(C2,I>) = 1 

5(5'jB) = ^^P ^^    ^     ^  V ' d\B2 N2\C2 2 

d\c2 
(C2,D) = 1 

If Ss(s,B) ^ 0 then (N2,D) = 1. Assume this and let e|Ar2 be a factor such that 

iV2 
a       /        e 

Substituting C2 by d^^, then (e,^) = 1, and we obtain 

, G(S)e5(B1d')esl(B2)    ^    ^   e3(l/(rfJV2e-i))M(iV2/e) 

(d,D)=l  e|d 

Interchange the sums over e and d and replace d by d • e. The Proposition follows in 
the case B ^ 0. The case JE? = 0 can be treated similarly. 
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8. Evaluation of Is.  Let 

7 • 1 7(7 + 1) • 1 • 2 

a(a + l)(a + 2)/908 + l)03 + 2)  3 
7(7 + l)(7 + 2) -1-2-3      Z 

denote the hypergeometric function. It is well known that the hypergeometric function 
F satisfies the following identities: 

(8.1) F(a,{3,r,z)=F(J3,a,r,z) 

(8.2) F(a, 13,7; z) = (1 - z)-aF ( a, 7 - 0,7; • 
-2-1 

We use these identities to prove the following: 

i  
2 PROPOSITION 8.3. Assume that Re(s) < ^#. Then Is(x) is given by the follow- 

ing formulae: 

r(fc)r(^+s)v      ^ V   2        *'    2 "'""a:-!;' 

»/ 0 < x < 1; 
r (a* - s) r(2S -1) 

r(^ + s)r(^ + s)r(^ + s-i)' 

ifx = 1; 

r(^-s)    .iti      ^i^.,.!-,^-*   ,      £-fc      ,    1  \ 

rfflr(V + g)x 2 (x"1)2      F{— + 1-s'^ + s'fe;T^j' 
*/  « > 1. 

Proo/. Recall formula (6.3) 

/(x)--L     /     r(^ + w)r(^-s-w) 
i(^i-u,)r(^ + s + u,)- 

2 

For 0 < x < 1, we compute the integral by shifting the line of integration to the left. 

2 The integrand has poles at w = — ^^ — n with n = 0,l,2, Consequently 

Iix) - y (-i)"     r(^-s + n)      ^+n 

LEMMA 8.4. For a; > 0 

^    n!    r(6 + n)r(c-n) r(6)r(c)    ^ ^ 
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Proof. By the properties xT(x) = T(x +1), r(l) = 1 of the Gamma function, and 
the definition of the hypergeometric function F, we have 

y\(-l)n        T(a + n)        _„ 
n=0 

n!    r(6 + n)r(c-n) 

r(o)     /       a ■ (c - 1)        0(0 + l)(c - l)(c - 2)   2 \ 
;6)r(c)V 1!6     ^^ 2! 6(6 + 1) x      '") 

F(a,l — c, 6;x), 

r(6)r(c) 
r(o) 

r(6)r(, 

which concludes the proof of Lemma 8.4. 
It follows from Lemma 8.4 that 

W = s 2 r(fc)r(^ + 5)
Fl^--s' —+ 1-s'fc;x 

We apply to this the first transformation (8.1) and then the functional equation (8.2) 
with x —¥ x/(x — 1). The first formula in Proposition 8.3 immediately follows. 

For x > 1, we must shift the line of integration to the right. The integrand has 
poles at w = ^- — s + n with n = 0,1,2, We have 

k  n!   r(^ + s-n)r(i + n)x 

Applying Lemma 8.4, we have 

v ; r(^ + 5)r(£)   l   0 

Again, the transformation (8.1) and the functional equation (8.2) | ->► J/( J — 1) = 
l/(a; — 1) gives the formula in Proposition 8.3 in the case x > 1. 

In the remaining case when x — 1, we require the following lemma. 

LEMMA 8.5. 
wuho-K     r(c)r(c-q-6) F(a,6,c,l)=r(c_a)r(c_6). 

Proof. Using the identity 

r^rd,) 
= / ta-1(l.-t),'-1dt r(a: + y) 

and the Tayler expansion of (1 — tz)a at z = 0, we obtain: 

This gives the formula in lemma 8.5 after setting z — 1. 
The formula for /s(l) in Proposition 8.3 follows by applying lemma 8.5 to the case 

of the first formula for I8(x) when 0 < x < 1. This completes the proof of Proposition 
8.3. 
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PROPOSITION 8.6. Define 

Then for x ^ 1 we have the functional equation 

.^-ff    =s9n(X-l)^T^-. 
\X-l\l-s y   V > \x-l\s 

Proof. Assume first that 0 < x < 1. It follows from Proposition 8.3 that 

hsix) W^-s) x^  lT1fk-£        k-t     n        ,      x 
l^-ll1-8      r(fc)r(^+S)v ; V    2        0'    2 "'"'ar-l 

By property (8.1), the hypergeometric function F above is invariant under the trans- 
formation s —> 1 — s. Further, since k = £ (mod 2), we may set a = ^^ G |Z. Then 
we must have 

r(a + 5)     _/    iN2q   r(o+l-g) = (-ir r(-a + 5)      v     ;    r(-a + l-s)' 

since 

r(a + 5)r(l - a - s) =   .      /" 
sin(7r(a + s)) 

= (-l)2a   v     /    sin(7r(-a 4- s)) 

The functional equation immediately follows.   In the case x > 1, the proof is even 
easier since the gamma factors cancel out. 

9. The Holomorphic Kernel $s^ for Real Characters. In general, $s,p, 
does not have a simple functional equation. However, in the case e is a real quadratic 
character, then we can replace $s^ by a new function <&Sjg which has simpler Fourier 
coefficients. 

PROPOSITION 9.1. Fix positive integers k,(,,N,D and 

oo 

flW = 6(0) + ^6(n)n^e: 2iTinz 

n=l 

in M£(ro(.D),e) with e a real quadratic Dirichlet character   (mod D).   For s G C 
define 

with 

,    ,   .      b(m) v-    /Ar2\   e r(^ + s)Le(2s) o   , 

where 

r(a=L+s)^8i- A 6«(n) /,5m\ 
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5^2(s,m<5 — n) is given in Proposition 6.5, and Is {—") is given in (6.3). 

Then §Sig(z) is a cusp form of weight k for ro(iV). Further, for any newform f 
of weight k for TQ (N), we have 

(47r)fc-1 r (^ - s) (27r)2se(N2)N: 
1-25 

L^^=(k-2)l T{4+s)LN2{2s) <*""/>- 

Proof. Since e is real we have e2 = 1 and e5 = e. By Proposition 6.5, Sf (s, B) ^ 0 
only if N\Bft and (AT, 5) = 1. In the decomposition N — N1N2 (as in (5.1)) we may, 
therefore, assume that A^) is maximal and prime to D. 

For any factor e of N2 define 

Tm - Vr5 

5|D 

with T^( s given by the formula 

itM = 2™' 

OO 

n=l 
nl_s 5e(*,m(J-   ■ n)is 

f 8m 

where Is is defined by 

Is(x) = r(fcf   s)ls[xh 

Define (j)s,g{m) by the formula 

^sjrn) = b(m)m-sBs(N2) + 2mkTrn^{s) 

where 

and 

e|JV2      V   e   /   JV2 

As(e) 
r (^ - s) (27r)2s e(e)e1-2s 

r(^+S) Le(2a)   ' 

By definition, Tm?e(s) depends only on iVie and m. It follows from (6.6), (6.7), 
and Proposition 6.5 that 

(9.2) Tm{s) = AS(N2) J2 I* (^) ■£rTm,e{8). 

It further follows from (6.1) and (9.2) that 

<i>8,g(m) = Yl V ( ~ ) 7r^(e)I/(5' pm,e (E) g) 
e\N2      V   6  /   iV2 

where Pm,e denotes the mth Poincare series for To(Nie). 

10. The Functional Equation of $Sjg when D = 1. 
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THEOREM 10.1. Fix positive integers k,£,N with k = £ (mod 2). Fix a modular 
form g 6 Mi (ro(l)). Define $s?p as in Theorem 9.1 with the choice D = 1. Then <S>s^g 
has the Fourier coefficients 

i   ( )   -k-ini-s r(i - s)r(s)  

, ik-£Ni-s ^(1 - s)T(s)        _ 
+ ' (27r)2-2,r(^ + s)r(^-i + 5)u      s) 

dsd 
n>l,n^mD |«i-L|=dl.d2    1   2 

n=m (mod AT) '    iV    ' 

+i*-^1-    y    &(»)    F    ^^ - -11~' /. ( 
n>l,n^tmr 

n=m (mod . 

and we have the functional equation 

n ) 

$1-s,9=N1-2s§s,g. 

Proof. The formula follows from Proposition 9.1 by taking D — 1 and N2 = 1. 
The functional equation follows from the functional equation of £(s) and Proposition 
8.6. 

11.   The Functional Equation of $s ^ when g is a Theta Function. We 
now assume that N is prime to D and e(—1) = — 1.   Extend e to a character on 
Ax /Ox . Assume that 

g(z) = b(0) + ^ b(n) n^e2™ 
n=\ 

transforms like a theta function attached to an imaginary quadratic field Q(-\/--D): 
In this case the Fourier coefficients b(n) (with n > 0) satisfy the following properties. 

(11.1) For any 6\D, b(S) = ±1 

(11.2) &(rc)^0onlyife(n) = l. 

(11.3) Forbid,  b(nS) = b(n)b(S). 

(11.4) For S\D, let K(6) = y/es(-l). Then bs(n) = K^r^n^e^n). 

THEOREM 11.5.   The function $SjS defined in §9 has Fourier coefficients given 
by 

<i>s,g{m) =ik-lL{2s,e) 
(2ff)»    (^i + i-s)r(^-s)    m* 

{ ' j (27r)2-2s r (^ + a) r (^ - 1 + s) mi 

n>l,n^mD 
mD=n (mod N) 

n>l,n^mD x / 

with 

Js(t) = €*{mD-Nt)   Y^   ^d1-28-   ^   e5,(Nt{Nt-mD))tl57 2s 

d\t 8'\{D,t) 
(d,D)=l 
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where e* = e • e^1 and ts> denotes the maximal positive divisor of t whose prime factors 
are those of 8'. 

Further, we have the functional equation, 

$1-8ig = e(-N)(DN-1)2-1$atg. 

Proof By definition, we have 

4>s,g(m) = BS(N)^- + 2irikTm,N(s) 
ms 

with 

r™^ W = 22 -^iT 22 ^7SN(m5 - n)Is 1 — 1 . 
6\D n=l v        / 

One precise computation of BS(N) will give the first term in the formula of Theorem 
11.5. Replacing n by n/S', interchanging the sums, and using the formula for b6 

(equation (11.4)), we have 

DW-'bjD) ^ b(n) -  /Dm\ 
Tm'N{s) =   2^«(JD) ^ ^^ J°(n)Is (,—J v     / n>l v ' 

mD=n (mod N) 

where 

j;(n)=    X)   v^K^Jc^n/*')^ (j^P 
5'|(jD,n) 

If n = mD, then 
j;(mD) = e(mD)L(2s - l,e). 

Applying the functional equation of L(s,e), the term, n = mD in the last formula of 
Tm^(s) will give the second term in the formula of the Theorem. Now we assume 
that n ^ mD. Then 

J»:=    J2   ^K(S')es(n/S')Ss
N(

ri^f^ 
S'\(D,n) ^ 

Notice that 5^ is nonzero only if mD = n (mod N). Write i = mI}fn, then 

S'(m>5'\-   G(6)eS'(Nt/d')      y,   e(d)di-is SN{Ni/d)- g_1    2^   e(d)d       • 

(d,D)=l 

Since G(5) = /^((JOV^7, and 

e6'(-l)e6(n/8')e6'(Nt/5') = e*(n)e^(-niVt), 

we have J* (n) = J8(i) as in the last term in the formula of Theorem 11.5. 
We now obtain the functional equation for 

Js(t)=e*{mD-Nt)    J^   ^d1"2* •   ^T   ed,(Nt(Nt - rnD))^28. 
d\t &'\(D,t) 

(d,D)=l 
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Replace d by \t\/(tDd) in the first sum, and replace 5' by (P,t)l5' in the second sum 
to obtain 

Ji-,(*) - t2s-1eD(|t|/^)6(An)(-iV^) Ja{t). 

Notice that eD{\t\ltD) = sgn^CD^), and for any p not dividing (£,D), 

ep(-Ntn) = 1 

because —Ntn = (Nt)2 (mod p). We, therefore, obtain that 

e(\t\/tD)e{D:t)(-Ntn) = sgn(t)eD(t)eD(-Ntn) = sgn(t)e(-N)e(n). 

It follows that Js (t) satisfies the functional equation 

Ji_a(*) = i2s-1
Sgn(i)€(-7V)e(n) J,(t). 

Combining this with the functional equation for Is in Proposition 8.6, we obtain the 
functional equation for $s^. 

REMARK. In the case that g is a theta series attached to an imaginary quadratic 
field, and m is prime to iV, Gross and Zagier [G-Z] have computed the value (when 
e(N) = 1) and the derivative (when e(N) = — 1) of <f)Sjg(m). It is not difficult to see 
that our results coincide with those of Gross-Zagier in this case. Our results go beyond 
[G-Z] in that we give the whole kernel (not only the special value or derivatives) in 
terms of divisor functions and hypergeometric functions. 

REFERENCES 

[G-Z] B. GROSS AND D. B. ZAGIER, Heegner points and derivatives of L-series, Invent. Math., 84 
(1986), p. 225-320. 

[L] WEN CH'ING WINNIE LI, L-series of Rankin type and their functional equations, Math. 
Ann., 244:2 (1979), p. 135-166. 

[Ra] S. RAMANUJAN,  On certain trigonometrical sums and their applications in the theory of 
numbers, Trans. Cambridge Philos. Soc, XXII:13 (1918), p. 259-276. 

[R] R. RANKIN, Contributions to the theory of Ramanujan's function r(n) and similar arithmetic 
functions, I and II, Proc. Cambridge Phil. Soc, 35 (1939), p. 351-356, 357-372. 

[Sa] P. SARNAK, Some applications of modular forms, in Cambridge Tracts in Math. 99, Cam- 
bridge Univ. Press, Cambridge, 1990, p. 22-25. 

[SI] A. SELBERG, Bemerkungen iiber erne Dirichletsche reihe, die mit der theorie der modulformer 
nahe verbunden ist, Arch. Math. Naturvid., 43 (1940), p. 47-50. 

[S2] A. SELBERG, On the estimation of Fourier coefficients of modular forms, in Proc. Sympos. 
Pure Math. (Cal Tech, Pasadena, Cal., 1963) VIII, Amer. Math. Soc, Providence, R.I., 
1963, p. 1-15. 



748 D. GOLDFELD AND S. ZHANG 


