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THE HOLOMORPHIC KERNEL OF THE
RANKIN-SELBERG CONVOLUTION*

DORIAN GOLDFELD' axp SHOUWU ZHANGH

1. Introduction. Fix positive integers k,¢, N, D. Let Si(T'o(N)) denote the
C—vector space of holomorphic cusp forms of weight & for the congruence subgroup

To(N) = { (‘CL Z) € SL(2,Z)

¢=0 (mod N)}.

For a Dirichlet character € of (Z/DZ)™, let M¢(T'o(D),€) denote the C-vector space
of holomorphic modular forms of weight £ with character € for the congruence group
I'o(D)

Let f € Sk(To(N)) and g € My(T'9(D), €) have Fourier expansions of the form

f(Z) f: a(n) nTe27rmz 9(z) = b(O) + i b(n) nl%le?/rinz'
n=1 el

Rankin and Selberg [R], [S1] proved that the convolution L—function (in the case of
equal weights k = £)

L(s,f®g) = Zan)b

n=1

converges absolutely for complex s with Re(s) > 1, has a meromorphic continuation
in s with at most a simple pole at s = 1, and satisfies a functional equation s — 1—s.
This result was later generalized [L] to more general situations, and in particular, to
arbitrary pairs of weights &, £.

The proof of the meromorphic continuation and the functional equation of
L(s, f ® g) was obtained by expressing L(s, f ® g) as an inner product of f - g with a
nonholomorphic Eisenstein series. We shall give a new proof of this result which does
not use Eisenstein series at all, but instead expresses the Rankin—Selberg convolution
L-function as an inner product of f with a holomorphic kernel function which de-
pends on g and s. The main result of the paper is the Fourier expansion of the kernel
function (when D is squarefree) which is given in Theorem 6.5. In the case where € is
a quadratic Dirichlet character (mod D), a simpler and more explicit version of this
result is given in Theorem 9.1. The functional equation of the kernel is stated and
proved in various important cases in sections §10, §11.

In the special case that g is a theta function attached to the imaginary quadratic
extension Q(v/—D), the value of the holomorphic kernel function (or its derivative) at
s = % coincides with the kernel function computed by Gross and Zagier [G—Z] in their
celebrated formula relating the derivative of an L—function of an elliptic curve with
the height of a certain Heegner point. Thus, our method simultaneously gives a new
simplified proof of the L—value computation in the Gross—Zagier formula together with
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730 D. GOLDFELD AND S. ZHANG

a new proof of the meromorphic continuation and functional equation of the Rankin—
Selberg convolution. The original method of Gross—Zagier used non-holomorphic
Eisenstein series defined on a smaller group. The kernel was then obtained by a trace
map and a holomorphic projection. In our method, all calculations are done directly
on Si(T'o(V)) and it is not necessary to go outside the holomorphic space with different
level and then project back in later.

b

2. Poincaré Series. For v = ((c]' d

) € SL(2,Z) let

jly,z)=cz+d
denote the one-cocycle which satisfies j(v-v',2) = j(v,7'2) - (o', 2) for all matrices
v, € SL(2,Z). Fix positive integers m, k. For Re(s) > 1 — %, the series
Pu(z,8) =m'S 37 €M% i(y,2)7 (Imyz)”.
V€T \T'o(N)

converges absolutely and uniformly to an automorphic form of weight k£ on ().
This series was first introduced by Selberg [S2] and shown to have a meromorphic
continuation to the entire complex s—plane. We define the holomorphic Poincaré series

P, = lim P,
' (2) lim (2, 8)
by analytic continuation.

Fourier Expansion: The Fourier coefficients p,,(n) of
0 k—1 :
Pm(z) — Z pm(n) noT e2minz
n=1

are given by the formula (see [Sa)),

2.1) Pr(n) = b+ 208* Y S(m;n; 9, (47r,c/mn) ’

c=1
¢=0 (mod N)

where 6., , (Kronecker’s delta function) is 1 if m = n and zero otherwise; S(m,n;c)
is the Kloosterman sum

(2.2) S(m,n;c) = Z e (matnd)
ad=1 (mod c)

and
e Eghico
_ 1 Tt w) gy
(2.3) Je-1(y) = 5 / T (B ) (5) v
k—1_ 2
€= T

is the Bessel function.

Petersson Formula By unfolding the integral, one can show that for any cusp form

h(z) = Z c(m)ym"T e2Mm* ¢ G (To(N)),

m=1
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we have
4r)k—1
(2.4) c(m) = %192—2)' < h,Pp>.

3. Outline of the Method. Let (-,-) denote the Weil-Petersson inner product
on Si(To(NN)). Now, fix s € C and

g = b(0) + Z b(n) n'T e in: ¢ My(To(D),¢).

Consider the linear map
(3.1) f—L(s,f®g) =< @54, f>

for a unique holomorphic Riesz kernel (cusp form) ®;, € Si(I'o(N)) with Fourier
expansion

(3.2) D, 4(2) = qus,g(n n'T 2ming

n=1

We now use the properties of the Poincaré series (Fourier expansion and Petersson
formula) to obtain a formula for the Fourier coefficients of the Riesz kernel @, ;4 given
in formula (3.2).

Set h = ®, 4 in formula (2.4). It immediately follows from (3.1) that

(4m)k-1
(F—2)!

By the Fourier expansion (2.1) for the Poincaré series, we have for complex s with
Re(s) > 1+ %51 that

(3-3) Ps,9(m) = L(s, Pm ® g).

(3.4) L(s, Py, ® g) = b(m)m™° + 2mi* Tp,(s)
where
e~ 25 fico ,
S(m,n:c) b(n) 1 / (5L + w) (27r\/mn>_ v
3) — dw
gnz_: " omi o ]_"(l“—'g—1 —w) c
Nle €— 5= —100
(3.5)
A T
2rimr = +w (271- m)— w F
_Z do e .—, / F(&Z—l—w) T Lg(s+w,z)dw,

= X
5\( r€(Z/cZ) C_Ic;l_ioo

and

L, (s, 2) = ni::l b(n)e = n =

with 77 =1 (mod c).

In the remainder of this section we briefly illustrate our method in the special
case N =D =1,k =1/, and g is a cusp form. Complete details for the more general
case are given in §4 through §10.
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Our assumptions imply that in this case L,(s, %) has holomorphic continuation
to all s € C and satisfies the functional equation (see Proposition 4.2)

L= () " R 4 (1-0-2)

where @ is the inverse of a (mod ¢). If we apply this functional equation to the formula
for Tr(s), given in (3.5), we obtain

Tn(s) = (271'223 1 i Zgnl S(s,m —n) I, (%)

where

S(s, B) =i 13 Z exp (27TZB7'),

c=1 re€(Z/cZ)*
is the classical Ramanujan sum, and

e—%—f—ioo

1 (AL 4w)D (B —s—w
Is(y)z% / (2 ) (kz ) _wd'u)

k=1 _;
6——2——ZOO

is a hypergeometric function.

Formula for S(s, B): The formula

S(s

5:123

d|B
was first given by Ramanujan [Ra]. When B =0,

_C@s=1) _ 5 5 T(1—5) ((2(1—-9))
5(s,0) = @) =’ 3/21“(3——%) OB

Formula for I;(z): We will show in Proposition 8.3 that

Ry T (=2 T (1= s, k5% ) i 0<w <1

— J T(k=s) 2T (s—3) i g —
Li(z) = j g‘(s)s VAT e=1) if z=1

_g) =kl _ .
| ™ @ - 1) 1F(1—s,s,k;1—1—m), if ©>1,

where F(a, 3,7;2) denotes the Gauss hypergeometric function defined for |2| < 1 by
the absolutely convergent series
a-f ala+1)BB+1) ,
F ;2) =1
(o, B,7; 2) + 'y'lz+ Y1) 12 z° +
and for all values of z by analytic continuation.
Combining these formulas we obtain:
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PROPOSITION 3.6. Define y(s) = Fr((s,zl:(sk)) (42—;2)%)— Then we have

Y(8)L(s, P ® g) = Y _ b(n) v(m, 15 9),
n=1

where
k-1
(F%) * ol _g(m—n)F (1 —3,8,k; #) if n <m,

s—1

y(m,n;s) = Y(s)ym™* + (1 - s)m ifn=m,

k=1
(=)= af_zs(n—m)F(l—s,s,k; I ) ifn>m,

n m—n

and o,(n) = n~ % > din @ for positive integers n and complez v.

Note that Proposition (3.6) (for the group I' = T'y(1)) is also easily obtained by
the standard Rankin—Selberg method. By unfolding the Poincaré series P, instead of
the Eisenstein series F(z,s) we obtain

/ *Pr(@a(2) E(z,5)
T\h

drdy k-1
5 =

' [ ) By s) T
'\b

° k—1 oo
=3 (mn) T b(n) / yF2 e (o iy,
0

n=1

where e, (s,y) denotes the coefficient of €2"¥"® in the Fourier expansion of E(z,s).
The formula for these Fourier coefficients is well-known: e,(s,y) is the product of
07 _9s(Jr|) and a simple analytic function of |r|y for 7 # 0, and a linear combination
of ¢(2s)y® and ((2s — 1)y*~* for r = 0. Substituting this into the above unfolding
identity immediately gives (3.6).

REMARKS. The expression for y(s)L(s, Py, ® g) (on the right hand side in Propo-
sition (3.6)) is absolutely convergent for all s and each term is invariant under s — 1—s
except the first two, which are interchanged, so one immediately deduces the meromor-
phic continuation and functional equation. It follows that L(s, Py, ® g) is holomorphic
everywhere except for a simple pole at s = 1 with residue proportional to b(m). The
classical results of Rankin [R] and Selberg [S1] are immediately recovered.

The classical Rankin—-Selberg proof is simpler than our new method if f and g
are the same level and if g is a cusp form. Otherwise, unfolding P, will force one to
take the trace of gF first, and it will be necessary to truncate Tr(gE) in order to make
the integral convergent. This is more complicated than our new method given here
and is very close to the original Gross—Zagier method. Our method was discovered
by trying to simplify the proof of the Gross—Zagier formula. In that case g is a theta
function (not a cusp form) of different level than f and our method avoids taking the
trace and doing a holomorphic projection.

The formula (3.6) may yield new applications. For example, the rapid convergence
of this formula, and the fact that that it is true also for s outside the region of
convergence of the original Dirichlet series L(s, f ® g), might make it suitable for
certain theoretical or computational applications. Also, the fact that F'(1 — s, s, k; )
becomes a polynomial for integral values of s might be useful for obtaining new results,
or new proofs of known results, about special values of L(s, f ® g) at such arguments.
It would also be of interest to see if our new method can be used to obtain higher
convolutions of Rankin—Selberg type.
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4. Functional Equation for L,(s,Z). In this section we derive the functional

equation for
r > 27i
L, (s, E) = nz_:lb(n)e e n”°

where g € M;y(To(D),€). Here, we assume that £ is a fixed positive integer and that €
is a Dirichlet character of (Z/DZ)*.

Let v = (Z 3 be a matrix with real entries and positive determinant. Given,

F(z) a holomorphic function on the upper half plane, define
F|v(z) = (ad — bc)%(cz +d)7'F(2)

which satisfies F |7|7, = F|W,.
Assume now that D is square free. Let € = le p €p be the decomposition of e.

Set

D .
6—@, ) —(C,JD).

Since (d,0') = 1 it follows that there exist ,y € Z such that zd — yé' = 1. Define a
matrix wg by the formula
wie (%Y § 0
"=\ 6)\0 1)

Then ws normalizes the subgroup o (D).
Define

P =g, @)
Then g° belongs to M,(T'o(D),€’) where
(4.1) E=et e = H s H €p-
p|s pl|d’

PROPOSITION 4.2. The function Ly(s, %) has a meromorphic continuation to the
entire complex s—plane with simple poles at s = £+le 12;£ (with residue —b(0) at s =
1= ) and satisfies the functional equation

a ay (62 \¥7°T (&L ) ad
Lg(S, E) =€ (—c') (—) T_, Lgs(l -8, —?)

where

and @ is the inverse of a (mod c).

Proof. Since (c,8) = 1, there exists a matrix v = (z Z

Write
, (z y\'_ [as—b8 —ay+ba
T=T\s 5) T \es—ds' —cy+dx)”

) € SL(Z) with d|d.
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Then +' € I'g(D) since d|d, §'|c, and §6' = D. Since

_ ,w 6—1 0
Y =7 Ws 0 1)

we obtain
£ z
9l,(2) = e(—ey + da)o~4g" (3) .
Here
€\ -1
e(—cy + dz) = e5(—cy)ey (dz) = €5 (ﬁ) €5 (ad).
Write

az+b _a 1

cz+d c_c(cz-I-d)

and make the substitution z — —c—%; — g. We have

c

g (% + z) (cz)t = €5 (6’) egé(aé)é‘%g‘s (—é + %)

where o' = —d/4.
Let L7 (s, ¢) denote the Mellin transformation

Ly(s,7) = /Ooo [9 (5 +iy) - 60)] y'7*+ Elyﬂ

where b(0) =0 if g is a cusp form. Then we have

(5t +59)

(2m) 5 +s

L.’J(S,

., a
Lg(s’ _c’) =

Now

569 ([ ) bl o] -2

On the other hand, from the functional equation of g and ¢°, we have

1

[ b(en) o]y

= A/Om [96 (—6ciiy + %I) - b(O)} (ciy)—ly“Tl+sC;_y
+ Ab(O)(ci)_l(c\/g)‘s‘*‘HT1 1 _ b(o)(c\/g)—s—% )

S_e—i-_l

where
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If we make the substitution y — we obtain

czéy’
ﬁ 9’_ ; _ Slts d_y
/0 [g (C + zy) b(())] Y2 y
o0 !
=af, [95 (£ +1) - 30)] (@)@ s L

Yy
e41 1 - 1
Ab(0 s - s=5h .
+ (i)~ (cVB)~ 8_“2__1 b(0)(cV/3)~ s+ 1

o0 !/
_t s _ 1 _a_) L oN—p E-lag @
((5’) 65! (0/5)5 2 /0 g < 5c2iy + c, (CZy) Yy 2 Yy .

The functional equation

L () =it (5) @@y sy (1-5,2)

and Proposition (4.2) immediately follow.

5. Generalized Ramanujan Sums. In this section we fix a decomposition
D =§ - of the square—free integer D. For any integer A we decompose

(51) A = Al A2
so that A; is positive with prime factors dividing ¢’ and As is prime to 4.
DEFINITION 5.2. We define
1 5’ 1 2mwir
Go)=1le <—) e (r)e» .
@O=IIs"(;) > 'O
plé re(Z/pZ)*
Let ¢ be a positive integer and B € Z. The sum
Z 66’ (r)e21r1;:Br
r€(Z/cZ)*

is a generalized Ramanujan sum. We evaluate it in the next lemma using the notation
e® = exp(x).

LEMMA 5.3. Let ¢, B positive integers with ¢ > 0, (¢,D) = ¢', and B # 0. Set
¢c=cicy, B=BBs as in (5.1). Then the sum

S e (2220)

re(Z/cZ)*

is equal to (with G(8) given in Definition 5.2)

G(6)Bes (%) S o (%) d
d|(cz,Bz2)

if c; = B14'; otherwise it is zero.
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Proof. Let ¢ = [];_; pi"* be the prime decomposition of ¢ with n; > 0. Then every
7 € (Z/cZ)* can be uniquely written as ), ri(c/p;*) with r; € (Z/p;*Z)*. Since

s (Y rie/wi) = T1 enelle/piyra),
pilo’
one has

> a0 e (T2 =] X glemmes ().

re(Z/cz)x pil8’ re(z/pliz) % z

) H Z exp (2;7%37) )

pilb' re(z/p;iz)* g

Let’s evaluate the two products separately. If p;|d’, then every element in Z/p}*Z can
be uniquely written as r + tp; with r € (Z/p;Z)* and t € Z /pl ' Z. Tt follows that

Y el e (%ﬁ)

re(Z/p}izZ)* v
_ . 2miB 2miB
= Z ep; ((c/pi)r) exp (pTT> Z exp (ﬁt) .
re(Z/piF)* ¢ tezZ/pliT'z Pi

If ordy, (B) < n; — 1, the last sum is zero; otherwise it is

ni— _ - 2miB
prt Z & ((c/pi)r) exp( T 7').

r&(Z/piZ)* ¢

Again this sum is 0 if ord,, (B) > n;. Otherwise, replace r by r(B/pf* ')~ (mod p;)
to obtain

ori
P e Boife) Y el exp (i) |
re(2piZ) " pi

It follows that

I X slenmes (252

pild’ re(z/p; Z)% :
is nonzero only if B’ = c;; in this case, it is equal to
Bies: (Ba[c2)G(9).
Now, we assume that p; [¢', then
Z exp <2;ZB 1«) = Z exp (2—;7251"> — Z exp (%‘:—Brp)
r€(Z/p;Z)* : reZ/p} iz f rez i1z i

> u(%) d.

d|(B,p}?)

I

It follows that

I > ()= 2 n(0)e

pild’ re(z/p;iz)* ¢
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This completes the proof of Lemma 5.3.

6. The Holomorphic Kernel ®,,. We recall formulas (3.4), (3.5) which we
now relabel as (6.1), 6.2).

. 8, Py ® g) = b(m)m™° 4+ 2mi" Ty, (s),
6.1 L(s, P, b S 4 2omik T,
[ <IN’} € : 1+i0° k—1 —2w
_ Z Z Sm,n:c)b(n) 1 / (%5~ +w) (27y/mn dw
e R c n®  2mi T(EL —w) c
?V_Ii n=1 e—E=l 0o
2
(6.2)
. e—%+ioor(k 1 ) ( \/_) 5
_ 2wimr 1 %— + w 27T m —ew F
=2 > e omi / (L ) 2w Ly (s tw, E) dw,
§V|é r€&(Z/cz)* k1o 2

and
r > 2minr
2minr _g
L, (s, Z) = nzlb(n)e e n

with 77 =1 (mod c). Since L, (s, %) is holomorphic in s, formula (6.2) holds for all s.
In (6.2) we will apply the functional equation given in Proposition 4.2. The
Mellin—Barnes integral (for > 0,s € C, Re(s) > 1)

e—k%l-i-ioo

[y
ol
-

(5L +w)T (&L —s—w)
(6.3) I(z) = —— / 2 7 5= dw
i | TR )T (5 vt u)
€— =5~ —100

[y

naturally appears. This integral is evaluated in Proposition 8.3. Further, the Kloost-
erman sums then turn into generalized Ramanujan sums (here B € Z,s € C with
Re(s) > 1)

(6.4) S9(s, B) {Z 0/61 Z €5 (r) exp (%ZBT) .

r€(Z/cZ)>

ik
(e,D)=4'

These sums are evaluated by Lemma 5.3 in Proposition 7.1. This is the key idea for
obtaining the final formula for the holomorphic kernel as given in Theorem 6.5 which
is the main Theorem of this paper.

THEOREM 6.5. Fiz positive integers k,£, N, D and
— b(O + Z b -— 27mnz

in My (Co(D),€). Assume that D is square free, € a Dirichlet character (mod D),
and s € C. Then we have:
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(a) The kernel function ®, 4(2) defined in (3.1), (3.2) has the Fourier expansion
(47T)k ' & 27
o, .(2) = (= )1 2 Z L(s, Py, ® g)e*™™=,
(b) The function L(s, Py, ® g) is given by

L(s, P ® g) = b(m)m™* + 2mi* Y T2 (s)
§|D

with
T4(5) = -‘-’(4%)%_8 6)2”(” S (s,ma =) 1, ().

where b (n) are fourier coefficients of g° defined in §3, I,(x) is the Mellin-Barnes
integral (6.3), and S°(s, B) is the generalized Ramanujan sum 6.4.

Proof. It follows from the functional equation given in Proposition 4.2 that

O gy (3w, 7 =

cl—2w
1 -
(Bm) (6 NI L(H—s—w) i)
e(c) 2 471‘2 L(%l+8+w) Lys(1—-s—w, o)

If we use this identity in equation (6.2) and recall that

5 Z) — Z b&(n)n%e2ninz’

n>0

and

o0
r 5 2rinr __
Lygs (S’E> = E (n)e e n”?,
n=1
it follows that

(6.6) T(s) = D Tii(s)

5D

where

6.7) T‘S(s)—z“<462>§ 5)2“’” md —n) I, (‘i’j)

7. Evaluation of S%(s, B). As before, we work with a fixed decomposition
D =§-6' of the square—free integer D and ¢ is a Dirichlet character (mod D). Recall
the definition of € given in (4.1):

6—65 cE€y = He H

p|o p|o’
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For any given number e prime to D, let LI(s) denote the Dirichlet L-function

IHOEEDY 6675;11).

(n,De)=1

When e = 1 we simply denote it by L°(s).

PROPOSITION 7.1. Let B be an integer with decomposition B = By By as in (5.1).
Let N = N1N; as in (5.1). Define
G(d B /(B2) — 1
SOABle B 5 sy d (). B#0, N|ByY
(d D) 1
L%(2s — 1) B=0,6=D,(N,D)=1

0 otherwise

Se(s,B) =

Then

€ (1/N2)N1_2s N2 (&
Sé(s,B) = ————La (23) Z 14 —g— ESS(S,B)
e|(B2,Nz2)

Proof. Assume that B # 0 first. By Lemma 5.3, if S°(s, B) # 0 then there is
a positive integer ¢ such that Nlc, (¢, D) = ¢', and ¢; = B;1d'. This implies that
N;|B;d'. Assuming this, Lemma 5.3 then gives

S%s,B)= Y (GL(Bl—(ZQ)—G(J)Bley(Bz/cz) Z w(cy/d)d.

Byd'cs)?s
Nlez 1 2) dl(CQ,BQ)
(CQ,L)):].

Interchanging the summation, we obtain

si,5) = JOeEa ) 57 5 SLlapleld

! 2
316 2s czs

dlB2 Nzlcz
d,cz
(Cz ,D)=1

If S°(s, B) # 0 then (N2, D) = 1. Assume this and let e| N be a factor such that

(Gom) =5

Substituting ¢z by d%é, then (e, £) = 1, and we obtain

S%(s,B) = G(0)es(B10")es (B) Z Z i e3(1/(dNqye~ ))M(Nz/e).

1\2s R2s—1 2s
(6)2° B2 & (dNz/e)

(d,D)=1 e|d

D € (1/6)u(0)

025 '
(¢,D)=1
(£,e)=1
(¢,N2/e)=1

Interchange the sums over e and d and replace d by d - e. The Proposition follows in
the case B # 0. The case B = 0 can be treated similarly.
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8. Evaluation of I,. Let

N1y @B alet BB+
F(aalga7az)—1+ 7'1Z+ 7(7+1)12 Z2
afa+ D(a+ BB+ DB +2)

T+ D +2) 1273

+ .-

denote the hypergeometric function. It is well known that the hypergeometric function
F satisfies the following identities:

(8.1) F(a,B,7;2) = F(B,0a,v;2)
(8.2) F(a,B,7;2) = (1 — 2)°F (a, v =B, ﬁ) :

We use these identities to prove the following:

PROPOSITION 8.3. Assume that Re(s) < &£, Then I,(z) is given by the follow-
ing formulae:
p-1 T (l+k _ 8)

> 2

(l—w)T_l"“sF(k?e+s,—k_£+1—s,k;—w ),

T(k)T (5E +5) 2 z—1
if 0<z<1;
(&t -s)r@s-1)
(A +s) D (S +s) D (BE+s-1)
ifz=1;
F(E)gf‘g:%_’:;_j—)s)m_gﬂ (w—l)¥+3_1F (E;k +1 ,Z_Tk+s,k,1 ! ),
if £>1

Proof. Recall formula (6.3)

e—k—;—l—i-ioo

For 0 < 2 < 1, we compute the integral by shifting the line of integration to the left.
The integrand has poles at w = —k2;1 —n withn =0,1,2,.... Consequently

S (-1 T (8t -s+n) [
I,(z) = 2 B,
() Z n! T(k+n)l (%-l—s—n)w

LEMMA 8.4. Forx >0

( F a+n) n_ F((I) .
Z TR = T ek
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Proof. By the properties zI'(z) = I'(z + 1), I'(1) = 1 of the Gamma function, and
the definition of the hypergeometric function F', we have

E () Te+n)
Z n! I‘(b+n)I‘(c—n)

I'(a) __a-(c—l)ac a(a+1)(c—1)(c—-2)$2_.“
5 * )

T()I( 115 20b(b+ 1)
_ Tl :
= WF((I,, 1- C, b,(L‘),

which concludes the proof of Lemma 8.4.
It follows from Lemma 8.4 that

T (L — ) F(k+e k-t

k-1
T =1xr 2 —
SR 7 = R G R

+1—s,k;z>.

We apply to this the first transformation (8.1) and then the functional equation (8.2)
with z — z/(z — 1). The first formula in Proposition 8.3 immediately follows.

For z > 1, we must shift the line of integration to the right. The integrand has
poles at w = £-|2-1 =0,1,2,.... We have

—1)" (kL _ g4
Is((II) — Z ( ‘) k_z( 2 s n) (II_%L-H_”.
n>0 n. I‘(T+s—-n)I‘(2+n)
Applying Lemma 8.4, we have
(kL _ -
I(z) =g~ %t k(e ) F(k+£—3,z b
T (5% +5)T(0) 2 2

+1—s,£;x“1> .

Again, the transformation (8.1) and the functional equation (8.2) L —+ /(1 —1) =
1/(z — 1) gives the formula in Proposition 8.3 in the case z > 1.
In the remaining case when x = 1, we require the following lemma.

LEMMA 8.5.
['(e)T(c—a—b)

Fla,b,e;1) = Tc—a)l(c—0b)

Proof. Using the identity

I@)I'(y) /1 -1 -1
= = [ T -t de
L'z +y) 0 ( ) :

and the Tayler expansion of (1 —tz)® at z = 0, we obtain:

T
. 1—t2)" %11 —t)e 0 Lat.
Flobe?) = s [ ¢ (-9

This gives the formula in lemma 8.5 after setting z = 1.

The formula for I5(1) in Proposition 8.3 follows by applying lemma 8.5 to the case
of the first formula for I;(z) when 0 < £ < 1. This completes the proof of Proposition
8.3.
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ProPOSITION 8.6. Define

- T (&L +5)
I(z) = — 27— I,(x).
T (5 =)
Then for x # 1 we have the functional equation
fl—s(w) k—¢ fs(x)
7 = -1 .
i L A P
Proof. Assume first that 0 < z < 1. It follows from Proposition 8.3 that
Ii_s(z) I (&£ —5) ey (k=€  k—¢ z
= F|— — 4+ 1=-s,k— ).
|w_1|]___s F(k) ([ k+ )(1 ) 2 2 +sa 2 + 3,k7m_1

By property (8.1), the hypergeometric function F' above is invariant under the trans-
formation s — 1 — s. Further, since k£ = ¢ (mod 2), we may set a = E;—l € -;—Z. Then
we must have

Tlat+s) _ (=1) o Llatl-s)
T(—a+s) [(-a+1-s)’
since
™
Plet+ o)l —a=-9) = 2o
— (_1)2a m

sin(m(—a + s))
= (=1)*T(=a + )01 - (a +s)).

The functional equation immediately follows. In the case > 1, the proof is even
easier since the gamma factors cancel out.

9. The Holomorphic Kernel 53,9 for Real Characters. In general, ®; g,
does not have a simple functional equation. However, in the case € is a real quadratic

character, then we can replace &, ; by a new function ®, , which has simpler Fourier
coefficients.

PropoOsSITION 9.1. Fiz positive integers k,£, N, D and
9(2) —b(0>+2b et

in My (Lg(D),€) with € a real quadratic Dirichlet character (mod D). For s € C
define

EI;s,g (2) = Z ‘zs,y (m)mkz;l e?rims

with

: b(m) T (&£ +5) L.(25) "

ol = #(3) % T o+ Tl
where

k_ §i—s X 5
5 m
Tm,Nz(s) (% (”ZD it Z ’I’ll s Se md — TL) I, (_) s
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S}h(s,mtS —n) is given in Proposition 6.5, and I, (aTm) is given in (6.3).
Then ®; 4(z) is a cusp form of weight k for To(N). Further, for any newform f
of weight k for To(IN), we have

(4m)k=1 T (EEE — 5) (2m)%€(N2) N, ~2°

L(s;f@g)= (k —2)! T (5% +5) Ly, (2s) <Py f >

Proof. Since € is real we have €2 = 1 and €’ = €. By Proposition 6.5, S(s, B) # 0
only if N|B§' and (N, ) = 1. In the decomposition N = N1 N (as in (5.1)) we may,
therefore, assume that N, is maximal and prime to D.

For any factor e of Ny define

Tme = The

8§|D

with T3, , given by the formula

6775 o= b (n - (om
ng,,e(s) = omil Z (__) 55(577”6_”) s (—)

where I, is defined by

Define qu,g (m) by the formula
bs,g(m) = b(m)ym™*By(Na) + 2mi* Ty v, ()

where

By(No) = ) u (%) Ni2As(e)‘1

e| N2

and
I (4 — ) )™ efe)el=>
F(kT—l‘l'S) Le(2s) )

By definition, T, (s) depends only on Nie and m. It follows from (6.6), (6.7),
and Proposition 6.5 that

As(e) =

02 T(s) = AN 3 1t (T2) 15T

e
E|N2
It further follows from (6.1) and (9.2) that
~ N2 e
boatin) = (72 5 AL P 0)
e'Nz
where P, . denotes the m'™ Poincaré series for ['o(Vye).

10. The Functional Equation of 53,9 when D = 1.
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THEOREM 10.1. Fiz positive integers k,¢, N with k = £ (mod 2). Fiz a modular
form g € My (I'o(1)) . Define ®, 4 as in Theorem 9.1 with the choice D = 1. Then ®, ,
has the Fourier coefficients

7 _k—tarl—s (1 -s)I(s)
Dag(m) =i EN' (2m)%T (52 +1-5)T (82 —5) (29)
T _ I'(1 - s)I'(s)
T k=t G (BE o) T (G - )C(2—2s)

E ()

1
k—f nTl—s
N b S g
+1 Z (’I’L) Z dfdé_s
=dy-ds

n>1,n#FmD | m—
n=m (mod N) N

and we have the functional equation
E)l—s,g = NI_QS:f’s’g.

Proof. The formula follows from Proposition 9.1 by taking D = 1 and N» = 1.
The functional equation follows from the functional equation of {(s) and Proposition
8.6.

11. The Functional Equation of 53,9 when g is a Theta Function. We
now assume that N is prime to D and e(—1) = —1. Extend € to a character on
AX/Q*. Assume that

9(2) =b(0) + > _ b(n) n 5t p2minz

n=1

transforms like a theta function attached to an imaginary quadratic field Q(v/—D):
In this case the Fourier coefficients b(n) (with n > 0) satisfy the following properties.

(11.1) For any 6|D, b(d) =

(11.2) b(n) # 0 only if e(n) = 1.

(11.3) For 6|d, b(nd) = b(n) b(J).

(11.4) For §|D, let k(8) = v/es(—1). Then b°(n) = x(8) 1b(nd)es(n).

THEOREM 11.5. The function 53,9 defined in §9 has Fourier coefficients given
by

ﬁgs,g (m) zik_eL@S: €)

DNl T(3-9)T(3+5)  bP(m)
Cry (G +1- 9T (BE—5) m
D T(s=3T(3-5)  P(m)

@r)*=2 T (5E +5)T (B2 —1+5) mi—s

+ik—ZD1/2_sb(D)K,(D)_1 Z b(_l s(mDN n)~s (%)

n
n>1,n#mD
mD=n (mod N)

l\)l»—l

+i*tL(2 — 2s,¢)

with

Js(t) =€ (mD —Nt) Y e(d)d"™> - Y ey (Nt(Nt —mD))t}

dlt §'|(D,t)
(d,D)=1
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where e* = e-eBl and ty denotes the mazimal positive divisor of t whose prime factors
are those of §'.
Further, we have the functional equation,

B1_5, = e(~N)(DN~HZ1G,
Proof. By definition, we have

bs.q(m) = BS(N)”%) + 21iF T, N (5)

with

81/2=5 X b(n) om
To(s) = 3 g 3 T shoms —m (7).

é§|D n=1

One precise computation of Bs(IN) will give the first term in the formula of Theorem
11.5. Replacing n by n/§’, interchanging the sums, and using the formula for »°
(equation (11.4)), we have

D/2=sp(D b(n) ., .z (D
TN (s) = Wn(l())_) 2>:1 ngT_ll J; ()1, (Tm)

mD=n (mod N)

where
3 VEk(8)es(n)6)S% (%) .
8'|(D,n)
If n =mD, then
J;(mD) = ¢(mD)L(2s — 1,¢).

Applying the functional equation of L(s,¢€), the term n = mD in the last formula of
T, n(s) will give the second term in the formula of the Theorem. Now we assume
that n # mD. Then

'15(6")es (n/8") S mD—n .
6/%:’71)\/5_(5)5( /5)SN< & )

Notice that S, is nonzero only if mD =n (mod N). Write ¢ = mll)v_", then

§ ISl G(0)es (Nt/d') 1—2s
S (Nt/d') = ) (i Ty % e(d)d 2.

(d,D)=1

Since G(8) = k(6")V/4é', and
es(—1)es(n/d")es (Nt/d') = €*(n)es (—nNt),

we have J(n) = J,(t) as in the last term in the formula of Theorem 11.5.
We now obtain the functional equation for

Js(t) =" (mD — Nt) > e(d)d > Y ey (Nt(Nt —mD))ts >

d|t 8'|(D,t)
(d,D)=1
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Replace d by |t|/(tpd) in the first sum, and replace ¢’ by (D,t)/d’ in the second sum
to obtain

Ji—s(t) = 2 ep(|t|/tD)e(p,n) (—Ntn) J5(t).
Notice that ep(|t|/tp) = sgn(t)ep(t), and for any p not dividing (¢, D),
ep(—Ntn) =1
because —Ntn = (Nt)? (mod p). We, therefore, obtain that
€(|t|/tp)ep,o)(=Ntn) = sgn(t)ep(t)ep(—Ntn) = sgn(t)e(—N)e(n).
It follows that J,(t) satisfies the functional equation
Ji_s(t) = t>*"tsgn(t)e(—N)e(n) Js(t).

Combining this with the functional equation for I, in Proposition 8.6, we obtain the
functional equation for ®; ,.

REMARK. In the case that g is a theta series attached to an imaginary quadratic
field, and m is prime to N, Gross and Zagier [G—Z] have computed the value (when
¢(N) = 1) and the derivative (when e(N) = —1) of @5 4(m). It is not difficult to see
that our results coincide with those of Gross—Zagier in this case. Our results go beyond
[G-Z] in that we give the whole kernel (not only the special value or derivatives) in
terms of divisor functions and hypergeometric functions.
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