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INTEGRAL CANONICAL MODELS OF 
SHIMURA VARIETIES OF PREABELIAN TYPE* 

ADRIAN VASIUt 

Abstract. We prove the existence of integral canonical models of Shimura varieties of pre- 
abelian type with respect to primes of characteristic at least 5. 

1. Introduction. 

1.0. Let the pair (G, X) define an arbitrary Shimura variety (cf. 2.3) and let 
Sh(G, X) be the canonical model of this Shimura variety defined over the reflex field 
E{G,X) (cf. 2.6-8). Let p be a rational prime such that G is unramified over Qjp. 
Let v be a prime of E(G,X) dividing p and let 0(v) be the localization of the ring of 
integers of E(G,X) with respect to it. Let H be a hyperspecial subgroup of G(Qp). 
Let A^ be the ring of finite adeles with the p-component omitted. A smooth integral 
model of Sh(G,X)/H over 0(v) is a faithfully flat O^-scheme X together with a 
continuous right action (in the sense of [De2, 2.7.1]) of G(A?) on it such that: 

- its generic fibre NE^X) with its induced G(A?)-action is Sh(G, X)/H with its 
canonical G(Ay)-action; 

- there is a compact open subgroup HQ of G(A?) with the property that for any 
inclusion Hi C H2 of open subgroups of #0, the canonical morphism N/Hi —>■ N/ii^j 
induced by the action of G(A?) on X, is an etale morphism between smooth schemes 
of finite type over 0(v). 

In what follows it is irrelevant which hyperspecial subgroup H o£G(Qp) we choose 
(cf. 3.2.7 2)), and so we often do not mention it. 

Langlands [La, p. 411] expected the existence of a good smooth integral model 
ofSh(G,X)/H over O^), without expressing what "good" should mean. Milne (see 
[Mi4, p. 169] and [Mi3, footnote of p. 513]) conjectured the existence of a smooth 
integral model of Sh(G,X)/H over 0(v) having an extension property similar to the 
extension property enjoyed by the Neron model (over a discrete valuation ring O) of 
an abelian variety (over the field of fractions of O). Such a smooth integral model, if 
exists, is called the integral canonical model with respect to v (and H) (or simply an 
integral canonical model, as the prime v is determined by it) of our Shimura variety 
Sh(G,X). For p > 2, if it exists, it is unique due to the extension property it enjoys 
(cf. 3.2.4). If p > 2 and if Sh(G,X)/H does have an integral canonical model, then 
this model, as an object of the category of all smooth integral models of Sh(G, X)/H 
over 0(v), plays the same role (i.e. it is a final object) played by the Neron model 
(over a discrete valuation ring O) of an abelian variety A (over the field of fractions 
of O), viewed as an object of the category of all smooth models of A (over O) (i.e. of 
the category of all commutative smooth groups over O having A as its generic fibre). 
Paragraphs 3.2-5 present the general definitions and properties pertaining to integral 
models of Shimura varieties. Some important features are gathered in 3.2.3.2 and 
3.2.12, while the descent of such integral models (based on 3.1.3.1) is explained in 
3.2.13. 
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The extension property mentioned above is with respect to healthy regular schemes 
over 0(v). We call a regular scheme Y flat over a discrete valuation ring of mixed char- 
acteristic healthy if for any closed subscheme Z of the special fibre of Y of codimension 
(in Y) at least 2, any abelian scheme over the open suscheme of Y defined by Y \ Z 
extends to an abelian scheme over Y. We were forced to introduce the notion of a 
healthy regular scheme due to the fact that the statement 6.8 of [FC, p. 185] is not 
true in general (cf. [dJO]). However a regular scheme formally smooth over a discrete 
valuation ring of mixed characteristic, having a residue field of characteristic greater 
than one plus its ramification index, is healthy [Fa4]; see also 3.2.2 1). A complete 
proof of this fact is included in 3.2.17. The general theory of healthy normal schemes 
as well as different extension properties (like the extended extension property) defined 
with their help are presented in 3.2. As an independent result we get (cf. 3.2.2.1 and 
3.2.3.3 2)): 

PROPOSITION. // O c-> Oi is a formally etale homomorphism between two dis- 
crete valuation rings, with O a henselian ring of mixed characteristic, then: 

1) A regular scheme Y over O is healthy iff Yo1 is healthy. 
2) An O-scheme Y has the extension property iffYo-^ has the extension property. 

For the case when the inclusion O c-> 0\ is of index of ramification 1 see part 2) 
of 3.2.2.3 A) and 3.2.2.4 a). 

Integral canonical models of Shimura varieties of PEL type (these varieties are 
forming a subclass of the class -to be briefly reviewed in 1.2- of Shimura varieties 
of Hodge type) were constructed in [LR] (cf. also the correction in [Ko]). To our 
knowledge no concrete integral canonical model of a Shimura variety which is not 
related to one of PEL type (in the sense that their adjoint varieties are isomorphic) 
was previously constructed. 

This paper is the first among a sequence of five papers devoted to the existence, 
the compactification, and the understanding of points with values in perfect fields and 
in (regular formally smooth rings over) Witt rings over perfect fields of the integral 
canonical models of Shimura varieties of preabelian type; examples will be provided. 
The other four papers will be [Va2-5]. 

In this paper we are concerned with the existence of integral canonical models 
of Shimura varieties of preabelian type. A Shimura variety Sh(Gi,Xi) is said to 
be of preabelian type if there is a Shimura variety Sh(G2,X2) of Hodge type such 
that their adjoint Shimura varieties are isomorphic: Sh(Gid,Xfd) ^S/^G^X^). 
Along our work we will give a strong support to the general point of view that all 
properties enjoyed by the integral canonical models of Siegel modular varieties and by 
the universal abelian schemes over them are also enjoyed (under proper formulation) 
by the integral canonical models of Shimura varieties of Hodge type (even of preabelian 
type) with respect to primes having a residue field of characteristic bigger than 2 and 
by the special abelian schemes over them (see 1.2.2 for the meaning of special used 
here). 

1.1. Our basic result (see 5.1) is: 

THEOREM 0. With the above notations, if the Shimura variety Sh(G, X) is of 
Hodge type and if the pair (G, X) satisfies a slight condition (*) with respect to the 
prime p (assumed to be greater than 2) (cf. 5.1), then Sh(G, X) has an integral canon- 
ical model with respect to any prime v of E(G, X) dividing p (and any hyperspecial 
subgroup H of G(Qp)). 
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Fixing the pair (G, X) (of Hodge type), the condition (*) is satisfied with respect 
to any prime p big enough (see 1.2.6). For the proof of our basic result we rely heavily 
on the crystalline machinery developed in [Fal-3]. 

1.2. To explain 1.1, we start with an injective map /: (G,X) M* (GSp(M/r, ip),S) 
(cf. 2.4). Here the pair (GSp(W, '0),5) defines a Siegel modular variety (cf. Example 
2 of 2.5). The existence of such an injective map is what defines the class of pairs 
(G, X) (defining a Shimura variety) of Hodge type. Let Z(p) be the localization of 
Z with respect to p. We assume the existence of a Z(p)-lattice L of W such that 
the alternating form i/;: W (8) W -> Q induces a perfect form ipiL <g) L -> Z(p) (i.e. 
the induced Z(p)-linear map from L into its dual L* is an isomorphism) and there is 
a family of tensors (va)ae3o m Z(p)-modules of the form (L 0 L*)®71, n G N, fixed 
by G and of degree at most 2(p — 2) (if VQ, E (L <g> L*)®n then the degree of va 

is 2n), which is Z(p)-well positioned with respect to ip for the group G (see 4.3.4 
for a precise definition of the notion of a well positioned family of tensors). Let 
K := {g £ GSp(W,ilj)(Qp) | g(L®Zp) = L(g)Zp}. The hypotheses on L imply that K 
is a hyperspecial subgroup of GSp(VF,^)(Qp) and the closure Gz{p) of G in GSp(L, ip) 
is a reductive group over Z(p). So the intersection H := G(Qp) D K is a hyperspecial 
subgroup of G(Qp). We choose a Z-lattice Lx of W such that tj) induces a perfect form 
?/>: Lz 0 Lz -> Z and L = Lz® Z(p). Let (^a)aGa (with 3o C 3) be an enlarged family 
of tensors in the tensor algebra of W 0 W* (W* being the dual Q-vector space of W) 
such that G is the subgroup of GSp(W, ip) fixing the tensors of this family. The choice 
of the lattice Lz and of the family (va)ae^ allows the interpretation of Sh(G,X)(C) 
as the set of isomorphism classes of principally polarized abelian varieties over C of 
dimension g (with 2g = diuiQ(W))J having some level structures, carrying a family of 
Hodge cycles (wa)aeg and satisfying some additional conditions (cf. 4.1). 

1.2.1. It is well known that the Z^-scheme M parameterizing isomorphism 
classes of principally polarized abelian schemes of dimension g over Z(p)-schemes, 
having level-N symplectic similitude structure for any N G N relatively prime to p, 
together with the canonical action of GSp(Wr, V;)(A?) on it, is an integral canonical 
model ofSh(GSp(W,il)),S)/K over Z(p) (see 3.2.9). 

1.2.2. The normalization N of the closure of Sh(G,X)/iJ in Mo(v) is a normal 
integral model of Sh(G,X)/H having the (extended) extension property (cf. 3.4.1; 
see def. 2) and 3) of 3.2.3). This integral model is an integral canonical model of 
Sh(G,X)/H iff N is formally smooth over 0(v) (cf. 3.4.4). The universal principally 
polarized abelian scheme over M, gives birth to a principally polarized abelian scheme 
(A, VA) over N, which we call special. Let F be the algebraic closure of the residue 
field k(v) of v. 

The Hodge cycles are (presently) defined only in characteristic zero. But the 
Hodge cycles (of degree not bigger than 2(p — 2)) of an abelian scheme over a discrete 
valuation ring which is finite flat over a ring W(k) of Witt vectors of a perfect field k of 
characteristic p are well behaved (cf. [Fa3, cor. 9]) with respect to the integral version 
of Fontaine's comparison map (see [Fa3, th. 7]). Using the above hypotheses on the 
Z(p)-lattice L, we first exploit (cf. 5.2.12) the good behaviour of Hodge cycles under 
the integral version of Fontaine's comparison map (i.e. we can pass from a reductive 
group in the etale Z^-context to a reductive group in the integral crystalline, de Rham 
context). Then we use (cf. 5.2.10) de Rham conjecture [Fal-2] to construct (cf. 5.3-4) 
local deformations of (principally polarized) abelian schemes of dimension g (having 
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some level structures) over W(F), carrying a family of Hodge cycles and satisfying 
the required additional conditions. With these deformations we prove the formal 
smoothness of 3Sf. The main new idea besides the ones of [Fa3] is the use of the ring 
Re, introduced in 5.2.1 (here e E N). It is a projective limit of artinian W(F)-algebras; 
this fact plays a key role in 5.3.2. 

We detail the above two steps. Let y: Spec(F) r—>► NwiF) be a closed point, and 
let V be a discrete valuation ring which is a finite flat extension of W(F) such that 
y can be lifted to a point zy'Specfy) —>• NwiF)- Let e := [V : W(¥)] and let Rne 

be the normalization of Re in its field of fractions. First we show, starting from 
zy, the existence of a morphism Spec(i?ne) —> Nwik) lifting y (5.3.1.1). Using the 

natural epimorphism Rne -» W(¥) (cf. 5.3.4), we deduce the existence of a good 
lift zW(¥):Spec(W(F)) ->• KW(F) of y. Second we use directly [Fa3, th. 10 and the 
remarks after] in the context provided by ZW(F) (see 5.4-5). 

1.2.3. On the way of proving the formal smoothness of N we obtain (cf. 5.2.16) 
an improvement in the Principle B of [Bl, 3.1]. 

1.2.4. §5 is entirely devoted to the construction of such local deformations and 
to the prove of the formal smoothness of K, while the general (needed) theory of well 
positioned families of tensors for a reductive group is presented in 4.3. The most useful 
well positioned families of tensors (of a general nature) are presented in 4.3.10 b) (see 
also 4.3.10.1) for the case of a semisimple group, and in 4.3.13 for the case of a torus. 
For the case of a reductive group we use families of tensors formed by putting together 
well positioned families of tensors for its derived group and well positioned families 
of tensors for its toric part (i.e. for the connected component of its center): lemma 
3.1.6 allows us to do this (cf. 4.3.6 2)). The behaviour of hyperspecial subgroups 
with respect to homomorphisms of reductive groups needed for this general theory is 
described in 3.1.2. 

The proof of 4.3.10 b) is in two parts. The first part is a criterion of when a Lie 
algebra over a reduced ring R comes from a semisimple group GR over R. The second 
part is a criterion of when a representation of Lie(GjR.) comes from a representation of 
GR. 

1.2.5. In 5.7.5 we illustrate our ideas in the case of classical Spin modular va- 
rieties of odd dimension (and rank two), while in 4.3.1 we show how, the previously 
known case of Shimura varieties of PEL type, is a particular case of our approach via 
well positioned families of tensors. 

1.2.6. The condition (*) means: there is an injective map 

f:(G,X)^(GSj>(W,il>),S) 

for which there is a Z(p)-lattice L of W satisfying the conditions mentioned in the 
first paragraph of 1.2. Fixing an injective map /: (G,X) c-> (GSp(W,^),S'), for any 
rational prime p big enough (with an effectively computable bound, just in terms of 
the representation G —>• GL(W)), we can find a Z(p)-lattice L of W satisfying these 
conditions (cf. 5.8.7 and 5.8.1). 

We make use only of Z(p)-well positioned families of tensors having only tensors 
of degrees 2 and 4, and the condition p> 5 (cf. the inequality 4 < 2(p — 2)) is needed 
just for being allowed to use tensors of degree 4. The most useful tensors of degree 4 
are presented in 4.3.2. In essence we are using only three tensors of degree 4. Fixing 
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the injective map /, these tensors are endomorphisms of End(VF) (we are identifying 
End(End(W0) with (W 0 W*)®2 and End(W) with End(PF*)): 

- the first one (cf. 4.2.1) is the projection 7r(Lie(Gder), W) of End{W) on Lie(Gder) 
along the orthogonal complement of Lie(Gder) with respect to the trace bilinear form 
on End(W); 

- the other two tensors B and B* are elements of End(End(W)) expressing that 
the Killing form on Lie(Gder) is perfect. 

4.3.10 b) together with a well known fact on Shimura varieties of Hodge type 
(expressed in the proof of 5.7.1 by 5(Lie(Gder),T;F) = 2) imply: 

FACT. The family of tensors formed by 7r(Lie(GdeT),W), B and B* is Z(pywell 
positioned for Gder. 

The role of ip is irrelevant; so we do not need to mention with respect to '0. 

1.2.6.1. The condition (*) is satisfied if there is a Z(^-lattice L of W such that 
ip: Z/(p) 0 L(p) -> Z(p) is perfect, the closure of G in GSp{L(v)^) is a reductive group 
over Z(p) and the above three tensors are integral with respect to it (cf. 5.7.1). This 
forms a simple criterion for a practical form of Theorem 0. 

1.2.6.2. The use of tensors (Hodge cycles) of degree 4 allows us to have a uniform 
treatment of all Shimura varieties of Hodge type, with no preference for Shimura 
varieties of PEL type. But we would like to remark that, as it will be seen along our 
work (cf. [Va2]), the study of Shimura varieties of Hodge type of A^ Bi or 1}^ type 
(see [De2] for the possible types of a Shimura variety) is (somehow) easier than the 
study of Shimura varieties of Hodge type of Ci or Df type. 

1.3. We prove (6.5.1.1) the Z(p)-version of the main result of [De2]. In its sim- 
plified form (6.4.2): 

THEOREM 1. For any adjoint Shimura variety Sh(Go,Xo) of abelian type and 
for any prime p>5 such that Go is unramified over Qp, there is a Shimura variety of 
Hodge type Sh(G, X) having Sh(Go,Xo) as its adjoint variety, with G unramified over 
Qp, and such that the pair (G,X) satisfies the condition (*) (of 5.1) with respect to 
p. Moreover, for any Shimura variety Sh(Gi,Xi) of abelian type having Sh(Go,Xo) 
as its adjoint variety, there is an isogeny Gder —> Gder. 

1.3.1. There are three main tools needed for the proof of Theorem 1. The first 
two are provided by [De2, 2.3.10] and by the above Fact, via 1.2.6.1. But they are 
not enough: it is not always possible to find a Z(p)-lattice L of W as in 1.2.6.1. For 
instance the Killing form of the Lie algebra of a simple split adjoint group of Bi Lie 
type over W(¥) is not perfect if p divides 21 - 1, / G N. The third tool (cf. 6.5-6) is 
the construction of injective maps /: (G,X) M- (GSp(W^),S) such that there is a 
reductive subgroup G of GL(W) (we are not bothered if it is or it is not contained in 
GSp(W,ip); however see 6.6.2) containing G, unramified over Qp, and such that: 

- a variant of 1.2.6.1 (for instance cf. 5.7.4 and the proof of 6.5.1.1) can be applied 
to Gder; 

- we can "regain" G out of G by using endomorphisms of W fixed by G (i.e. we 
have a relative PEL situation, see 4.3.16). 

The construction of such injective maps is carried out in 6.5-6. It relies heavily 
on the classification [De2] of the types of adjoint Shimura varieties of abelian type: 
for each type we have to proceed differently (but similarly). 



406 A. VASIU 

1.4. Theorem 1 implies a positive answer to Milne's conjecture in the case of 
Shimura varieties of preabelian type for primes p> 5 (6.4.1): 

THEOREM 2.* If (G,X) defines a Shimura variety of preabelian type and ifp>5 
is a rational prime such that G is unramified over Qp, then Sh(G, X) has an integral 
canonical model with respect to any prime v of E(G,X) dividing p. 

As a scheme this model is a pro-etale cover of a quasi-projective smooth scheme 
over 0(t;). §6 is devoted to the proof of Theorem 2 (via Theorem 1). The passage 
from the existence of integral canonical models of Shimura varieties of Hodge type to 
the existence of integral canonical models of Shimura varieties of preabelian type is 
explained in 6.1-2. 

The passage from the Hodge type case to the abelian type case is achieved by 
taking quotients through group actions (cf. 6.2.2). The groups involved are M-torsion 
groups for some M £ N (cf. the proof of 6.2.2). In all cases, except the case when we 
deal with Shimura varieties of whose adjoint varieties have a simple factor of Ai type, 
and with a prime p dividing / + 1, this is straightforward, as M is relatively prime 
to p (cf. 3.4.5.1 and 6.2.2). When p divides M we have to express more concretely 
these group actions and to prove that they are free actions. This is achieved in 6.2.2.1, 
based on a simple lemmci on semisimple adjoint groups to which a particular study 
of adjoint filtered Lie cr-crystals attached (see 5.4.6) to maps zW(¥) as in 1.2.2 gets 
reduced (here a is the Frobenius automorphism of W(¥)). Regardless of how are M 
and p we need the fact (again cf. the proof of 6.2.2) that the integral canonical models 
obtained through Theorem 0 are moduli schemes (of abelian schemes). This passage 
is supported by simple variants (cf. 3.2.14 and 6.2.3) of [Del, 1.15]. 

The passage from the abelian type case to the preabelian type case is achieved 
by the normalization procedure (cf. 6.1). 

The paper contains a complete proof of Theorem 2 for the abelian case, while the 
last step (6.1.2) needed for the proof in the case of Shimura varieties of preabelian type 
which are not of abelian type will be presented in [Va3], as it requires the formalism of 
smooth toroidal compactifications of integral canonical models of Shimura varieties (of 
preabelian type). For a discussion, and another approach, see 6.8. In 6.8 a complete 
proof of 6.1.2 is included for the compact case as well as for the generic situation (i.e. 
when p is big enough) of the general case. It is based on 3.2.11 and [De2, 2.3.8]. For the 
sake of convenience, the results depending on the proof of 6.1.2 in the remaining cases 
(they are described in 6.8.6), are labelled (cf. 6.1.2.1) with a star. So also Theorems 
2 and 3 are labelled. Warning: the labelled results are proved here entirely for the 
abelian type, for the compact type and for the generic situation. The independent 
result 5.6.5 h) is not proved here: so it is labelled with two stars. 

1.4.1. For making some of the main results easy accessible to a larger mathemat- 
ical community, we state in a 4.6.10 a simple criterion of how to recognize an integral 
canonical model whose existence is provided by Theorem 2. 

1.5. Different quotients of integral canonical models of a Shimura variety Sh(G, X) 
of preabelian type with respect to primes v of E(G,X) having a residue field of 
characteristic at least 5, can be glued together (6.4.3-4). To see this let S be the set of 
primes whose elements are 2, 3 and the primes p> 5 for which G is ramified over Qp. It 
is a finite set. We write the ring of finite adeles as a product A/ = (H^es Qg) x ^z • Let 
Hs be a compact open subgroup of G(A§) of maximal volume (with respect to a Haar 
measure on the locally compact group G(A§)).   It is a product of its g-components 
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(for primes q $. S), and every such g-component of it is a hyperspecial subgroup Hq 

of G(Qq) (regardless of the chosen Haar measure). We have: 

THEOREM 3.* For any compact open subgroup iJ§ of G(Y[q^sQp) such that 

Sh(G,X) is a pro-etale cover ofSh.(G^X)/Hs xHs, there is a quasi-projective smooth 
scheme M(Hg) over the normalization O(s) ofZ^rr 1 ] in E(G,X), uniquely deter- 

mined by the fact that its generic fibre is Sh(G,X)/iJ§ x iJs and that, for any prime 
v of E(G,X) dividing a rational prime q £ S, the normalization of M(ijr§)o(t;) in 
the ring of fractions ofSh.(G:X)/Hq i$ the integral canonical model ofSh.(G,X) with 
respect to v (and Hq). 

These smooth schemes are the analogue of the schemes (attached to Siegel modu- 
lar varieties) parameterizing principally polarized abelian schemes (of a given dimen- 
sion) having a finite symplectic similitude level-structure. They enjoy a very important 
extension type property (cf. rm. 1) of 6.4.6). They are models over "punctured" ring 
of integers (of number fields) of quotients of (some) finite disjoint unions of Hermitian 
symmetric domains by (some) arithmetic subgroups. In rm. 3) of 6.4.6 we explain 
why the notation M(H$) is j ustified. For the compact case (i.e. when Sh(G,X) is 
a pro-etale cover of a projective smooth E(G, X)-scheme) see 6.4.11. The proof of 
Theorem 3 is based on 6.2.4.1, which is a natural consequence of the ideas presented 
in 6.2.3 and in the proof of 6.2.2. 

1.6. We present now the part of [Va2] which brings more light to some parts of 
the present paper. All that follows in 1.6-8 could have been equally well presented as 
remarks at different places of §5-6; but for the sake of convenience, we gathered all 
these results (referred to in §5-6) here. 

We extend the well known results (for Siegel modular varieties) concerning the 
existence of an ordinary type and the existence of the canonical lift of an abelian 
variety of ordinary type, to any special principally polarized abelian scheme (A^VA) 

over an arbitrary integral canonical model N of a Shimura variety Sh(G, X) of Hodge 
type with respect to a prime v of E(G, X) dividing a rational prime p > 5 (cf. also 
[Val]). Let 'Nk(v) be the special fibre of X. Using the notations of 1.2 we obtain: 

- a G-ordinary type (with respect to the prime v and the injective map 
/: (G,X) c^ (GSp(W^)1S)), which is the formal isogeny type associated to abelian 
varieties (obtained from A by pull back) over the geometric points of a Zariski dense 
open subscheme of N*.^); 

- G-ordinary points of N&(v) (these are the points of N*.^), with values in a field, 
with the property that the abelian varieties over them obtained from A by pull back, 
have as a formal isogeny type, the G-ordinary type); 

- G-canonical lifts of G-ordinary points with values in perfect fields (these G- 
canonical lifts are points of N with values in rings of Witt vectors of perfect fields). 

The G-ordinary type we obtain is a usual ordinary type iff the field k(v) has p 
elements. If this is so then the abelian variety over W(k) obtained from A by pull 
back through a G-canonical lift of a G-ordinary point (with values in the perfect field 
k) of Jfk(v) ? is the canonical lift of an abelian variety of ordinary type. 

1.6.1. The point defined by the generic fibre of the G-canonical lift of a G- 
ordinary point of J^k(v) with values in the algebraic closure of k(v) is a special point 
of ^EiG.x) (see 2.10 for the definition of special points). 

We also prove another conjecture of Milne [Mi5, 0.1] (cf. 5.6.5-6, 5.8.8 and [Va2]). 
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1.6.2. To any point y: Spec(k) -)> Jikiv) (with k a perfect field) we attach (see 
5.4.6) a Lie cr-crystal (g, (p): g is the Lie algebra of a reductive group over W(k) whose 
fibre over KQ := W(k) W is GK0, while (f is a cr-linear automorphism of g 0^0 (o" being 
the Frobenius automorphism of i^o) such that tpipg) C g. Any lift z: Spec(W(k)) —> 3Nf 
of 2/ produces naturally a filtration 0 = F2(g) C i?1(g) C ^(g) C i?_1(g) = g such 
that ip(^F1(g)-\-F0(Q) +pg) = g. So (g,^,F0(g),F1(g)) is a p-divisible object of the 

category M3:'[-i^(W(k)) (defined in [Fal]). F0(g) is a parabolic Lie subalgebra of g 
and F1 (g) is the Lie algebra of its unipotent radical. The point y is a G-ordinary point 
iff there is a lift z of it to W(k) which makes the Lie cr-subcrystal of (g, (p) corresponding 
to non-negative slopes to be a p-divisible object of the category MJ[o,i](^(^)) (of 
[Fal]). Such a lift z, if exists (i.e. if y is a G-ordinary point), is unique and defines 
the G-canonical lift of y. 

These Lie cr-crystals allows us to achieve a stratification of N*.^) in G(M)- 
invariant locally closed subschemes indexed by the Newton polygons of the attached 
cr-crystals g(l) (we tensor g with W(k)(l) to get only non-negative slopes) similar to 
the one enjoyed by the special fibres of the integral canonical models of Siegel modular 
varieties. The G-ordinary points of 'N^v) are the points of the (generic) Zariski dense 
open stratum. 

1.7. We also show how the results mentioned in 1.6.1, together with their proves, 
can be used for handling the Langlands-Rapoport conjecture ([LR]; see [Mi5] and [Pf] 
for the correct formulation) for an arbitrary integral canonical model N of a Shimura 
variety Sh(G, X) of preabelian type with respect to a prime v of E(G, X) having a 
residue field k{v) of characteristic p> 5. 

Let F be the algebraic closure of k(v) and let $ be the Frobenius automorphism of 
it having k(v) as its fixed field. To the triple (G,X,v) it is attached a set M(G, X,v) 
on which G(AR) and $ act (cf. [Mi5] and [Pf]). The Langlands-Rapoport conjec- 
ture for N (or for the triple (G,X,v)) asserts the existence of a bijection of sets 
fa: M(G,X,v) ^N(F), preserving the actions of G(A?) and $ on them. The ex- 
istence of the canonical Lie stratification of the special fibre N^(v) of N allows a 
formulation of the Langlands-Rapoport conjecture for any individual stratum of this 
stratification. To prove the Langlands-Rapoport conjecture for N is the same as prov- 
ing the Langlands-Rapoport conjecture for each individual stratum. We do prove this 
for the open stratum. 

1.7.1. The proof of [Mi5, 0.1] together with [Mi5, 6.4] imply (cf. also [Mi5, 6.12]; 
[Mi5, 6.12] is worked out under the hypothesis of [Mi5, p. 24]: it can be removed, cf. 
5.6.4) that the Langlands-Rapoport conjecture is true for N if Sh(G,X) is a Shimura 
variety (whose adjoint factors are) of A/, Bi, Ci or Df type, modulo a sufficiently good 
theory of reduction of Hodge cycles mod p (very important progress was made in this 
direction by Milne, conform the presentation in [Mi5]). We explain why the use of 
such a theory of reduction of Hodge cycles can be avoided for all Shimura varieties of 
preabelian type. We first prove that the integral canonical models of Shimura varieties 
of Df type can be treated entirely as the other Shimura varieties: if there is a special 
principally polarized abelian scheme (A, 7A) over DSf (this implies that Sh(G, X) is a 
Shimura variety of Hodge type; so ^E(G,X) is a moduli space of principally polarized 
abelian schemes of a given dimension, having a family of Hodge cycles and some level 
structures, and satisfying some extra conditions; AE(G,X) 

1S the universal abelian 
scheme over Ng-^x))? then for any point y: Spec(k) -> N, with k an algebraically 
closed field of characteristic p, any principally polarized abelian variety over k which 
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is G-isogeneous to (Ay,pAy) (i.e. it is isogeneous in a sense involving the cycles) is 
G-isomorphic (i.e. it is isomorphic in a sense involving the cycles) with (AZ,PAZ) for 
some fc-valued point z of 3sf (in other words the G-isogeny classes are as expected 
to be). Here the principally polarized abelian varieties (Ay,pAy) and (AZ,PAZ) are 
obtained from (A, 7A) by pull back through y and respectively z. 

As an application of this we show the existence in the general case of 1.10 of an 
injective map fa: M(G, X, v) <-» N(F) preserving the actions of G(A?) and $ on them 
(the F-valued points of the open stratum of 'Nk(v) are in the image of fa). Moreover 
we prove that fa is a bijection (and so that the Langlands-Rapoport conjecture for 
X is true) if the residue field k(vad) of the prime t>ad of E(Gad, Xad) divided by v has 
precisely p elements, or if (Gad, Xad) has all the simple factors of An, Bn or D^ type, 
with n G N. 

1.8. In [Va3] we introduce the notion of an integral canonical model of a Kuga 
variety of Hodge type. Their existence is implied by the existence of integral canonical 
models of Shimura varieties of Hodge type. These models allows us to prove the 
existence of smooth toroidal compactifications of the integral canonical models of 
Shimura varieties of preabelian type (this has been cojectured by Milne [Mi4, 2.18]): 
Any integral canonical model N of a Shimura variety Sh(G,X) of preabelian type 
with respect to a prime v of E{G, X) dividing a rational prime p > 5, admits plenty of 
smooth toroidal compactifications and has a minimal (normal) compactification >fmc. 
The smooth toroidal compactifications of 3Sf are obtained from Kmc through blowings 
up. In particular, if J^EiG.x) is a pro-etale cover of a projective scheme over E(G, X), 
then N is a pro-etale cover of a projective smooth scheme over 0(v) (cf. also 6.4.1.1 
2))- 

The toroidal compactifications of Shimura varieties of Hodge type are obtained 
by the same procedure (as the integral canonical models are obtained) of taking the 
normalization of the closure of smooth toroidal compactifications (over number fields) 
of quotients of Shimura varieties of Hodge type in (extensions to etale Z(p)-algebras 
of) smooth toroidal compactifications of quotients of integral canonical models of 
Siegel modular varieties constructed in [FC] (cf. [Har] for the non-integral part over 
number fields). So we get special semi-abelian schemes over the smooth toroidal 
compactifications of the integral canonical models of Shimura varieties of Hodge type. 

See [Va3] for definitions and for the proves of the results mentioned in 1.8. 

1.9. A part of the results presented in this paper, is a completely revised and 
improved version of the first part of our thesis [Val]. For the sake of not making this 
paper too long, in 4.3.11, 6.3, 6.5.1.1 and 6.6 we use also the notations of other papers. 

The reader who is interested just to have a pretty good idea about what is going 
on in this article can follow the route: 3.2 (to pick up whatever the reader is not 
familiar with), 4.1, 5.1, 5.6-8 and 6.4. 

We would like to thank Prof. Gerd Faltings for his encouragements to approach 
gradually the topics mentioned above, for numerous discussions we had about his 
recent results [Fa3-4] (results without which this work would have had fewer fruits), 
for his advices and correction of the proof of 5.1 and 3.4.5.1. We would like to express 
our gratitude to Prof. James Milne, whose very beautiful and deep work [Mil-6] is 
highly inspiring to us and whose conjectures (see [Mi3-5]) were the starting point of our 
work. We are also very much obliged to [De2]. We would like to thank Ben Moonen 
for asking us how healthy schemes behave with respect to the pull back operation 
through morphisms attached to maps of index of ramification 1 between two discrete 
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valuation rings of mixed characteristic (this was the starting point for a great part of 
3.2.1-3), and for the request of enlarging the presentations of 4.3.10 b) and 6.2.2. We 
would like to thank Prof. Pierre Deligne for pointing out a mistake in a preliminary 
version of 3.2.2 4). 

I would like to thank Princeton University, Max-Planck Institute from Bonn, 
FIM, ETH-Ziirich and UC at Berkeley for providing us with excellent conditions for 
the writing of this paper. This work was partially supported by the NSF grant DMF 
97-05376. 

2. Preliminaries. We fix our notations by mostly reviewing some well known 
facts (cf. [Del], [De2] and [Mi4]). 

2.1. Notations and conventions. Reductive groups over fields are always 
assumed connected. Reductive group schemes are understood to have connected fibres. 
For a reductive group G over a scheme we denote by Gder, Z{G), Gab and Gad, 
respectively, the derived group of G, the center of G, the maximal abelian quotient of 
G and the adjoint group of G. We say that a reductive group G over Q is unramified 
over Qp (p being a rational prime) if GQP is unramified over Qp. For G an affine group 
scheme over a scheme 5 we often denote by Lie(G) its Lie algebra, and in the case 
when G is a reductive group scheme we denote by Aut{G) the group scheme over S 
defined by the automorphisms of G. 

If X is a set endowed with an equivalence relation R C X x X, we denote by 
[x] G X/R the equivalence class of x G X. For a map f:A-±B and for a subset 
Ai of A, we denote by f\Ai the restriction of f to Ai. If f:A -» B and g:B -> C 
are morphisms in some category we refer to g o f as the composition of / with g. 
All the projective limits of schemes are assumed to be filtered, with affine transition 
morphisms. 

The expression (G, X) always denotes a pair defining a Shimura variety, while 
E(G, X) denotes its attached reflex field. Sh(G, X) denotes the Shimura variety de- 
fined by it, identified in 2.3-8 (resp. in the rest of the paper) with the complex variety 
(resp. with the canonical model of the complex variety). For an arbitrary compact 
subgroup K of G(A/), we denote by ShK(G,X) the quotient of Sh(G,X) by K. Any 
x G X and any a G G(A/) define a complex point [x,a] of ShR:(G, X). 

If & is a field we denote by k its algebraic closure. For a perfect field k, W(k) is 
the ring of Witt vectors of k. Always VQ denotes such a Witt ring over an algebraically 
closed field and then KQ automatically denotes its field of fractions. If v is a prime 
of a global field E, we denote by k(v) its residue field and by 0(v) the localization 
of the ring of integers of E with respect to it. The maximal abelian extension of E 
is denoted by Eab. For a local ring R we denote by i?'1, i?sh and R respectively its 
henselization, its strict henselization and its completion with respect to its maximal 
ideal. 

Let p be a rational prime. We usually write Z^ instead of O^. The ring of finite 

adeles Z 0^ Q is denoted by A/ and the ring of finite adeles with the p-component 
omitted is denoted by A?. We use freely different Tate-twists: Q(l), Qp(l), Zp(l), 
A/(l) etc. For G a linear group over Q, G(A) is endowed with the coarser topology 
which makes all the maps G(A) -> AQ(A) = A, induced by morphisms G -» AQ, 

continuous (AQ being the affine line over Q). Similarly for G(A/). If G is a linear 
group over the field K of fractions of a discrete valuation ring (abbreviated DVR), 
then G(K) is endowed in the same manner with a topology. We denote by ¥p the field 
with p elements and by F its algebraic closure. 
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A continuous action of a totally discontinuous locally compact group on a scheme 
S is always in the sense of [De2, 2.7.1] and is a right action. The purity therorem stated 
in [SGA1, p. 275] will be referred to as the classical purity theorem. A quasi-projective 
or projective morphism is always understood in the sense of [Hart]. 

For every free module M of finite rank over a commutative ring R we denote by 
M* its dual. For any non-negative integer n, we denote by M®n the tensor product 
of n-copies of M. By the tensor algebra of M we mean ©neNu-fo}^071- If va € 
M®n 0 M*®771, with n and m non-negative integers, we denote by deg(i;a) := n + m 
its degree. A family of tensors of the tensor algebra of M is usually denoted in the 
form (va)ae2, with 3 a set. A bilinear form on M is called perfect if it induces an 
isomorphism from M into its dual M*. Occasionally we also denote by K* the group 
of invertible elements of a field K. A pair (M, ip) with M as above and with I/J a 
perfect alternating form on it, is called a symplectic space over R. We use the same 
notation for two perfect alternating forms if they are obtained one from another by 
extension of scalars. 

For a finite surjective etale morphism Spec(iJi) -> Spec(i?o) and for a reductive 
group G over i?i, Res^/^G denotes the reductive group over RQ obtained from G 
by restriction of scalars. 

For an abelian variety A over a field k of characteristic zero we denote by Vf (A) 
the free A/-module (|pi keiimA^ ->> A^)) <®z Q. We use freely the terminology of 
Hodge cycles of A used in [De3]. A polarization of an abelian scheme A over a scheme 
Y is usually denoted by PA (or py), and by abuse of notation we still denote by PA 

(resp. PY) the different maps on the cohomologies (homologies) of A induced by it. A 
pair of the form (A, PA) (or (A,PY)) always denotes a polarized abelian scheme over Y. 
For an abelian scheme A over Y, A1 denotes the dual abelian scheme of A, while for any 
N G N, we denote by A[N] the finite flat group scheme over Y defined by the TV-torsion 
points of A. By a level-N structure of an abelian scheme A (over Y) of dimension d, we 
mean an isomorphism k: L(N)Y ^ A[N] of finite group schemes over Y; if moreover 
A has a principal polarization p^, then by a level-N symplectic similitude structure 
of (A,PA), we mean a similitude (symplectic) isomorphism (L(N)Y,IP) ^> (A[N],PA). 

Here (L(N),ip) is a symplectic space over Z/iVZ of dimension 2d] L(N) is viewed as a 
finite flat group scheme over Spec(Z). If A is an abelian variety over C then Hl(A, Q), 
Hi(A, Z), etc., i G N U {0}, refer to groups of the Betti cohomology and homology of 
A. 

We will have four more sections of notations at the appropriate moments: 3.2.6, 
4.3.3, 5.7.2 and 6.6.1. 

2.2. The torus S. Let § be Resc/RGm. We have: §(E) = C* and S(Q = 
C* x C*. The last identification is made in such a way that the inclusion E M- C 
induces z -> (z, z). To H an algebraic group over R and to a homomorphism x: S —> 
H, we associate two homomorphisms of algebraic groups: fix:Gm —> He, given on 
complex points by z —> xc(z, 1), z G Gm(C) = C*, and (the weight homomorphism) 
wx:Gm -+ H, given on real points by r -> x(r)-1, r G Gm(M) = R* C C* = §(M). 

2.3. Definition of a (complex) Shimura variety. A Shimura variety is 
defined by a pair (G, X)1 called a Shimura pair, comprising from a reductive group G 
over Q and from a G(M)-conjugacy class X of homomorphisms § —> GR satisfying the 
following axioms: 

(SV1) for each x G X, the Hodge structure on the Lie algebra g of G defined by 
Ad o x: § -► GL(m) is of type {(1, -1), (0,0), (-1,1)}; 
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(SV2) for each x e X, adx(z) is a Cartan involution of G^d; 

(SV3) Gad has no factor defined over Q whose real points form a compact group. 

Let x G X. Let KOQ be the subgroup of G(R) fixing x. It is a maximal compact 
subgroup of G(E) iff Gab(R) is compact (cf. SV2). We have X = G(E)/iroo, with x 
corresponding to the equivalence class of the identhy element. 

Axiom SV1 implies that the homomorphism wx is independent of x G X. We 
write it wx- It is called the weight of the Shimura variety defined by (G,X). SV1 also 
implies (cf. [De2, 1.1.14]) that X has one and only one complex structure such that, 
for all representations p: GR ->• GL(WR), with WR a finite dimensional real vector 
space, the Hodge filtration F(p o x) of WR ® C depends holomorphically on x € X. 
This complex structure is G(M)-invariant and the connected components of X are 
Hermitian symmetric domains (cf. [De2, 1.1.17]). 

For each compact open subgroup K of G(A/) 

ShK(G,X) := G(Q) \Xx G(Af)/K 

is a finite disjoint union of quotients of X by arithmetic subgroups. This complex 
space has a natural structure of a quasi-projective (algebraic) variety over C [BB], 
which is smooth if K is small enough. In what follows Sh.K(G,X) is identified with 
this quasi-projective variety. 

For K C L compact open subgroups of G(A/), we get a finite surjective mor- 
phism (of schemes) f(L,K):ShK(G,X) ->• 5/IJL(G,X) defined by [x,a] -4 [x,a] 
(x G X, a £ G(A/)). If Ki = gKg-1 with g G G(A/) we get an isomorphism 
f(K,g):Sh.K(G,X)-:$'ShK1(G,X) defined by [x,a] —> [x.ag-1]. The isomorphisms 
f(K,g) with g G K are the identity isomorphisms. 

The (complex) Shimura variety Sh(G,X) is the projective limit of the compatible 
system of morphisms /(L, K) together with the (right) continuous action of G(A/) on 
it defined by the rule [x,a]g = [x,ag]. The continuity property of this action implies 
that if K is a normal subgroup of L, then f(L,K) identifies ShL(G,X) with the 
quotient of Shj^G, X) by L/K (this group acts on it through the morphisms f(K, g), 
with g G L). The dimension of Sh(G, X) is the dimension of X as a complex manifold. 

We have 

Sh(G,X)(C) = G(Q) \X x G(Af)/zm, 

where Z = Z{G) and Z(Q) is the closure of Z(Q) in Z(kf) ([De2, 2.1]). 

2.4. Definition of maps between Shimura varieties. The maps from a 
Shimura pair (G,X) into another Shimura pair (GI,XL) are group homomorphisms 
f:G -* Gi taking X into Xi. We denote such a map by /:(G,X) -> (Gi,Xi). 
The maps from the Shimura variety defined by (G,X) into Shimura variety de- 
fined by (Gi,Xi) are in one to one correspondence with the maps f:(G,X) -> 
(GI,XL). The induced map X -> Xi is holomorphic. If K is a compact open 
subgroup of G(Af) and if Ki is a compact open subgroup of Gi(A/) such that 
f(K) C i^i, then the map / induces a morphism of schemes (cf. [BB]) f(Ki,K): 
ShK:(G,X) -> Sh^^G^Xi) by the rule [a;,a] -^ [f{x),f{a)}. Passing to the limit 
we get the (map or) morphism between Shimura varieties (associated to / and still 
denoted by /) /:Sh(G,X) —v Sh(Gi,Xi). Sometimes we work with a map between 
Shimura pairs /: (G,X) -¥ (Gi,Xi) and sometimes we work with the (map or) mor- 
phism between Shimura varieties associated to it /: Sh(G, X) -> Sh(Gi, Xi). The map 
/ is called injective (or an embedding) if it is injective as a group homomorphism; is 
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called finite if the induced homomorphism at the level of derived groups is an isogeny; 
is called a cover if it is finite and as a group homomorphism is surjective, having as 
kernel a torus T satisfying iJ1(Gal(S/A:),r(S)) = 0, for any field k of characteristic 
zero. If /: (G, X) —>• (Gi,Xi) is a finite map, then we identify X with a disjoint union 
of connected components of Xi. 

Warning: If f:(G,X) -> (Gi,Xi) is a finite map, then we sometimes refer to 
/: Sh(G, X) -»• Sh(Gi, Xi) as a morphism (of schemes), and sometimes as a finite map 
(of Shimura varieties), though as a morphism it is not finite, being just pro-finite. 

2.4.0. Products. The category Sh whose objects are Shimura varieties and 
whose morphisms are the morphisms between them has finite products: If Sh(Gi, Xi), 
i = 1,2, are two Shimura varieties, then their product Sh(Gi,Xi) x Sh(G2,X2) is 
the Shimura variety defined by G = Gi x G2 and X = Xi x X2 (with the logical 
projections defineed by the projections of G onto its factors Gi and G2). 

Let fii (Gi, Xi) -» (G, X) be finite maps, i = 1,2. So Xi and X2 are disjoint union 
of connected components of X. Let X3 be their intersection. It can happen that X3 is 
empty (for an example see 2.5.1). We assume now that X3 is not empty. Let G3 be the 
connected component of the origin of Gi XGG2> X3 is a set of homomorphism § —> G3R 
satisfying the axioms SV1-2. G3(1R) acts on X3 by conjugation. Let X3 = U^/X^ 
be the disjoint union decomposition of X3 into G3(M)-orbits. For any j G / we get a 
Shimura variety Sl^Gs,^) and a commutative diagram 

Sh(G3,X*) —^ Sh{G2,X2) 

ShiGuX!) —^   Sh{G,X). 

The morphisms $, j € /, are defined by the natural projections of G3 on Gi, i = 1,2. 
We have a universal type property: for any pair (^1,^2) of finite maps pi: (Go, XQ) 

-> (Gi,Xi) such that f2 0 P2 = fi 0 Pi, there is a unique j G / for which there is a 
map PQ: (GO,XQ) -> (G3, X^) such that pi = p? op0; moreover the map po is uniquely 
determined. We express this property by: the category f-Sh whose objects are Shimura 
varieties (or pairs) and whose morphisms are the finite maps between them, has quasi 
fibre products. Any commutative diagram as above (formed by finite maps) is called 
a quasi fibre product of the finite maps /1 and /2. 

So if X3 is empty then / is the empty set. There are examples (cf. 2.5.1) when 
I has more than one element. However if /1 or /2 is a cover, then / has precisely one 
element: if this is the case we speak about the fibre product of /1 and /2. 

2.4.1. The adjoint and toric part variety of a Shimura variety.  Let (G, X) 
define an arbitrary Shimura variety. Then Sh(Gad,Xad) (Xad being the Gad(M)- 
conjugacy class of homomorphisms § —> Gad containing the ones induced by X) is 
called the adjoint variety of Sh(G,X), and Sh(Gab,Xab) (Xab being the set with just 
one element defined by the homomorphism § -> G|b induced by X) is called the toric 
part variety of Sh(G, X). We have canonical maps from every Shimura variety into 
its adjoint variety and into its toric part variety. 

2.4.2. Special pairs. An injective map (T, {h}) M> (G,X) with T a torus is 
called a special pair in (G,X). 

2.4.3. Automorphisms. The group Aut(S/i(G,X)) (of automorphisms of the 
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Shimura variety Sh(G, X)) is the subgroup of ^£(G)(Q) (of finite index) leaving X 
invariant. If (G,X) is of adjoint type then we have Aut(Sh(G,X)) = Aut(G)(Q). 

2.5. Examples of types of Shimura varieties. 

EXAMPLE 1. Let T be a torus over Q. For any homomorphism h:S -> TR, the 
pair (T, {h}) satisfies the axioms SV1-3, and so defines a Shimura variety of dimension 
zero. We have Sh(T, {h})(C) = T(A/)/T(Q). Any Shimura variety of dimension zero 
is obtained in this way. 

EXAMPLE 2. Let (W,^) be a symplectic space over Q. Let GSp := GSpiW,^) 
be the group of its symplectic similitudes. The Siegel double space S consists of 
all rational Hodge structure on W of type {(—1,0), (0, —1)} for which either 27riip 
or -27riip is a polarization. It is a GSp(M)-conjugacy class of homomorphism S ->- 
GSpR. The pair (GSp,S) defines a Shimura variety. The Shimura varieties of the 
form Sh(G5j9, S) are called Siegel modular varieties. 

DEFINITION 1. A Shimura variety Sh.(G,X) is said to be of Hodge type if there 
is an injective map from it into a Siegel modular variety. We have Sh(G,X)(C) = 
G(Q) \XxG(A/) [De2, 2.1.1]. 

The extra conditions needed to be satisfied by a Shimura variety for being of 
Hodge type are: 

(SVH4) the weight is defined over Q; 

(SVH5) wxiGrm) is the only split subtorus of Z(G)R; 

(SVH6) there is a faithful representation p: G c-> GL(W) such that the Hodge Q- 
structure on W defined by p o x is of type {(—1,0), (0, —1)}, Va; G X. 

This is just a reformulation of [De2, 2.3.2]: obviously SVH4-6 are satisfied by 
a Shimura variety of Hodge type, while SV2 and SVH5 put together imply that for 
any x e X, the interior automorphism of GR/wxi&m) defined by x(i) is a Cartan 
involution. 

EXAMPLE 3. The product of two Shimura varieties Sh(Gi, Xi) and Sh(G2, X2) of 
Hodge type is not of Hodge type. But the Shimura variety Sh(G3, X3) defined by the 
subgroup G3 of Gi x G2 generated by G? x G2 (with G° the connected subgroup of Gi 
having the property that the canonical quotient homomorphism G^ -> Gi/wxii&m) 
is an isogeny; i = 1,2) and wx1xX2((&m), and by an adequate union X3 of some 
of the connected components of Xi x X2, is a Shimura variety of Hodge type: it is 
enough to see this for the case when (Gi,Xi) = (GSp(Wi,ipi),Si) and (02,-^2) = 
(GS'p(W2,/02),S'2); but then we have an injective map 

i3: (G3,X3) ^ (GSp(W1 0 W2,il>i 8 ^2),5°) 

defined by the natural inclusions of Sp(Wi, I/JI) and Sp(W2,1P2) in Sp(Wi®W2^i^2) 
(X3 in this case has two connected components, while Xi x X2 has four). 

We refer to the map is as a Segre embedding, and to any pair (Gs^Xs) as above 
(we do not have a unique choice for X3; this is the same as the case of quasi fibre 
products discussed in 2.4.0 -see also 2.5.1 below-) as the Hodge quasi product of the 
two pairs (Gi,-X"i) and (02,-^2) of Hodge type. Similarly we speak about a Hodge 
quasi product of n Shimura varieties of Hodge type and the Segre embedding defined 
by the product of n Siegel modular varieties, n E N. 
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DEFINITIONS 2. A Shimura variety defined by a pair (G, X) with G an adjoint 
group is said to be an adjoint Shimura variety or of adjoint type. If G is a simple 
Q-group, then (G,X) is of one of the types: Ah Bh Ch Df, Df, D]*1™1, EQ or £7 

(cf. the classification [De2] of Shimura varieties of adjoint type). Then Sh(G,X) is 
called a simple adjoint Shimura variety (of type Ai, or JB/, etc.). Any adjoint Shimura 
variety is a product of a finite number of simple adjoint Shimura varieties. A Shimura 
variety is said to be of special type if its adjoint Shimura variety is a product of simple 
adjoint Shimura varieties of EQ, EJ or D™lxt type. 

DEFINITIONS 3. A Shimura variety Sh(G, X) is called of preabelian type if there 
is a Shimura variety Sh(Gi,Xi) of Hodge type such that their adjoint varieties are 
isomorphic. If we can choose Sh(Gi,Xi) such that Gier is a cover of Gder, then 
Sh(G, X) is called of abelian type. The simple adjoint Shimura varieties of abelian 
type are those of Ah Bh Ch Df or Df type [De27 2.3.8]. The product of two Shimura 
varieties of abelian (preabelian) type is of abelian (resp. of preabelian) type. For the 
preabelian type this is obvious, while for the abelian type conform Example 3 (and 
2.12 1)). 

So for any pair (G, X) which is neither of preabelian nor of special type, there 
is a finite map (G,X) -> (Gi,Xi), with Sh(Gi,Xi) an adjoint variety which is the 
product of a Shimura variety of preabelian type and of a Shimura variety of special 
type. The category i-Sh is a disjoint sum of categories indexed by isomorphism classes 
of Shimura varieties of adjoint type. 

EXAMPLE 4. A Shimura variety of dimension 1 is called a Shimura curve and a 
Shimura variety of dimension 2 is called a Shimura surface. For instance the Example 
2, gives birth to a Shimura curve if W is a vector space over Q of dimension 2, called 
the elliptic modular curve. 

DEFINITION 4. A Shimura pair (G,X) (resp. variety Sh(G,X)) is said to be of 
compact type if Sh(G, X) is a pro-etale cover of a smooth projective E(G, X)-scheme. 

In [BHC] it is proved: (G, X) is of compact type iff the Q-rank of Gad is zero. 

EXAMPLE 5. (G, X) is of compact type if Gad is a simple Q-group such that G|>d 

has compact factors. 

2.5.1. Extra example. Let (G,X) be such that the semisimple group Gder 

is simply connected, Gab = Gm, and X has precisely two connected components 
(for instance if Sh(G,X) is a Siegel modular variety; see also 5.7.5). Let (Gi,Xi) 
be the product of three copies of (G,X). So Gder is simply connected, and Gab = 
Gm x Gm x Gm. We consider reductive subgroups d of Gi, i — 2,4, containing 
Gder. So to give such a Gi is the same as to give a subtorus of Gab. We choose 
Gab C Gab, % = 2,4, to be the diagonal embedding of Gm, the subtorus generated by 
G^13 and the embeding Gm <-> Gab corresponding to the triple of characters (1,1,0) of 
Gm, and respectively the subtorus generated by Gf* and the embedding Gm M> Gab 

corresponding to the triple of characters (1,3,0). 
We get injective finite maps fc (G;,Xj) ^ (Gi,Xi), i = 2,4. Here Xi has eight 

connected components, X2 has two, while X3 and X4 have four. Moreover we can 
assume that X2 C X3 = X4. So the maps fs and f^ do not have a fibre product: they 
have two quasi fibre products. 

Moreover, as Gad(Q) is dense in Gad(IR) (cf. [Del, 0.4]), composing the natural 
map p2- (G2,X2) -> (G2d,X2d) with an automorphism of (Gf^Xf*1), we get a map 
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Ps: (G2, X2) -^ (Gl"1, X|d) such that the images of X2 in X|d = Xi through the maps 
P2 and ps have an empty intersection. 

2.6. The reflex field. Let (G,X) be an arbitrary Shimura pair. For any field 
k of characteristic zero we have a right action of G(k) on the set Hom(Gm, G&)- Let 
C(k) := Hom(Gm,Gife)/G(A;). An inclusion Q ^ C induces a bijection G(Q) = C(C). 
So the element [fix] € G(C), corresponding to /x^ for any x £ X, defines an element 
c(X) of G(Q). The group Gal(Q/Q) acts on G(Q). The reflex field E{G,X) of the 
Shimura variety Sh(G,X) is the subfield of Q corresponding to the stabilizer of c(X) 
in Gal(Q/Q). It is a finite extension of Q. 

2.7. The reciprocity map. Let (T, {ft}) be as in the Example 1 of 2.5. Its 
reflex field E := £?(T, {ft}) is the field of definition of the cocharacter fih of T. From 
the homomorphism fi^: GrnE —> TE we get a new one 

AT     -r» /o Res£;/,n1(Mh)    _. _      Norm E/Q 
Nh:ResE/Q(hmE  

: > RCS^/QT^ > T. 

So, for any Q-algebra A we get a homomorphism Nh(A):Grn (E 0 A) ->• T(A). 
The reciprocity map 

r(T, {/>}): Gal(£ab/£) -»• T(Af)/T(QJ 

is defined as follows: let r G Ga^E^/E), and let 5 € J^ be an idele (of E) such that 
rec#(s) = r; then r(T, {ft})(r) = Nfl(Af)(sf)^ where Sf is the finite part of s. Here 
the Artin reciprocity map rec^- is such that a uniformizing parameter is mapped into 
the geometric Frobenius element. 

2.8. The canonical model of Sh(G,X) over E(G,X). By amodel of Sh(G,X) 
over a subfield k of C, we mean a scheme S over k endowed with a continuous action 
of G(Af) (defined over fe), such that there is a G(A/)-equivariant isomorphism 

Sh(G,X)^5c. 

The canonical model of Sh(G, X) is the model § of Sh(G, X) over £7(G, X) which 
satisfies the following property: if (T, {ft}) is a special pair in (G, X) then for any 
a e GiAf), the point [ft, a] of S(C) = Sh(G,X)(C) is rational over E(T, {ft})ab, and 
every element r of Gdl(E(T, {ft})ab/E(T, {ft})) acts on [ft, a] according to the rule 

r[ft,a] = [ft,ar(r)], 

where r = r(T, {ft}). It exists and is uniquely determined by the above property up 
to a unique isomorphism (see [Del], [De2] and [Mi2]). 

Warning: from now on by Sh(G, X) we mean §. 

2.9. If /: (G, X) ->• (Gi, Xi) is a map between two Shimura pairs, then E(Gi, Xi) 
is a subfield of E(G,X), and there is a unique G(A/)-equivariant morphism (still 
denoted by /) /:Sh(G,X) -)■ Sh(Gi,Xi)£;(G)x) which at the level of complex points 
is the map [x,a] -)- [f(x),f(a)} ([Del, 5.4]). We get a G(A/)-equivariant morphism 
(still denoted by /) 

/:Sh(G,X)^Sh(G1,X1) 

of E(Gi, Xi )-schemes. 

2.10. Definition of special points. Let Sh(G,X) be an arbitrary Shimura 
variety and let H be a compact subgroup of G(A/).   A point w of Shjff(G,X) with 
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values in a field k of characteristic zero is called special if there is a special pair (T, {h}) 
in (G,X), such that the intersection of the G(A/)-orbit of w in Sh#(G,X)(&) with 
the image of ShfT, {h})(k) in ShH(G,X)(k) is non-empty. 

2.11. Definition of smooth subgroups. Let (G,X) be a Shimura pair. A 
subgroup H of G(A/) is called smooth for (G,X) if it is compact and if Sh(G,X) is 
a pro-etale cover of Sh#(G,X). A subgroup of a conjugate of a subgroup of G(A/) 
smooth for (G, X), is itself smooth for (G, X). For instance any neat compact subgroup 
of G(A/) is smooth for (G,X). We do not know if (or when) the converse is true. 

2.12. REMARKS. 

1) For any Shimura pair (G,X) there are finite maps /: (Gi,Xi) —> (G,X) and 
A: (Gi,Xi) -> (G2,X2) such that: 

- Sh(G2,X2) is a product of Shimura varieties Sh.(Gi:Xi), i running through the 
elements of a finite set /, such that Gfd is a simple (Q>-group, Vi £ /; 

- they define a quasi fibre product of the natural maps /Q: (G, X) -)» (Gad, Xad) 
and /2: (G2,X2) ^ (G|d,Xfd) = (Gad,Xad); 

- there are injective maps (Gi,Xi) c-^ (G, X), i £ /, producing (naturally) an 
isogenyniG/G

der^Gder. 

To see this let Gad = Y[ieI Gad be the factorization of Gad in Q-simple factors. 
Let Gder be the semisimple subgroup of G isogeneous to Gad and contained in the 
kernel of the canonical quotient homomorphism G —> YljeiXU} ^T*- ^s ^* we ^a^e 

the subgroup of G generated by Gder and by a maximal torus of the centralizer of 
Gder in G having the property that there is a homomorphism § —>> GR, corresponding 
to a point x £ X, factoring through G^R. AS Xi we take the G;(M)-conjugacy class 
of homomorphisms S ->• G^R generated by such a factorization. Now we can take the 
maps / and /i to define a quasi fibre product of the maps /o and /2 (cf. 2.4.0). 

2) There are Shimura varieties Sh(G, X) with G a semisimple group which is not 
of adjoint type (plenty of examples can be constructed starting from [De2, 2.3.12]). 

3) Let (A, PA) be a polarized abelian scheme defined over an integral ring R of 
characteristic zero. It is defined over a subring i^i of R admitting an embedding in 
C. We get an abelian variety over C. Passing to an isogeny we can assume that 
we have a principally polarized abelian variety (A'^PA

1
) over C. Let (W, V7) be the 

symplectic space over Q defined by it, with W := Hi(A,
1Q). Let G be the Mumford- 

Tate group of A'. We get an injective map (G, X) ^ (GSp(W, ip), S) of Shimura pairs, 
with X the Hermitian symmetric domain defined by the G(M)-conjugacy class of the 
homomorphism § —)• GR defining the Hodge Q-structure on W. Up to isomorphism it 
is independent of all choices (cf. [De3]) and so we call it the injective map defined by 
the polarized abelian scheme (A,PA)' If A does not have a priori a polarization then 
we can pick one for its model we got over C. In this case the injective map depends 
on the picked up polarization. 

If moreover A has a family (va)ae^ of Hodge cycles which is reductive with 
respect to the polarization PA (to be explained below), then we can choose Ri such 
that these Hodge cycles are defined over i?i (cf. [De3]). So we get a family of tensors 
(ta)aed 0f the tensor algebra of W (we can assume that no Tate-twist shows up; for 
instance cf. 4.1). By reductive family with respect to PA we mean: the connected 
component of the origin of the subgroup of GSp(W, ip) fixing ta, Va £ 3, is a reductive 
group Gi over Q. Gi together with the Gi (IR)-conjugacy class of homomorphism 
§ ->■ Gm defined by X might not define a Shimura variety: axiom SV3 might not be 
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satisfied. However, discarding from Gf1 the factors which over M are compact, we get 
a reductive subgroup G2 of Gi, which together with the G2(M)-conjugacy class X2 
of homomorphisms S -> G2M defined by X, define a Shimura variety. The resulting 
injective map (G^-X^) ^-> (GSp(W,ip)) is again independent of all choices. We call it 
the injective map defined by (A,PA) and the reductive family of tensors (va)aeg with 
respect to PA- 

3.    A general view of the integral models of Shimura varieties. We 
start by presenting (3.1) some elements of the theory of reductive groups (and of 
hyperspecial subgroups) needed for applications to Shimura varieties. Then (3.2) 
we introduce generalities of the theory of healthy normal schemes and of the theory 
of integral models of Shimura varieties. Some special features of these theories are 
presented in 3.3-5. 

3.1. Hyperspecial subgroups. We restrict ourselves to what we need. Let V 
be a complete DVR with a perfect residue field k and let K be its field of fractions. 
Let TT be a uniformizer of V. Let GR be a reductive group over K. A subgroup H 
of GK{K) is called hyperspecial if there is a reductive group scheme G over V, whose 
generic fibre is GK and whose group of V-valued points is H. It is a maximal bounded 
(compact if the residue field of V is finite) subgroup of GK(K) [Ti, 3.2]. Let B be the 
building of GK over K (cf. [Ti, 2.1-2]). GK{K) acts on B. A subgroup H of GK{K) 

is hyperspecial iff there is a hyperspecial point XH 6 B (see [Ti, 1.10.2 and 2.4] for 
the definition of such a point) such that H = {h G GK(K)\h(xH) = XH} (cf. [Ti, 
3.8.1]). Hyperspecial subgroups of GK(K) do exist if GK is unramified over K, i.e. 
if GR is quasi-split and splits over an unramified extension of if ([Ti, 1.10.2]). The 
converse of this last statement is true if k has the property that every reductive group 
over k is quasi-split (for instance if k is an algebraic extension of a finite field or if k 
is algebraically closed). 

3.1.1. REMARK. Let GK ^ GIK be an inclusion of reductive groups over 
K with Gj^r = Gi^r. We assume that GIK is unramified over K. Then GK is 
unramified over K and for any hyperspecial subgroup H1 of GiK(K), the intersection 
H := ii"i fl G(K) is a hyperspecial subgroup of GK{K) (if Gi is a reductive group 
scheme over V, whose generic fibre is GIK 

and whose group of V-valued points is iJi, 
then the closure of GK in Gi is a reductive group scheme over V, whose group of 
V-valued points is H\ the ideas needed for proving this are presented in 4.3.9). 

3.1.2. The behaviour of hyperspecial subgroups with respect to homo- 
morphisms of groups. We digress a little bit on this subject as it is not covered in 
[Ti] or [Ja]. In this section we consider only affine group schemes of finite type over 
V or K having connected fibres over K. 

3.1.2.1. PROPOSITION, a) Let Gi and G2 be two smooth affine groups over 
V. Let /K'-GIK ~^ G2K be a homomorphism such that it takes Gi(V) into G2(V). 
If the field k is infinite, then the homomorphism fx extends to a homomorphism 
/:Gi^G2. 

b) The point a) is not true if the field k is finite. 
c) Let f:Gi -> G2 be a homomorphism of smooth affine group schemes over V. 

If Gi is a reductive group and if fK'-GIK ~^ G2K is a closed embedding then f is a 
closed embedding. 

d) Let GIK and G2K be two reductive groups over K such that GIK is a subgroup 
0f G2K and such ^at they are unramified over K.   We assume that GIK i>s a torus 
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which splits over an unramified extension of K of odd degree, and that G2K Z5 a group 
of symplectic similitudes. Then there is a hyperspecial subgroup of GIK(K) included 
in a hyperspecial subgroup of G2K{K)' 

e) We consider the point a) in the case when k is finite, when Gi and G2 are 
reductive groups over V, and when fx is a closed embedding. Then a) remains true 
if any one of the following two conditions is satisfied: 

(i) fK is an isomorphism; 
(ii) Gi is a split group with a maximal split torus T\ which is a closed subgroup of G^, 

and there is a faithful representation p: G2 *->■ GL(M) with M a free V-module of 
dimension not bigger than the characteristic of k. 

Proof, a) Let G be the subgroup of Gi x G2 obtained by taking the closure of 
the graph of /#. We get a homomorphism h: G —> G\ inducing an epimorphism 
G(y) -» Gi(V), and a homomorphism G —>■ G2. They are defined by the projections 
of Gi x G2 on its factors. Let G = Spec(i?) and Gi = Spec(i?i). To h corresponds an 
inclusion Ri C R which becomes an isomorphism by inverting TT. 

So a) is equivalent to Ri = R. If R ^ Ri then there is y G R \ Ri such that 
Try 6 Ri \ nRi. For any x G Ri\ TTRI there is a ring homomorphism Ri —>• V such that 
x goes to an invertible element of V (Gi is smooth over V and the k-valued points of 
Gi are Zariski dense in the special fibre of it, as k is an infinite field [Bo, p. 218]). 
So, such a homomorphism Ri —>■ V, corresponding to x = Try, does not come from the 
restriction to Ri of a ring homomorphism R ->► V. This contradicts the surjectivity 
property of the homomorphism G(V) ->• Gi(V). We get R = i?i. 

b) Example: Let p be a rational prime and let q € N \ {1} be congruent to 1 
mod p — 1. Let M be a free module of dimension 2 over Zp, and let {^1,^2} be a 
basis of it over Zp. Let Gm be the subgroup of GL(M 0 Qp) such that a G Gm(Qp) 
acts by multiplication with aq on vi and by multiplication with a on ^2. We have 
Gm(Zp) C GL(M1)(Zp), with Mi the Zp-lattice of M®QP generated by vi and ^2-. 
But there is no homomorphism Gm —> GL(Mi) extending the above inclusion over 

c) We can assume that the field k is algebraically closed. Let G be the closure 
of GIK in G2. It is a group scheme over V. Let fi'.Gi —> G be the homomorphism 
induced by /. Then the homomorphism Gi(V) -* GiV) is an isomorphism, as it is 
a monomorphism and as Gi(V) is a maximal bounded subgroup of Gi(K) = G(K). 
The dilatation procedure [BLR, prop. 2, p. 64] allows us to write /1 as a composition 
Gi -» Gn -> G, with n > 3 an integer, and with Gn a smooth (affine) group scheme 
over V, obtained from G through a finite sequence of dilatations. We have Gi^ — 
GnK — GK and Gn(y) = G(V). For instance, in the first step we replace G by the 
dilatation G3 of fi(Gik) (the reduced group subscheme of Gk defined by the image 
through fi of the special fibre of Gi) on G (part d) of loc. cit. shows that G3 is an 
affine group scheme). Using [BLR, prop. 1, p. 63], we get group homomorphisms 
Gi —> G3 —> G. Repeating the process, we reach the case of group homomorphisms 
Gi -» Gn -4 G, with Gn a smooth scheme obtained from G through a sequence of 
n — 2 dilatations. This results from the general theory [BLR, section 3.3] of the defect 
of smoothness p of F-valued points of Gn. More precisely, there is a positive integer 
c, such that p(x) < c for any point x G G(V) (cf. [BLR, prop. 3, p. 66]). From [BLR, 
lemma 4, p. 174] we get that we can take n — c + 3. 

Coming back to the situation Gi —> Gn -> G, we get (cf. part a) above) Gi — Gn. 
But this implies that /1 is an isomorphism as any dilatation of our sequence produces 
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a commutative unipotent kernel of the special fibre. From [BLR, prop. 2, p. 64] we see 
easily that it is enough to check this for the dilatation of a general linear group over 
V with respect to the trivial subgroup of the special fibre. But this case is obvious. 

We invite the reader to give another (simpler) proof of c), by just copying the 
proof of a) above and making use of the fact that for any finite field extension Ki of 
K, Gi(Vi) is a maximal bounded subgroup of Gi(Ki) (with Vi the normalization of 
V in Ki). 

d) Let TK := GIK and let GZK = GSp(WK,ip), with '(WK,^) a symplectic space 
over K. Let Ki be an unramified extension of K over which TK splits. Let Vi be 
its ring of integers. We can assume that Ki is the smallest extension over which TK 

splits. So Ki is a Galois extension of K. Let CT be the subset of the (additive) group 
of characters of TK1 through which T^ acts on WK 0 ■K'I , i.e. WK <8)KI = ©7eCT ^7 5 
with t G TK(KI) acting as multiplication with j(t) on the non-zero Ki -vector space 
W7. We can assume that TK is a subgroup of SP(WK,IP) (as GSP(WK^) is the 
extension of SP(WK,IP) through a one-dimensional split torus). 

As the alternating form i/; is T/^-invariant, we deduce that if a G CT then — a G 
CT, and that ij;(x,y) = 0 for any x G Wa and any y G ^7ec

aW7, where C^ := 
CT \ {a}- Moreover Gdl(Ki/K) acts on CT as TK and GZK are defined over K. For 
any a G CT, let 0(0:) be its orbit under the action of Gal(Ki/K) on CT- 

The key fact is the following assumption (which is always satisfied if [Ki : K] is 
an odd number): 

VaGCT\{0},-a^o(a). 

We can assume that 0 ^ CT- we have a direct sum decomposition of symplectic 
spaces over K 

(WK,^) = (w0,^0)e(w1^1), 

with W0 the maximal subspace of WK on which TK acts trivially, with W1 the 
subspace of WK such that W1 ® Ki = ©7ec7T\{0}^777 and with ip1 the restriction 
of ij; to Wl, i = 1,2. So if needed, we can replace (WK,^) by (W1,^1). 

Let a G CT- Obviously o(—a) = {—7I7 G o(a)}. Let Ma be a Vi -lattice of 
Wa left invariant by the subgroup of Gal(Ki/K) fixing a. For any 7 G o(a) let 
M7 = p{Ma), with p G Gci\(Ki/K) such that P(Q:) = 7, and let M_7 be a Vi-lattice 
of PV_7 such that ^:iV7 eg) Ar7 ->- Vi is a perfect form. Here N1 := M7 © M_7. 
Let Mo(a) := 07eo(a)uo(-a)^7- For any other pair o(ai) and o{—ai) of orbits of 
the action of Gal(i^i/i^) on CT, we define similarly a free "Vi-submodule Mo(a1) of 
WK ® Ki- Let M^ be the Vj.-lattice of W^- 0 iiTi defined by the direct sum of these 
Mo(a);so 

MVl := ©7ecT^7- 

We get that Mv1 is stable under the action of Gal(Ki/K) and ip: My-^ ®My1 -> Vi is a 
perfect form. So TK1 extends to a subtorus Ty1 oiSp{My1, T/J). Let My be the F-lattice 
of WK formed by elements of My, fixed by Gal^i/if). We have M^ = My 01^. We 
deduce that TK extends to a subtorus T of Sp(My:ip). So the (unique) hyperspecial 
subgroup T(V) of TK(K) is included in the hyperspecial subgroup Sp(Mv,ip)(V) of 
5p(^x,^)(^). 

e) To see the first part of g), it is enough to work separately the case of a torus 
(which is obvious) and the case of a semisimple group. For this last case, it is enough to 
work with an inner automorphism and then everything results from [Ti, first paragraph 
of 2.5] applied to the adjoint group. The proof of the second part of g) is similar to 
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the proof of 4.3.10 b) (which can be used to obtain a refinement of this part of g)), 
and so it is left as an exercise. 

3.1.2.2. REMARKS. 1) Let GIK and GZK be two reductive groups over K such 
that GiK is a subgroup of G2K and such that they are unramified over K. It is not all- 
ways true that there is a hyperspecial subgroup of GiK(K) included in a hyperspecial 
subgroup of G2K{K)' 

We leave to the reader to find examples for this, with GiK a torus spliting over 
an unramified extension of K of degree 2, for which the key fact of the proof of 
3.1.2.1 d) is not true, and with G2K — GSP(WK^) a group of symplectic simili- 
tudes, starting from the fact that any hyperspecial subgroup of G^KC^O is 0^ ^e form 
GSp(Mv,il))(V), with Mv a V-lattice of WR for which there is e G Gm (K) such that 
e^: My (8) My -> V is a perfect form. We get such examples even for dim^Wx) = 4. 

2) 1) above is true if G2K is a general or special linear group over K. In fact in 
this case any bounded subgroup Hi of GiK(K) is included in a hyperspecial subgroup 
of G2K(K)' TO see this we can assume that Hi is a maximal bounded subgroup of 
GIK(K). NOW everything results from [Ja, 10.4] and [Ti, 3.4]. 

3) A third proof of 3.1.2.1 c) can be obtained using maximal tori. Its advantage: 
it remains valid for an arbitrary DVR. 

3.1.3. LEMMA. Every reductive group G over Q unramified over Qp extends to 
a reductive group over %(p). 

Proof. It is enough to treat separately the case when G is a torus and the case 
when G is semisimple. If G is a torus, then it splits over a Galois extension of Q which 
is unramified above p, and so it extends to a torus over Z(p). 

Let now G be a semisimple group, and let Gzp be a semisimple group over Z^ 
having as generic fibre GQP. Let Qzp := Lie(Gzp) and let Qz{p) be its intersection with 
Lie(G). This intersection is taken inside Lie(GQp). So gzp — 9zip) ® Zp. We get that 
the closure of Gad in Aut(gz(p)) is a semisimple adjoint group G^ over Z^) (this is 

so due to the fact that we get this over Zp). As G is a cover of Gad, we conclude that 
G extends to a semisimple group over Z(p), obtained by taking the normalization of 
G|d    in the field of fractions of G. This ends the proof of the lemma. 

Another proof can be obtained using the following general result of descent: 

3.1.3.1. CLAIM. Let O be a DVR of mixed characteristic and let L be its field of 
fractions. Let Y^ be a scheme of finite type over L. Let Y be a faithfully flat scheme 
of finite type over the completion O of O, and such that its generic fibre is isomorphic 
to the extension ofY^ to the field of fractions of O. We assume that either Y is an 
affine scheme or that O is a henselian ring. Then there is a unique scheme Y over 
O, having YL as its generic fibre, and such that its extension to O is Y (so the special 
fibres of Y and Y are the same). 

This is not necessarily true if we do not assume that Y is an affine scheme, or that 
O is a henselian ring: [BLR, 6.7] can be adapted to the mixed characteristic situation. 
A similar thing can be stated for morphisms (and so in terms of equivalence of some 
categories). We include a proof of the above claim which we think is useful in the 
study of different integral models of (quotients of) Shimura varieties. 

STEP -1. We can assume that the special fibre Y§ of Y is non-empty. It is well 
known that the claim is true if Y is affine (simple argument at the level of lattices). 
So we can assume that Y is reduced. 
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First we point out how the local rings of points of the special fibre of Y (assumed 
to exist) can be recovered: for any closed point y:Spec(k) M- Y$ (with k a field), 
the local ring of y in Y is the intersection of the local ring of y in Y with the ring 
of fractions of YL- Secondly we point out that the topological space underlying any 
scheme Z over 0 is fully determined once we know ZL and ZQ. These two remarks 
take care of the uniqueness part. 

STEP 0. We can work around a point y as above. In particular we can assume 
that Y$ is affine, and so separated. Further on we can remove from YL a closed 
subscheme whose closure in Y does not contain the point y, in such a way that its 
complement in YL and respectively the complement of this closure in Y are separated 
schemes. This is possible due to the fact that Y and YL are noetherian schemes and 
due to the fact that Y§ is separated. 

Conclusion: we can assume that Y (and so also that YL) is a separated scheme. 
Now, in essence, everything results from the ideas presented in [BLR, 6.5]. We present 
the details. 

STEP 1. We can assume that YL and Y are normal schemes (as O is an excellent 
ring, the argument is the same as the one needed to assume that Y is reduced). 

STEP 2. A. From now on we assume that O is a henselian ring. 

B. Even better we can assume that O is a strictly henselian ring. 
This admits an argument using Galois-descent (cf. [BLR, 6.2]). In other words, 

if Spec(01) is a finite Galois cover of Spec(O), with O1 a DVR, and if we know that 

there is a scheme Yl over O1 whose extension to O1 is the extension of Y to O1, then 
the fact that the special fibre of Y1 is definable over the residue field of O is the extra 
ingredient needed to make the Galois-descent (defined by the natural action, due to 
the uniqueness property mentioned in Step -1, of the Galois group Gal(01/0) on Y1) 
effective. 

C. We can assume that the residue field of O is an algebraically closed field (i.e. 
we can replace the strictly henselian ring O by a pro-finite flat DVR extension of it 
having the same index of ramification). 

D. We can replace O by any finite flat DVR extension of it; so we can assume 
that the strictly henselian DVR O is as ramified as desired. 

E. We can replace the strictly henselian DVR O by the local ring of a generic 
point of the special fibre of a smooth scheme Z over O. 

The parts C and D admit the same argument involving descent as in part B. 
The part E is trivial (we can assume that we have a scheme Yz over Z whose 

extension to Zg is the extension of Y to Z^; now we can take O-sections of Z to get 
Y). 

Replacing O by another DVR Oi which is obtained from O by the rules described 
in B-E above, the nilpotent elements of Y§ can be "absorbed": the normalization Y/1 

of Ybi has a reduced special fibre. Moreover Y™ is a projective scheme if Y is. As a 
conclusion we can assume that Y§ is a reduced scheme and that O is strictly henselian 
(cf. E for this last part). 

STEP 3. We can assume that there is a scheme U over O such that its generic 
fibre is YL and its extension to O is an open subscheme of Y having a complement in 
Y of codimension at least 2. 
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For this we can assume that YL is affine (even smooth over L). But this is the 
context in which [BLR, lemma 6, p. 161] works (if Y is an affine scheme then the 
claim is trivial). The arguments presented in loc. cit. work in the case when Y is a 
normal scheme having a a non-empty reduced special fibre. 

STEP 4. From the Artin's approximation theorem (this is standard -see [BLR, 
th. 12, p. 83]-: O is an excellent ring, as L has characteristic zero) we deduce easily 
that there is a normal scheme Y* of finite type over O (we recall that O is a strictly 
henselian ring) having U as an open subscheme containing the generic fibre and all 
the points of codimension 1, and having Yg as its special fibre. 

STEP 5. Morally Y~ should be Y. The failure of being so might happen if the 

topology on the underlying set of YL is not the expected one. If YL is not Y we have 
to proceed as follows. 

We can assume that YL and Y are normal complete schemes (cf. Nagata's embed- 
ding theorem; see [Na] and [Vo]), and that Ys is reduced (cf. Step 2). Now we consider 
the normalization Y2 of the closure of the diagonal embedding of UQ in Y x YL. We 
also consider the natural projections of it on the two factors. 

We first assume the existence of a scheme Y2 over O whose extension to O is I2• 
This is the extra ingredient needed to be able to repeat the above arguments on the 
application of Artin's approximation theorem to get similarly (to Y') a scheme Y 
over O whose topology of its underlying set is as expected to be (the topology of the 
underlying set of Y is a quotient topology of the topology underlying the set of Y2). 
We deduce that the extension of Y   to O is Y. So we can take Y = Y  . 

In fact we can replace Y2 by any other proper scheme Y3 over O whose generic 
fibre is defined over L, and which admits a surjection onto Y2. Even more, it is enough 
to get such a good scheme I3 only after we replace O by an arbitrary DVR Oi which 
is a faithfully flat O-algebra of the type allowed in Step 2. 

STEP 6. To end the proof we are left with the proof of the existence of I3 for a 
suitable choice of Y3. A well known application of Chow's lemma (cf. also [Vo, 2.5]) 
shows that we can assume that we are dealing with an Y2 which is a normal faithfully 
flat projective O-scheme. In other words there is a surjective proper morphism Y3 —>► 
Y2, with Ys a normal projective scheme over O, whose generic fibre is defined over L. 

We can assume (cf. Step 2 and the last part of Step 5) that Y2 has a reduced 
special fibre. From Step 3 we deduce easily the existence of a normal projective scheme 
Y2 over O such that there are open subschemes L^ and U2 of Y^' and respectively of Y2, 
containing the generic fibres and the points of codimension 1, and satisfying U'~ = U2. 

We can view this last identity as a rational map from Y'* to Y2. But this rational map 

extends to a surjective morphism Y3Q —>• Y2, where I3 is a projective scheme over O 
obtained from 1^ through a blowing up centered on the special fibre (cf. [Hart, 7.17.3, 
p. 169]; we can view Y2 as embedded in a projective space P~, for some n G N). Ys 
is the searched for scheme over O. This ends the proof of the claim. 

3.1.3.1.1. REMARKS. 1) We preferred to include the above proof of 3.1.3 (it also 
works when Z^ is replaced by an arbitrary DVR O) as it illustrates how descent can 
be performed also at the level of Lie algebras. Moreover it is constructive. 

2) The above proof can be modified so that it works for an arbitrary henselian 
DVR O:  the use of Artin's approximation theorem has to be replaced (in the case 
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when O is of equal positive characteristic) by the use of C-D of Step 2 (for Step 1 cf. 
[Ma, cor. 2 of p. 234, and 31.H]). 

3) We do expect that in the above claim we can replace finite type by locally of 
finite type. 

3.1.3.2. REMARK. Let now O be an arbitrary DVR having a perfect residue 
field. Let GL be a reductive group over the field L of fractions of (9, such that its 
extension to the field of fractions K of the completion V of O is unramified over K. 
Let H be a hyperspecial subgroup of G(K). Then any automorphism of GL taking 
H onto itself, extends to an automorphism of Go, with Go a reductive group over O 
such that GoiQ) = H (such a Go does exist cf. 3.1.3.1): from 3.1.2.1 a) and e) we 
get an automorphism of Gy; obviously it comes from an automorphism of Go - 

3.1.4. REMARK. Let (G,X) ^ (Gi,Xi) be an injective map of Shimura pairs 
and let p be a rational prime. If Gder and its centralizer C in Gi are unramified 
over Qp, then there is an injective map (GQ^XQ) M- (Gi,Xi) such that GQ

61
" = Gder, 

(Gf,X3d) = (Gad,Xad) and Go is unramified over Qp. To see this it is enough to 
remark that there is (cf. [Ha, 5.5.3]) a maximal torus T of C such that: 

- a conjugate of some x € X by an element of G(R) factors through GQM, where 
Go is the subgroup of Gi generated by G and T; 

- Tqp is C(Qp)-conjugate with a maximal torus of CQP unramified over Q^ (there 
is such a maximal torus as CQP is quasi-split, cf. [Ti, 1.10]). 

3.1.5. REMARK. Let GK = GIK X G2K be a product of reductive groups over 
K. Then GK is unramified over K iff GIK and G2K are unramified over K, and then 
any hyperspecial subgroup H of GK{K) is a direct product H = Hi x #2, with Hi a 
hyperspecial subgroups of GiK(K), i = 1,2. 

3.1.6. LEMMA. Let R be an integral domain, faithfully flat over Zi(p). Let M be 
a free R-module of finite rank. Let G0 be a reductive subgroup of the generic fibre of 
GL(M) such that the closures o/Goder and of the connected component T of the origin 
of Z(G0) in GL(M), are both reductive group schemes over R. Then its closure in 
GL{M) is a reductive group scheme over R. 

Proof. Let G^, Gjf* and TR be respectively the closures of G0, Goder and T in 
GL(M). Let C := Goder fl T. C is a finite flat group scheme over the generic fibre of 
R. 

We claim that its closure CR in GL(M) is a finite flat subgroup of TR and of 
goder rj^g ^g a iocaj statement in the etale topology of Spec(i^). Of course, if 
Spec(Ri) —>• Spec(i^) is an etale map, i^i might not be an integral ring, and so we 
need to take the closure of C XRSpec(Ri) in GL{M)R1 . So we can assume that TR is 
split and that G1^1" has a maximal split torus T^, but we no longer assume that it! is 
integral: just that it is reduced. Moreover we can assume that R is a local ring. It is 
enough to show that the intersection TR D T^ defines a finite flat scheme over R. We 
consider the torus Tj| := TRXT^ and its representation p on M defined by the product 
of the inclusion TR <-> GL(M) with the inverse of the inclusion T^ <->- GL(M). This 
is well defined as TR and T^, as subtori of GL(M), commute. As R is local and T^ is 
split we deduce that p is a direct sum of one-dimensional representations (asociated 
to characters of Tp). So its kernel is a finite flat group scheme over i?, as this is so 
over the points of Spec(i?) of codimension zero. But this kernel is TR fl T^. So CR is 
a finite flat group scheme over R. 

We come back to our situation: i2 is integral. Let GR be the quotient of TR X G^fer 
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by C.R, where CR acts as inclusion on TR and as the inverse of the inclusion on 
G5fer. Gft is a reductive group scheme over R. We have a canonical homomorphism 
Q'-GR ~^ G% which is an isomorphism over the generic fibre of R. 3.1.2.1 c) and 
3.1.2.2 3) guarantee that each fibre of q is a closed embedding, and that q is a proper 
morphism. This implies that q is a closed embedding: we can assume that it! is finitely 
generated over Z(p), and so that it is noetherian; first we deduce that q is a finite 
morphism, and then everything results from Nakayama's lemma. From the definition 
of G0

R we deduce that q is an isomorphism. This implies that G0
R is a reductive group 

scheme over R, ending the proof of the lemma. 

3.1.6.1. REMARK. The above lemma remains true if Z(p) is replaced by an 
arbitrary DVR. Even more generally, it remains true if J^ is an integral scheme, and 
instead of its generic fibre (over some integral scheme), we work with its generic point, 
cf. 3.1.2.2 3). 

3.2. Healthy normal schemes and integral models of Shimura vari- 
eties. In 3.2.1-2 we introduce the general theory of healthy normal schemes. The 
need of such a theory was felt when it has been discovered that the statement 6.8 of 
[FC, p. 185] is not true in general (for details see [dJO]). Then in 3.2.3-16 we present 
the general theory of integral models of Shimura varieties. For this theory, in essence 
(i.e. except [Fa4]), we need from the theory of healthy normal schemes only some 
definitions and remarks. However we felt that it is important to include in 3.2.1-2 
more then just definitions (cf. the philosophy of 3.2.7 6) and rm. 3) of 3.2.3.2.1; they 
nourish our expectation that the theory of healthy normal schemes will blossom very 
much in the near future). In 3.2.17 we single aside the proof of a result of Faltings 
[Fa4] which plays an essential role in the theory of integral models of Shimura varieties. 
It introduces some of the main tools used in the study of healthy normal schemes. As 
these tools are referred to in 3.2.1-2 we suggest that after 1-2) and 8) of 3.2.1 and 1) 
and 3) of 3.2.2, 3.2.17 should be studied, before the rest of 3.2.1-2. 

Let p be a rational prime. 

3.2.1. DEFINITIONS. 1) A pair (Y,U), with Y a flat scheme over Spec(Z) and 
with U an open subscheme of Y containing the generic fibre YQ of Y and such that 
the complement of U in Y is of codimension in Y at least 2, is called an extensible 
pair. A pair (Y,{7y)> with Y as before and with Uy a subset of the underlying set of 
Y which is an intersection of the underlying sets of open subschemes Ui of Y, i G I, 
such that (Y,Ui), i E /, are extensible pairs, is called a quasi-extensible pair. Here / 
is an arbitrary set, often infinite. 

A normal scheme Y flat over Spec(Z) is called: 

2) healthy if for any extensible pair (Y, U), every abelian scheme over U extends 
to an abelian scheme over F; 

3) quasi healthy if for any extensible pair (Y, U), every abelian scheme over U 
extends to an abelian scheme over the normalization of Y -not assumed to be finite 
over Y- in a finite etale extension of the ring of fractions of Y] 

4) almost healthy if any abelian scheme AQ over YQ having level-/N structures for 
any N G N, with / a rational prime which is invertible in any point of Y, extends to 
an abelian scheme over the normalization of Y -not assumed to be finite over Y- in a 
finite etale extension of the ring of fractions of Y; 

5) n healthy if for any extensible pair (Y, 17), every abelian scheme over U of 
dimension at most n extends to an abelian scheme over Y (here n € N); 
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6) locally healthy if any open subscheme of it is healthy. 

7) Similarly we define the following types of normal schemes (flat over Spec(Z)): 
n quasi healthy, n almost healthy, locally quasi healthy, locally almost healthy, and 
locally n (quasi or almost) healthy. 

8) Let D be a Dedekind ring which is flat over Spec(Z[|]). A regular scheme Y 
flat over D is called very healthy if: 

i) for any prime w of D having a residue field &(«;) of positive characteristic p, 
the only open subscheme of the fiber Yw of Y over w, containing all the points of Yw 

having as a residue field an algebraic extension of k(w), is Yw itself; 
ii) for any geometric point y : Spec(k(w)) c-^ Y^ (with Bw a complete DVR 

faithfully flat over the localization D(w) of D with respect to w, having k(w) as its 
residue field and having the same ramification index as D(w)), the completion of the 
local ring of y is of the form Ry = V[[xi,a;2, ...,a;m]], with V a DVR containing 
W(k(w)), and such that the degree [V : W(k(w))] is less than p — 1. 

A normal scheme Y flat over Z^ is called: 

9) p-healthy if for any extensible pair (Y, U), every p-divisible group over U ex- 
tends uniquely to a p-divisible group over Y. Warning: here we use a hyphen (p- 
healthy), while in 5) above we do not; 

10) p-f-healthy if for any extensible pair (Y,U), every finite flat group scheme 
over U of p-power order extends uniquely to a finite flat group scheme over Y; 

11) strongly p-healthy if any p-divisible group over YQ extends uniquely to a 
p-divisible group over Y: 

12) strongly p-f-healthy if it is p-f-healthy, and if any finite fiat group scheme over 
YQ of p-power order extends in at most one way to a finite flat group scheme over Y. 

13) As in 6-7) above we speak about locally p-healthy, locally p-f-healthy, locally 
strongly p-healthy and locally strongly p-f-healthy normal schemes (flat over Z(p)). 

Let now O be a DVR which is a faithfully flat Z(p)-algebra, and let e be its index 
of ramification. Let TTQ be a uniformizer of O. 

3.2.1.1. REMARKS. 1) If D is a DVR faithfully flat over Z(p), in order that 
there are very healthy regular schemes over D with a non-empty special fibre, the 
ramification index of D has to be smaller than p — 1. If this is so, then any projective 
limit of smooth schemes over D with etale transition morphisms, for which i) of 3.2.1 
8) is true, (in particular any smooth scheme over D) is a very healthy regular scheme 
over D. 

2) According to a theorem of Raynaud (cf. [Ra, 3.3.3]), if e < p—1, then Spec(O) 
is a strongly p-f-healthy regular scheme. 

3) In 3.2.1 3), actually .AQ does extend to an abelian scheme over Y. This can be 
seen using the ideas of the Step A of 3.2.17. 

4) From the Neron-Ogg-Shafarevich criterion we get directly that any locally 
noetherian healthy normal scheme (and so any healthy regular scheme) is an almost 
healthy normal schemes. 

5) The quotients (assumed to exist) of healthy normal schemes through finite 
group actions are quasi healthy normal schemes. This motivates the def. 3) of 3.2.1. 

6) The regular quotients of healthy normal schemes through finite fiat group 
actions are healthy regular schemes. This can be checked starting from Step A of 
3.2.17. Similarly, the regular quotients of locally healthy normal schemes through 
finite flat group actions are locally healthy regular schemes. 
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7) The quotiens of almost healthy normal schemes through finite group actions 
are almost healthy normal schemes. 

8) There are plenty of examples of noetherian almost normal schemes which are 
not regular (this results from 4) and 7) above and from 3.2.2 1)), and there are plenty 
of examples of healthy regular schemes which are not very healthy (cf. 3.2.2 5)). 

9) Any regular scheme Y of dimension 2 fiat over Z(p) is p-f-healthy (this is a 
consequence of [FC, 6.2, p. 181]). 

10) There are plenty of p-f-healthy regular schemes which are not strongly p-f- 
healthy (like affine lines over the spectrum of a DVR of index of ramification at least 
p-i). 

11) Any p-healthy regular scheme flat over Z^ is healthy. The proof of this is 
similar to the Step D of 3.2.17. 

12) Any smooth scheme over a local henselian p-healthy regular scheme Spec(i?) of 
dimension at least two, having the property that the only open subscheme of its special 
fibre (defined by TTQ = 0) containing its fiber over the maximal point of Spec(i?), is 
the special fibre itself, is p-healthy. The proof of this is entirely the same as the Steps 
B, C and D of 3.2.17 (to be compared with 3.2.2.2; an argument similar to the one of 
3.2.2 4), involving Weil restriction of p-divisible groups, allows us to replace R by a 
finite etale .R-algebra). 

13) The class of very healthy regular schemes over a Dedekind ring D flat over Z ||] 
is stable under localizations, completions (of local schemes) and passages to smooth 
schemes for which condition i) of 3.2.1 8) is still satisfied. 

14) We could have worked out 3.2.1 for locally integral schemes instead of normal 
schemes. But in such a generality we have basically no results. To study any type of 
healthy normal schemes we can restrict our attention to integral normal schemes. 

15) We consider a projective limit Z of quasi-compact healthy normal schemes 
with transition morphisms such that their fibres over any point of Spec(Z) are domi- 
nant morphisms. We assume that one of the following two conditions is satisfied: 

- every fibre of Z over a finite prime of 5pec(Z) has a finite number of points of 
codimension (in this fibre) zero; 

- the transition morphisms are pro-etale morphisms between schemes regular in 
points of positive characteristic of codimension 1. 

Then Z is a healthy normal scheme (if the first condition is satisfied, the argument 
is standard; if the second condition is satisfied, we have to use as well [BLR, cor. 2, 
p. 177]). The similar statement for almost healthy normal schemes is not true. 

16) Step A of 3.2.17 explains why for checking that a normal scheme Y is (quasi 
or almost or locally) healthy it is enough to deal with principally polarized abelian 
schemes. This is very useful as the moduli stack over Spec(Z) parameterizing prin- 
cipally polarized abelian schemes of a given dimension is algebraic (and so quasi- 
compact) [FC, 4.11, p. 23]. This means that in many situations (like in the last 
part of the proof of 3.2.2.1) we can work out things as in the case when we have a 
quasi-compactness situation. 

3.2.1.2. QUESTIONS. 1) Is it true that any local healthy regular scheme over 
Z(p), of dimension at least 2, is p-healthy? 

2) Is the completion of a local healthy regular scheme, a healthy regular scheme 
itself? 

We expect a positive answer to these questions. In many cases it is known that 
the answer to 2) is yes (cf. 3.2.2.3 B)). 
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3.2.1.3. PROBLEM. Characterize the healthy regular schemes independently of 
the use of abelian schemes or of p-divisible groups. 

3.2.1.4. Expectations. 1) If Y is a local healthy normal scheme, then we do 
expect that its (strict) henselization is also a healthy normal scheme (to be compared 
with rm. 4) of 3.2.2). Similarly for other types of healthy local schemes. 

2) We do expect the existence of noetherian almost healthy and of quasi healthy 
normal schemes which are not healthy. It should be possible to construct such exam- 
ples starting from the fact that the classical purity theorem for regular rings is not 
true for normal noetherian rings. 

3) We do expect that for any N G N there are N healthy normal schemes which 
are not N + 1 healthy normal schemes. 

4) In 2-3), 5) and 9-10) of 3.2.1 we could have worked with quasi-extensible pairs 
instead of extensible pairs. This would have made no difference for 2-3), 5) and 10) 
of 3.2.1, but we do think (we do not have an example to prove this) it would have 
made a difference for 3.2.1 9). The advantage of working with quasi-extensible pairs 
(instead of extensible pairs) consists in the fact that given a flat Spec(Z)-scheme Y 
it is enough to work with only one quasi-extensible pair (Y, E/y), with Uy the subset 
of Y defined as the intersection of the underlying sets of all open subschemes UofY 
such that (Y, U) is an extensible pair. 

5) Though we defined 2-7) of 3.2.1 for schemes over Spec(Z), we have no under- 
standing of the types of healthy schemes (defined there) over Z(2). In particular we do 
not know if Spec(Z2[[T]]) is a healthy scheme; however we do expect this to be true 
(cf. [Va2]). 

6) We do not know even one example of a healthy normal scheme over Spec(Z ||]) 
which is not locally healthy. We do expect that (at least under some mild conditions) 
any healthy regular scheme over Spec(Z||]) is locally healthy. It is a nice problem 
to check that all the healthy regular schemes to be introduced in 3.2.2 5) are locally 
healthy. 

3.2.2. REMARKS. 1) According to [Fa4], if e < p — 1, then any regular formally 
smooth scheme over O is a healthy regular scheme. As a direct consequence of this we 
get that any very healthy regular scheme over a Dedekind ring D (flat over Spec(Z [|])) 
is a healthy regular scheme, and, if D is a Z(p)-algebra, then it is also a p-healthy 
regular scheme (see 3.2.17 for a proof of these statements). 

2) Any healthy regular scheme is an almost healthy regular scheme. But we do 
not know if (or when) an almost healthy normal (regular) scheme is healthy. However 
an integral almost healthy regular scheme whose first fundamental group is trivial is 
a healthy scheme (cf. the classical purity theorem). 

3) The role of the Dedekind ring D in the definition of a very healthy regular 
scheme (over 12) is essentially just to fix the notations. We can define an abstract 
very healthy regular scheme to be a flat scheme Y over Spec(Z) with the property 
that for any local ring Oy of a point y of Y of positive characteristic p, there is a 
faithfully flat O^-algebra Ry, with Ry of the same form as the one in 3.2.1 8). As in 
1) above, any abstract very healthy regular scheme is a healthy regular scheme, and 
any abstract very healthy regular Z(p)-scheme is p-healthy (cf. 3.2.17). 

The class of abstract very healthy regular schemes is stable under localization, 
completion, passage to regular formally smooth schemes, and under pull backs through 
morphisms defined by ring homomorphisms between discrete valuation rings of mixed 
characteristic having the same index of ramification. 
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4) Let q:Yi —>■ Y be an etale morphism of flat Z-schemes. We assume that there 
is an extensible pair (Y, U) such that (Yi,g-1([7)) is an extensible pair and q~~l(U) is 
an etale cover of U (this is equivalent to the fact that q defines an etale cover over YQ 

and over local rings of Y which are discrete valuations rings of mixed characteristic). 
We have: 

A) If Y is a healthy normal scheme, then Yi is a healthy normal scheme. 

To see this let (Yi, Ui) be an extensible pair, and let A^ be an abelian scheme 
over Ui. We can assume that Yi and Y are integral. We can assume that there is an 
open subscheme U of U such that (Y, U) is an extensible pair and g-1(f/) = U\. 

We consider the abelian scheme over U obtained from the abelian scheme A^ 
through the Weil restriction (the morphism Ui —> U is etale and finite). It extends to 
an abelian scheme over Y (as Y is a healthy normal scheme). From this by standard 
arguments we deduce that A^ extends to an abelian scheme over Yi. 

As a consequence we get: 

B) If q is an etale cover then Yi is a healthy normal scheme iff Y is so. 

This remains true if we replace healthy schemes by any other type of healthy 
schemes defined in 2-3), 5-6) and 8-12) of 3.2.1, but we do not know if (or when) this 
remains true if the word healthy is replaced by almost healthy. 

Even better: 

C) If q is a pro-etale cover then Yi is a healthy normal scheme iff Y is so. 
To see this we can assume that Yi and Y are both integral schemes. Let now 

AJ/J be an abelian scheme over an open subscheme Ui of Yi with the property that 
(Yi, Ui) is an extensible pair. There is an etale cover q^: Y2 -» Y, with Y2 an integral 
scheme, such that q factors through #2 and the abelian variety over the generic point 
of Yi obtained from A^, is defined over the generic point v of Y2. Now the theory 
of descent implies that this abelian variety over 1/ extends to an abelian scheme over 
an open subscheme U2 of Y2 with the property that (Y2,[/2) is an extensible pair. 
Moreover its extension to Ui is A^ (we can assume that Ui factors through U2)' Now 
everything results from B) above. 

A similar C) can be stated for the type of healthy schemes introduced in 6), 8) 
and 10) of 3.2.1. 

5) There are plenty of healthy regular schemes which are not very healthy. 3.2.17 
is the source of inspiration for such examples. For instance, if 1 and p are two primes 
such that / > p > 3, then the local schemes of whose completion is of the form 

Y = Spec(W(k)[[x,y,z]]/(xl + y2 + z2 +p)), 

with k a perfect field of characteristic p, is a healthy regular scheme. This can be 
easily seen by making use of Steps A-D of 3.2.17. (Hint: Using Step A we can assume 
that our local scheme is Y itself. Then we can assume that k — k and so that 
Y is a strictly henselian local scheme. Next we check that the closed subscheme 
Spec(JY(&)[[;*/,z|]/(2/2 + z2 H-p)) of Y is a healthy regular scheme.) But obviously Y 
is not a very healthy regular scheme over W{k). It can be checked that Y is also not 
an abstract healthy regular scheme. 

6) The following definition is not mathematically acceptable, and so it is not 
used outside this remark; however we do expect the possibility of defining the class of 
regular O-schemes it introduces, in terms of different indices of ramifications of differ- 
ent regular closed subschemes of it. So we do see the possibility of a mathematically 
acceptable definition of this class, which would lead to a deep understanding of the 
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healthy regular O-schemes. 

DEFINITION (TENTATIVE). We call a regular O-scheme S-healthy (the letter S 
stands for the word strongly) if the completion of the henselization of an arbitrary 
local ring of it of mixed characteristic can be proved to be healthy by making use of 
the Steps A-D of 3.2.17 (as in the hint of 5) above). 

Any very healthy regular O-scheme is S-healthy, any S-healthy regular O-scheme 
is locally healthy. We do not know what is the relation between .R-healthy regular 
schemes (to be defined in 3.2.2.3.1) and S-healthy regular schemes over O. In our 
opinion the most important subclasses of healthy regular schemes over O are: of S- 
healthy, of locally healthy, and of quasi-compact healthy schemes over O (to which we 
have to add, in the case when e < p—1, the subclasses of abstract very healthy schemes 
over O, of i^-healthy schemes over O, and of regular formally smooth schemes over 
some DVR Oi which is a faithfully flat O-algebra having e as its index of ramification). 

3.2.2.1. PROPOSITION. We assume that O is a henselian DVR. Let Y be a 
regular scheme over O and let O ^ Oi be a formally etale inclusion, with Oi a DVR. 
Then Yo1 is a healthy regular scheme iff Y is a healthy regular scheme. 

Proof. Obviously Yo1 is a regular scheme. If Ygp is a healthy regular scheme, then 
from the theory of descent, we deduce that Y and Yo1 are healthy regular schemes. So 
we can assume that Oi is complete. Using B) of 3.2.2 4) we can assume that Oi = O. 
LetFi -YQ,. 

We assume now that Y is a healthy regular scheme. We can assume that Y is an 
integral O-scheme, with a non-empty special fibre. Let (Yi,Ui) be an extensible pair, 
and let A^ be an abelian scheme over Ui. There is an extensible pair (Y, U) such 
that Ui — U x y Yi (as the special fibers of Y and Yi are the same). 

We treat first the case when Y is an affine (integral) scheme. Then A^ is defined 
over a scheme UQ' , with 0'1 a finitely generated O-subalgebra of O. As O is an 
excellent ring (as its field of fractions has characteristic zero), we deduce from [BLR, 
th. 12, p. 83] the existence of an O^-algebra O2, smooth over O, and such that we 
have a homomorphism O2 —)• O of 0[-algebras. Let O3 be the localization of O2 with 
respect to the prime dominated by the maximal ideal of O. 

3.2.2 4) gives us the right to assume that the first fundamental group of Y is 
trivial (and so that Y is an almost healthy regular scheme), and that O is a strictly 
henselian DVR. From the smoothness of O2 (over O) we deduce the existence of an 
epimorphism 53:03 -» O of O-algebras. Now it is easy to check that the resulting 
(abelian scheme) model of A^ over U03 extends to an abelian scheme over Yo3: using 
the fact that Yo3 is a regular scheme (being the localization of a smooth Y-scheme), 
we can follow entirely the independent part 3.2.17 (the role of V being replaced by Y; 
the existence of 53 guarantees that everything is the same). We deduce that A^ does 
extend to an abelian scheme over Yi. 

The same argument works for the case when Y is quasi-compact (i.e. an O- 
subalgebra 0[ of O as above does exist in this case also). The general case is treated 
similarly: we can assume that A^ (cf. 3.2.1.1 16)) is principally polarized; as the 
moduli stack of principally polarized abelian schemes of a given dimension over O- 
schemes is algebraic over O (and so it is quasi-compact) we deduce (see also below) 
the existence of an O-subalgebra Of

1 of O having the same properties as above. The 
rest of the argument is the same. 

In fact we can avoid using stacks. Let V be the normalization of O in the field of 
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fractions of Y. It is a strictly henselian DVR (as O is so, and as the special fibre of the 
regular scheme Y is non-empty). The generic fibre of Y is geometrically connected 
over the field of fractions K(V) of V. As Vi := V (8)0 Oi is still a DVR, this implies 
that Yi is an integral scheme. Moreover its generic fibre is geometrically connected 
over the field of factions of Vi. Now it is an easy exercise to see (starting from the 
fundamental exact sequence of [SGA1, p. 253], applied to the generic fibre of Y, 
viewed as a iif(V)-scheme) that the first fundamental group of Yi is trivial (we view 
Y as a F-scheme and Yi as a Vi -scheme). From this and the classical purity theorem 
we deduce that A^ has level-N structures, for any iV G N satisfying (iV,p) = 1. So 
we can replace the referred stack, by a Mumford scheme A^Au ),I,JV (we view it as 
a quasi-projective smooth scheme over Z[^]) (cf. [Mu]). Here e^A^) is the relative 
dimension of A^, while N > 2 is an integer satisfying (N,p) = 1. Now the existence 
of 0,

1 is obvious, as it can be seen starting from [Hart, ex. 2.4, p. 79]. This ends the 
proof of the proposition. 

3.2.2.2. LEMMA. Let Spec(R) be a local henselian healthy regular scheme over 
O of dimension at least 2. Let Z be a normal R-scheme which is a projective limit of 
smooth schemes of finite type over Spec(R) such that: 

- each member of the limit has the property that the only open subscheme of its 
special fibre (defined by TTQ =0) containing its fibre over the maximal point of Spec(R) 
is the special fibre itself; 

- the transition morphisms are dominant modulo TTQ; 

- either the transition morphisms are etale or each connected component of Z0sh 
is such that its special fibre has a finite number of points of codimension (in this special 
fibre) zero. 

Then Z is a healthy normal scheme. 

Proof. 3.2.2 4) gives us the right to assume that Spec(i?) is a strictly henselian 
local scheme, and so that it is an almost healthy scheme, cf. 3.2.2 2). So we can 
assume that O = Osh and that Z is connected. It is enough (cf. 3.2.1.1 15)) to prove 
this lemma for the case of a smooth scheme Y over Spec(i2) satisfying the required 
condition that the only open subscheme of its special fibre containing its fibre over 
the maximal point of Spec(i?) is the special fibre itself. This condition implies the 
existence of a Zariski dense set of good sections Spec(R) —>■ Y; here by good we mean 
that, fixing an open subscheme U of Y such that (Y, U) is an extensible pair, we 
take only sections s:Spec(R) -> Y such that the pair (Spec(R),s~1(U)) is also an 
extensible pair. Now everything is entirely similar to the proof of Steps C and D of 
3.2.17 (cf. also the proof of 3.2.2.1). 

Let now O M- Ox be an inclusion between two discrete valuation rings which are 
faithfully flat over Z^py We assume that it is of index of ramification 1 and that O 
is a henselian DVR. We recall that a faithfully flat inclusion O3 <-+ O2 between two 
discrete valuation rings is said to be of index of ramification 1, if a uniformizer of O3 
is a uniformizer of O2, and if at the level of residue fields we get a separable field 
extension. 

3.2.2.3. COROLLARY. A) Let Y be a healthy regular O-scheme such that one of 
the following two conditions is satisfied: 

a) any maximal point ofY of positive characteristic has a local ring whose henseli- 
zation is a healthy regular scheme of dimension at least two; 

b) any smooth scheme over a DVR of mixed characteristic which is a local ring 
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of Y is a healthy regular scheme. 
We have: 
1) For any projective limit Z of smooth schemes of finite type over O having etale 

transition O-morphisms whose fibres are dominant morphisms, Yz is a healthy normal 
scheme. 

2) Yo1 is a healthy regular scheme. 
B) If the completion Y of a local henselian healthy regular scheme Y is a projective 

limit of smooth affine schemes over Y, then this completion is a healthy regular scheme. 

Proof. Yz is a normal scheme: it is a projective limit of normal schemes with 
dominant transition morphisms. To check 1) let (Y^, U) be an extensible pair, and let 
A be an abelian scheme over U. The conditions a) and b) imply that we can assume 
that there is an extensible pair (Y, U{Y)) with U — U(Y)z (in case a) cf. 3.2.2.2). As 
in the proof of 3.2.2.1 we can assume that Z is a smooth scheme of finite type over 
0. So the part of the proof of 3.2.2.1 involving passage to Osh and taking sections 
applies: we get that A extends to an abelian scheme over Yz. 

To see 2), we can assume (cf. 3.2.2.1) that both O and Oi are complete DVR's. 
Now everything results by using in this order part 1), 3.2.2.1 and 3.2.2 4), once we 
remark that Spec(Oi) is a pro-etale cover of the spectrum of a DVR 02, which is 
the completion of a henselian DVR of whose spectrum is a projective limit of smooth 
affine O-schemes whose transition O-morphisms are etale and have fibres which are 
dominant morphisms between integral schemes (as the inclusion O M- Oi has index 
of ramification 1). 

Part B) results from 3.2.2.2 if Y is of dimension at least 2 (the case when Y is of 
dimemsion 1, i.e. when Y is the spectrum of a DVR, is trivial). The only extra thing 
we need to add: as Y has a finite number of points of the special fibre of codimension 
zero in it, any abelian scheme over J7, with (y, U) an extensible pair, is defined over 
an open subscheme Uz of a smooth scheme Z of finite type over y, with (Z,Uz) an 
extensible pair, and with the natural morphism Y —>• Y and U —>• Y factoring through 
Z and respectively through Uz- This ends the proof of the corollary. 

3.2.2.3.1. DEFINITION. A healthy regular scheme over Z(p) is called iMiealthy 
(R stands to honor the theorem of Raynaud mentioned in 3.2.1.1 2)) if the local rings 
of the generic points of its special fibre have index of ramification smaller than p — 1. 

3.2.2.4. REMARKS, a) 2) of 3.2.2.3 A) is in essence the maximum it can be said 
in full generality for the case of a ring homomorphism O —> Oi of index of ramification 
1, as the spectrum of any DVR of mixed characteristic is a healthy regular scheme, 
and as the condition b) of 3.2.2.3 A) is a natural one (in this context). Of course there 
are variants of 3.2.2.3 A) when we intermingle the conditions a) and b). 

b) Using def. 3.2.3.2.1, from 3.2.2.3 we get (cf. 3.2.2 1)): a regular scheme Y over 
O is i^-healthy iff Yo1 is an itMiealthy regular scheme. 

c) There are ii!-healthy regular schemes which are not abstract healthy regular 
schemes (see 3.2.2 5)). 

We start now by clarifying and restating the definitions introduced in [Mi4, ch. 
2], and commented in the footnote of [Mi3, p. 513]. So the conjecture [Mi4, 2.7] also 
gets restated (see 3.2.5). 

Let (G, X) define a Shimura variety and let v be a prime of E(G, X) dividing 
the rational prime p. Let H be a compact open subgroup of G(QP). We assume 
now that O is a faithfully flat 0(v)-algebra. Let L be its field of fractions. We have 
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L D E(G,X). Let /: (G,X) -> (Gi,Xi) be a map and let Hi be a compact open 
subgroup of Gi(Qp) such that / takes H into Hi. Let vi be the prime of E(Gi,Xi) 
divided by v. Let Oi be a DVR which is a faithfully flat 0(Vl)-subalgebra of O. Let 
Li be its field of fractions. 

3.2.3. DEFINITIONS. 1) An integral model of Sh^(G, X) over O is a faithfully flat 
scheme M over O together with a G(A?)-continuous action and a G(A^)-equivariant 
isomorphism 

ML^ShH(G,X)L. 

When the G(A^)-action on M is obvious, by abuse of language, we say that M is an 
integral model. 

1') By a (map or) morphism from an integral model M of Sh#(G,X) over O 
to an integral model Mi of Shfj^G^Xi) over Oi we mean a G(A^)-equivariant Oi- 
morphism 

M-^Mi, 

whose restriction to generic fibres is the natural Li-morphism Sh#(G,X)L ^ 
ShH1(Gi,Xi)L1 defined by / (to be compared with 2.9). 

In particular if / is the identity map of (G, X) we get the definition of morphisms 
between two integral models of Sh#(G,X) over O. 

2) The integral model M is said to be smooth (resp. normal) if there is a compact 
open subgroup HQ of G(A^) such that for any inclusion H2 C Hi of compact open 
subgroups of i?o, the natural morphism M/H2 —> M/ifi is a finite etale morphism 
between smooth schemes (resp. between normal schemes) of finite type over O. In 
other words, there is a compact open subgroup HQ of G(A?) such that M is a pro-etale 
cover of the smooth scheme (resp.  of the normal scheme) M/HQ of finite type over 
0(V). 

2') The integral model M is said to be quasi-projective, projective or proper if 
for any (it is enough just for one) compact open subgroup HQ of G(A?) the scheme 
M/HQ is respectively quasi-projective, projective or proper. 

3) A scheme T over O is said to have the extension property, abbreviated EP 
(resp. the extended extension property, abbreviated EEP), if, for any healthy regular 
scheme (resp. for any almost healthy normal scheme) Y over O, every L-morphism 
YL -> TL extends uniquely to an O-morphism Y —> T. Similarly, using i^-healthy 
regular schemes instead of healthy regular schemes, we speak about a scheme having 
the i?-extension property (abbreviated REP). 

4) A scheme T over O is said to have the weak extension property, abbreviated 
WEP (resp. the smooth extension property, abbreviated SEP), if, for any abstract 
very healthy regular scheme Y over O (resp. for any regular formally smooth scheme 
Y over a DVR which is a faithfully flat O-algebra and has the same ramification index 
as O), every L-morphism YL -> TL extends uniquely to an O-morphism Y —> T. 

5) A scheme T over O is said to have the quasi extension property, abbreviated 
QEP (resp. the local extension property, abbreviated LEP), if, for any quasi-compact 
healthy regular scheme (resp. for any locally healthy regular scheme) Y over O, every 
L-morphism YL —> TL extends uniquely to an O-morphism Y" —> T. Similarly we 
define the quasi extended extension property (abbreviated QEEP). 

6) A smooth integral model of Sh#(G,X) over 0(v) (resp. over its completion 

0(v)) having the EP is called an integral canonical model (resp. a local integral 
canonical model) of our Shimura variety Sh(G, X) with respect to v and H (or simply 
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with respect to H as the prime v is determined by the integral model). 

3.2.3.0. REMARK. Other extension properties can be defined starting from quasi 
healthy schemes, or from locally healthy schemes. Not to be to long, this is not going 
to be done here. 

3.2.3.1. REMARKS. 0) Allowing (G, X) and v to vary we get that def. 3-5) above 
make sense for any DVR which is a faithfully flat Z(p)-algebra. Moreover 1) and V) 
above make sense for any compact subgroup H of G(A?) not necessarily open, but for 
2) and 2') we do need to assume that H is also open. 

1) Any scheme over O having the EEP, has the EP (cf. 3.2.2 2)), and any scheme 
over O having the EP, has the WEP (cf. 3.2.2 1)). If e < p - 1 than any scheme 
over O having the WEP has the SEP. We do not know when the converses of these 
statements are true. 

2) Any quotient M/HQ (with HQ a compact open subgroup of G(AR)) of a normal 
integral model M of Sh/f (G,-X") over O having the EP, is separated. 

To see this we first remark that any DVR of mixed characteristic is a healthy 
regular scheme. We use the valuative criterion of separatedness. We need to check it 
just for a DVR of mixed characteristic: M is a pro-etale cover of the normal scheme 
M,/Ho of finite type over O, having a separated generic fibre. Now everything results 
from the EP. 

3) A scheme Y over O has any of the extension properties we defined iff the 
reduced scheme Yre(i attached to it has it. A reduced scheme Y over O has any of 
the extension properties we defined iff any connected component of its normalization 
in its ring of fractions has it. This reduces the study of schemes over O having an 
extension property to the case of integral normal schemes over O. All these results 
from the fact that we defined the different extension properties in terms of normal 
schemes. 

4) Any scheme over O having the EP (resp. EEP) has the LEP and the QEP 
(resp. has the QEEP). We do not know if (or when) the converse is true. 

5) If Y is a scheme over O having any type of extension property, and if YIL 

is a closed reduced subscheme of YL, then the closure Yi of YIL in Y also has the 
same type of extension property. Moreover: the normalization of Yi in any pro-etale 
scheme over the spectrum of the ring of fractions of Yi has the same type of extension 
property. We will use this trivial fact without any further comment. 

5') If Y is an O-scheme having the EP, and if q: Y -> Yi is a morphism which is 
an isomorphism on generic fibres, then Yi has the EP. This remains true for any of 
the extension type properties we defined above. 

6) If Yi -» Y is a pro-etale cover of O-schemes then Yi has the EP (or QEP, or 
WEP, or SEP) iff Y has it (for the EP and QEP this is a consequence of C) of 3.2.2 
4); for the WEP and SEP cf. def. 4) of 3.2.3). 

7) A regular formally smooth scheme over O having the SEP is uniquely deter- 
mined by its special fibre. 

3.2.3.2. Let M be a smooth integral model of Sh^GjX) over O. Let HQ be a 
compact open subgroups of G(A?) such that the quotient morphism M —> M/HQ is a 
pro-etale cover. 

PROPOSITION, a) If M has the SEP (resp. WEP or EP) then M/HQ has the 
following extension type property: If (Y, U) is an extensible pair with Y a regular 
formally smooth scheme over a DVR Oi which is a faithfuly flat O-algebra having the 
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same index of ramification as O (resp. with Y an abstract very healthy regular scheme, 
or resp. with Y a healthy regular scheme) then any morphism U —>• M/HQ extends 
uniquely to a morphism Y —> M/HQ; 

b) We assume that M has the SEP and satisfies the valuative criterion of proper- 
ness with respect to discrete valuation rings of mixed characteristic (for instance if M 
has the EP and e <p—l).  We have: 

i) Let M0
/HQ be an open closed subscheme ofM/Ho, and let q0:M0/Ho -»■ Z be 

a morphism, with Z a faithfully flat separated scheme of finite type over O, which is 
an isomorphism on generic fibres. We assume that there is an open subscheme U of 
M0 /Ho containing at least one generic point of the special fibre, such that q0 identifies 
it with an open subscheme of Z. Then the natural map M0/iJo(Osh) —Y Z(Osh) is a 
bisection. Moreover if Z is normal, then it is smooth in codimension 1; 

ii) If a morphism q0 as in i) above is proper, then it is finite; 

Proof. The proof of a) is a consequence of the classical purity theorem and of the 
fact that the class of schemes Y mentioned in a) are stable under pro-etale covers (cf. 
rm. 4) of 3.2.2). We prove now b). 

i) We can assume that 0 — Osh and that M
0
/HQ is connected. So let 6 be a 

connected component of M/HQ. We first remark that S is a separated scheme (the 
argument is the same as for 2) above) of finite type over O (cf. def. 2) of 3.2.3), having 
a smooth quasi-projective generic fibre (the generic fibre is a model of the quotient of 
a Hermitian symmetric domain by an arithmetic subgroup). 

We consider a morphism q: C -» Z, with Z a faithfully flat separated scheme of 
finite type over O, having the properties mentioned in i) of b). We can assume that 
Z is a normal scheme. From the smoothening process (cf. [BLR, th. 3, p. 61]) we 
deduce the existence of a Z-scheme Zi, smooth over O, quasi-projective over Z, and 
having the property that the induced map Zi(0) —>■ Z(O) is a bijection. Moreover 
the generic fibre of Zi is the same as the generic fibre of Z (or of 6). 

{A) The first key fact we need is: any two discrete valuation rings defined by 
local rings of generic points of the special fibre of Zi have normalizations (in a finite 
field extension DCi of the field of fractions X of C) of whose local rings (in maximal 
points) are conjugate by automorphisms (of Xi), fixing a subfield X' of X such that 
[X : X'] < oo. This is an immediate consequence of [BLR, lemma 4, p. 155], based on 
standard arguments involving DVR's. 

is) Using this we deduce that the normalization of any such DVR in the field 
of fractions of a connected component C1 of M which is a pro-etale cover of C, is 
a regular ring of dimension 1. This implies the existence of a morphism from the 
spectrum of any such normalization into C1 (as M satisfies the valuative criterion of 
properness with respect to discrete valuation rings of mixed characteristic). So there 
is a rational map qi from Zi to 6 defined on points of codimension 1, and inducing 
an isomorphism on generic fibres. From the mentioned extension type property of 
M/HQ (cf. a)), which is also enjoyed by its connected component C, we deduce that 
qi is in fact a morphism. Moreover the induced maps Zi(0) -> 6(0) -> Z(0) are 
bijections. This implies that qi is a surjective morphism (as C is a smooth scheme and 
as O = Osh). 

The same arguments as above can be used to get that Z is smooth in codimension 
1, provided Z is normal. This takes care of i) of b) 

ii) We assume now that q is a proper morphism. We can assume that Z is 
normal. We need to show that q is an isomorphism. We just need to show that q is an 
isomorphism in codimension 1. If this is not so, then there is a connected component 
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Cp of the special fibre of C dominating a reduced closed subscheme Zp of the special 
fibre of Z of dimension d < dim(Cp). So Zp is a closed subscheme of the non-smooth 
locus of Z. Let C be the open subscheme of C defined by &p and the generic fibre of 
e. 

From [BLR, p. 72] we deduce that the morphism C —> Z lifts to a morphism 
qp: C —> Z, where Z is obtained from Z through the first blowing up needed to get Zi: 
we always blow up a reduced connected component of the maximal reduced closed 
subscheme Sz of the special fibre of Z having the property that it is included in the 
non-smooth locus of Z and the points of it with values in the residue field of (9sh 

admiting lifts (in Z) to (9sh are Zariski dense in it. As C is smooth and its fibres 
over Z are proper schemes (over residue fields of points of Z), we deduce that qp 

dominates a closed subscheme Zp of the special fibre of Z of the same dimension d: 
the morphism 6 —> Z factors through an open subscheme of Z which is affine over Z, 
cf. the properties of dilatations [BLR, p. 62]. So Zp is included in the non-smooth 
locus of Z. We can apply induction to get that qi has a section above C such that Cp 
dominates a closed subscheme of the special fibre of Zi of dimension d. Contradiction. 
We conclude that q is an isomorphism in codimension 1, and so an isomorphism. This 
ends the proof of the proposition. 

EXPECTATIONS. Under the hypotheses of b) above we expect that the following 
statements can be proved without assuming that JVC is a quasi-projective integral 
model: 

hi) If Spec(O) —>■ Spec(Oi) is a finite Galois cover, with 0\ an 0(v)-subalgebra 
of 0, then M is the extension to O of a smooth integral model Mi of Sh^(G, X) over 
Oi. Mi inherits the properties of M we started with; 

iv) The quotient of M/HQ through a finite free action exists as a scheme (not 
only as an algebraic space). 

We present the reasons for these expectations. 
iii) To see iii) of part b) we can assume that both O and Oi are complete (for 

instance cf. Raynaud's result mentioned in [BLR, p. 166])). Let C := Gal(0/Oi) = 
Gal(&/&i), with k and ki the residue field of O and respectively of Oi. We view 
C as a finite etale group scheme over O. Due to the fact that M has the SEP and 
that its generic fibre is definable over the field of fractions of Oi (being definable over 
E(G, X)) we deduce the existence of a natural action of C on M, compatible with the 
action of G(Ap

f) on M. It provides us with a Galois-descent datum (see [BLR, 6.2]). 
We just have to show that it is effective. It is enough to work with M/HQ instead of 
M. 

iii A) From [BLR, lemma 4, p. 155] and [Mul, p. 112] we deduce the existence of 
a quasi-projective smooth scheme U1 of finite type over Oi such that UQ is an open 
subscheme of M/HQ containing the generic fibre and all the points of codimension 1. 
Let Z be a faithfully flat projective scheme over Oi having U1 as an open subscheme. 
We can assume that its generic fibre is smooth (cf. the resolution of singularities in 
characteristic zero). We can assume that the generic fibre of U1 is dense in the generic 
fibre of Z. We get a rational map from M/iJo to ZQ defined on the generic fibre and 
in points of codimension 1. 

UIB) Let y:Spec(k2) c-^ M/HQ be an arbitrary maximal point of positive char- 
acteristic. Here fe is a finite field extension of ki. Let Spec(02) be the etale cover of 
Spec(O) having Spec^) as its special fibre. Let z: Spec(02) ^ M/HQ be an arbi- 
trary lift of y. Let Zi be obtained from Z as above, using the smoothening process. 
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So Z\ is the smooth locus of a scheme Z,
1 obtained from Z through a sequence of 

blowings up centered on special fibres. We get a natural bijection Zi(Osh) ->■ Z(Osh). 
As Z is a projective O-scheme, we can view z as an 02-valued point Z2 of Zi. Let 
y2:Spec(k'1) M- Z\ be the maximal point of the special fibre of Z\ through which 
the fe-valued point of Zi, defined by 2:2, factors. Let Spec(0/

1) be the etale cover of 
Oi having k'-^ as its residue field. Let Spec(Oi) M- Zi be a lift of 2/2• Let Spec(0/) 
be the Galois cover of Spec(0/

1) generated by O. Let W\ be the closed subscheme 
of Zi which is the closure of the closed subscheme of its generic fibre defined by the 
complement of the generic fibre of U1. Let Z2 be the open subscheme of Z\ defined 
by the complement of Wi. As in is) we get a morphism q: Z20 -> M/iJo, which at 
the level of generic fibres is an isomorphism. 

iiic) We can assume that zi factors through Z2. To see this we have to use 
blowings up centered on non-smooth loci. First we blow up 2/2 on Zi. We get similarly 
a point 2/2 on the resulting scheme Z2. Now we blow up y^ on Z2. After a finite number 
of operation we achieve the separation of the point Z2 from W\. This is possible due 
to the fact that in characteristic zero we do have such a separation: let Oy2 be the 
local ring of 1/2 in Z2, and let n G N be the valuation (with respect to the normalized 
valuation of O2) of the image in O2 (through the epimorphism Oy2 -» O2 defined by 
Z2) of an element of Oy2 defining Wi in Spec(02/2); after at most n blowings up we 
achieve the desired separation. 

We got a C-equivariant morphism Spec(02/2 ®Oi O) —>- M/HQ. Its image contains 
the C-orbit of y in M/HQ. The same is true for any other maximal point of Z2 whose 
inverse image to Z20 dominates the C-orbit of y. So this orbit should be contained in 
an affine open scheme of JA/HQ. If €)[ = Oi, this is obvious. The general case should 
be handlabled by standard arguments on local rings: we just need to show that the 
intersection of the local rings of the points of the C-orbit of y is a semi-local ring 
whose localizations with respect to the maximal ideals are the local rings of the points 
of the C-orbit of y; this should be provable using the fact that q is an isomorphism 
above points of M/Ho of codimension 1, starting from [Ma, th. 38]. 

We assume now that we were able to get that the C-orbit of y is contained in an 
affine open subscheme of M/HQ. AS y was an arbitrary maximal point of the special 
fibre of Jfi/Ho, from [Mul, p. 112] we deduce that the quotient of M/HQ through the 
action of C exists as a scheme. This scheme is MI/HQ. Taking its normalization in 
the ring of fractions of the extension of Sh#(G, X) to the field of fractions of Oi, we 
get the desired integral model Mi of Sh#(G,X) over Oi (obviously Mio = 3VC). The 
last part of iii) involving the inheritance property is trivial. 

iv) The above ideas of iii) can be entirely adapted for the case of quotients. The 
easy details are left as an exercise. We just need to replace the operation of extension 
of scalars (from Oi to O) used above, by the operation of taking normalization (of 
a reduced scheme whose ring of fractions is the subring of the ring of fractions J of 
M/HQ fixed by the action) in ST. 

3.2.3.2.1. REMARKS. 1) We call the part of i) of 3.2.3.2 b) involving Osh-valued 
points as the maximality property. 

2) We think it is possible to prove that M/HQ is a quasi-projective scheme over 
O by just refining 3.2.3.2. In the case when (G, X) is of preabelian type and (v, 6) = 1 
we prove this (cf. 3.2.4 and 6.4.1) using the extra fact that different schemes related 
to M are moduli schemes of abelian varieties (subject to some conditions). 

3) In [Va6] we will develop the general theory of integral canonical models of 
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smooth schemes of finite type over the field of fractions of a Dedekind domain (of 
mixed characteristic), starting from 3.2.3.2 and rm. 1) of 6.4.6. 

3') The ideas and results of 3.2.3.2 can be used in a much larger context (not 
involving Shimura varieties). For instance for a) we just used the fact that M/HQ 

has a pro-etale cover having some extension type property, while for expectation iii) 
(resp. iv)) we used (besides the mentioned fact) the fact that the descent (resp. the 
quotient) we are dealing with is known to be effective at the level of generic fibres. 

4) Expectation iii) is not true in the larger context if the finite morphism 
Spec(O) -* Spec(Oi), with Oi a DVR, is not an etale cover, as it can be easily seen 
through examples using Neron models of abelian varieties. 

3.2.3.3. PROPOSITION. Let io'-O <-> Oi be a faithfully fiat inclusion of discrete 
valuation rings, with Oi having also e as its index of ramification.  We have: 

1) A scheme Y over O has the WEP or the SEP iff Yo1 has it 
2) If moreover O is a henselian local ring and if io is formally etale, then a 

scheme Y over O has the EP (or QEP) iff Yo1 has it. 
3) If io has index of ramification 1, then a scheme Y over O has the REP iff Yo1 

has the REP. 

Proof. We just need to check that the class of schemes involved in the definition 
of these extension properties is stable under pull backs through io and that any Oi- 
scheme belonging to such given class, as an O-scheme also belongs to the given class. 
This last part is trivial, while the first part is a direct consequence of def. 4) of 3.2.3 
for 1), of 3.2.2.1 for 2), and of 3.2.2.4 b) for 3). 

3.2.3.4. REMARK. We do expect that the condition on O of being a henselian 
DVR used in 3.2.3.3 2) is not needed. For this we need to prove that for any etale 
morphism Spec(Oi) —> Spec(O), with Oi a DVR, a scheme Y over O is a healthy 
regular scheme iff Yo1 is so. 

3.2.4. REMARK. We assume that G is unramified over Qp and that H is a 
hyperspecial subgroup of G(Qp). Then, if p > 2, any (local) integral canonical model 
3Nf of Shu(G, X) is uniquely determined up to a unique isomorphism (cf. 3.2.3.1 7); i.e 
N has the SEP as it has the EP: this results from 3.2.2 1) and from [Mi3, 4.7] which 
shows that v is unramified over p). If p = 2 then we know the unicity of an integral 
canonical model of Shjy (G, X) only when G is a torus (cf. 3.2.8). 

3.2.5. MILNE'S CONJECTURE [MI4]. If G is unramified over Qp and if H is a 
hyperspecial subgroup ofG(Qp), then Shff(G, X) has an integral canonical model with 
respect to v and H. 

3.2.6. Notations and Definitions. By (G, X, //, v) we always denote a quadru- 
ple where: (G,X) defines a Shimura variety, v is a prime of E{G,X) dividing a 
rational prime p such that G is unramified over Qp, and if is a hyperspecial sub- 
group of G(Qp). The maps from a quadruple (G,X,H,v) into another quadruple 
(Gi,Xi,Hi,vi) are defined by maps f:{G,X) -> (Gi,Xi) taking H into Hi and 
inducing an inclusion E(G,X) D E(Gi1X1) with v dividing vi. We denote it by 
f:(G,X,H,v) —> (Gi,Xi,Hi,vi). A map between quadruples is called injective, or 
finite, or a cover if as a map /: (G,X) -> (Gi,Xi) of Shimura pairs it is so. If 
(G,X,H,v) is a quadruple then (Gad,Xad,#ad,<;ad) (with #ad as in the part b) 
of 3.2.7 2) and with vad the prime of £(Gad,Xad) divided by v) is called its ad- 
joint quadruple and (Gab,Xab,ifab,i;ab) (with ifab the only hyperspecial subgroup 
of Gah(Qp) and with v*b the prime of E(Gab,Xab) divided by v) is called its toric 
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part quadruple. We have maps from any quadruple into its adjoint and toric part 
quadruple. 

By (G, X, H) we always denote triples which can be completed to a quadruple 
(G,X,H,v). The definitions of maps between quadruples extend to triples. We also 
speak about the adjoint and toric part triple of a triple (G, X, H). 

By an integral canonical model of a quadruple (G, X, if, v) we mean an integral 
canonical model of Sh#(G,X) over 0(v). We denote it by Shv(G,X, H). It is clear 
what we mean by Shv(G,X,H) having the EEP. Similarly, we speak about integral 
smooth (or normal) models of a quadruple over 0, or about a local integral canonical 
model of a quadruple. 

If all the quadruples (G, X, H, v) of a triple (G, X, H) have uniquely determined 
integral canonical models, then we denote by Shp(G,X, H) the model of Sh#(G,X) 
over the normalization of Z^ in E(G,X), obtained by gluing along their generic 
fibres the integral canonical models of all quadruples (G, X, H, v) extending the triple 
(G, X, H). We call it the integral canonical model of the triple (G, X, H). Similarly 
we define a (smooth or normal) integral model over O of a triple. The rm. 2) of 3.2.7 
shows that if Shp(G,X,H) exists, then for any other hyperspecial subgroups Hi of 
G(Qp), Shp(G,X, Hi) exists and as a scheme it is isomorphic to Shp(G,X,H). This 
means that it is irrelevant with which hyperspecial subgroup H of G(Qp) we work and 
so we sometimes write Shp(G,X) instead of Sh^G,X, iJ) and Shv(G,X) instead of 
Slx^G, X, H). We say that Shp(G, X) exists if for a (any) hyperspecial subgroup H of 
G(Qp), Shp(G,X, H) exists. We call Shp(G,X) the Z(p)-model or the Z(^-canonical 
model of our Shimura variety Sh(G,X). We say that Shp(G,X, iJ) has the EP (or 
the EEP) if as a Z(p)-scheme it has it. 

3.2.7. REMARKS. 1) Milne's conjecture can be reformulated: any quadruple has 
an integral canonical model. 

2) If a quadruple (G, X, iJ, v) has an integral canonical model M, then any other 
quadruple of the form (G,X,Hi,v) has also an integral canonical model, which is 
isomorphic to M as an 0(v)-scheme. This results from the following fact: 

3.2.7.1. Under the canonical action of Aut(5/i(G,X)) on G (cf. 2.4.3) and so 
on G(Qp), the hyperspecial subgroups of G(Qp) are permuted transitively. 

So actually (G,X, if, v) ^> (G,X, Hi,v). To see this we first remark that: 

a) Any two hyperspecial subgroups of G(Qp) are conjugate by an element of Gad(Qp) 
[Ti, p. 47]. 

b) There is a hyperspecial subgroup i?ad of Gad (Qp) normalizing H (ilad is the group 
of Zp-valued points of the quotient G^eT/Z, where G|er is the derived subgroup 
of the reductive group Gzp over Zp having GQP as its generic fibre and having H 
as its group of Zp-valued points, and where Z is the center of G|er). 

c) Gad(Qp) = Gad(Q)#ad [Mi3, 4.9]. 

d) If g e Gad(Q) takes X onto X, then (G, X, Hi, v) has an integral canonical model 
if and only if (G,X,gHig~l,v) has an integral canonical model. 

e) Gad(Z(p)) := Gad(Q) fl ilad permutes transitively the connected components of 
Xad (where (Gad,Xad) defines the adjoint variety of Sh(G,X)) (cf. 3.3.3). 

f) If an element of Gad(M) leaves invariant a connected component of X, it leaves 
invariant X. 
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So a), b) and c) imply that there is g G Gad(Q) such that iJi = gHg-1. From 
e) we get that we can replace g with gh, with h e Gad(Z(p)), in such a way that gh 
takes a (fixed) component X0 of X into itself, f) implies that gh G Gad(Q) produces 
by conjugation (of G) an isomorphism (G, X, H, v) -^ (G, X, Hi,v). 

The integral canonical model M of our Shimura variety Sh(G, X) with respect to 
v and if, is often referred to as an integral canonical model of Sh(G, X), as the prime 
v is determined by it and as it is irrelevant with which hyperspecial subgroup we work. 
Similarly, we often speak about a local integral canonical model of a Shimura variety, 
without mentioning the hyperspecial subgroup and the prime with respect to which 
it is defined. 

3) The category qf — Sh (tr — Sh) whose objects are quadruples (respectively 
triples) and whose morphisms are finite maps between them has quasi fibre products 
(as in 2.4.0). If fi:(Gi,Xi,Hi,Vi) -> (Go, Xo, #0,^0)5 i = 1,2, are finite maps such 
that the intersection Xi D X2 is not empty (see 2.4.0), then a quasi fibre product of 
fi and /2 is described by maps pj: (Gs^X^Hs^vs) ->• (G^X^i^,^), i = 1,2, where 
(G3,X|) is as in 2.4.0, H3 := (Hi x H2) fl G3(Qp), and ^3 is uniquely determined as 
E(Gd:X

J
3) is the composite field of E(Gi,Xi) and E(G2,X2). 

If fi or /2 is a cover then the set / introduced in 2.4.0 has precisely one element 
(cf. 2.4.0 and [Mi4, 4.11]); so we can speak about the fibre product of fi and fe. 

This allows us to define the standard quadruple situation of Shimura varieties 
of preabelian type (abbreviated SQSPT). For a given quadruple (G,X,H,v) of pre- 
abelian type, this is a commutative diagram 

(G4,X4,#4,0 —^ (G3,X3,H3,V3) —2->      (GuXuHuvi) 

P2 P3 

f2      v m    V    IT   „.\ fo (G2,X2,tf2,*;2) —2-+      (G,X,H,v)     -^^ (Gad,Xad,^ad,i;ad) 

such that: 

a) all its maps are finite; 

b) the two squares are quasi fibre products; 

c) /2 is a cover with E(G,X) = £(G2,X2) (see 10) below); 

d) Gder is either a simply connected semisimple group, or is isomorphic to Gder 

(as we need); in both situations we have Gder = Gder; 

e) there is an injective map /: (Gi,Xi,Hi,vi) M- (GSp(W,ip),S,Kp,p). 

To show its existence once we assume the existence of / and fi (cf. 6.4.2), we 
just need to modify the map fi in such a way that the intersection of X2 and Xi 
(inside Xad) is non-empty. As Gad(Z(p)) := Gad(Q) fl iJad permutes transitively the 
connected components of Xad (cf. 3.3.3), by composing an arbitrary map fi with an 
automorphism (cf. 9) below) of (Gad,Xad,ifad), we can always achieve a non-empty 
intersection Xi fl X2. 

When Gder = Gder, all the quadruples of the above diagram are of abelian type, 
and then we refer to it as the standard quadruple situation of Shimura varieties of 
abelian type (abbreviated SQSAT). 

4) Let ICM-Sh (ICM-tr-Sh) be the category whose objects are quadruples 
(G, X, if, v) (resp. triples (G, X, H)) having an integral canonical model and satisfying 
(v, 2) = 1 (resp. satisfying (p, 2) = 1, where p is the prime such that ii" C G(Qp)), and 
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whose morphisms are the maps between quadruples (resp. triples). Any such integral 
canonical model is formally smooth over the localization of Z with respect to some 
prime p > 2 and has the SEP (cf. 3.2.4). So we have a functor J from ICM-Sh (ICM- 
tr-Sh) to the category of schemes: it associates to a quadruple (G,X,H,v) (resp. to 
a triple (G,X,H)) its integral canonical model Shv(G,X,iI) (resp. Shp(G,X,if), 
with p as before), and to a map (G,X,Hjv) -> (Gi,Xi,Hi,vi) (resp. (G,X,H) -> 
(Gi,Xi,Hi)) the morphism 

SK(G,X,H) -+ Sh^GuXuHJ 

(resp. Shp(G, X, H) -* Shp(Gi,Xi,Hi)) whose generic fibre is the natural morphism 
ShH(G,X)^ShH1(GuX1). 

4') With the notations and definitions of 1) and I7) of 3.2.3, we get the category 
SIM(ShH(G, X), O) of smooth integral models of Sh^(G, X) over O. If there is such 
an integral model having the SEP, then as an object of this category, it is a final 
object. 

5) The definition of a healthy or of an almost healthy normal scheme appeals 
to abelian schemes, while the definition of an abstract very healthy regular scheme is 
intrinsic. We could have defined the notion of an integral canonical model of a Shimura 
variety using the WEP (or SEP) instead of the EP. Defining it using the WEP instead 
of EP or even instead of SEP would have been definitely more convenient (and then 
we would have been speaking about integral canonical models having the EP). We 
preferred to work out def. 6) of 3.2.3 using the EP due to the following reasons: 

- it is closer to the spirit of Milne's original (though inadequate, cf. footnote of 
[Mi3, p. 513]) definition in [Mi4, ch. 2]; 

- the philosophy of 6) below; 
- it makes sense and works also for p = 2: the WEP is enjoyed by any scheme 

over Z(2), and we just hope that the SEP works for p = 2 (cf. 3.2.1.4 5) and 3.2.9); 
- all integral canonical models of Shimura varieties (of preabelian type) whose 

existence we are able to prove in this paper (or in [Va2-3] and [Va5]) have the EP (and 
so they have the WEP and the SEP); 

- the worries that 3.2.3 6) might not work for Shimura varieties which are not of 
preabelian type are not so justified (cf. 8) below); 

- the greatest advantage of using the EP instead of the SEP (and even instead 
of the WEP) consists in the fact that in this way we can get (the simplest way is by 
extension of scalars; but there are other ways like dealing with cases of bad reduction 
or like taking quotients of extended integral canonical models to be introduced in 3.5.1) 
(very often uniquely determined) (smooth or normal) integral models, having the EP, 
of some quotients of Shimura varieties (of preabelian type) over discrete valuation 
rings which do not have the index of ramification 1 (or some eGN, e < p — 1) (cf. 
alsorm. 3) of 3.2.3.2.1); 

- it it easy to see, using Neron models and the fact that any DVR of mixed 
characteristic defines a healthy scheme, that the EP is a stronger property than the 
WEP or than the SEP (cf. also 3.2.3.1 1)). 

6) In our philosophy (cf. [Va6]), the healthy regular schemes over Spec(Z) are 
forming the largest class ft of regular schemes over Spec(Z) which contains all the 
smooth schemes over Spec(Z[|]) and it is such that for any extensible pair (Y,U), 
with Y a regular scheme (belonging to ft) over a Dedekind ring D faithfully flat over 
a localization of Z, every morphism from U to a familiar smooth moduli scheme over 
D (such as moduli of semistable curves, of semistable vector bundles of a projective 
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smooth curve, of polarized abelian schemes satisfying some extra conditions, etc.) 
extends uniquely to a morphism from Y into that moduli scheme over D. 

7) In 3.2.3 1) we could have defined an integral model M (of Shn(G, X)) without 
requiring that M is faithfully flat over O. But we can not see any use of such integral 
models JVC which are not faithfully flat: the closure Mi of ML in M is "the only part of 
M influenced (controlled) by ML". SO it makes no sense to say that M is an integral 

model of ML=SMG,X). 
8) It is well known (cf. §4) that Shimura varieties of Hodge type are moduli 

schemes of principally polarized abelian schemes of a given dimension, endowed with 
a family of Hodge cycles and some level structures, and satisfying some additional 
conditions. So it looks reasonable to define an integral canonical model of a Shimura 
variety of preabelian type (cf. Definitions 3 of 2.5) in the way we did. As in this 
paper we are dealing only with Shimura varieties of preabelian type, we would like to 
indicate briefly why the def. 6) of 3.2.3 of an integral canonical model of a Shimura 
variety should work also for Shimura varieties which are not of preabelian type. We 
have four reasons for this: 

a) We expect the possibility of interpreting a large class of quotients of Shimura 
varieties of special type over the completion of their reflex field in a prime of 
it, as moduli schemes of p-divisible groups endowed with tensors (a notion with 
which we will be dealing extensively in [Va2]; here, for a glimpse of what we have 
in mind see 5.6.5). 1) and 3) of 3.2.2, together with the expectations of 3.2.1.4 6), 
of 3.2.3.4 and of 3.2.1.2, do motivate why we dared to work with the EP instead 
of the WEP (for a scheme which is a moduli of p-divisible groups). 

b) There are generalized Shimura filtered cr-crystals of special type (cf. [Va2] for the 
meaning of this). Here we just give an idea: for instance, there are quadruples 
(M, F1,^?, (ua)a(zg,Gw(k)) as in 5.6.5 satisfying d), f) and g) of 5.6.5, and such 
that G^L^x is a simple adjoint group of £V-type> etc. The local deformation 
theory of 5.4 remains true for Shimura filtered cr-crystals (cf. [Va2]). 

c) The philosophy of 6) above. 
d) The philosophy of [Mil, paragraph 9, p. 343-345]. 

Moreover once we know the existence of local integral canonical models of Shimura 
varieties of special type, we should be able to get, using the above four reasons (and 
6.4.1), the existence of integral canonical models of Shimura varieties of special type. 

9) The group Aut((G, X,H)) of automorphisms of a triple (G,X,H) (or of a 
quadruple (G,X, iJ, v)) is the subgroup of Aut{Gz{p)){^{p)) (of finite index) leaving 
X invariant (cf. 3.1.3.2) (here Gz(p) is a reductive group over Z(p) having G as its 
generic fibre, and such that Gz(p)(Zp) = if; cf. 3.1.3). If Sh(G,X) is of adjoint type, 
then we have Aut((G,X,F)) = Aitf(Gz(p))(Z(p)). 

10) For any quadruple (G, X, ff, v) and for any isogeny (of connected groups) 
Gi -► Gder, there is a cover (Go,Xo,#0,^0) -> (G, A",fT,v) with Gfv = Gi (and if 
needed also with ^(G0,X0) = E(G^X)). This is a direct consequence of the proof of 
[MS, 3.4] (i.e. we can take Go unramified over Qp, if G is unramified over Qp). 

11) For any quadruple (G,X,H,v) there are finite maps f:(Gi,Xi,Hi,vi) -» 
(G,X,#» and /i:(Gi,Xi,tfi,^) -» (G^^fli,^) such that: 

- {G21X2,H2,V2) is a product of quadruples (Gi,Xi,Hi,Vi), i running through 
the elements of a finite set, with Gfd a simple adjoint Q-group; 

- they define a quasi fibre product of the natural maps /o:(G,X, H, v) -> 
(Gad, Xad, fPd, ^d)      and     /2 :   (G2, X2, H2l v2)    ->    (Gfd, X2

ad, tf2
ad, vf) = 
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(Gad, Xad, iJad, t;ad); 
- there are injective maps (Gi,Xi,Hi,Vi) M^ (G,X,H,v), i G /, producing an 

isogenyn,e/Gf ^ Gder. 
This results from 2.12 1) using an argument similar to the one used in 3.1.4. 
12) The advantage of working with triples instead of quadruples consists in the 

fact that if (G,X, H) —> (Gi,Xi, Hi) is a finite map between two triples having inte- 
gral canonical models, with H C G(Qp) for a prime p > 2, then the natural morphism 
(cf. 4) above) Sh.p(G1X1 H) -> Shp(Gi,Xi,fl"i) is (at least in the majority of cases) 
the composite of a pro-etale cover with an open closed embedding (cf. 6.4.5). But 
the natural morphism Shv(G,X,fl") —> ShVl(Gi,Xi,Hi), with v a prime of E(G,X) 
dividing p and the prime Vi of E(Gi,Xi), is not if there are other primes (besides 
v) of E(G,X) dividing vi. This together with C) of 3.2.2 4) makes the triples more 
suitable for passing the EP enjoyed by an integral canonical model of a triple to a 
smooth integral model of another triple having the same adjoint triple (for instance 
cf. 6.2.3). 

3.2.8. EXAMPLE. We consider a Shimura pair (T, {h}) with T a torus. Let p 
be a rational prime. Then T is unramified over Q^ iff T splits over an unramified 
cover of Qp. If this is so then T(Qp) has a unique hyperspecial subgroup HT- For any 
compact open subgroup Hj. of T(A^), Shj^x^p (T, {/i}) is the scheme associated to a 
finite product of finite field extensions of i£(T, {^})5 which are unramified over p (this 
results from the reciprocity map 2.6 and from the fact that T(Q)HT = T(QP) [Mi4, 
4.11]). So, for every prime VT of E(T, {h}) dividing p, (T, {ft}, HT, VT) has an integral 
canonical model, obtained by taking the normalization of 0(VT) in Sh.HT(T, {h}). This 
integral canonical model is uniquely determined even for p — 2. 

3.2.9. EXAMPLE. We consider a Siegel modular variety Sh(GSp(W^), S). Let 
g € N be defined by dimQ(W^) = 2g. Then any quadruple of it (GSp(W,^),5, Kp,p) 
has an integral canonical model M over Z^: as a scheme it parameterizes isomorphism 
classes of principally polarized abelian schemes of dimension g (over Z (p)-schemes) 
having (compatibly) level-AT symplectic similitude structure for any N G N relatively 
prime to p] we have a natural continuous action of GSp(W, ij)) (A^) on this scheme. 

This can be seen as follows: [Del, 4.21] takes care of the generic fibre of 3VC. The 
results of [Mu] implies the existence and the smoothness of the integral model M. The 
fact that it has the EP is explained in [Mi4, p. 170-1]. 

The definition of an integral canonical model of a quadruple (G,X,H,v) was 
inspired by the desire that this example works. 

3.2.10. DEFINITION. We call an injective map (T, {HJ^HT^VT) ^ (G,X,H,v) 
with T a maximal torus of G, a special quadruple of (G, X, jff, v). 

3.2.11. LEMMA.  Every quadruple has special quadruples. 

Proof. This results easily from an argument similar to the one in 3.1.4. Let Gz( 

be a reductive group having G as its generic fibre. For any maximal torus TiZ  M- Gzp, 
there is a special quadruple (T, {/i}, HT, VT) of (G, X, H, v) such that Tzp is Gzp(Zp)- 
conjugate to Xiz . 

Similarly, we can impose different conditions on the G(Qz)-conjugacy class of TQ,, 

for / belonging to a finite set of rational primes (cf. the argument in 3.1.4). We express 
this property by: every quadruple has plenty of special quadruples. 
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3.2.12. The relation between different types of models. Let (G,X:H,v) 
be an arbitrary quadruple. It can have more than one smooth integral model over 
0(v) (or 0(v)). Starting with such a smooth integral model, we can cook from it new 
smooth integral models of it by using blowings up (dilatations) and by removing a 
G(APf)-invariant closed subscheme of its special fibre, which is not the whole special 
fibre. If dim(X) > 1 it should be always possible to construct a smooth integral model 
of our quadruple whose special fibre does have a G(A?)-invariant closed subscheme, 
strictly included in the special fibre of it (cf. [Va2], where this is proved for the case 
when (G,X) is of preabelian type with v not dividing 2). 

FACT. We assume that (G,X,H,v) has an integral canonical model M and that 
v does not divide 2. If e < p — 1 then any normal integral model Mi of it over O 
having the SEP is isomorphic to Mo- 

Proof. Let HQ be a compact open subgroup of C?(A^) such that for any inclusion 
H2 C Hi of open subgroups of HQ, the morphisms M/H2 —>• M/Hi and M1/H2 —> 
Mi/Hi are etale covers. We have a natural G(Ax)-equi variant morphism Mo —> Mi, 
as Mi has the SEP. It is enough to show that the induced morphism q:Mo/Ho —> 
MI/HQ is an isomorphism. Due to the EP of M, q satisfies the valuative criterion of 
properness with respect to discrete valuation rings of mixed characteristic. From this 
and Nagata's embedding theorem ([Na], [Vo]) we deduce that q is proper. As e < p— 1 
ii) of 3.2.3.2 b) applies: we do not need to assume that MI/HQ is a separated scheme. 
In the referred place we needed this just to get that q0 is an isomorphism above points 
of MI/HQ of codimension 1, but for our q this is obvious. We get: q is an isomorphism. 
This ends the proof of the fact. 

3.2.12.1. REMARK. If e>p — 1 and dim(X) > 0 we do not know if (or when) 
Mo has the SEP. 

3.2.13. FACT. Let (G, X) be an arbitrary Shimura pair and let v be an arbitrary 
prime of E(G, X) dividing p. Any integral model Mi 0/Sh^-(G, X) over W(k(v)) 
(with H a compact open subgroup of G(Qp)) which as a scheme is normal and has 
a quotient MI/HQ (with HQ a compact open subgroup of G(A?)y) of finite type over 

W(k(v))j descends to an integral model over an etale DVR extension 0(v/) of 0(vy 

Proof 3.1.3.1 allows us to descend M/HQ to a scheme Msh/ifo of finite type over 
0/j\.  So Msh/HQ descends to a scheme M^ /HQ over an etale DVR extension 0(v/) 

of 0(v). Now the normalization of Mv /HQ in the ring of fractions of the extension of 
Sh^(G,X) to the field of fractions 1/ of 0^v^ (there is a natural G(A?)-continuous 
action on this normalization) is an integral model of Sh^(G, X) over 0(viy Obviously 

its extension to W(k(v)) is Mi. This ends the proof of the fact. 

3.2.13.1. There are variants of descent when we work with an arbitrary DVR O 
faithfully fiat over 0(v), instead of 0(v). The expectation of 3.2.3.2 iii), if true, implies 
that in many cases we can assume that k(vf) = k(v). But we do not know (cf. 3.1.3.1) 
when we can take 0(vi) -— 0(vy This motivates why we also introduced the notion of 
local integral canonical models: if a quadruple (G, X, H, v) has an integral canonical 
model then it has a local integral model, but we do not know (even if (v, 2) = 1) if 
the converse is true. 

3.2.14. REMARK. Let /:Sh(G,X) M- Sh(Gi,Xi) be an injective map and let 
p be a rational prime such that G and Gi are unramified over Qp.  We assume the 
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existence of a hyperspecial subgroup H of G(Qp) included in a hyperspecial subgroup 
Hi of Gi(Qp). Then for any compact open subgroup Hp of G(Aj), the natural 
morphism 

SflHPxHiG^X) -> SllHPxHtiGi.Xi) y^EiG^.Xx) E{G,X) 

is a closed embedding. 
The proof of this is entirely similar to the proof of [Del, 1.15] (being just the 

Z(p)-version of it), starting from 3.3.1. In particular Sh#(G,X) is a closed subscheme 
of ShHdGuXJ xEiGuXl) E(G,X). 

3.2.15. REMARK. Let f:(G,X,H,v) M> (GI,XI,HI,VI) be an injective map 
between two quadruples having integral canonical models M and respectively Mi. 
We assume that v does not divide 2. Then M is the normalization of the closure of 
Shtf(G,X) in Mio(w) (due to 3.2.14 this makes sense). 

This results by putting together 3.2.12 and 3.4.1. If we also have Gder = Gfer, 
then M is an open closed subscheme of Mi and for every compact open subgroup HQ of 
G(Ap, M/HQ is an open closed subscheme of MI/HQ (we have E(G,X) — E(GUX1), 
cf. [Del, 3.8], and so 0(v) — O^)). In this case we do not need to refer to 3.2.12 or 
3.4.1: 3.2.14 is sufficient. 

3.2.16. REMARK. Let (G,X) = (Gi x G2,Xi x X2) define a Shimura variety 
which is a product of two Shimura varieties defined by (Gi,Xi), i — 1,2. Let p be 
a prime such that G is unramified over Q^ and let H — Hi x H2 (cf. 3.1.5) be a 
hyperspecial subgroup of G(Qp). Here Hi C Gi(Qp), i — 1,2. Let v be a prime of 
E(G,X) dividing p and let Vi be the prime of E(Gi,Xi) divided by v. If (Gi, X^ Hi, Vi) 
has an integral canonical model Mi, i = 1,2, then (G, X, H, v) has an integral canonical 
model M defined by the product over 0(v) of the extensions to 0(v) of the two integral 
canonical models Mi and M2. 

3.2.17. The proof of 3.2.2 1) and 3). Let D be a Dedekind ring flat over 
Z [|]. Let (Y, U) be an extensible pair, with Y a very healthy regular scheme over 
D. Let Au be an abelian scheme over U. We have to prove that Au extends to an 
abelian scheme over Y. For this we can assume that D is a DVR faithfully flat over 
Z(p) (for some prime p>3), that Y = Spec(R) is a local regular scheme of dimension 
d + 1 (with d e N), that U = Spec(R) \ Spec(R/I) with I an ideal of R of height at 
least 2, and that the residue field of R is an algebraic extension of the residue field of 
D. 

STEP A. It is enough to show that Bu := (Au x A^)4 extends to an abelian 
scheme over Y (we can apply [FC, 2.7] to the projectors of Bu on its factors). Au is 
a projective scheme over U (cf. [FC, 1.10 a)]) and so it is polarizable. The Zarhin's 
trick [Za] implies that Bu has a principal polarization pu- Let TV > 4 be an integer 
relatively prime to p. Let UQ := Bu[N]. It is an etale cover of U. Let Yi be the 
normalization of Y in the ring of fractions of Ui. From the classical purity theorem 
we get that Yi is an etale cover of Y. Using descent (based on [FC, 2.7]), it is 
enough to show that B^ := Bu ^uUi extends to an abelian scheme over Yi. So we 
can assume that Ui — U] so the principally polarized abelian scheme (Bu,pu) has 
a level-N structure. Let A^Bu),!^ be the moduli scheme over Z(p) parameterizing 
principally polarized abelian schemes (over Z(p)-schemes) (of dimension d(Bu) equal 
to the relative dimension of Bu) endowed with a level-N structure. We get a morphism 
qu'- U -» A^Bu),!^ corresponding to (Bu,Pu) and its level-N structure. We need to 
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show that qu extends to a morphism qy'-Y —>• ^diBu),!^-   Let D^ have the same 
meaning as in 3.2.1 8). 

We can replace R by Ri := i?(g)£)II\, and then we can replace Ri by the completion 
-Ro of a localization of Ri in a point of it having k(w) as its residue field. This admits 
an argument at the level of extensions of morphisms: to show that qu extends, it 
is enough to show that for any i?o as above, the morphism qu0'Uo —> A^Bu),!^^ 
with Y0 := Spec(Ro) and UQ := YQ \ Spec(Ro/IRo), extends to a morphism QYO'-YO -> 
A^Bu),!^- From the very definition of a very healthy regular scheme, we get that 

i?o = V[[xi,..., Xd]], with V a finite flat DVR extension of W(k(w)) of degree e < p— 1. 
We get an abelian scheme Bu0 over UQ. 

In the case of an abstract very healthy regular scheme, the same argument at the 
level of extensions of morphisms, allows us to reduce the proof of 3.2.2 3) involving 
healthy schemes to the case of an abelian scheme Bu0 over a scheme UQ as above. 

Now we forget how Bu0 has been obtained, and we just make use of the fact that 
it is an abelian scheme over UQ. From now on we follow [Fa4]. Let K := V[-]. 

STEP B. We assume first that d = 1. Let n,m G N. Then Bu0\p
n] extends to 

a finite flat group scheme Gn = Spec(On) (with On the ring of global sections of the 
ring sheaf of the ringed space Bu0\pn]) over YQ (cf. 3.2.1.1 9)). 

The natural homomorphisms Gn —>• Gn+m are closed immersions. To see this let 
GnK be the generic fibre of the restriction GnV of Gn to RQ/XIRQ = V. GnK extends 
uniquely to a finite flat group scheme Gny over V, and so Gny is the closure of GnK 

in Gn+my, cf. [Ra, 3.3.6]; hence the corresponding ring homomorphisms On+m —> On 

become surjective by tensoring with V, and thereby, cf. Nakayama's lemma, they are 
epimorphisms. 

Due to the uniqueness of an extension of a flat finite group scheme over UQ (to a 
flat finite group scheme over YQ) (cf. 3.2.1.1 9)) we get that Gn+m/Gn -^ Gm. So the 
p-divisible group of BJJQ extends to a p-divisible group Gy0 over lb • 

But then BuQ itself extends to an abelian scheme over YQ. TO see this we first 
remark that the abelian variety BK (obtained from Bu0 by pull back through the 
K-valued point of UQ defined by taking #1=0 and inverting p) extends to an abelian 
scheme By over V (as the p-divisible group of BK extends to a p-divisible group over 
V, or cf. the Neron-Ogg-Shafarevich criterion: Bu0 has level-iVo structure for any 
iVo G N relatively prime to p, due to the classical purity theorem and the fact that RQ 

is a strictly henselian local ring). We consider now liftings of By to abelian schemes 
over RQ/X^RQ (such liftings do exist). These liftings are in 1-1 correspondence with 
liftings of the p-divisible group of By. Thus there is a unique lift BY0 of By having 
Gy0 as its p-divisible group. Obviously BY0 Xy-0 UQ = Bu0> 

STEP C. We now treat the general case by induction on d G N. Let now d>2. 
First we apply the inductive assumption to Ry := RQ [^] (with y an arbitrary regular 
parameter of i2o): Ry is a regular scheme of dimension <i (the local rings of the maximal 
points of Ry are very healthy regular schemes over different DVR's, so the inductive 
assumption can be applied). So we can assume that UQ — Spec(i^o) \ 5pec(i?o/^o) 
with mo the maximal ideal of RQ . 

STEP D. Then Bu0xUx (with x = xi and with Ux = Spec(RQ/xRQ)\Spec(RQ/mQ)) 
extends to an abelian scheme Bi over Spec(i?o/#-Ro)- Let T^ (resp. 7B*) be the 
tangent space of Bi (resp. of B[). Both are free module over Rx := RQ/XRQ of 
dimension d(Bu). The liftings of an abelian scheme over RQ/xnRQ which is a lift of 
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Bi, to an abelian scheme over Ro/xn+1Ro, are parameterized by sections of a principal 
homogeneous space of T^ 07Bt. But this free iJ^-module has the same sections over 
Spec(^) as over Ux. So there is a unique way of lifting (compatibly) Bi to an abelian 
scheme BY0 over YQ which over t/o is Bu0. This completes the induction, and ends the 
proof of the part of 3.2.2 1) and 3) involving healthy regular schemes. 

The above Seps B to D can be easily adapted to get the part of 3.2.2 3) pertaining 
to p-healthy regular schemes. This ends the proof of 3.2.2 1) and 3). 

3.3. The complex points of an integral canonical model. Let p be a 
rational prime and let (G, X, H) be an arbitrary triple, with H a hyperspecial subgroup 
ofG(Qp). 

3.3.1. WehaveShtf(G,X)(C) = G(Z(p))\(X x G{Ap
f))/Z{Gy whereG(Z(p)) := 

G(Q) fl H and Z{G)P is the closure of Z(G)(Q) n H in G{Ap
f) [Mi4, 4.11]. 

3.3.2. LEMMA. G(A^) permutes transitively the connected components of 

Shtf(G,X)c. 

Proof. If Gder is simply connected, this results from 3.3.1 and from [Del, 2.5] (by 
passage to limit). For an arbitrary G, we have to use the well known trick [MS, 3.4] 
(cf. 3.2.7 9)) for reducing the problem to the case when Gder is simply connected (as 
described in [Mi4, 4.19]). 

3.3.3. COROLLARY. G(Z(p)) permutes transitively the connected components of 
X. 

3.4. Methods of constructing integral models. Let Sh(G,X) be an arbi- 
trary Shimura variety. In essence there are four methods of constructing good integral 
models of quotients of Sh(G, X): 

1) By proving first that a suitable quotient of Sh(G,X) is the moduli scheme para- 
metrizing some objects which make sense over 0(v)-schemes (with v a prime of 
E(G,X)), and that in fact we have a moduli scheme over 0(vy Such a moduli 
scheme over 0(v), in a suitable context, is (expected to be) an integral canonical 
model of Sh(G,X) (cf. 3.2.8-9). 

2) By taking the normalization of the closure of a quotient of Sh(G, X) into a good 
integral model of a quotient of another Shimura variety Sh(Gi, Xi) (here we need 
an injective map (G,X) *-> (Gi,Xi)) (cf. what follows below). 

3) By taking the normalization of a good integral model of a quotient of Sh(G, X) 
into the ring of fractions of a quotient of another Shimura variety Sh(Gi,Xi) 
(here we need a finite map (Gi,Xi) -» (G,X)) (cf. 6.1.2). 

4) By taking the quotient through a (torsion) group action on a connected compo- 
nent of a good integral model of a quotient of Sh(G, X) (here the group action is 
related to a finite map (G,X) -> (Gi,Xi)) (cf. 6.2.2). 

These methods are supported by well known ideas pertaining to Shimura varieties 
(like 3.2.14 and 3.2.7 9)). Variants for 1) are obtained by working over a DVR faithfully 
flat over 0(v) (instead of 0(v)). The method 2) is used for constructing integral 
canonical models of a Shimura variety Sh(G, X) of abelian type for which there is 
a Shimura variety Sh(Gi,X1) of Hodge type with Gder = Gfr and (Gad,Xad) = 
(Gf,Xf) (cf. 3.2.15, 5.1 and 6.2.3). The method 4) is used for passing from the 
existence of integral canonical models of these Shimura varieties to the existence of 
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integral canonical models of all Shimura varieties of abelian type (cf. [Mi4, 4.11 and 
4.13]; see also 3.4.5 and 6.2.2). The method 3) is used for the passage from the abelian 
type case to the preabelian type case (cf. 6.1). 

We start with an injective map f:(G,X,H,v) ^ (Gi,Xi,Hi,vi). We assume 
that (Gi,Xi,Hi,vi) has a normal integral model Mi over 0(v). Let M be the nor- 
malization of the closure oiSh(G,X)/H in Mi (cf. 3.2.14). It has an obvious G(A1i)- 

continuous action (p being the rational prime divided by v). Let E := E(G,X). 

3.4.1. PROPOSITION. M is a normal integral model of {G,X,H,v). It has the 
EP (or EEP, or WEP, or SEP) if Mi has it. 

Proof Obviously M* has the EP (or EEP, etc.) if Mi has it. Let HQ be a compact 
open subgroup of G(APn) such that: 

i) the subgroup HQ X H of G(Af) is smooth for (G,X); 

ii) there is a compact open subgroup KQ of Gi(A^) including HQ, and such that for 

any compact open subgroup Ki of KQ, MI/KI is a normal scheme of finite type 
over 0(v) and etale over MI/KQ. 

The existence of such a subgroup HQ is implied by the fact that Mi is a normal 
integral model and by 2.11. 

Let Hi C H2 be two open subgroups of iJo- Let 3^ be the normalization of 
the closure of the generic fibre of M/Hi in Mi /Hi, for i = 1,2 ( ME/Hi is a closed 
subscheme of Mis/Hi, cf. 3.2.14). We get the following diagram: 

M     = M  >     Mi 

M/Hi —^ ?i   y Mi I Hi 

M/H2 ^^ T2  ► Mi/#2. 

The conditions i) and ii) and the fact that M is iJi-invariant imply that the two 
right squares are Cartesian. So M is a pro-etale cover of J^ and 3V The generic fibre 
of M/Hi is a scheme of finite type over E. Mi /Hi is a projective limit of schemes of 
the form Mi/T with T an open subgroup of KQ including Hi. So there is an open 
subgroup Ki of KQ, with Hi C Ki, such that the morphism ME/Hi —>• MIE/KI is 
a closed immersion. As the morphism M/Hi —> Mi/Ki is integral, we deduce that 
Vi is integral over the closure §i of T^ in MIE/K^ and has the same generic fibre 
as Si. As §>i is an excellent scheme (it is of finite type over O^)), we get that 3^ is 
finite over S^, and so of finite type over 0(v). Pi and J,2 are faithfully flat over 0(vy 
gi and #2 are integral morphisms between flat schemes over 0(v) having the same 
generic fibre. The normality of CPi and P2 implies that gi and #2 are isomorphisms; 
so M/Hi —> M/H2 is an etale morphism between schemes of finite type over O^ (as 
the morphism Pi ->- P2 is so). We conclude that M is a normal integral model. This 
ends the proof of the proposition. 

3.4.1.1. REMARK. The above proposition as well as 3.4.2-3 below remain true 
if H and Hi are just compact open subgroups of G(QP) and respectively of Gi(Qp) 
satisfying f(H) C Hi, or if 0(v) is replaced by an arbitrary DVR O faithfully flat over 
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3.4.2. REMARK. The above proof shows that M is a pro-etale cover of a normal 
scheme 05 of finite type over O^). As 0(w) is a universally catenary ring, all the 
maximal points of M have dimension d + 1, where d = dim X (as the dimension 
formula holds between 0(v) and any connected component of V [Ma, p. 85]). 

3.4.3. REMARK. For any compact open subgroup i^o of G(AIi) small enough, 
M/HQ is the normalization of a closed subscheme of MI/HQ. If M is a subscheme of 
Mi, then we do not need to take any normalization. 

3.4.4. COROLLARY. We assume that Mi has the EP. Then M is an integral 
canonical model iff M (as a scheme) is formally smooth over 0(v). 

3.4.5. EXPECTATION. Let M be a smooth integral model of a quadruple 
(G,X,H,v) over a DVR O. Let p be the rational prime divided by v. Let HQ be a 
subgroup of G(AIi) such that the subgroup HQ X H of G(Af) is smooth for (G,X). 
We do expect that under some mild conditions (like the index of ramification e of O 
satisfying: e < p — 1) M is a pro-etale cover of M/HQ. 

This expectation is based on two facts. First we can prove it (under the restriction 
e < p — 1) for the case of a quadruple of preabelian type (for p > 5 cf. 6.4.2.1; for p = 3 
cf. [Va2]). Second we have the following considerations. 

Let i^o be an open subgroup of HQ such that M is a pro-etale cover of M/HQ 

(cf. the definition of a smooth integral model). We can assume that HQ is a normal 
subgroup of HQ. Let Co := HQ/HQ. It is a finite group. Then M/HQ is the quotient of 
M/Ho by Co (cf. the definition of a continuous action). The action of Co on the generic 
fibre of M/Ho is free (as Sh(G,X)/H x Ho is an etale cover of Sh(G,XJ/H x HQ). 

But then it is expected (cf. 3.4.5.1 below) that the action of Co on M/Ho is free. If 
this is so then M/HQ is an etale cover of M/HQ (SO M is a pro-etale cover of M/HQ). 

3.4.5.1. PROPOSITION. Let p be a rational prime. Let V be a complete DVR 
which is a faithfully flat Z^yalgebra, and has an index of ramification e < p — 1. Let 
C be a finite (abstract) group acting on a regular formally smooth V-algebra R in such 
a way that it acts freely on R\^\. Let Vi be the DVR obtained by adjoining to V a 
primitive p-th root of unity. We assume that either the order of C is relatively prime 
to p, or it is p and the subring Rc of R formed by elements fixed by C is such that 
the affine scheme Spec(Rc ®v Vi) is locally factorial.  Then C acts freely on R. 

Proof. We assume that we do have a situation with a non-free action. We can 
assume that C is a finite cyclic group of prime order /. Let ny be a uniformizer of V 
and let ky be its residue field. We can also assume that R is a local ring. 

If I is different from p this is well known. We can assume further on that V is a 
complete DVR of index of ramification e < p — 1, that ky is an algebraically closed 
field, and that R = V[[xi, ...Xd]] is the ring of formal power series in d variables with 
coefficients in V. We can write i? = ©    ^R1, with C the dual group of C (i.e. the 

group of characters of C), and with C acting on iT' through the character 7 G C. Now 
it is trivial to see that if for a non-trivial character 7 of C, i^7 is different from zero, 
then the action of C on R\^[ is not free (i.e. there is an element y of the maximal ideal 
m^ of i^, whose image in mii/m2

R is not zero and is different from the image of Try in 
mR/m2

R, and which belongs to an i?7, for a non-trivial character 7; this disturbs the 
free action of C on i? W). Contradiction. For this part we do not need that e < p — 1. 

Let now / = p. We abbreviate the notion of unique factorization domain by UFD. 
From the theory of tamely totally ramified extensions of W(ky), and from the fact 
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that e is smaller than p — 1, we deduce that the index of ramification of Vi is ei, a 
multiple of p — 1 relatively prime to p. In fact ei = Lc.m.(p — l,e). 

Let us first recall the well known fact: 

3.4.5.2. Let M be a torsion free V-module separated with respect to the ny- 
topology, and let 1M be its identity automorphism. Then any V-automorphism CLM of 
M such that ap

M = 1M and aM modulo Try is the identity, is the identity automor- 
phism. 

Proof Writing CLM — 1M + Try6M with 6M € End(M), by induction on n G N, 
we can check that 6M is of the form 'Ky~1CM with CM £ End(M). As M is separated 
with respect to the Try-topology, we deduce that End(M) is separated with respect to 
this topology. So 6M = 0. This is the only place where we need that e < p— 1 (3.4.5.2 
is not true if e >p — 1). This proves 3.4.5.2. 

So the case / = p results once we show that the action of C on R/nyR is trivial. 
As V is complete we deduce that the completion of i? is of the form V^xi, ...,#</]], 
with V a finite etale DVR extension of V. V is a subring of R (R is normal). C acts 
on it trivially (we assumed that the action is non-free). So V C Rc. This allows us to 
replace V by V and Vi by V/, where Spe^V/) is a connected open-closed subscheme 
of Spec(VL ®y V). Not to complicate the notations, we assume that V = V. So 
Ri := i2 (8)\/ Vi is an integral domain. 

Let TTI be a uniformizer of Vi. Let Oi be the local ring of the generic point of 
the special fibre of Spec(j^i). C acts on it. Let Rf and O2 := Oc be the subrings of 
JRI and respectively of Oi formed by elements fixed by C. We have R^ = Rc ®y V\. 
TTIRI and TTIR^ are prime ideals of Ri and respectively of i2f. 

Of, i = 1,2, are discrete valuation rings having the same index of ramification 
equal to ei (both being Vi-algebras). Let 3Q be the field of fractions of Oi, i = 1,2. 

As Vi contains the p-th roots of unity, and as the action of C on JR is non-trivial, 
there is y G Xi such that C acts on it through a non-trivial character 7 of C So 
yp G X2, but y $ X2. By reasons of dimension, we deduce that Xi is a Kummer 
extension of X2. We get the situation: 

(3.4.5.3) Xi is a Galois extension of X2 of degree p, obtained by adjoininig a 
p-th root of an element of X2. 

In all that follows 2/ denotes an element of Xi \ X2 such that yp G X2. We 
repeatedly replace it by yi = yy^, with i/6' G X2. 

If the action of C on the residue field of Oi is non-trivial (i.e. if the action of C 
on R/iryR is non-trivial), then we deduce easily that the residue field ki of Oi is a 
Galois extension of the residue field &2 of O2 (fe C ftp, where fef is the subfield of fei 
formed by elements fixed by C; but fti is a Galois extension of fcf of degree p, and so 
by reasons of dimension we must have fef = A^). We deduce that Spec(Oi) is a Galois 
cover of Spec(02). 

The morphism Spec(iJi) -» Spec(JRf) is etale above points of Spec(JRf) of char- 
acteristic zero or of codimension 1. So Specif) is regular in all these points (and so 
is regular in codimension at most 1). 

STEP A) . From the fact that jRf is a local UFD, we deduce that the Picard group 
of Spec(JRp) is trivial and isomorphic to its divisor class group. This implies that we 
can assume that y is an invertible element of Ri. In other words we can replace y by 
yi -— yyC\ with yc G X2 such that, in any point of Spec(i?i) of codimension 1, yi is 
an invertible element; so 1/1 is an invertible element of Ri   (this can be deduced from 
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[M, th. 38], as Rf is a normal ring). In detail: For any prime p of Ri of codimension 
1, as the ring extension Rf ->• i?i is etale above it, we deduce the existence of an 
element yp € %2 such that ypyp is an invertible element of the localization of i?f with 
respect to the prime p. The elements yp, with p running through all the primes of Rf 
of codimension 1 are defining a Weil divisor. As this Weil divisor is linearly equivalent 
to the zero divisor, we deduce the existence of an element yc G X2 producing this 
Weil divisor. We can take now yi = yyc. 

As a conclusion: the extension Xi of X2 is obtained by adjoining a p-th root (still 
denoted by y) of an invertible element of i?f. 

We can assume that ky is separably closed and that Ri is a complete local ring. 
So the first fundamental group of Spec(JRi) is trivial. Moreover i?f is a complete local 
ring (as Jf^i is so, and as the inclusion i?f ^-> Ri is finite). We deduce that the first 
fundamental group ^(iZf) of Spec(jRf) is trivial (7ri(i?f) is a subgroup of C; but it 
is not C as the inclusion i?f c-> i?i of complete local rings having the same residue 
field, is not etale). 

We assume now that e divides p— 1. Soei =p—l. 

STEP B). If the image of y in ki is not in fe, then we deduce by reasons of 
dimension that fci is obtained from ^2 by adjoining a p-th root of an element of A^. 
We get a contradiction with the fact that ki is a Galois extension of ^2. So the image 
of y in ki is in £2- Replacing y with yi = yyc', with yc £ i?f, we can assume that 
y is congruent to 1 modulo the ideal of i?f generated by TTI.   We can assume that 
p-i TTJ        =p. 

STEP C). Let now y — l + TTiyo? with yo € Ri- So yv is congruent to l+p7ri(yo + 
yl) modulo 7rf+1i?f (or modulo 7rf+1i?i as Trf4"1^ n ijf = <+1-Rp). Let ^0 G i?f 
which modulo 7rii?f is yo + 2/0 • The equation :E

P
 + x — ZQ defines an etale Rf -algebra. 

As 7ri(jRf) = 0, we deduce that there is yc G Rf such that yc is congruent to yo 
modulo TTIRI. Replacing y with yi = y(l — TTiy^7), we can assume that y is congruent 
to 1 modulo TrfRi (we have p>2ase<p— 1). 

STEP D). NOW by trivial induction on n G N, we can assume that y is congruent 
to 1 modulo 7r^+1.Ri (if y = 1 + Tr^yo, with n G N greater than 1, and with yo G Ri, 
then yp is congruent to 1 + 7c^+p~1yo modulo 7r™+pi£p, or modulo 7r^+pi^i). 

STEP E). This implies, as R^ and .Ri are complete with respect to the TTI- 

topology, that we can assume that yp = 1. As Vi contains the p-th roots of unity, this 
contradicts the fact that 3Ci is a field. 

The case when ei is not p — 1 is entirely similar. The only difference is that the 
above Steps c)-d) have to be applied intermingled. The trivial details are left to the 
reader. 

The contradiction of the Step e) ends the proof of 3.4.5.1. 

3.4.5.4. REMARKS. 1) It is an easy exercise now to see that once we assume in 
3.4.5.1 that Spec(Rc (g)y Vi) is a locally factorial scheme, the condition on the order of 
C (of being p) can be weaken: it is enough to assume that C is a p-elementary finite 
group. From the fact that Spec(Rc <g)y Vi) is a locally factorial scheme we deduce 
easily that Spec(Rc) is locally factorial, but we do not know if (or when) the converse 
to this is true. 

2) 3.4.5.1 can be formulated for regular formally smooth schemes instead of affine 
such schemes as the condition of having a free action is local. We have inserted 3.4.5.1 
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for the case / = p mainly to give an idea how bad the singularities can be for a non- 
free action (cf. 1) above). We hope to use it later on to the study of singularities 
of different quotiens of different extended integral canonical models (to be defined in 
3.5.1) (cf. 3.5.3). 

3) For the order of C equal to p, the lemma 3.4.5.1 is not true if we do not assume 
that Spe^it^ (g)y Vi) is a locally factorial scheme, as it can be seen through examples 
involving smooth schemes X over a DVR O faithfully flat over Z(p) and of index of 
ramification 1, whose relative dimension is greater than p — 2. But if the relative 
dimension of X over such a DVR O is less than p — 1, then any finite group acting on 
it in such a way that it acts freely on its generic fibre, acts freely on X. This can be 
checked starting from 3.4.5.2 and the fact that any representation of a cyclic group of 
order p of degree less than p - 1 over such a DVR O is trivial. 

3.4.6. REMARK. We come back to 3.4.1-3. In practice p is different from 2 and 
then we can take HQ to be a product of its g-components Hq (q being an arbitrary 
prime different from p), with H2 a compact open subgroup of (7(02) small enough, 
and with any other component Hq of it a maximal compact subgroup of G(Qq) (which 
can be chosen to be a hyperspecial subgroup of G(Qq) if G is unramified over Qq). 

3.4.7. COROLLARY. We assume that Mi has the EP. //Sh(Gi,Xi) is a Siegel 
modular variety and ifp is big enough (without an effectively computable lower bound) 
then M is a closed subscheme of Mi. 

Proof. From 3.2.12 we deduce that Mi is the extension to 0(v) of the integral 

canonical model of (Gi,Xi,Hi,vi) (see 3.2.9). Let H be a compact open subgroup of 
G(Af) which is a product of its g-components Hq (so Hq is a hyperspecial subgroup 
of G(Qq), for any big enough prime q). We assume that it is smooth for (G,X) and 
that Sh^(G, X) is a closed subscheme of the extension to E of Sh^(Gi,Xi), with K 
a compact open subgroup of Gi(Af) which is a product of its g-components, contains 
Hj and is small enough (cf. 3.2.9 and 4.1) so that Sh^(Gi,Xi)£; extends to a smooth 

moduli scheme Mi (K) over OE [jftl (with N G N big enough and with OE the ring of 
integers of E). 

Taking N big enough we can assume that the closure M{H) of Sh^(G,X) in 

Mi {K) is a smooth scheme over OE [^T] , that Hq is a hyperspecial subgroup of G(Q^) 
for any prime q>N, and that (cf. the proof of 3.4.1) for any such prime g, the nor- 
malization of M(H)ziq) in the ring of fractions of Sh^q (G, X) is the integral canonical 

model of the triple (G,X,Hq). We can take now p>N. This ends the proof of the 
corollary. 

3.4.8. DEFINITION. With the notations of 3.2.3 1-2), a smooth (resp. normal) 
integral model M (of Sh(G, X)/H over O) is said to be strongly smooth (resp. strongly 
normal) if for any compact open subgroup HQ of G(A?) such that the subgroup HQXH 

of G(A/) is smooth for (G,X), M is a pro-etale cover of M/HQ. 

3.4.8.1. REMARK. If M is a strongly normal integral model of Shn(G,X) over 
O having the SEP, then any smooth integral model of Shn (G, X) over O is strongly 
smooth (cf. rm. 4') of 3.2.7). In particular, if there is a strongly normal integral model 
of Sh#(G,X) over O^ having the EP and if e < p — 1, then any smooth integral 
model of Sh#(G,X) over O is strongly smooth. We do not know if (or when) the 
condition e < p — 1 is needed. 
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3.5. Extended integral canonical models. Let (G,X,H,v) be an arbitrary 
quadruple and let p be the rational prime divided by v. 

3.5.1. DEFINITION. A normal scheme M over 0(v) together with a G(A^) x H- 
continuous action is called an extended integral canonical model of (G, X, if, v) if: 

a) There is a G(APn) x iJ-equivariant isomorphism 'ME(G,X) ^ Sh(G,X); 

b) M/fiT is an integral canonical model of (G, X, H, v). 

Similarly, we speak about an extended local integral canonical model of a quadru- 
ple or about the extended integral canonical model of a triple. 

3.5.2. REMARK. M is determined by the integral canonical model M/H, be- 
ing the normalization of M/H in the ring of fractions of Sh(G,X). So it exists iff 
(G,X, if, v) has an integral canonical model. If v is relatively prime to 2, then any 
extended integral integral model of (G, X, H, v) is uniquely determined up to unique 
isomorphism. 

3.5.3. PROBLEM. For H a compact open subgroup of G(Ap x H determine the 

type of singularities of M/H. 

4. Shimura varieties of Hodge type and special families of tensors. Let 
(G, X) be a Shimura pair defining a Shimura variety of Hodge type. Let /: (G, X) ^ 
(GSp(Wj^),5) be an injection of it into a Shimura pair defining a Siegel modular 
variety. We fix a family (sa)aed 0^ tensors in spaces of the form W®171 0 jy*®71, 
m,n G N, such that G is the subgroup of GSp(W, ij;) fixing its tensors. As G is 
reductive we do get the existence of finite such families [De3, 3.1]. We do allow the 
above family of tensors to be infinite. Let L be a Z-lattice of W such that we have a 
perfect form ip: L 0 L —> Z. 

We start by reviewing the interpretation of the complex Shimura variety 
Sh(G,X)c as a moduli space with respect to the Z-lattice L of W and the above 
family of tensors. Then in 4.2-3 we treat the problem: for a rational prime p for which 
G is unramified over Qp, find a Z-lattice L and a family of tensors (saWa (subject to 
the above conditions) which are Z^-well adapted for using successfully the integral 
version of Fontaine's comparison theory [Fa3], and so for proving (cf. §5) the existence 
ofShp(G,X). 

4.1. Shimura varieties of Hodge type as moduli schemes. As G contains 
the group of multiplications by scalars (cf. Definition 1 of 2.5), our tensors are in spaces 
of the form (W 0 W*)®™, m G N. If sa G (W (g> W*)®mW then deg(sa) = 2m(a). 
The form 27riip is a bilinear map W (8) W —> Q(l) := 27riQ, inducing an isomorphism 
W -^» W*(l). Any x G X defines a Hodge Q-structure on W and on VF*, and the 
above isomorphism W -^» Vr*(l) is an isomorphism of Hodge Q-structures. This 
gives us the right to think of the tensors sa as being in spaces of the form Vr*<g,2m(m). 
Let L* C W* be the dual Z-lattice of L. What follows is very close to [MS, ch. 2] 
except that we do not work in a rational context: we work with principally polarized 
abelian varieties and not with their isogeny classes. 

We consider quadruples of the form [A,p^, {v^a^s^ k] where: 

a) (A, PA) is a principally polarized abelian variety over C; 

b) (t'Q;)aG0 is a family of Hodge cycles of A\ 
k 

c) k is an isomorphism Hi(A^Z) 0 A/  c=n Vf(A) ^> W 0 A/ taking the Betti 
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realization wa of va into saya e 3, mapping Hi(A,Z) (8) Z onto L <8) Z and 
inducing a symplectic similitude between (.ffi(i4, Z) (8) ZI,PA) and (L 0 Z, ^). 

We define A(G,X, W, ip) to be the set of isomorphism classes of quadruples of the 
above form satisfying the following conditions: 

(i) there exists a similitude isomorphism (HI(A,Q),PA) ^ (W,ip) taking the Betti 
realization wa of va into sa, Va G 3; 

(ii) composing the homomorphism HA'- § -> GSp(Hi(A, E),p^), defined by the Hodge 
structure on ffi(-4, M), with an isomorphism GSp(Hi(A, R),PA) ^GSp(W 0 
E, ^), induced by an isomorphism as in (i), we get an element of X. 

We have a right action of G(Af) on .A(G, X, W, ip) defined by: 

[A,PA, (va)ae3i k]-g = [A'lPA'iiv^aeSig^k]. 

Af is the abelian variety, from the same isogeny class as A, defined by the Z-lattice 
of Hi (A, Q) induced from L 0 Z through the isomorphism p-1 o k of Hi (^4, Q) 0 A/, 
while p^/ is the only rational multiple of PA which produces a principal polarization of 
A' (see [Del, 4.7] for the theorem of Riemann used here). Here as well as in e) below 
we identify a polarization with its Betti realization. 

There is a G(Af )-equivariant bijection 

f(G,x,w,<i,):SHG,X)(C)^A(G,X,W,il>) 

defined as follows.  To [h,g] E Sh(Gr,X)(C) = G(Q) \ X x G(Af) we associate the 
quadruple [A,pA,(va)aGd^] where: 

d) A is associated to the Hodge structure (W,ft) and the Z-lattice Hi(A,Z) of 
g-1 

W induced from the Z-lattice L of W through k:Vf(A) = W®Af -^> W 0 A/ (i.e. 
fc(i?1(yl,Z)0Z) =L0Z); 

e) p^ is the only (rational) multiple of ip which gives birth to a principal polar- 
ization of A; 

f) Va G 3, the Betti realization of va is sa. 

The inverse 0(G,X,W,V) 
of /(c?,x,w;^) is defined as follows. Let [A,^, (^a)a6a5 *] € 

A(G,X,W,il)). We choose a similitude isomorphism IA: (HI(A, Q),PA) -> (W,ip) as 
in (i). It produces an isomorphism iA:GSp(Hi(A,Q?),pA)s:±GSp(W,il)). We define 
ft G X to be iAR 0 ftA (ftA being the homomorphism S ->» G5p(iJi(^4,E),pA) defining 

fc-1 

the Hodge structure of A) and g G G(A/) to be the composite map W 0 A/  -^» 

V/(^) =H1(A,Q) 0A/ -^ ^0A/. Then 

^(G,x,^v)([^^'(^)^€a^]) = [h,g]. 

Taking (G,X) — (GSp(W,ip),S) and 3 = 0, we get a bijection between 
Sh(G5j9(W/, ^),5)(C) and the isomorphism classes of principally polarized abelian 
varieties over C of dimension gw (with 2gw = dimQ(H/r)) having (compatibly) level- 
iV symplectic similitude structure for any TV G N. So to give a C-valued point of 
Sh(G5p(T¥,^),5) is the same as to give a triple [A,pA,(lN)NeN], where (A,PA) is 
a principally polarized abelian variety over C of dimension gw, for which we have 
a compatible system of similitude isomorphism 1^: (L/NL,ip) -3- (H1(A1 Z/iVZ),^) 
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(N e N). The compatibility means that if N, M € N are such that N\M, then lN is 
obtained from IM by tensoring with Z/iVZ. 

4.1.0. For Ne N let K(N) := {g e GSp(W^){L^Z) \ g mod TV is the identity}. 
Then the set ShK^(GSp(W^'ip)^S)(C) is in one to one correspondence with the set of 
isomorphism classes of principally polarized abelian varieties over C having a level-N 
symplectic similitude structure. This implies (cf. [Del, 4.21]) that Sh(GSp(W, I/J), S) 
is the Q-scheme representing the functor that sends a Q-scheme T to the set of 
isomorphism classes of principally polarized abelian schemes (of dimension gw) over 
T, having (compatibly) level-Ar symplectic similitude structure for any TV E N (see 
[Mu] why this functor is representable). So Sh(G,X) is the closed subscheme (cf. 
[Del, 1.15 and 5.9]) of Sh.(GSp(W, ip), S)E(G1X) whose complex points are those triples 
[A,PA, (ZW)JV€N] for which: 

(4.1.1) the isomorphism Ar1: L <g> Z -3> #i (A, Z) <g) Z, defined by the fact that mod N 
it is ZJV, ViV E N, when tensored with Q, takes sa to the Betti realization wa 

of a Hodge cycle va of A (Va E 3); 

(4.1.2) i?i(^4,Q) together with PA and the family of tensors (wa)aeg satisfies the 
above two conditions (i) and (ii). 

4.1.3. LEMMA. Let Z — Spec(i?) be an integral affine scheme over C and let 
(A,PA) be a principally polarized abelian scheme over Z, having (compatibly) level-N 
symplectic similitude structure (defined by an isomorphism IN-L^Z/NZ^ A[N]) for 
any N E N . Let gz'-Z —>• Sh(GSp(W,il)),S) be the morphism induced by the above 
data. For every a E 3, we assume the existence of a cycle ta E F0(HlR(A/Z) 0 
H\R(A/Z)*)®m^ (we recall that 2ra(a) = deg(sa)y)7 annihilated by the Gauss-Manin 
connection V (of A). Let /i,/2:Spec(C) ->■ Z be two complex points. If the quadru- 
ple [A,pA,{ta)a£2,k} (with k:Hi(A,Z) ^>L 0 Z such that its inverse mod N is IN; 

here we identify a Hodge cycle with its de Rham component) becomes a quadruple of 
A(G,X,W,ip) in the point fi, then it becomes a quadruple of A(G, X, W, ^) in the 
point fi also (i.e. the morphism gz o/2:Spec(C) -» Sh(G5p(W, ip),S) factors through 
Sh(G,X)). 

Proof There is an integral affine scheme Y = Spec(T) of finite type over C, with 
T a subring of R, such that (A,PA) and its cycles (ta)a£3 descend to (B, q) and cycles 
(Ua)aG3' 

We have Vua = 0, Va E 3- Let T M- Ti be an injective ring homomorphism, with 
Ti a smooth integral C-algebra, such that Spec(Ti)(C) —> Y(C) is surjective (cf. the 
resolution of singularities; we can pass from Y to an open affine subscheme containing 
fi and /2 to get the surjectivity part). Let hi,h2:Spec(C) -> Yi = Spec(ri) be two 
points such that the diagram 

Spec(C)      =^=t     Y1 

h h J 

Z —>        Y 

is commutative (the morphisms j and Z —>• F are associated to the inclusions T ^ Ti 
and respectively T c-^ R). 

We denote by (£1, gi) and ('U^aea ^e pullback through j of (5, g) and (ua)ae^. 
Let /iiBi  -)► Yi be the morphism defining the abelian scheme Bi.   We get that 
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V< = 0, and so < G (i^MQ ® (iJ^^Q)*)®^0), Va G 0. As w^ is rational 
in hi, we deduce that ^ G (^/i^Q) (8)i?1ft*(Q)*)0m(a), Va G 3- So ^ is rational in 
/i2 5 Va G 3- From [De3, p. 36] we deduce that the tensors (h^JJaea are de Rham com- 
ponents of Hodge cycles (va)ae# 0f ^2 '•= A xz /2Spec(C) (their etale components are 
automatically determined). As Yi(C) is connected, wre easily deduce that A2 together 
with (va)aeg satisfy the condition 4.1.2. The isomorphisms (/A/OATGN are producing 
an isomorphism A^: Hi(A2, Z) (g) Z -^ L (8) Z. The fact that ft^"1 carries SQ, to the Betti 
realization of va (condition 4.1.1) can be seen working mod N (for any TV G N). Multi- 
plying by a natural number big enough all va and sa, we can work with families (va)aed 
and (sa)a(zg assumed to be integral with respect to Hi(A,Z) 0 Z and V(Z) (g) Z. The 
fact that ^2(^0;) = Sa? Va G 3, results from the analogue property of the isomorphism 
h: Fi(^i, Z)(g)Z^ L®Z (with Ai := ^xz/l5pec(C)) and from the fact that a level-JV 
symplectic similitude structure on Z can be descended to an integral affine F-scheme 
YN of finite type over C (i.e. for any given TV G N we can assume that the isomorphism 
IN is defined over Y, and so over Yi). From the characterization of Sh(G,X)(C) (cf. 
4.1.0), we deduce that the morphism gz o /2:Spec(C) -> Sh(GSp(W,^),5) factors 
through Sh(G,X) (with [A2,pA2,(va)ae3MeMG,X,W,il>)). 

4.1.4. REMARK. A similar result can be proved if, instead of Sh(GSp(PF, ^),5) 
and Sh(G,X), we work with M := ShKp(GSp(W^),S) and Dsf := ShHp(G,X), where 
Kp := {^ G GSp(W,ij)(Qp)  I ^(L 0 Zp) = L 0 Zp} and Hp := Kp n G(QP) (p 
being a fixed rational prime). This follows from the fact that a situation of the form 

h   . 
Spec(C) > Z —>• M, with /1 factoring through K, can be lifted to a situation 

/2 

Spec(C) =^4 Zi -»■ Sh(6!Sp(W, ^),5), 
/20 

with /10 factoring through Sh(G,X), and with Zi an integral affine Z-scheme. 

4.1.5. REMARK. Later on we need a formal version of 4.1.3-4. We work under 
the hypotheses of 4.1.3 with i2 = C[[zi, ...,zn]] a ring of formal power series over C, 
and with /1 the complex point of Z associated to the surjective ring homomorphism 
it! -^ C taking Zi to zero. But instead of assuming that ta are parallel with respect 
to V, we assume just that ta are annihilated by ^7. Then the generic point w (this 
replaces the point /2 of 4.1.3) of Z is mapped through gz into Sh(G, X), i.e. the cycles 
ta, become (in w) de Rham components of Hodge cycles of Aw (the fibre of A over 
w), and the etale components of these Hodge cycles are related to va (through the 
family of isomorphisms (I^NEN) 

as expected. 
It is enough to see the first part, i.e. that ta becomes in w the de Rham component 

of a Hodge cycle of Aw, Va G d (the second part involving the expected relation is 
entirely the same as in the above proof of 4.1.3). This is a result of Faltings. The 
proof of this is entirely analogous to the proof of its integral version [Fa3, rm iii) after 
th. 10]. The only difference is that now we have to use the strictness property of maps 
between Hodge structures, instead of the strictness property of maps between objects 
of M$(Vo) (cf. [Fal] for the definition of MJF(VO); here Vb is a Witt ring over a perfect 
field). 

4.1.6. REMARK. Sometimes it is more convenient to work with families (sa)ae0 
such that G is the subgroup of GL(W) (and not of GSp(W,if))) fixing its tensors. 
This has the advantage that we can be loose about mentioning alternating forms 
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(like i/;) or different Tate-twists (to be compared with 5.2.9). In particular, in such a 
situation, the form ip is uniquely determined by an isomorphism as in (i) of 4.1, up to 
scalar multiplication with a rational number: so it is more natural to denote the set 
A(G, X, W, ip) just by A(G, X, W). 

4.2. Digression on reductive Lie algebras. Till the end of §4 the notations 
to be introduced are independent of the ones in 4.1. Let W be a finite vector space over 
an arbitrary field of characteristic zero. All the reductive Lie subalgebras of £|l(W) 
considered in 4.2 are assumed to satisfy the following condition: the elements of their 
centers are semisimple endomorphism of W. 

Let g C 0l(W) be (such) a reductive Lie subalgebra. It is known (cf. [Boul, chl. 
1, th. 4]) that the above assumption implies that the restriction to g of the trace form 
Tr on QI(W) is perfect (for a, b e Ql{W), Tr(a, b) is the trace of the endomorphism ab 
of W). For any vector subspace m of QI(W) let 

nv1- := {x G Ql(W) | Tr(xy) = 0, \/y E m}. 

In particular we get a direct sum decomposition g^W) = g © g*1. 

4.2.1. Convention. Any time we have a situation as above, we denote by 7r(g) 
(or by 7TW(Q)) the projector of QI(W) defined by 7r(g)(x) = x if x G g and 7r(g)(x) = 0 
if^Eg1-. 

The Lie subalgebra of g[(VF) centralizing 7r(g) under the adjoint representation is 
of the form g 0 u, where 

u := {y € o± | [fl,y] C g, [g\2/] C gx} = {y £ gx | fay] = 0}. 

The last equality is due to the fact that [g^-1] C g1- and Tr([a, 6],c) = Tr(a, [6, c]), 

Va,6,c€flI(W)- 

4.2.2. PROPOSITION. Let g C J) C gt(W0 &e inclusions of reductive Lie algebras. 
We consider reductive Lie algebras gi satisfying : a) g C gi C (); b) [g,g] = [gi,gi]. 
They form a set S. Then an element gi o/S is maximal under the relation of inclusion 
if and only if Qi = I) n {the Lie subalgebra of Q{(W) centralizing 7r(gi)}. 

Proof. If gi = () D {the Lie subalgebra of gi(W) centralizing 7r(gi)} then 

f) n Qi Pi {centralizer of gi in gl(VF)} = 0. 

This implies that there is no reductive Lie subalgebra of I) strictly containing gi and 
having the same semisimple part as gi. So gi is a maximal element of S. 

Let now gi be a maximal element of §. We deduce that the centralizer c of gi in 
f) has no semisimple element included in Q^. But c is a reductive Lie subalgebra of 
g^W): the centralizer of gi in gl(W) is the Lie algebra of a reductive group (this can 
be seen moving to an algebraically closed field and using irreducible representations), 
and it is of the form c © c with c and c perpendicular with respect to the trace form 
on gt(W), c being a subspace of f}1-; so the trace form on c is perfect. This implies 
that c n Qi is zero, and so gi is the subalgebra of I) centralizing 7r(gi). Thie ends the 
proof of the proposition. 

4.2.3. REMARK. Let f:(G,X) ^ (GSp(W,^),S) be an injective map. If in 
4.2.2 we take g = Lie(G) and I) = gsp(VF,'0), then for any elemeny gi of S there is a 
uniquely determined (up to isomorphism) Shimura variety Sh(Gi,Xi) for which there 
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are injective maps fo:(G,X) M- (GI,XI) and fi:(Gi,Xi) M- (GSp(W,^),5) such 
that f = f1of0 and dfi(Ue(Gi)) = 0i. 

4.3. Special families of tensors. 

4.3.1. DEFINITIONS. Let (G,X) define an arbitrary Shimura variety. A pair 
(Gi,Xi) is called an enlargement of (G,X) if there is an injective map /: (G,X) ^> 
(Gi,Xi) such that /(Gder) = Gfr and /(G) ^ Gi. If i:(G,X) ^ (Gs,^) is an 
injective map, by an enlargement of (G, X) in (G2, -X'2) we mean a pair (Gi, -Xi), with 
G C Gi C G2, Gder = G?er and X C Xi C X2. If/: (G,X) ^ (Gi, Jfi) is an injective 
map, then (G, X) is called saturated in (Gi,Xi) if it has no enlargement in (Gi,Xi). 

4.3.1.1. Let now (G,X) be of Hodge type and let /: (G,X) <-> (GSp(W,^),5) 
be an injective map. From 4.2.2-3 we deduce that either (G,X) is saturated in 
(GSp(W1 ip),S) or there is an enlargement of (G, X) in (G5p(VF, I/J), S) which is satu- 
rated in (GSp(W^),S). 

The advantage of having injective maps (G,X) <-> (GSp(W,z/>),5) with (G,X) 
saturated in (GSp(W^ip),S) is: Lie(G) is the Lie subalgebra of g5p(W,ip) centralizing 
(just one tensor of degree 4 which is a projector of ^(VF)) ^W(Q)- 

4.3.2. We consider now the following situation. Let (W, ip) be a symplectic space 
over a field of characteristic zero. Let Go be a semisimple subgroup of GSp(W, ip) and 
let go := Lie(Go).   Let G be a reductive subgroup of GSp(W,ip) having Go as its 
derived subgroup and such that its Lie algebra g is the Lie subalgebra of g5p(Wr, ip) 
centralizing 7r(g) (cf. 4.2.2). We now list some useful tensors fixed by the group G. 

We have QSp(W,i^) = g 0 J), with f) := gsp(W,ip) D g1-.   Let f) =   0 f); be a 
iei 

direct sum decomposition of I) in irreducible g-modules. Let m* be the kernel of the 
representation g —>■ gl(fii).   We deduce the existence of a reductive Lie subalgebra 
g^ of g such that g is the direct sum of Lie algebras g = g^ 0 mi [Boul, p.   57]. 
We have faithful irreducible representations g^ c-^ gt(J)i). Associated to the direct sum 
decomposition gl(W) = g0 0 tyi^QSpiW^ip)1- we consider the projectors Pi:gl(W) -^ 

g[(l^), the image of Pi being ()^, Vi G /. For every i G /, let r; be the projection of 
g[(PF) on g^ associated to the direct sum decomposition 0l(W) = g^ 0 m^ 0 J) 0 
gspiW.iP)'-. 

For i G /, let ki be the Casimir element of the representation g^ <-> $1(1)i) (we 
have & 7^ 0, as g is the subalgebra of gsp(W,ip) centralizing 7r(g)). 

ki induces a linear map qi:Ql(W) —> gl(W) such that qi\l)i: t)i —>• \)i is an isomor- 
phism. We choose a linear combination of (qi)iei with coefficients in Z such that the 
resulting linear map q: gl(W) —y gl(W) has the property that q\t): I) —> I) is an isomor- 
phism (using induction, it is enough to handle the case when / has two elements; but 
this case is obvious, as Z is infinite). Let q:Ql(W) —> Ql(W) be the linear map such 
that q is zero on g 0g0p(W, ip)1- and g|f):f) -> J) is (gif))-1. 

For iei, let ti:gl(W) ->• gi(W)* be the linear map such that ti is zero on 
m^ 01)Qgsp(W, ip)1- and £i|g;: g^ -> g| is the isomorphism induced by the restriction to 
gi of the trace form Tr^. on gi(\)i). Explicitly: if x G g;, then ti(x)(y) = Tr^^x^y). For 
i e /, let Si:gl(W)* -> gl(W) be the linear map which is zero on (mi0[}0g5p(l¥,^)-L)* 
and Si\g*:g* -> gi is (^Ig;)-1. 

Let t:gl(W) -> gi(Wy and sig^PT)* ->• gl(W) be linear maps defined in the 
same manner as U and s;, but for the representation g M- gl(W). 

Let 
B:gl(W)^g{(Wy 
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be the linear map which is zero on QQ and B\$o'- Qo ^ Qo is the isomorphism induced 
by the Killing form on go. Let 

B*:0l(Wy-+Ql(W) 

be the linear map obtained from B in the same manner as the tensors Si were obtained 
from ti. 

The tensors 7r(go), 7r(g)5 #, B*, q, t and s, as well as the tensors p^, r^, si and t^ 
i G /, are centralized by g, and so fixed by the group G. 

4.3.3. Notation. Let W be a finite vector space over a field k of characteristic 
zero and let g be the Lie algebra of a semisimple subgroup G of GL(W). We call an 5I2 
Lie subalgebra of g <g> k standard if with respect to a Weyl direct sum decomposition 
Q 0 k = t 0 ga, with $ a system of roots associated to a maximal torus T of G^ 

(here t = Lie(T)), is generated by Qa and g_a, for some a G $. We denote by s(g, W) 
the maximum dimension which appears among the irreducible subrepresentations of 
W 0 k of any standard 5(2 Lie subalgebra of g 0 fc. 

4.3.4. DEFINITIONS. Let O be a discrete valuation ring, let TT be a uniformizer 
of it, and let K be its field of fractions. Let (W, ip) be a symplectic space over K. 
Let (SCOQ,^ be a family of tensors in spaces of the form W®m 0 W'*<8)n. The family 
of tensors (sa)a^ is called essentially finite, if the O-submodule of the tensor algebra 
of W 0 W* generated by its tensors, is a free O-module of finite rank. Let .R be a 
faithfully flat integral ring over O. A free E-module M satisfying M [^] = W^A-i?[^], 
is said to envelop the above family of tensors with respect to ip, if ip induces a perfect 
form -0: M 0 M -> i?, and if all the tensors of the family (sa)aeg are in spaces of the 
form M®m <g) M*®n. Let H be a reductive subgroup of GSp(W^) fixing the tensors 
of the above family. The family of tensors (sa)ae^ is said to be O-well positioned with 
respect to ip for the group H if the following condition is satisfied: 

(4.3.5) For any faithfully flat integral ring R over O and for any free iZ-module 
M, satisfying M[^\ =W 0K R[^], and enveloping the family of tensors {sa)a^ with 
respect to ip, the closure of -H^rii in GSp(M, ip) is a reductive group scheme HR over 

R. 

In addition, if there is an O-lattice MQ of W enveloping the family of tensors 
(sa)a£2 with respect to ip, then we say that our family of tensors is O-very well 
positioned with respect to tp for the group H. 

We have variants, depending on the class of O-algebras we use in 4.3.5. If we use 
the class of normal integral faithfully flat O-algebras (resp. of reduced faithfully flat 
O-algebras) we obtain the notion of weakly (resp. strongly) O-well (or O-very well) 
positioned families of tensors with respect to ip for the group H. 

4.3.6. REMARKS. 0) Warning: if H extends to a reductive group over O, we do 
not require that the extension of it to R is HR. 

1) If the family of tensors (sa)ae2 is O-well positioned (resp. O-very well po- 
sitioned) with repsect to ip for the group H, then the family (sa)ae3 ls O-well po- 
sitioned (resp. O-very well positioned) with respect to ip for the group iJ, where 
ip:W* 0PF* -» K is the perfect alternating form on W* obtained from ip through the 
isomorphism /: W ^> W* canonically induced by ip, (f(x)(y) = ip(x,y)), and where H 
is the subgroup of GSp(W*,ip) corresponding to H under the canonical identification 
of GL{W) with GL(W*) produced by /. 
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2) The family of tensors (sa)ae3 is O-well positioned with respect to ip for H iff 
it is well positioned with respect to tp for iJder and for the toric part of Z(H) (cf. 
3.1.6.1). The same remains true in a weakly (this is obvious) or strongly (cf. the 
considerations of 3) below: Lie exists in this situation; of course the proof of 3.1.6 
applies as well) context. 

3) Let R be a noetherian, reduced, faithfully flat local (9-algebra. Let M be a 
free i^-module of finite rank, and let H' be a reductive subgroup of GL(M)Rrii. Let 

{Ii\i 6 {1, ...,r}}, with r G N, be a set of ideals of R which are intersection of prime 
ideals of it! of codimension zero. We assume that ngj/i = 0, and that the closure of 
H*     m in GL(M 0 R/h) is a reductive group H- over R/Ii, Vi e {1,..., r}. We also 

assume that there is a free iJ-submodule Lie of End(M) such that Lie[^] is Lie(ff/) 
(for instance if there is a projector of End(M[^]) on Lie(ii/"/) enveloped by M). Then 
the closure H^ of H' in GL(M) is a reductive group over R. 

To see this we can assume that R = Rsh and that r = 2. As the fibres of H^ 
i = 1,2, are connected, we deduce that the fibres of H'R are connected. The ring R/Ii 
is also strictly henselian, and so H^ is a split group. This implies that H' itself is 
split. Let HR be a split reductive group over R having H' as its generic fibre. The 
reductive subgroups H'iRiIi+l2 ofGL(M^R/Ii +12) are identical (they have the same 
Lie algebra, cf. the assumption on the existence of Lie, and they are identical over 
Spec(R/Ii +l2)red)' We denote these subgroups by i^- As HR is smooth, and as we 
have this identity, the amalgamated sum of H[ and H£ along i7{2 is a reductive group 
over R which can be identified with HR. We get a homomorphism q:HR —>• GL(M) 
factoring through HR. As q is a closed embeding over R/Ii we deduce that q itself is 
a closed embedding. 

4.3.7. REMARKS. 1) We could have worked out 4.3.4 without the relative con- 
text, i.e. with respect to ip. The relative context is all we need for applications to 
Shimura varieties of Hodge type. When the role of tp is irrelevant (for instance in 
4.3.10 b)) we do not mention with respect to tp. 

2) The definition of O-well positioned families of tensors presented here is different 
from the one in [Val, 3.7.4], where we also asked that the subgroup ofGSp(M: ip) fixing 
Va, Va G 3, is a group scheme whose connected components of the origin of its fibres 
are (reductive groups defined by) the fibres of HR. 

3) Let i^o be an integral ring and let MR0 be a free i^o-module of finite rank. Let 
Xo be the field of fractions of i^o, and let Gx0 be a subgroup of GL(M 0 XQ). It is 
not always true (cf. [BT, 3.2.15]) that the closure GR0 of Gx0 in GL(MR0) is a group 
subscheme of GL(MR0). However, GR0 is a group subscheme of GL(MR0) if it is a 
flat scheme over i^o- 

So, in 4.3.5, the fact that the closure HR of HRri-i in GrSp(M, xp) is a group 

subscheme of GSp(M1 ip) is part of the requirements on a family of tensors {Sa)ae3 in 

order to be O-well positioned with respect to ip for the group H. To show that HR is 
a reductive group scheme over R, we need to check two things: 

a) that HR is flat over R (and so a group subscheme of GSp(M,ip)); 

b) that the fibres of HR over Spec(R) are reductive groups (over fields). 

4) If the family of tensors (sa)ae0 is essentially finite, for proving that it is O-well 
positioned with respect to ip for the group H, it is enough to check 4.3.5 only for 
integral rings R which are faithfully flat and of finite type over O (and so noetherian). 
To see this, let R and M be as in 4.3.5.   We choose a basis !B of M.   It naturally 
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produces a basis of the tensor algebra of M 0 M*. Let Ri be a finitely generated O- 
subalgebra of i2 such that 23 is included in W ®K RI [~] • Let R2 be the O-subalgebra 
of .R generated by Ri and by the coefficients of all sa with respect to the above basis 
of the tensor algebra of M © M*. R? is a finitely generated O-algebra as the family of 
tensors (sa)ae^ is essentially finite. Let M2 be the free it^-submodule of M generated 
by the elements of 3. We have M2 [^] = W 0K R2 [^]. Moreover M2 envelopes the 
family of tensors (scOaea- So, if the closure of HR rn in GSp(M2:ip) is a reductive 

group scheme over i?2, then, by pull back, the closure of HRn-\ in GSp(M, i/;) is a 

reductive group scheme over R. 
We assume now that there is a projector of End(T/F) on Lie(H) fixed by if, 

and which is part of our family. Localizing i^, replacing it by a quotient R2 of i^sh 

dominating R, or by i?i, where Spec(i?i) is an integral finite flat scheme over Spec(i2) 
(the operation of taking the closure of HRn-\ in GSp(M, ip) is well behaved with respect 

to these operations, cf. a) and b) of 3) above and 4.3.6 3)) we can assume, for checking 
4.3.5, that: 

c) it! is a noetherian strictly henselian integral local ring with an algebraically 
closed residue field, and HRo := HR x RQ IS a, reductive group scheme over i£0, where 
i?0 is the open subscheme of Spec(jR) defined by the complement of the maximal ideal 
of R. 

d) This allows us to pass from O to its strict henselization Osh, and so we can 
assume that O is a strictly henselian DVR. 

e) If moreover K is of characteristic zero (so O is an excellent ring), we have 
to deal only with excellent rings (as the set of excellent rings is stable under the 
operations performed in this remark). 

f) If K is of positive characteristic and if O is a Nagata ring, we have to deal only 
with Nagata noetherian rings (as the set of such rings is stable under the operations 
performed in this remark, cf. [Ma, ch. 12]). 

5) If the family of tensors (sa)ae0 is essentially finite, if the extra condition 
needed to get c)-f) above (involving a projector of End(W)) is satisfied, and if K is of 
characteristic zero (so O is an excellent ring), then, for checking 4.3.5, we can assume 
that R is an integral noetherian complete local ring having an algebraically closed 
residue field. In other words we can replace R (with R the localization of an integral 
finitely generated O-algebra with respect to a prime lying over the maximal ideal of 
O) to its completion R: R is a reduced ring (as R is an excellent ring); so 3.4.6 3) 
applies. So we can replace O with the completion of Osh (cf. also to 4) above), i.e. 
we can assume that O is a strictly henselian complete DVR. 

S7) If in 4) and 5) we work with the weakly (resp. strongly) O-well positioned 
property, we do not have to make any assumption on the existence of a good projector 
of End(W) as part of the family of tensors. We get c)-f) and 5) above, but always as- 
suming that we have normal integral domains (resp. reduced rings) instead of integral 
rings. 

6) All concrete families of tensors used in this paper are essentially finite and fit 
in the strongly context. Any essentially finite family of tensors in spaces of the form 
W®rn ^ ^*©n5 ^^ m5 n £ f^ is of bounded degree, but the converse to this is not 
true. 

7) Any time we can replace O with another DVR O1 (faithfully flat over O), we 
can replace the family of tensors (sa)^^ with the family of tensors (sai)a^i (of the 
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tensor algebra of (W 0 W*) ®o Oi) formed by linear combinations (with coefficients 
in O1) of the tensors (sa)aeg. If the family of tensors (sa)aed 1S essentially finite, 
then the family of tensors (sai)aegi is also essentially finite. 

8) To check 4.3.5 for a noetherian ring i?, we can assume that it is local, and that 
HRO is a reductive group scheme over i?0, where R0 is the open subscheme of Spec (it!) 
defined by the complement of the maximal ideal of R, cf. 3) above, even if the family 
of tensors (sa)aeg is not essentially finite. In 4.3.4-5 we could have worked with M a 
projective (instead of free) i?-module, but this would have made no difference. 

9) The role of O is mostly just to fix up the notations. For the greatest part 
of 4.3.4-17 it can be replaced by any other integral noetherian scheme Z, and then 
the role of R is replaced by an arbitrary integral flat Z-scheme. We will not stop to 
state the results in this generality, as they can be immediately deduced from the ones 
stated. 

4.3.8. REMARK. The tensors which give a lot of information about the modules 
enveloping them, are projections and isomorphisms. 

4.3.9. REMARK. If Hi is a reductive subgroup of H with H?eT = iJder, then 
any weakly O-well positioned family of tensors (with respect to ip) for H is also a 
weakly O-well positioned family of tensors (with respect to ip) for Hi. This results 
easily from 3.1.6 and from the fact that the closure in a torus TR (over a normal ring 
it! as in 4.3.5) of a subtorus of the generic fibre of TR, is a torus over R: this is a local 
statement for the etale topology of Spec(i?), so we can assume that TR is split and 
then we can make use of characters of TR. The same thing remains true for weakly 
O-very well positioned femilies of tensors. 

4.3.10. PROPOSITION. With the notations of 4-^.2, ifW is a vector space over 
Q, then: 

a) there is N G N, such that for any prime p not dividing N, the family of tensors 
formed by 7r(Q), q, and by pi, ri, si and ti, i € /, is strongly Z(pyvery well positioned 
with respect to ij) for the group G; 

b) for any odd prime p > S(QO, W), the family of three tensors formed by 7r(Qo), B 
and B* is strongly Z(pywell positioned for the group GQ. 

Proof Let L be a Z-lattice in W such that ip induces a perfect form ?/>: L<8)L -* Z. 
As the family of tensors of a) is finite, we deduce the existence of a number iV G N, 
such that for any prime p not dividing iV, L (8) Z(p) envelopes the family of tensors 
of a) with respect to ip. So a) follows once we show the strongly Z(p)-well positioned 
part. We fix a prime p not dividing N, for the case a), respectively an odd prime 
P>s(Qo, W), for the case b). Let R be a reduced faithfully flat Z^-algebra and let 
S := R[~\. Let M be a free i?-module, with M®S — W®QS, enveloping the family of 
tensors of a) with respect to ^, respectively enveloping the family of tensors of b). We 
have to show that the closure G{M) of Gs in GSp(M^) in case a), and respectively 
that the closure GQ(M) of Gos in GL(M) in case b), are reductive groups over R. We 
can assume that R is a local reduced noetherian ring (cf. 4.3.7 4)) (4.3.6 3) as well 
as 4.3.7 4) give us the right to assume that R is also integral; but we think it is quite 
instructive not to do so). Let m be its maximal ideal. 

CASE a). Let ^(M) := (g <g> S) n Ql(M). We have ^(M) c gsp(M,ip) := 
Ue(GSp(M^)). Let 

A := ((g$p(M,i!>)/Q(M)) 0 R/m)*(M\ 
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(the upper right index refers to the operation of taking the elements annihilated by 
fl(M)). 

CLAIM 1.  We have A = 0. 

This results from the following facts. 

(a) The fact that the family of tensors (pi,^,^,^)^/ is enveloped by M implies 
that the trace form on Qi(M) := ri(g{(M)) associated to its representation on 
l)i(M) := pi(Ql(M)) is perfect. So the Casimir element ki of this representation 
induces a linear map gl(M) -> Ql(M). 

(b) The fact that q is enveloped by M implies that the linear combination of ki used 
in the formation of q, induces an endomorphism q:Ql(M) —>• Qi(M) such that its 
restriction to f)(M) := 0 l)i(M) is an isomorphism J)(M) -^ MM), 

iei 
(c) Any element of A is annihilated by q (as q is the endomorphism induced by a 

sum of Casimir elements). 

A = 0 implies that the Lie subalgebra of gsp(M/mM) centralizing the reduction 
of 7r(0) modulo m, is Q(M)/mg(M). This implies that the scheme G(M) has smooth 
fibres. 

Moreover it is smooth in the R-valued point defining its origin. To check this, let 
Ro(G(M)) be the ring of the completion of G(M) in the origin, and let jR[[g(M)]] be 
the ring of formal power series defined by the free .R-module Q(M). We get a natural 
epimorphism io(R): R[[Q(M)]] -^ Ro(G(M)). If R is integral, by reasons of dimension, 
we get that io(R) is an isomorphism. As R is reduced, this implies that io(R) is an 
isomorphism: the kernel of io(R) is included in ^[[[^(M)]], for any prime ideal 7 of R 
of codimension zero. 

The fact that 7r(0) is enveloped by M implies that the trace form on g(M)/mQ(M) 
is perfect and so the Lie algebra of the nilpotent radical of the connected component 
of the origin of G(M) XR Spec(R/m) is zero (cf. [Boul, p. 41]). From this we deduce 
easily (cf. [SGA3, vol. 3, p. 12] and [Ti, 3.8.1]) that the connected component of the 
origin of any fibre of G(M) is a reductive group scheme. From 3.1.2.1 c) and [Hart, 
ex. 4.11 pg. 107] we deduce that all the fibres of G(M) are connected. From this and 
the fact that G(M) is smooth in the origin we deduce that G(M) is a smooth scheme 
over R. 

We conclude that G(M) is a reductive group scheme over R, and so condition 
4.3.5 (for reduced rings) is satisfied. This proves a). 

CASE b). We can assume, cf. 4.3.7 5'), that i^ is a noetherian excellent strictly 
henselian local ring, that R/m is an algebraically closed field, and that Go(M)Ro is a 
semisimple group over the open subscheme 72° of Spec(i?) defined by the complement 
of the maximal point Spec(jR/m) of Spec(i?). From the properties implied by the 
excellence property we need just that R is an iV-1 ring (cf. def. of [Ma, 31.A]), i.e. 
the normalization Rn of R in its ring of fractions is a finite i?-module, and in particular 
it is a noetherian ring. As above we can also assume (cf. 4.3.6 3) or 4.3.7 4)) that it! 
is integral; but we think it is instructive not to do so. 

PART 1. The integrality of 7r(0o) gives us a direct sum decomposition QI(M) = 
0o(M) © 0o (M)1- and the integrality of B and B* implies that the Killing form b(M) 
on 0o(M) is perfect. Let Aut(go(M)) be the group scheme (of finite type) over it! 
defined by the Lie algebra automorphisms of 0o(M), and let Gfo(M)ad be the connected 
component of the origin of Aut(go(M)), defined as the closure in Aut(go(M)) of the 
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connected component of the origin of the fibres of Aut(go(M)) over points of Spec(i?) 
of codimension zero. 

CLAIM 2. Go(M)ad is a subgroup of Aut(Qo(M)). It is a semisimple adjoint 
group over R, having %Q{M) as its Lie algebra. 

Proof. We first remark that for any algebraically closed field k which is an i2- 
algebra, hie(Aut{%Q{M))i) is the Lie algebra of the differentiations of %o(M) 0 k] the 
same argument -based on the fact that the Killing form of go {M) (g) k is perfect- as 
in the characteristic zero case, gives us lAe(Aut{QQ(M)i)) — go 0 k. So, by reasons 
of dimension, the tangent space in the origin of Go(M)ad is also go ® k. This implies 
that Aut(^{M)) is smooth (over i?) in the origin (the argument for this is the same 
as the one used in Claim 1, in a similar situation) and that every fibre of it is a smooth 
group, which is the extension of a semisimple adjoint group by a finite etale group. 
The finite etale group corresponds to outer automorphism of the Lie algebra of the 
semisimple part of the extension. 

As it! is a strictly henselian ring, we deduce from the smoothness of ^k^(go(M)) 
in the origin, by using translations, that Aub{&Q(M)) is smooth over R in any point 
of the connected component of the origin of a fibre of it. All these points belong to 
Go(M)ad, and by reasons of dimension, they are smooth points of Go(M)ad. 

But Go(AOad has all its fibres connected: an inner automorphism of a semisimple 
Lie algebra can not specialize to an outer automorphism. To see this, we first remark 
that %Q(M) is defined over a subring of R which is finitely generated over Z. So 
everything comes down to checking this in the case of a complete DVR, having an 
algebraically closed residue field. If R is such a ring, then the open subscheme of 
Go(M)ad defined by putting together the connected component of the origin of its 
fibres is a semisimple group, and so everything results from 3.1.2.1 c). 

So Go(M)ad is a smooth subgroup of Aw^(go(M)) and has connected fibres. So 
Go(M)ad is a semisimple group over R (cf. the above statement on the fibres of 
Awt(flo(M))). We have Lie(Go(M)ad) = Ue{Aut{^{M)) = go(M). Go(M)ad is an 
adjoint group as its fibres over points of Spec(JR) of codimension zero are. This ends 
the proof of claim 2. 

PART 2. Let QQ(M) = t © g^ be a Weyl direct sum decomposition of go(M) with 

respect to a system of roots $ associated to the Lie algebra t of a maximal split torus 
Tad of Go(M)ad (Tad exists as R is a strictly henselian local ring). For any a G $ 
let Ga,a be the subgroup of Go(M)ad having g^ as its Lie algebra. The inequality 
P>s(%o,W) implies that for any a E $, every x € ga, as an endomorphism of M, 
satisfies xp = 0. Let a be an arbitrary emlement of $. Let V{QOL) be the affine scheme 
over i2 defined by the i£-module ga (for an R-algebra i?i, V(ga)(i?i) = g^ 0 Ri). 
There is a natural identification V(Qa) = G^a- 

The homomorphism exp: V(ga) —> GI/(M), defined on an R-valued point x G ga 

by exp(x) = Y^=o IT (^Le above sum is an isomorphism of M as x is a nilpotent en- 
domorphism of M), is an isomorphism: at the Lie algebra level we get an isomorphism 
Lie(y(ga)) ^Qa- We deduce that Ga,a(R) C GL(M)(R) and so the groups Gata can 
be considered as subgroups of GL(M). 

We treat first the special case when R is a complete DVR with an algebraically 
closed residue field. Let Go0^ be the semisimple simply connected group cover of 
Go(M)^d. Using [Ti, 3.1.1] we get that the subgroup of GS

0
C
S(S) generated by the 

subgroups Ga,a (R) is hyperspecial. It is mapped under the composite homomorphism 
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Gocs^ Go(M)s -► GL{M)s into GL(M)(R). From 3.1.2.1 a) and c) we deduce that 
Go(M) is a reductive (and so semisimple) subgroup of GL(M). 

We come back to the general case. The special case implies directly that: 

d) The reduced subscheme of the connected component of the origin of any fibre 
of Go(M) is a semisimple group scheme. 

CLAIM 3.   There is a subtorus T of GL{M) having t as its Lie algebra. 

Proof. First we remark that Ts is well defined (it is the inverse image of r|d 

under the natural homomorphism Go(M)s ->> Go(M)|d). So Ts is a split torus. Let 
C be the set of characters of Ts through which it acts on M <g) S. We consider the 
direct sum decomposition M ®S — 07ec^5 associated to the faithful representation 
Ts ^ GL(M (g) 5). So Ts acts on M^ through the character 7. We need to show that 
the above direct sum decomposition of M <S) S extends to a direct sum decomposition 
of M, i.e. that the natural i?-linear map 

IT: e7GcM7 -+ M, 

with M7 := M fl Mg, is an isomorphism. 
To see this, let !B($) be a basis of roots of $. Let o: G !B($). Let sfeCa) be the 

Lie subalgebra of go(^) generated by Qa and 0_a. As 90(M) is the Lie algebra of 
the adjoint group Go(M)ad, and as p > 2, we deduce that it is an sfe Lie algebra over 
i?; so the notation is justified. As an i?-module, it is isomorphic to R3. We choose 
a standard basis {ha,xa,ya} of it. So xa G 0a, ya G 0_a, /za G [ga,g_a], and the 
formulas ha = [a;a,2/a], [/ia,a;a] = 2xa and [ha,ya] = —2ya are satisfied. ha is a 
semisimple element of t. Over S it generates the Lie algebra of a subtorus Tsa of 
GL(M 0 5). It is a split torus, as it is a subtorus of the split torus Ts. 

The key fact is: as p>s(gQ,W), we deduce that the eigenvalues of ha, as a 
semisimple endomorphism of M, are integers in the set A(a) = {—p +1, —p + 2, ...,p — 
1}. For any i G A (a) let M(i) be the B-submodule of M formed by elements on which 
ha acts as multiplication with i. So if any two such integers are not congruent mod 
p (and so they are not congruent modulo m) (this is the case if p > 2s(go, W)) then 
M = ©ieA(Q;)^(^)- To see that this remains true even when two distinct eigenvalues 
are congruent mod p we have to make use of xa and ya. 

We need to show that for any i G {1, ...,p — 1}, if v(p — i) G M(p — i) and 
v(—i) G M(—i) are such that 

(1) v(p -1)+ v(-i) G raM, 

then v(p — i) G mM(p — i) and v(—i) G mM(—i). We can assume that p — i>i. We 
prove this by induction on i G {1,..., ^7^}. 

So let us first treat the case when i — 1. Applying first £a to the relation (1) 
a couple of times v(—l) gets annihilated. Applying then ya to the result the same 
number of times (to bring the things back) we get something which is a multiple of 
v(p — 1) by an integer which is non-zero mod p. But what we get is in raM. In 
fact it is in mM(p — 1): we get this by applying first p — 1 times xa to (1) and then 
applying (backwards) p — 1 times ya to (1). So v(p — 1) G mM(p — 1). Similarly 
we get that v(—l) G raM(-l). We deduce that M(p — 1) and M(—1) are direct 
summands of M, and so they are free (R being a local ring). For j G {1, ...,p — 1} let 
Mjip-l) =xi{M(p-l)). ItisasubmoduleofM(p-l-2j). LetMo(p-l) := M(p-1) 
and let __ 

Mip-V-^^llMjip-l). 
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Using the fact that p is greater then all eigenvalues of the endomorphism h^ of M 
we deduce that ya(Mi(p - 1)) = M^i(p - 1), \/i € {1, ...,p - 1}. This implies that 
M(p — 1) is a direct summand of M, and so a free i^-module. 

To proceed further on we just have to repeat everything for i = 2 and for the 
quotient skia)-module M/M(p — 1). Then we repeat everything for % — 3 and the 
new ^(oO-module which is the quotient of M/M{p - 1) (by a similarly constructed 
M{p — 2) submodule), etc. The induction becomes obvious. 

We conclude that M is a direct sum of submodules on which ha acts diagonally. 
This implies that Tsa extends to a subtorus Ta of GL(M). 

Let f := l[a€rB^)Ta.  As the subtori Ta of GL{M), a € ®($), commute one 

with each other, we get a group homomorphism if. f -> GL(M), obtained by taking 
the product of homomorphisms Ta 

c-^ GL(M). Over 5, if factors through T5. Let T 
be the quotient of T by the finite flat group subscheme (over R) of T, which over S 
is the kernel of the factorization T^ —> T5; this finite flat group scheme is the kernel 
of if. The notation is justified, i.e. the fibre of T over S is indeed the torus T5 we 
previously considered. We get a homomorphism T -± GL{M). T is a split torus over 
R<isR = Rsh. 

The group of characters of T is the same as the group of characters of Ts. So T 
acts on M through the characters 7 G C, achieving a direct sum decomposition of M 
on submodules on which it acts diagonally through the characters of C. This proves 
that IT is an isomorphism and that T is a subtorus of GL(M). This ends the proof 
of claim 3. 

Let now 
U(M):=Tx l[Ga,a. 

Let UM'U(M) —> GL(M) be the morphism defined by taking the product of the 
inclusions of the factors of U(M) in GL{M). It factors through GQ{M). We have: 

e) UM is injective on points with values in fields (i.e. it is radicial); 

f) In any R/m-valued point of the group scheme U(M), UM induces an injection 
at the level of tangent spaces, producing a surjection at the level of cotangent spaces; 

g) At the level of completions of local rings (defined by an R/m-valued point of 
U(M)), UM induces an epimorphism. 

e) is a direct consequence of d) above (cf. [Bo, 14.14] and the particular case). 
As over R/m UM is a locally closed immersion (cf. the special case), using translates 
(U(M) being smooth over R), it is enough to check part f) in the origin of U(M). 
But in this case it results from the fact that the tangent space of U(M) in the origin 
Spec(R) M- U(M) is Qo(M) (cf. the definition of the factors of U(M) and of the 
expression of their Lie algebras), and from the fact that Qo(M) is a direct summand 
of gi(M) (as ^(go) is enveloped by M). Part g) is a direct consequence of f) and of 
the fact that R/m is an algebraically closed field. 

We consider the simply connected group cover Go(M)sc of Go(M)ad. T fixes 
^(So)? as Ts does. So T acts under the adjoint representation on go(M). We get a 
homomorphism TTIT'-T -> Aut(go(M)). As Aut(go(M)) is a subgroup of GL(go(M)), 
the kernel of TTIT is the same as the kernel of the representation of T on go(M). 
But any linear representation of a split torus (over R) is a direct sum of irreducible 
one-dimensional representations (associated to characters). So ker(mT) is a finite flat 
group scheme over R. The quotient of T by it is a subtorus of GL(go(M)), and so a 
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subtorus of Go(M)ad: any torus over a field is a geometrically connected variety. This 
subtorus of Go(M)ad is nothing else but the subtorus Tad we considered in the first 
paragraph of Part 2. 

The inverse image of Tad under the natural isogeny Go(M)sc -> Go(M)ad is a 
maximal torus Tsc of Go(M)sc. We get an isogeny isc:Tsc -)- Tad of split tori over i2. 
Its kernel is the center of Go(M)sc. Moreover isc factors through T, as this happens 
over S. We get another isogeny of split tori Tsc -> T. Let CT be its kernel. It is a 
finite flat group scheme over .R, contained in the center of Go(M)sc. Let Go(M) be 
the semisimple group over R which is the quotient of Go(M)sc by CT- From the very 
construction of CT we get that Go(M)s is Go(M)s. 

We want to show that Go(M) is Go(M). We have a morphism lo:Go(M)s —> 
Go(M). We view it as a rational map from GQ(M) to Go(M). We also view it, keeping 
the same notation, as a rational map from Go(M) to GL(M). 

We have a canonical homomorphism Go(M) —> Go(M)ad. U(M) is an open 
subscheme of Go(M): each factor of U(M) (i.e. T and each Qa,a, CK G $) are subgroups 
of GQ(M). This is obvious for Ga,a, i.e. the subgroup Ga of Go(M), corresponding to 
an element a G $, is mapped isomorphically into the subgroup Ga?a of Go(M)ad (we 
are dealing only with central isogenies). For T this is obvious from its construction. 
So we can apply [SGA3, vol. 3, p. 172]; we get: 

h) The rational map IQ is defined in codimension 1. 

We first assume that R is a normal ring, i.e. that R = Rn. From h) and from 
[BLR, th. 1 of 4.4] we deduce that IQ can be extended to a morphism Zi:Go(M) —>• 
GL(M). li is a group homomorphism, as Go(M) is a smooth scheme over R, and as 
the fibre of li over 5 is a group homomorphism. From the special case we deduce that 
all the fibres of li are closed immersions. But h is proper (as its fibre over S is proper, 
this results from the valuative criterion of properness, cf. 3.1.2.1 c)), and so it is a 
finite morphism. From Nakayama's lemma we deduce that li is a closed immersion, 
and so, Go(M) = Go(M). This ends the proof in the case R — Rn. 

We would like to point out that if i? is as in the special case (i.e. it is a complete 
DVR with an algebraically closed field), from 3.1.2.1 c) we get directly that li is a 
closed embedding. This represents a second proof of the special case without reference 
to [Ti, 3.1.1], but based on the elementary result [BLR, th. 1 of 4.4]: the facts e-g) 
above, obtained based on d) above, were not needed to get h). 

We now come back to the genaral case (i.e. we do not assume anymore that 
R = Rn). From the fact that the result is known for Rn, and from the fact that Rn is a 
finite /^-module, we deduce the existence of a finite morphism Go(M)Rn —> GL(M). It 
factors through Go(M), producing a finite dominant morphism Go{M)Rri -» Go(M). 
We deduce that: 

i) The reduced scheme defined by Go(M)R/m is a semisimple group having as its 
Lie algebra go(M) 0 R/m. 

This implies that the localization of UM in the R-valued point defining the origin of 
GL(M), is a finite morphism. From g) above we deduce that it is a closed embedding. 
This implies that around the origin, UM is a closed embedding. We deduce that Go(M) 
is smooth in the origin. As any R/m-valued point of U(M) has a lift to R (as R is a 
strictly henselian ring), using translations with R-valued points of Go(M), we deduce 
from i) above, that Go(M) is smooth in all its R/m-valued points. As Go(M)Ro is 
smooth over i20, we deduce that Go(M) is a smooth scheme over R, and so it is a 
subgroup of GL(M). From the fact that Go(M)Ro is a semisimple group over R0, and 
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from i) above, we get that Go (M) is a semisimple group over i?. This ends the proof 
of the case b) and so of the proposition. 

4.3.10.1. REMARKS. 1) 4.3.10 b) remains true if instead of Q (and Z^) we 
work with an arbitrary field K of characteristic zero, which is the field of fractions of 
a DVR O of mixed characteristic (and with 0), and if, instead of 7r(go), we work with 
any other projector TTQ of £|t(W0 on go centralized by go (the role of 7r(go) was just to 
produce a direct sum decomposition £|((W) = Qo & Bo)- 

Moreover, the condition p > 2 is not needed: If p = 2 = s^o^W) then 4.3.10 b) 
remains true as it can be easily checked. Of course in the majority of cases for p = 2 
we get a non-perfect Killing form on go(M). However: 

1') Part 2 of the above proof of 4.3.10 b) is a result independent of Part 1 (we 
just needed that there is an adjoint group over R whose Lie algebra is go(M)). It is a 
result on representations of a Lie algebra of an adjoint group, and so it remains true 
even if the Killing form (or the trace form) on go(^) is not perfect. 

Part 1 of the above proof of 4.3.10 a) is a result on the existence of adjoint groups 
having a prescribed Lie algebra which is subject to the condition that its Killing form 
is perfect. 

2) 4.3.10 a) remains true if instead of Z we work with any other Dedekind domain 
D of characteristic zero having an infinite number of maximal ideals (the number iV 
being replaced by a non-zero ideal of D). 

3) 4.3.10 admits versions in positive characteristic. Of course, some precautions 
have to be taken. For instance the restriction of the trace form on gi(W) to go (or g) 
might not be perfect. Concentrating just on 4.3.10 b) we can state: 

4.3.10.2. With the notations of 4.3.4, we assume that there is a projection TTQ of 
gl(W0 on go, annihilated by go, and that the Killing form on go is perfect. If s(go, W) 
is not greater than the characteristic p of the residue field of O, if this residue field 
is perfect, and if p > 2, then the family of tensors formed by TTQ, B and B* (as the 
Killing form on go is perfect, we can define B and B* as in 4.3.2) is strongly O-well 
positioned for the group Go- 

The proof of this is entirely analogous to the proof of 4.3.10 b). We just have to 
check -it is easy- that the condition 5(go, W) <p can be used in the same manner as 
in the proof of 4.3.10 b) (instead of e) of 4.3.7 4) we have to use d) and f) of 4.3.7 
4)). It can be easily checked that the condition on the residue field being perfect is 
not needed. 

4.3.10.3. The family of tensors of 4.3.10 a) is not so suited for explicit compu- 
tations, while the one of 4.3.10 b) is. The advantage offered by the family of tensors 
of 4.3.10 a) is: it cuts out of g0p(M, ip) the Lie algebra of the group G(M) (cf. Claim 
1 of 4.3.10) by using only one tensor 7r(g). However we do not use it in the rest of 
the paper. There are variants of 4.3.10 a) when GSp(W,ip) is replaced by another 
reductive subgroup of GL(W). 

4.3.11. EXAMPLE. We consider the case of Shimura varieties of PEL type, to 
emphasize that the (incipient) idea of using Z^-very well positioned families of tensors 
goes back to [LR]. We use the situation and notations used in [Ko, ch. 5]. For simplicity 
we denote the nondegenerate Q-valued alternating form on V by ip. 

CLAIM. The elements of OB form a family of tensors which is strongly Z^-very 
well positioned with respect to ip for the group G. 
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Proof. The conditions imposed on B imply that the group scheme over Z(p) de- 
fined by the invertible elements of OB is reductive. 

We get that the group scheme C over Z(p) defined as the centralizer of 0^ in 
GL(L) is reductive. This is a property of linear representations of semisimple algebras 
over discrete valuation rings of mixed characteristic. In our case, passing from Z(p) to 
W'(F), OB ® W(¥) is a finite product of algebras of the form End(iV), with N a finite 
free VF(F)-module. So, inside V®QW(¥) [^ we can find a W(F)-lattice M such that M 
is a direct sum of irreducible representations of OB ® VF(F) (and so M/pM is a direct 
sum of irreducible representations of OB ® F). Using the fact that the determinants 
(as defined in loc. cit.) of OB with respect to L 0 W(¥) and with respect to M are 
the same, we deduce that the two representations of OB 0 F on M/pM and on L (g) F 
are isomorphic. So C is indeed a reductive group scheme over Z(p). It is defined by 
the invertible elements of a Z(p)-order of a semisimple Q-algebra. 

Moreover there is n £ N such that ^ times the bilinear form b on Lie(C) induced 
by the trace form Tr on QI(L) is perfect. This can be read out from the end of [Sh, 
2.1]. For instance, with the terminology and notations of the loc. cit., we can take 
n = y if L is of type /, II or ///, etc. Here we use that B is a simple Q-algebra. 

The fact that OB is self-dual with respect to ip implies that Lie(C) = c ® c-1, 
with c := Lie(C) fl Lie(G5p(L,^)) and with r1 := Lie(C) H Lie(G5p(L,^))-L (here 
Lie(GS'p(L,'0))J- refers to perpendicularity with respect to the trace form). So the 
closure Gz{p) of the connected component G of the origin of the intersection of CQ 

with GSp(y^) in GSp(L^) is a reductive group scheme over Z^py 
To see this let 9 be the connected component of the origin of the special fibre of 

GziPy The above direct sum decomposition of Lie(C) implies that the dimension of 
Lie(9) is equal to the dimension of 9, and so 9 is a smooth group over Fp. So Gz{p) 

is smooth over Z(p) in the points of 9- From the fact that ^b is a perfect form on 
Lie(C), we deduce that 9 is a reductive group over Fp. This results from the fact that 
the Lie algebra n of the nilpotent radical of 9 is zero as it is included in the null space 
of the restriction mod p of the symmetric bilinear form -b: [Boul, p. 41] implies 
that n is perpendicular to c, while from the definition of b and c1- we get that n is 
perpendicular to c-1; here perpendicularity is with respect to ^b. From 3.1.2.1 c) we 
deduce easily that Gz(p) is a reductive group over Z(p) (i.e. its special fibre is 9). 

Using 3.1.2.1 a) and c), and the determinant condition of [Ko, ch. 5], the same 
things remain true if we work with an arbitrary reduced ring R which is faithfully flat 
over Z(p), with a free jR-module M which satisfies M[-] = W 0 R and envelopes the 
elements of OB with respect to I/J (i.e. with the same arguments we get that the group 
scheme over R defined by the invertible elements of ¥> <S>z(p) R is reductive, that its 
centralizer in GL(M) is a reductive group scheme CR over R, and that G^m extends 

to a reductive subgroup GB of GL(M)). This ends the proof of the claim. 

4.3.12. REMARK. We start with an injective map (G,X) M- (GSp(W,ip),S). 
Let B we the subalgebra of End(W) formed by elements fixed by G; it is a semisimple 
Q-algebra. The connected component Gi of the origin of the subgroup of GSp(W, ip) 
fixing B contains G, and we get an injective map (G,X) M> (Gi,Xi) (with Xi de- 
termined naturally by X). (Gi,Xi) defines a Shimura variety (it is easy to see that 
the axiom SV3 of 2.3 is satisfied) of PEL type (cf. their def.; see [Mi4, p. 161]). We 
call it the PEL-envelope of (G,X) with respect to the injective map /. The tensors 
of degree 2 does not allow us to distinguish (G,X) from (Gi,Xi). So we were forced 
in 4.3.10 to make use of tensors of degree 4, to be able to conclude that the closure 
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of G in a GL(L^) (for some particular Z(^-lattices L^j of W) is a reductive group 
scheme over Z(py 

4.3.13. The case of a torus. We consider a situation of the form T c-^ GL(M) 
with T the connected component of the origin of the center of a reductive subgroup G 
of GL(M)1 and with M a free module of finite rank over a discrete valuation ring O. 
Let B be the subalgebra of End(M), formed by endomorphisms commuting with G. 
Then B forms a family of tensors which is strongly O-very well positioned for T. To 
see this we can assume (cf. 4.3.7 5')) that O is a strictly henselian DVR. Then T is a 
split torus and M = Q^^^MQ,, with 3 a set of characters of T, and with T acting on 
Ma through the character a (Va G 3). Now the subfamily of B (cf. 4.3.7 7)) formed 
by the projections of M on Ma (a G S) (they are fixed by G) associated to the above 
direct sum decomposition, is obviously strongly O-very well positioned for T. 

4.3.14. REMARK. Let Go ^ G c-^ GSp(W,^) be injective group homomor- 
phisms between reductive groups over Q. Let p be a rational prime. We assume the 
existence of a family of tensors (va)aG3o ^n spaces of the form W®m & W*®n which 
is Z(p)-very well positioned with respect to ip for the group G. We assume also the 
existence of a Z (p)-lattice L enveloping the above family of tensors with respect to tp 
and such that there is a torus T of the closure Gz(p) of G in GSp(L,^) having as its 
centralizer in Gz(p), the closure of Go in GSp(L,^). 

FACT. The family of tensors (va)aedo can be enlarged (by adding only tensors of 
degree 2) to a family of tensors (va)a^gP with d D 3o, which is Z(pyvery well positioned 
with respect to ip for the group Go- 

This is a direct consequence of 4.3.13. A similar result can be stated for strongly 
or weakly Z(p)-very well positioned families of tensors. 

4.3.15. REMARK. Let O be a DVR and let (M,ip) be a symplectic space over 
its field of fractions K. Let Oi be a DVR which is an etale cover of O and let Ki be 
its field of fractions. Let G be a reductive subgroup of GSp(M, ?/>). If there is a family 
of tensors (sa)ae01 in spaces of the form M®m <S> M*®n <S> Oi which is strongly (resp. 
weakly) Oi-very well positioned for the group GKX , and if there is an O-lattice L of M 
such that L® Oi envelopes the above family of tensors with respect to ip, then there 
is a family of tensors (wp)p^ of degree not bigger than the maximal degree of the 
tensors of (sa)ae^1, situated in spaces of the form M®m 0 M*®n, which is enveloped 
by L and strongly (resp. weakly) O-very well positioned with respect to ip for G. This 
is so due to the fact that the tensors of L®m 0 L*®n 0 Oi fixed by the reductive group 
Go15 the closure of GKI in GSp(L <g> Oi,ip), are linear combinations with coefficients 
in Oi of tensors of L®171 ® L*®™ fixed by the reductive group Go, the closure of G 
in GSp(L,^). We can take the family (wp)p£2 of tensors showing up in such linear 
combinations of the tensors of {sa)aedi • The same thing remains true when we do not 
work in the relative context (i.e. when we replace GSp(M,ri/j) by GL{M) and there is 
no alternating form ij) on M). 

4.3.15.1. 4.3.15 remains true if instead of Oi we work with the completion of O 
(the argument is the same). 

4.3.16. The relative PEL situation. Let O be a discrete valuation ring of 
mixed characteristic and let K be its field of fractions. Let M be a free module of 
finite rank over 0. Let G be a reductive subgroup of GL{M) and let L C End(M) be 
a semisimple algebra over O. So L 0 Osh is a product of algebras of the form End(P) 
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with P a free module over Osh. We assume that the subgroup C(L) of GL(M) fixing 
L is a reductive group over O and that the connected component Go of the origin of 
C(L) n G (defined as the closure in G of the connected component the origin of the 
generic fibre of C(L) fl G) is a reductive group over O, containing the maximal torus 
of the center of G. We assume that the bilinear form on g := Lie(Gder) induced by 
the trace form Tr on End(M) is perfect, and that 77(0) leaves invariant Lie(C(L)). 
We also assume that one of the following two conditions is satisfied: 

1) There is a torus T of G such that Go is contained in the centralizer G0 of 
T in G, Gg6 = G0ab and the inclusion G^er ^ Goder becomes over Osh the diagonal 
embedding of Goer in a product of a finite number of copies of Goer, which are permuted 
transitively (under conjugation) by the invertible elements of L 0 Osh; 

2) A rational multiple of Tr restricts to a perfect form on Lie(C(L)). 

Let (sa)a(z3 be a family of tensors of the tensor algebra of M 0 M* fixed by 
G, which is enveloped by M and is O-very well positioned for G. Then the family 
of tensors formed by (sQ;)a€3, n(Q), and all the tensors of degree 2 fixed by Go and 
enveloped by M (the elements of L are examples of such tensors), is O-very well 
positioned for Go- The proof of this presents no difficulty, being just an extended 
version of 4.3.11 and 4.3.14. The same remains true in a strongly or weakly context. 

We refer to the above situation as the relative situation defined by the triple 
(G,L,T) (resp. by the pair (G,I/)) if condition 1) (resp. condition 2)) above is 
satisfied. When 2) above is satisfied we get the relative PEL situation generalizing 
4.3.11. We would like to remark that in 4.3.11 the tensor 7r(g) is still present in 
disguise: cf. the connection between ip and OB (see [Ko, ch. 5]). 

4.3.17. REMARK. If in 4.3.4 we have W = W1 0 W2 and ip = ^1 © ^2 (with 
(Wi,ipi) a symplectic space over K), if Hi is a reductive subgroup of GSp(Wi,ipi), 
and if (sa)aG3; is a family of tensors of the tensor algebra of Wi 0 W* which is O-well 
positioned with respect to ^ for Hi, i — 1,2, then the family of tensors (sc0a!€3iU22U{i} 
(of the tensor algebra of W 0 W*] here Si is the projection of W on Wi having W2 as 
its kernel) is O-well positioned with respect to ip for H := Hi x H2. The same thing 
remains true for O-very well positioned families of tensors, or in a context without 
-0, or in a strongly or weakly context, or if H is replaced by a reductive group H, 
obtained from H in the same manner as we got G3 from Gi x G2 in Example 3 of 2.5. 

5. The basic result. We present the standard procedure for proving the exis- 
tence of integral canonical models of Shimura varieties of Hodge type. 

5.1. THEOREM. Let (G,X) define a Shimura variety of Hodge type and letp>2 
be a prime such that G is unramified over Qp. We assume that the pair (G, X) satisfies 
the following condition with respect to the prime p: 

(*) There is an injective map f:(G,X) c-> (G'Sp(W, ip), S) such that there is a 
family of G-invariant tensors (va)aedo Z7Z spaces of the form (W 0 W*)®171 

(with m G N) and of degree not bigger than 2(p — 2), which is Z(pyvery well 
positioned with respect to ip for the group G . 

Then $hp(G,X) exists and has the EEP. 

Proof For the sake of clarity we divide the proof into steps. 

5.1.1. Step 0. Preliminaries. Let /: (G,X) ^ (GSp(W,ip),S) be an injective 
map for which there is a family of G-invariant tensors in spaces of the form (W 0 
W*)®771 and of degree not bigger than 2(p — 2), which is Z(p)-very well positioned 
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with respect to -0 for the group G. We fix such a family (fa)a€3o and a prime v of 
E:=E(G,X) dividing p. 

Let L be a Z-lattice of W such that Lp := L® Z^ envelopes the family (vcx)aedo 
and we have a perfect form tp-.L (g) L -> Z. This implies (cf. def. 4.3.4) that the 
closure Gz{p) of G in GSp(Lp^) is a reductive group scheme over Z^py So the group 
H := {g e G(QP) \ g(L.p <g> Zp) = Lp ® Zp} is a hyperspecial subgroup of G(Qp). 
Due to 3.2.7 it is enough to work with (G,X,H,v). Let Kp := {^ G GSp(W,^)(Qp) I 
g(L® Zp) = L 0 Zp}. It is a hyperspecial subgroup of GSp(PF, ^)(Qp). 

The fact that G is unramified over Qp implies that v is unramified over p [Mi3, 
4.7]. Let F := k(v). Let M be the extension to 0(v) of the integral canonical model 
Shp(GSp(T^, ^), S) of (GSp(W, ^), 5, i^p,p) (cf. 3.2.9). Let Tf be the normalization of 
the closure of Sh^(G,.X) in M. Let VQ := W(F) and let KQ be its field of fractions. 
Let jsj" := Ny0 and DVC := My0. 

We claim that K is formally smooth over VQ. For this it is enough to show that 
the completion of the local ring of K in a point Spec(F) -» JNf is Vb[[-X"i,..., X^]], with 
d := dim X. This is achieved at the end of Step 5 (of 5.5 below). 

5.1.2. Step 1. The moduli setting. We start with an arbitrary point 

y: Spec(F) --> N. 

From the definition of N we deduce (cf. 3.4.2) the existence of a morphism 

mv:Spec{V) -> N 

lifting y, with V the normalization of VQ in a finite field extension K of KQ. 

Using the interpretation of Shp(GSp(W, ip), S) as a moduli scheme (working with 
the lattice L) (see 3.2.9 and 4.1), we get a universal principally polarized abelian 
scheme (A, 7A) over Shp(GSp(VF,ip),S) (of relative dimension equal to half the di- 
mension of W over Q), having (compatibly) level-N symplectic similitude structure 
for any iV E N satisfying (p, AT) = 1. Let (AM, ^M) and (Aw, VJJ) be its pull back to 
M and respectively to N. 

mv gives birth to a principally polarized abelian scheme (A,PA) over V, having 
(compatibly) level-N symplectic similitude structure for any iV G N satisfying (p, N) = 
1. We fix an embedding j: K M- C We still denote by j its restriction to K, V, KQ or 
VQ. The morphism Spec(K) -> Shiy(G,X)x0 = 74K0 induced by my can be lifted to 
a morphism u: Spec(K) ->» Sh(G,X)Ko such that the point x G Sh(G, X)(C) induced 
from u through the inclusion j, is of the form [h, a] with the p-component of a equal 
to one (i.e. a G G(A?) as we have A/ = A? x Qp). This results from the fact that 
G(Qp) = G(Q)#[Mi3,4.9]. 

The subgroup of GSp(W,^) fixing (va)aedo might not be G. Let (va)ae^, with 
3 D do, be an enlarged family of tensors such that G is the subgroup of GSp(W, ip) 
fixing them. If 3 \ do is finite (we can assume this, cf. [De3, 3.1], but it is irrelevant 
for what follows), then the family of tensors (va)ae3 '1S essentially finite. 

We think of Sh(G, X)c as the moduli scheme associated to the injective map /, 
the lattice L and the family of tensors (va)aed (cf- 4-1). Using d), e) and f) of 4.1 for 
the point x, we deduce that: 

a) the isogeny class of .Ac is given by the pair (W, ft); 

b) Ac has a family (^a^ of Hodge cycles, the Betti realization of ta being va] 

c) the linear map Vf(Ac) =W®Af ——> W<g> A/ induces a similitude isomorphism 
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(Hi(Ac, Z) 0 ZIPA) -^ (L 0 Z, VO (p.4 being the polarization of A). 

As a G G(hR) we deduce that ili(.-l-.Z) ® Zp = L ® Zp (this identification is 
unique up to an isomorphism of L®ZP induced by an element of G(Z(p)) := G(Q)r\H) 
and that (under this identification) PA — ^(p)^7 with /?(p) G Gm(Z(p)). Let 

Hlt:=HUAz.Zp)=HUAR,Zp)- 
it is identified with L* (g) Zp. So there is a family of tensors (va)^ in spaces of the 
form (Hlt 0 Hl*)®m 0 Qp such that: 

(5.1.3) Va G 3, ^a is the p-component of the etale component of t^. 

(5.1.4) There is a cycle $: Hlt®Hlt -> Zp(—1), which is a perfect alternating form (it 
comes from the polarization of the Q-Hodge structure on W* = iJ^AcQ) 
induced from the Q-Hodge structure on W defined by h). The cycle ^ differs 
from the perfect alternating form py\Hlt 0 Hlt —> Zp(—1) (induced by the 
principal polarization PA) just by multiplication with a Z^-unit. It is fixed by 
the Galois group Gal(K/K). 

(5.1.5) For any integral ring R which is faithfully flat over Zp, and for every free 
i?-module MR satisfying MR[|] = if|t ®zp R[^\, and enveloping the family of 

tensors (va)aedo w^ respect to -0, the closure of G^m in GSp(M^,'0) is a 

reductive group over Spec(fi). 

(5.1.6) The subgroup of GSp(if|t 0 Qp,$) fixing the family (v^aes 1S exactly GQP. 

(5.1.7) The Galois group Ga\.(K/K) fixes the tensors (va)aG2. 

For 5.1.5-6 we think of G as a subgroup of GL(W*). 5.1.5 results from 4.3.5 and 
4.3.6 1) as the family (va)ae^0 is Z(p)-well positioned with respect to ip for the group 
G. 5.1.3-4 and 5.1.6 are trivial. 

5.1.8. 5.1.7 results from the fact that the family (ta)aed 0^ Hodge cycles of Ac is 
defined over K: from the fact that the abelian variety A over V has level-TV structure 
for any N G N relatively prime to p, we deduce that the /-components of the etale 
components of the Hodge cycles of this family are defined over K (here / is an arbitrary 
prime different from p). 

5.2. Step 2. Crystalline machinery. 

For 5.2.1-10 and 5.2.13-14 we follow closely [Fa3]. The new things are 5.2.1.1 and 
the use of the ring Re. 

5.2.1. Let TT be a uniformizer of V. As V is totally ramified over Vb, there is an 
Eisenstein polynomial /e(T) G Vo[T] of degree e := [K : KQ] such that /e(7r) = 0 is a 
minimal equation for TT over Vb- Denoting R := Vb[[T]], we get V — R/feR. 

Let Se be the subring of ifotp1]] generated by R and divided powers ^, n G N. As 
n 

^Y G f?, Vn G N, and as fe is an Eisenstein polynomial, this is the same as the subring 

of Kotp1]] generated by R and divided powers ^TJ , n G N. Let Re be the p-adic 

completion of Se and let Re be the completion of 5e with respect to the (decreasing) 
filtration given by its ideals In = I^n\ n G NU {0}, where I := (pJe(T)) = {p,Te). 
So Re is the projective limit of artinian rings Se/In, n G N. We recall that I^ is the 

ideal generated by elements of the form ^j ... —V, with m, oi,..., am non-negative 
integers such that ai + h am > n, and with ^i,..., /3m G I. 
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We get that the Vo-algebra Re (resp. Re) is contained in T^ofp1]] and consists of 
power series En>oanTn such that the sequence of numbers bn = an[j]!, n G Nfl {0}, 
is integral, i.e. bn € Vo, Vn E NU {0}, (resp. it is integral and convergent to zero). 
Here we used p > 2. 

Let $ be the Frobenius of Se, Re or Re extending the Frobenius automorphism of 
VQ and such that $(T) = Tp. A decreasing filtration is defined on Re and Re by the 
rule: For m G NU {0}, Fm(Re) is the ideal of Re obtained as the p-adic completion of 
the ideal of Se generated by divided powers -^ with n > m, while Fm(Re) = ImRe. 

We have ring epimorphisms Se -» Vb, Re -» VQ, Re -» Vb defined by the rule 
T,n>oanT

n —> ao- We have also a ring epimorphism Re -» V, sending T to TT. 

5.2.1.1. REMARK. Se/pSe is a local ring with the property that any element of 
its maximal ideal is nilpotent. Its residue field is F. So any reductive group over Se is 
a split group, and so any reductive group over Re is also a split group. 

5.2.2. Keeping the notations of 5.1, let (M, $M5 V) be the Frobenius crystal over 
Re defined by taking the dual of the Lie algebra of the universal vector extension of 
the abelian variety A (or of the p-divisible group associated to ^4) (see [Fa3]). 

M is a free i?e-module of dimension dimJRe(M) = dimQ(W^) endowed with an 
ite-submodule F1(M). V is an integrable connection (nilpotent mod p) on M. $M 

is a V-parallel ^-linear endomorphism of M.   The restriction of $M to F1(M) is 

divisible by p and we hcive an isomorphism fM+ ^F1(M)) ®Re <$>Re -^ M.   We 

have M/F1(Re)M = H}R(A/V). The submodule F1(M) of M is the inverse image 
of the Hodge filtration of H^R(A/V) defined by A, under the surjective map M -» 
MIF1{Re)M = Hl

dR{A/V). So F1{Re)M C F1{M). 
Using F1 (M) the tensor algebra of M©M* gets a natural filtration. In particular 

we speak about Fn(M®2n), with n G N. 

5.2.2.1. Let (Mo, 990) := (^53>M) ®.Re VQ. It is the contravariant Dieudonne- 
module of A®. There is an isomorphism 

(M ,$M)^ (MO, ipo)®Re 

of Frobenius isocrystals [Fa3, ch. 6]. 

5.2.3. Let V be the integral closure of V in K and let VA be its p-adic completion. 
Let So be the ring consisting of sequences (^n)n€Nu{o}5 with xn G V/pV and xn-i = 
x^ Vn G N. Gal(K/K) acts naturally on SQ. 

The Gal(K/K)-modu\e Qp(l) can be identified with sequences (^n)n<ENu{o} of p- 
power roots of unity (these are elements of V) such that //n-i = //^, Vn G N. Taking 
such sequences modulo p, we get a group homomorphism 7: Qp (1) -)• Gm (5o) respect- 
ing the Galois actions. For an element z G V, we choose a sequence (^(n))n€NU{o} of 
elements of V such that 2:(0) = z and 2;(n — 1) = z(n)p, Vn G N. Taking this sequence 
modulo p we obtain an element z G SQ, well defined by z up to multiplication with an 
element of 7(Zp(l)). 

Let W(So) be the ring of Witt vectors of 5o. Let 0:W(So) -» VA be the ring 
epimorphism defined by 0((xo,xi,...)) = E)n>oPn^n,n, where (^n,m)m€Nu{o} is the 
sequence (of elements of V/pV) used for defining xn G SQ. Let ^ := /((TT, 0,0,...)). 
It is a generator of the kernel 1$ of d. 
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Let B+(V) be the Fontaine's ring defined as the p-adic completion of the di- 
vided power hull of the ideal IQ of W(So). B+(V) is a VF(5o)-algebra and so a 
Vb-algebra, as W(So) is a Vo-algebra. It has a (decreasing) filtration Fn(B+(V)) by 

divided powers: Fn(B+(V)) is the p-adic completion of Pj1 , n G N U {0}. We have 
B+(V)/F1(B+(V)) = VA. The Frobenius of W{SQ) extends to a Frobenius_$ of 
B+(V) (it makes sense to still denote it by $, cf. 5.2.4). The Galois group Gal(K/K) 
acts in an obvious manner on B+(V), respecting its filtration. 

There is a well defined homomorphism 

I3:ZP{1)->F\B+(V)), 

obtained by taking log of the homomorphism obtained by composing the Teichmuller 
map Qp(l) -^ ^(1^(50)) (obtained from 7) with the canonical homomorphism 
Gm{W(So)) -> <Gm(B+(V)). We have $ o ,3 = p.d. We also denote by p the im- 
age of a fixed generator of Zp(l) through this log map /?. 

5.2.3.1. Let B%R(V) be the completion of B+(V)®<Qp in the filtration topology. 
We have B+R(V)/F1 (B+tiV)) = K* := V*[%. Let BdR(V) := BJR(V)[$. It 

has a decreasing filtration (Fl(B(iji(y))i^z obtained from the filtration of B^R(V) by 
declaring i G F~1(BdR(V)). As K is separable over KQ and so formally smooth over 

it, we can lift the inclusion K M> KA — B^R(V)/Fl (B^R(V)) to a Ko-monomorphism 

5.2.4. There is an injective homomorphism of filtered rings 

iv:Re^ B+(V) 

defined by: T -> TT. It respects Frobenius.We have Fn(B+(V))nRe = Fn(Re), Vn G 
N U {0}, and an isomorphism of graded yA-algebras grp^Re) 0y VA —> grF(B+(V)) 
[Fa3, ch. 4], induced by zy. As M is a crystal over iJe, the tensor product M ®Re 

B~*~(V) acquires a canonical Gal^/i^-action. 

5.2.5. Let us return to the situation of 5.1. The integral version of Fontaine's 
comparison theorem [Fa3, th. 7] provides us with an injective linear map of filtered 
£+(y)-modules 

p: M ®Re B+(V) -» Hlt ®Zp B
+(V). 

The filtration on M 0^ B+(V) is the tensor product one, while the filtration on 
Hlt ®zpB

+(V) is the one induced by the filtration of B+(V). We list the properties 
of p we need. 

(5.2.6) p respects Frobenius and the Galois actions. 

(5.2.7) Inverting p, we obtain an isomorphism denoted by pi. 

(5.2.8) A tensor va G (ff|t 0 iJ^*)®^) 0 Qp, a G do (resp. a G 3 \ do) corresponds 
through pi to an element wa G F0((M 0 M*)r(a)) (resp.   to an element 
wa G F0((M(g)M*)®r^)[i])), with r(a) := |deg(^). 

(5.2.9) We have ^ui^a) = ^a and Vtt;a = 0, Va G 3- 

(5.2.10) Under the identification M/F1(Re)M[k] = H}R(AK/K), the tensor wa is 
mapped into the de Rham component of the Hodge cycle £a, Va G 3- 

(5.2.11) The bilinear maps py, ip: iif|t0£rj-t -> Zp(—1) are inducing bilinear maps M® 
M —^ ^(1) = ^JRe which become perfect alternating forms PM, ipM'-M (g) 
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(5.2.12) The subscheme (?#<=> of GrSp(M, ^M) obtained by taking the closure of the 
subgroup GRji} of GSP{M\^^M) fixing wa,Vae 3, is a reductive group 

scheme over Spec(i^e), isomorphic to GRe. 

5.2.6-7 are part of Fontaine's comparison theory. The existence of pM: ^M (of 
5.2.11) results from 5.2.13 below or from the functorial character of Fontaine's com- 
parison theory (for the category of p-divisible groups over V). The fact that pM, ^M 

are perfect can be seen looking at their restriction modulo Fl(Re). 
The bilinear map ^ induces an isomorphism (i?Jt)* -3- Hlt(l) (of Galois modules) 

and ipM induces an isomorphism M -^ M*(l) (of filtered Frobenius crystals). So we get 
isomorphisms (Hlt®Hl*)®m ^ Hl®2m(m) and (M(g)M*)®m -3 M®2m(-m), Vm G N. 

Using these isomorphisms, 5.2.9 and the part of 5.2.8 involving the family of 
tensors (va)aed\do^ resillt from the Fontaine's theory. If n G N, then: 

5.2.13. The   Qp-vector   spaces   spanned   by   a   Galois-invariant   class w^t e 

^■Itip]    n(n)  (a^so called an etale Tate-cycle) are in one to one correspondence, 

through the map pi, with the Q^-vector spaces spanned by a class w G Fn (M02n[-] J 

which is V-parallel and fixed by ^^ := ^M/P
71

- The correspondence is achieved 
through the formula pi(w <g> 1) = w^t 0 Pn'• 

5.2.13 has been stated in terms of Qp-vector spaces as there is no natural choice for (3 
(cf. 5.2.3); we could have also stated it in terms of free Z^-modules of rank one. The 
part of 5.2.8 concernining the family of tensors (^cOaeao' results from the fact that 
(va)aedo are integral (i.e. they are tensors of the tensor algebra of iJ|t 0 H^) with 
deg(?;a) < 2(p - 2), Va G 3, and from the following key supplement of 5.2.13 [Fa3, 
cor. 9]: 

5.2.14. If n < p — 2, then in the correspondence of 5.2.13, w^t is integral (i.e an 
element of ffjf 2n(n)) if and only if w is integral (i.e. iff w G Fn(M®2n)). 

5.2.15. We now prove 5.2.10. This property results from the following observa- 
tions. 

1) Tensoring the isomorphism pi with BdR(V) (using the canonical two inclusions 
B+CV) ^-> BjR(V) c->- BdR(V)), we get an isomorphism, which can be written in the 
form 

p2: Hl^A/V) ®v BdR(V) ^ Hi ®Zp BdR{V) 

(the inclusion V —>• Bdniy) is induced by the inclusion K c-^ B^iV) of 5.2.3.1; we 
have used the canonical identification M ®Re V — HjR(A/V) and 5.2.2.1). 

2) The isomorphism p2 is nothing else but the isomorphism which comes up in 
the de Rham conjecture, proved in [Fal] (with slight correction in the unpublished 
[Fa2]) (i.e. the comparison map for the p-divisible group of an abelian variety over V 
is the same as the comparison map for the abelian variety itself- cf. [Fa3, introd. to 
ch. 6]). 

3) The Hodge cycles (ta)ae3 are de Rham cycles. This means that p2 takes the 
de Rham component tadR of ta into the p-component of the etale component va of 

1) is obvious. For proving  2) it is enough to show that the isomorphism 

p3: Mo 0yo B(V) ^ Hi 0zp B{V) 
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(with B(V) := B+(V) [^]) obtained from pi through the isomorphism M^] ^ MQ 0 

Re\^\ of 5.2.2.1), is exactly the isomorphism 

p4:M0®VoB(V)^Hlt®XpB(V) 

of the crystalline cohomology, defined for the abelian variety A over V (see [Fal, 5.6]). 

To see this it is enough to show that the isomorphism p^o p~l of Hlt 0 B(y)\ 

i) preserves the F0-filtrations. 

ii) and becomes identity on i^ S F{i{B(V))IF1(B(V)). 

This is so due to the fact that there is no element of End(iJJt.) 0 Fl{B(y)) fixed by 
Frobenius. 

Due to the way in which Hlt can be recovered from H^R(AK/K) through the 
comparison map, we get that p^1 takes Hlt into F0(B(V)). This implies i). 

For ii) it is enough to check that the Hodge-Tate structures defined on iJ|t 0 
F0(B(y))/F1(B(V)) by the two isomorphisms ps and p^ are the same. This is done 
(by direct computation) in [Fa5, the proof of th. 4] for abelian varieties over Spec(y[a;]) 
(with x an independent variable), and so, due to functoriality (under the morphism 
Spec(Vr[x]) —»■ Spec(Vr)), for abelian varieties over V. 

The proof of 3) is almost contained in [Bl]. The extra ingredient is an improve- 
ment in Principle B of [Bl, 3.1], as our abelian variety might not be defined over Q, a 
condition required in [Bl, 3.1] (of course as X is defined over 0(v), we can select the 
lift my: Spec(Vr) —> X0 of y in such a way that the abelian variety A is defined over 
Q). This improvement in Principle B is achieved by the trick of Lieberman. 

We can think of the de Rham component wa of ta as a tensor of HlR(A/V)®2r^, 

and so as a tensor of H2
dR' {Ar^ /V), where Ar^ is the product of A over V taking 

r(a) times (for instance A2 = A Xy A). If r(a) = 1, there is nothing to be proved 
(p2 respects algebraic cycles of degree 2). For r(a) > 2 we get 3) above for ta as a 
consequence of the following general principle. 

5.2.16. Principle B. Let & be the field of fractions of a complete DVR of mixed 
characteristic having a perfect residue field of characteristic p. Let Y be a geometrically 
connected smooth variety over L, and let II: B —)• Y be an abelian scheme over Y. Let 
n>2. Then if a pair v — [v^^Vdn), with v^t G H0{Y7R

1Ii4i(Qp)®2n(n)) and with 
VdR € H0(Y^R1

dR{B/Y)®2n), is a de Rham cycle in a point z\ G Y(£J), then it is a de 
Rham cycle in any other point Z2 G Y(£J). 

Proof. Let Bn be the n-times product of B over Y. All the spectral sequences 
connecting the cohomology of Bn with the cohomology of Y degenerate (this is called 
the trick of Lieberman). This results from the fact that Bn has many endomorphisms 
over Y -which have to respect the spectral sequences- defined by multiplying with 
integers the different factors B of Bn. For every pair (r,q) of positive integers we 
obtain commutative diagrams (which are part of these spectral sequences) 

Er,q   ^^   E^2*-1, 

where a and b are multiplications with some integers ni and 712. For a suitable choice 
of multiplications on the factors B of Bn, we can achieve ni / 712- 
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This implies that the £-linear map 

Hll{BnIL) -+ H0(Y, RiR(B/Y)®>n) 

is surjective. The rest of the proof is exactly as in [Bl, 3.1]. 

5.2.17. We are left with the proof of 5.2.12. We first remark that once we know 
that GRe is a reductive group scheme over Spec(i?e), the fact that it is isomorphic to 
GRC (Re is a Z (p)-algebra) is a direct consequence of the fact that GRe and GR€ are 
both split reductive groups (cf. 5.2.1.1) and of 5.2.7-8 (which guarantees that they 
are isomorphic over Spec(JB

+(y)[|]) (cf. the uniqueness of a split reductive group 
associated to a given root datum; see [SGA3, vol. 3, p. 305]). 

5.2.17.1. To prove that GRC is indeed a reductive group over Re we can move 
over the faithfully flat ite-algebra Re1 := Re 0yo V. Re1 is an integral ring: it is a 
subring of if [[£]]. It is also a F-algebra. We have an isomorphism 

po-.M^ReRe1 
^H^AK/^^KIU

1 
1 

LPJ 

taking wa into tadR, Va E.#, and taking PM into the perfect form PA:H^R(A/V) 0 
H^R(A/V) -» V. It is defined starting from the isomorphism M[^] ^> MQ <g)y0 Re[-] 

of 5.2.2.1, and from the isomorphism M/F1(Re)M -> H%R(A/V). 
The fact that po takes wa into tadRi Va € 35 results from 5.2.15 3), as the 

extension of PQ
1
 to BdR(V) (we have a natural inclusion Re1 <->• i^/^V), cf. 5.2.3) 

when composed with the extension of pi to BdR(V) is nothing else but the isomorphism 
P2 of 5.2.15 (cf. the way po and p2 are defined). Obviously po takes pu into PA (cf. 
the def. of PM and the functoriality of 5.2.2.1). 

5.2.17.2. We have an isomorphism 

taking va into tadR, Va G 3, and taking ip into PA'- H^^AK/K) 0 H^R(AK/K) -)> K. 
To see this, we first remark that such an isomorphism exists over the field LdR(u) 

obtained from the field of fractions of BdRiV) by adjoining a square root of /?. This 
results from 5.2.13 1) and 2): p2 takes PA into /JT/S (cf. 5.2.11), and so over LdR(u), 
by changing the extension of p2 (to LdR(u)) by a scalar factor u, we get rid of the 
scalar /?. Now everything results from the well known fact: H\AK,GK) — 0, as V is 
a complete DVR with an algebraically closed residue field. Here the right lower index 
// refers to the faithfully flat topology. 

5.2.17.3. From 5.2.17.1-2 we get an isomorphism 

ps'.Hl^Re1 
-3» M ®Re Re1 1 

taking va into wa, Va G 8, and taking ip into pu- From 5.1.5 we deduce (cf.  5.2.8) 
that the closure of the subgroup of GSp(M <S>Re ite1 W,J5M) fixing wa, Va G 3, in 

GSp(M®Re1,pM) is a reductive group scheme over Spec(i?e1). So GRe is a reductive 
group scheme over Spec(i?e). This ends the proof of 5.2.12. 

5.2.18. REMARK. It is an easy exercise to see that under the identifications 

H}R(AK/K) = M (g)Re K -3 MQ <g>vb Re 0 K = MQ 0 K 
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(as defined by inverting p in the isomorphisms of 5.2.2 and 5.2.2.1), Va G 3, tadfi is 
an element of the tensor algebra of (Mo © MQ)[-], and so we could have avoided the 

replacement of Re by Re1 in 5.2.17.1-3. 

5.2.19. REMARK. In applications of 5.1 to the proof of the main results of 6.4, 
we use only families of G-invariant tensors {va)aedo i*1 spaces of the form (W <g)W*)®m 

(with m E N) and of degree not bigger than 2(p—2), which are Z(p)-very well positioned 
for the group G (i.e. we do not work in the relative situation with respect to ip). 
Moreover we can choose the family (va)ae3 suc^1 that G is the subgroup of GL(W) 
fixing it. This simplifies the things, in the sense that we do not have to keep track of 
all bilinear forms (ip, PA, VM, etc.) we came across. 

5.3. Step 3. The existence of a good morphism Spec(Vro) —> N lifting y. 

5.3.1. Let M := M ®Re Re be the Frobenius crystal over Re obtained by extension 
of scalars. It is the dual of the Lie algebra of the universal vector extension of the 
p-divisible group over V(p) := V/pV associated to the abelian scheme Ai :— Ay^y 

At the level of filtrations we have F1(M) ®Re Re C F^M): F^M) is the pullback 
of the Hodge filtration of H^R(Ai/V(p)) defined by Ai, through the surjective map 

M^M®ne V{p) = M ®Re V(p) = Hl^lVfr)). 
Let GRe and Gy be the reductive groups obtained from GRe through the canon- 

ical ring homomorphism Re c-> Re -» V. Let My :— M 0^e V = M 0^e V = 
H\R(A/V) and let ^(Mv) be its Hodge filtration defined by A. It has the prop- 
erty that Fl{My)^iy-(C is the F1,0 summand of the Hodge direct sum decomposition 
HdR^Alv) ®v jC = F1'0 © F0'1 (here j is the inclusion of 5.1.2). Let /ic:Gm -> 
GL(My 0j C) be the cocharacter such that 7 E Gm(C) acts as identity on F0,1 and 
as multiplication with 7""1 on F1,0. //c factors through Gy Xy jC. Let pi: Gm —>■ Gy 
be a cocharacter which over C becomes conjugate to /zc- Let My = Fy 0 Fy be the 
direct sum decomposition obtained from //1:7V G Gm (V) acts as multiplication with 
7y1 on Fy and as identity on Fy. 

Let P1 be the parabolic subgroup of Gy which leaves invariant F1(My) and 
let P2 be the parabolic subgroup of Gy which leaves invariant Fy. As Hi and /ic 
are conjugate over C, we deduce that P^ and P^ become conjugate over C and so 
they are conjugate over K. As P^ and P^ are defined over K, we deduce from 
[Bo, 20.9] that they are conjugate over K, i.e. there is an element g G Gy(K) such 
that gPxg~1 — Pj^ From the Iwasawa decomposition [Ti, 3.3.2] we deduce that 
Gy(K) = Gy(V)P2(K). This implies the existence of an element #0 G Gy(V) such 
that goP2gQ1 = P1. We get a direct sum decomposition My = F1 © F0, with 
F1 — doiF1)) associated to the cocharacter JJ, := go^ig^'-Gim —> Gy. The parabolic 
subgroup of Gy which leaves invariant F1 is P1. This implies F1(My) — Fl. To see 
this we can move to C There is an element gi G Gy(C) such that ^i(F1(My) <g)C) = 
F1 0 C and so giP^1 = P£. We deduce that g1 G P^C) (cf. [Bo, 11.16]) and so 
F1(My)®C = F1®C. 

5.3.2. LEMMA. The cocharacter fiiGm —>- Gy can be lifted to a cocharacter 
ft: Gm —> GRe. 

Proof. Let bo be the ideal of Re generated by the divided powers of fe. Let 
bn := bo + InRe, n G N. Let Sn := Spec(Pe//nPe) and Tn := Spec(Pe/bn). Tn is a 
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closed subscheme of Sn and of Tn+i, while Sn is a closed subscheme of 5n+i, n G N. 
WehaveTn+1nSn = Tn. 

We first remark that 

and 

Re = proj.lim. Re/InRe 

V = proj.lim. Re/bn 

(as p > 2 and as Re/InRe is p-adically complete); the projective systems are indexed 
by n G N. Second we show: if )Un: Gm -» Gsn (with n G N) is a cocharacter such that 
Mnl^n = A*|^n) then there is a cocharacter //n+i-^m —>• G5n+1 such that ^n+i|Tn+i = 
/ji\Tn+i and fJLn+i\Sn = fin (here if IQ'.YQ M- F is a closed embedding and if z/ is a 
morphism between two F-schemes, we denote by v\Y := IQIS). 

To prove this, let p,n+i:Gm ->• G5n+1 be any (group homomorphism) lift of [j,n (cf. 
[SGA3, vol. 2, p. 48]). Now /in+il^n+i and /i|Tn+i are two lifts of ^|Tn. From loc. 
cit. we deduce the existence of an element hn G ker(G^e(Tn_|_i) ->► G^e(Tn)) such that 

/2,n(/in+i|Tn+i)/i~1 = /i|Tn_j_i. From the smoothness of G^e we deduce the existence 
of an element ho G ker((?^e(5n4-i) —Y G^e(Sn)) such that under the homomorphism 

Gjie(Sn+i) -> G^e(rn+1) it goes to hn. Then ^n+i = hofin+ih^1 satisfies the required 
conditions. 

We start with a cocharacter /ii:Gm -»■ Gs! lifting /x|Ti. We build up inductively 
Mn' ^m —>" G5n as above. Conclusion: we can choose // in such a way that //[Sn = ^n, 
n G N. Obviously /i|F = /i. This ends the proof of the lemma. 

5.3.3. Let now jl:Gm -> G^e be a cocharacter lifting fi. It achieves a direct sum 

decomposition M = F1 0 F0 with the property that F1 (8)^e V = F^My). 

As Spec(i^e) is a projective limit of nilpotent thickenings of V(p), from the de- 
formation theory of principally polarized abelian schemes (cf. [Me]; see also [FC, p. 

14]) we deduce the existence of a principally polarized abelian scheme (A^p^) over 

Re associated to the filtered crystal (M/F1,®]^, V) (we still denote by $M and V 

the Frobenius and the connection on M induced from those on M by extension of 
scalars: the ring homomorphism Re -¥ Re respects the Frobenius) and the symplectic 

form p^ on M (obtained from pM by extension of scalars; it guarantees that we get 

things over Spec(Re) and not only over Spf(Re)), such that under the epimorphism 

Re -» V, it becomes (A,PA) (this results from the fact that F1(Mv) = F1 {g)^e V and 
that pv is obtained from p^ by tensorization). 

5.3.3.1. LEMMA. The morphism m:Spec(Re) -* M associated to (A^p^) and 
its level-N symplectic similitude structures (lifting those of Ai), factors through the 

closure of NKQ in 3VL 

Proof. We can move from Re to i^c := QPI] under the composition 

g: Re ^ Re ®vb V ^ Re ®vb V4 C[[T]]. 

(the first inclusion being the natural one). go is the affine transformation taking T into 
pie~1T-\-7r, with TT the uniformizer of V used in 5.2.1. This is well defined as the series 

YJ™=O iJr *s convergent in V (as p > 2). fa is the inclusion defined by the inclusion 

j: V M- C (of 5.1.2) and by the fact that it takes T into -(7rfe-i. Under the canonical 

surjective map ^^e/y  -» ^Re/y ' w^h ^Re/v ^^ ^ree m0(iule over ^e generated by 
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dT, the Gauss-Manin connection of M (defined by A), becomes the extension to M of 
the connection V of M (of 5.2.2). This implies that -^ annihilates wa, Va £ 3- The 
principally polarized abelian variety over C, obtained from the principally polarized 
abelian variety over Specie) induced from (A,p^) through #, by taking (in Re) 

T = 0, is the extension of (A,PA) to C induced by j. We have sin^-^T+n) ~ T*"
1-6

 
an(i 

Yrp = —£±T' Now everything results from 4.1.5. This ends the proof of the lemma. ST 
57re-1T 

5.3.4._Let Ren be the normalization of Re in its field of fractions.JThe natural 
surjection Re -» VQ factors through Ren (due to the graded structure of Ren inherited 

as a subring of ^[[T]], cf. 5.2.1) producing a natural surjection Ren -» VQ- From 
5.3.3.1 and the definition of X we get a morphism 

So we get a morphism 

Specie71) -> N. 

mo:Spec(Vb) -^ 3vf 

lifting y. It gives birth to: 

(5.3.5) a principally polarized abelian scheme (.4o,po) over Spec(Vo) (it is obtained 
from (AN, 3V) by pull back) having (compatibly) level-AT symplectic similutide struc- 
ture for any N G N satisfying (N,p) = 1 (defined by a similitude isomorphism 

fcjv: (L^Z/iVZ,^)-^ (i4[Ar],po) of principally quasi-polarized finite flat group schemes 
over Vo); 

(5.3.6) a family (^)aea 0^ Hodge cycles of AQKQ (we recall that KQ = Vb [^)• 

We have: 

(5.3.7) The quadruple [AQCPOC, (ta)ae3^] is a class of A(G,X,W,'tp) (see 4.1) (here 
fc is induced as in 4.1.1 from the the isomorphisms fc/v, N G N, while the embedding 
Vb M- C is the inclusion j of 5.1.2). 

(5.3.8) Under the identifications 

H^iAo/Vo) = Mo = H^ys(AoF/Vo) = M®Vo 

the de Rham component ua of £° is obtained from wa through the epimorphism 

Re -» Vb, Va e 3, and is a tensor of (MQ 0 Mo*)0r^) g] if a € 3 \ Jo and a tensor of 

(MoOM*)^^) ifa<E3o. 

(5.3.9) If (fo is the Frobenius endomorphism of MQ, we have (po(ua) = Ua, Va G 3- 

(5.3.10) The polarization po induces a perfect alternating form ^o- MQ ® MQ -> Vo(l) 

(i.e. il)o(ipo(t),ipo(z)) =^(^0(^2;))? cr being the Frobenius automorphism of VQ). 

(5.3.11) There is a direct sum decomposition MQ = F1 ©F0, with Fl as the Hodge fil- 

tration of MQ = ff^CAo/Vb) defined by AQ, such that ua G F0 ((MQ ® M0*)®r(a) g]), 

VaG3. 

(5.3.12) The subgroup of GSp(Mo,'0o) obtained by taking the closure of GKQ (the 
subgroup of G5p(MoWj^o) fixing ua, Va £ 3) is the reductive group scheme Gvb, 

and the decomposition MQ = F1 0 F0 is associated to a cocharacter /io-^m -> GVQ, 

with /?o G (Gm(yo) acting through JIQ as multiplication with /SQ
1
 on F2, i = 0,1. 

All these things result from the analogue properties (see 5.2.8-12) of the family of 
tensors (wa)a^ (situated in spaces of the form (M 0 M*)®m[-]) (5.3.9 results from 

5.2.9 and the isomorphism of Frobenius crystals M[|] = MQ 0 Re[-] of 5.2.2.1). 
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5.4. Step 4. Local deformation. 

5.4.1. Let R := Vo[[zi,..., ze]] be a ring of formal power series with coefficients in 
VQ, and let $£ denote the Frobenius-lift on R, which extends the Frobenius a of VQ and 
sends Zi ->- zf. Let A be an abelian scheme over Spec(^). Let M(A) := H^R(A/R). 
It is a free -R-module of rank twice the relative dimension d(A) of A. Let F1(M(A)) 
be its Hodge filtration. We have: 

(a) F1(M(A)) is a direct summand in M(A); its rank as a free .R-module is d{A). 

(b) There is a $^-linear endomorphism $A
:
M(A) —> M(A) whose restriction to 

F1(M(A)) is divisible by p and such that it induces a V(.A)-parallel isomorphism 

$A: (M(A) + -F^MiA))) 0R^^R^M(A). 

Here the connection V(A) on M(A) is induced from the Gauss-Manin connection 
V^ (of A) on M(A)1 through the canonical surjective map QR/VQ -» ^R/Vo > w^^ ^R/VQ 

the free .R-module having as a basis dzi, ...,dze. The connection on the left-hand side 
is induced from V(A). We refer to the quadruple 

(M{A),Fl{M(A)),$A,V(A)) 

as the p-divisible object of Fontaine's category MJF[O,I](#) (this category is defined in 
the same manner as for smooth Vo-algebras; see [Fal]) defined by A. 

The above facts are just a variant of Grothendieck-Messing's theory, cf. [Me]. 

5.4.2. Let now Spec(jRo) be the completion of Sp(Mo,'0o) in the origin. We 
have an isomorphism RQ -^ Vo[[zi,..., Zg]], with e := 2(,2 + I for I := | dimQ(W^). Let 
Spec(i^o) be the completion of the derived subgroup GpJ of GVQ in the origin. We 
have Ro^Vo[[zu...,zei]l with ei := dim Gder. The inclusion GpJ -> Sp(Mo,^o) 
produces a surjection VQ: RQ -» i^o- We choose identifications RQ — Vo[[zi,..., Zg]] 
and i^o = Vb[[zi,..., zei]] such that the epimorphism ro of Vb-^lgebras is defined by: 
Zi —» Zi if i < ei, and Zi —> 0 if i > ei. Let now $^o and $H0 be the Frobenius lifts of 
^o and respectively Ro such that they take Zi -> zf and are compatible with a. 

5.4.3. Let 0^ be the local ring of y in M, let Oy be its completion and let 

(Ay^pAy) be the principally polarized abelian scheme over Spec(Oy) obtained from 

(AM^M) through the composite morphism Spec(02/) -> M -> M. We fix an iso- 

morphism 0^ -^ Vb[[zi, • • •, ^2]]5 with ^2 := dim Sh(GSp(PF, ip),S), such that the epi- 
morphism Oy -» Vb, associated to the morphism Spec(Vb) -> 3Vt induced from mo, is 

identity on VQ and sends Zi to zero. Let ^^ be the Frobenius-lift on 0^, such that it 
extends the Frobenius of VQ and sends Zi to zf. Let (My, Fy, $, V^) be the p-di visible 

object of MJ[o,i](02/) defined by Ay. The principal polarization p^^ induces a perfect 

alternating form i/jy-. My (8» M^ —>• 0^. 

5.4.4. We consider now the triple (M^0,F^,$o) defined by M^o := MQ 0vb 
Ro, Ffi := F1 ®Vo Ro and $0 := 9Sp(^Po 01)? with ^5^ the universal element of 

Sp(Mo,/0o)(^o) defined by the natural morphism Spec^o) —^ Sp(Mo,ipo)- 
From [Fa3, th. 10] we deduce easily the existence of an abelian scheme ARO over 

Spec^o), with AQ = ARO X^O VQ (the surjection RQ -^ Vb is the identity on VQ and 
sends all Zi to 0), and such that the p-divisible object of MJ[o)i](JRo) defined by AR0 
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is exactly (M^0,F^ ,$o5Vo) (the connection Vo on M^0 is uniquely determined by 
the considered triple, cf. loc. cit.). 

There is a unique principal polarization p^0 on A^Q (that is why we get an abelian 
scheme over Spec(JRo) and not only over Spf(Ro)) corresponding to ^o and lifting the 
principal polarization po of AQ (cf. the theory of deformation of principally polarized 
abelian schemes). The principally polarized abelian scheme (A^o1pj^Q) endowed with 
the level-AT" (symplectic similitude) structures lifting those of AQ, is obtained from 
(AyiPAy) (and its level-iV symplectic similitude structures obtained from those of 
(IAM, I'M) by pull back) through a morphism corresponding to a ring homomorphism 
OLy'.Oy ->• ^o (here N G N, (iV,p) = 1). Warning: ay might not respect the two 
Frobenius §y and $^0. 

5.4.4.1. If (AR0,PRO) is the principally polarized abelian scheme over Spec(i^o) 
obtained from (A2/,p^y) through ro o ay, then the p-divisible object of M^cijC-Ro) 
defined by ARQ (together with pR ) can be identified with (M#0, FRQ , $i, Vi) (together 
with i/>o)5 where MRQ := MQ <g>v0 RQ, F^ := F1 ®Vo RQ, #I := gGd,r{ip0 0 1), with 
^der the universal element of G^v{Ro) (this results from the fact that ro respects the 
Frobenius actions), and with Vi the unique integrable connection on M^0 such that 
$i is Vi-parallel ([Fa3, th. 10]). 

From the uniqueness of such a connection Vi, we deduce (cf. [Fa3, rm. ii) after 
th. 10]) that it respects the G^r-action. This means that Vi is of the form d + 7#0, 

with 7^ 6 Lie(Gy^r) (8) SIRQ/VQ' Here £IRQ/VQ is the free module over i?o having as a 
basis dzi,...,dzei. As G^ C Gv"0, we deduce that Vi^a = 0, Va G 3. As the Gauss- 
Manin connection on MRQ associated to ARQ becomes under the canonical surjection 
QRQ/VO "» QRO/VQ the connection Vi, we deduce that j^ annihilates ua^ Ma G 3 
(i = l,ei). We have {AR^.PR^ ®R0 VO = (AQ.PO) (as ay takes the ideal (zi,.. .,ze2) 
into the ideal (zi,..., Ze)). 

5.4.5. The morphism Spec(i?o) -^> M associated to (AR0,PR ) and its level-N 
symplectic similitude structures, N £ N such that (N,p) = 1, induced from those of 
(Ao,po) (RQ is a strictly Henselian ring) factors through the closure of Sh#(G, X)KO in 
M (moving from Vo[[zi,. • •, zei]] to C[[zi,..., zei\], this results from 5.4.4.1 and 4.1.5), 
and so it factors through N (RQ being a normal ring). We denote this factorization 
byquSpeciRo)^^. 

5.4.6. The Lie algebra g := Lie(Gvb) is ^e Lie subalgebra of gsp := 
Lie(GSp(MoJip)) centralizing ua, Va E 3- So g (8) KQ is left invariant by ipo. Let 
F0(g) :={x eg | ^(F1) C F1} and F^g) := {x G g | ^(F1) = 0}. Similarly we define 
for i = 0,1, F2(gsp). F^g) is the intersection of g with Fz(gsp), i = 0,1. This implies 
that Fz(g) are direct summands in g. We deduce easily that the quadruple 

(9,lp,F0(Q),F1(9)) 

is a p-divisible object of MJ^I^VQ), i.e. 

^F1(Q)+F0(g)+pg) = Q 

(this Frobenius transform is included in g and is a direct summand of gsp, cf. the 
existence of //Q in 5.3.12; so it is g). We call it the (Shimura) filtered Lie a- crystal 
attached to the Vb-lift mo of y. Forgeting the filtration we get the (Shimura) Lie 
a-crystal (g,^) attached to the point y. 
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Similarly we get that $o := Lie(GfJ?) gets a filtration, and go [^ gets a Frobenius 
automorphism (still denoted by y?), resulting in a p-divisible object of MJF[_1?1](VO)- 

So we similarly speak about the (Shimura) adjoint Lie cr-crystal attached to y, etc. 

5.4.7. From 5.4.5-6, we deduce the existence of a commutative diagram of VQ- 

schemes 
Ti r t0   , To 

Spec(Eo)    c y    Spec(i?o) 

N —► M 

and a morphism rrn: Spec(Vo) -> Ti such that: 

a) TQ = Spec(Vo[[z1,...,Ze2]]) = Spec(02/) and Ti = Spe^Vb^i,...,^]]) (we 
recall that d = dim X = dim Sh(G, X)); 

b) #1 is the morphism associated to a^: 0^ ->> Eo; 

c) to, *o and ii are closed immersions; 

d) the tangent space of To (in to 0 mi) is a direct supplement of F0(sp(Mojipo)) 
insp(Mo,^o); 

e) the tangent space of Ti (in mi) is a direct supplement of F0(g) in g; 

f) qi o ii o mi = mo- 

We have d = dimyo(0/Fo(g)) and es = dimyo(0p(Mo,^o)/i7lO(5p(Mo^o))) (to justify 
these formulas it is enough to remark that these dimensions are computing the di- 
mension of the (compact) dual Hermitian symmetric space of a connected component 
of X and respectively of 5; this can be seen moving over C and using 5.3.1). Here 
we identify the tangent space of Spec(i?o) (resp. of Spec(-Ro)) (in the Fo-valued point 
obtained by taking all zi — 0) with the Lie algebra of Gpo

r (resp. of Sp(Mo,ipo))> 

5.4.8. LEMMA. The ring homomorphism Oy -A 0^ associated to qi o io is an 
isomorphism. 

Proof. It is enough to show that the tangent map of qy is an isomorphism.  If 

this is not true, we deduce the existence of an epimorphism 0y » C := ¥[e]/(£2) 
such that the composition be := ac 0 Qy factors through F, i.e. be = i o pr, where 

pr:0y -w- F is the homomorphism of Vb-algebras taking Zi into 0, and i:¥ M- C is 
the natural inclusion. But the Kodaira Spencer map of the F-crystal over Spec(C) 
attached to the abelian scheme over Spec(C) obtained from Ay through be is injective 
(cf. 5.4.7). On the other hand, as be = i 0pr, it is zero. We reached a contradiction. 
This proves the lemma. 

The above lemma details the last sentence of [Fa3, rm. hi) after th. 10]. 

5.5. Step 5. End of proof. Let 0° be the local ring of y in N. From 5.4.7-8 
we deduce that the ring homomorphism n: 0° -> 0 := Vo[[zi... ,zd]], associated to 

the morphism qi oi^.Ti —> W, induces by completion an epimorphism r: 0^ -»• 0. But 

0^ and 0 are local excellent normal rings of the same dimension. This implies thar r 
is an isomorphism. As y was an arbitrary point of N, we conclude that N is formally 
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smooth over Vo and so N is formally smooth over 0(v). From 3.4.4 we deduce that 
N is an integral canonical model of the quadruple (G, X, iJ, v) having the EEP. This 
ends the proof of 5.1. 

5.5.1. REMARK. From 5.5 and 5.4.7 we deduce that we can identify Spec(O^) 
with the completion of the quotient Gy0 /Py0 in the Vo-valued point of it defined by 
the origin of Gy0 (here Py0 is the parabolic subgroup of Gv0 having F0(g) as its Lie 
algebra) (to be compared with [Fa3, ch. 7]). 

5.6. Comments. 

5.6.1. COROLLARY. If HQ is a compact open subgroup o/G(A?) small enough 
then yi/Ho is the normalization of the closure of ShH0xH(G,X) in M/HQ, and is a 
quasi-projective scheme. The morphism N/HQ -> M/HQ is a formal immersion in 
any point of K/i?o W • 

The quasi-projectiveness part is a consequence of the fact that M is a pro-etale 
cover of a quasi-projective smooth scheme over 0(v) (cf. [Mu]). 

5.6.2. COROLLARY. The integral canonical model Shp(G,X,H) of the triple 
(G, X, H) is obtained by taking the normalization of the closure ofShniG^X) in the 
extension to the normalization ofZ^ in E(G,X) of the integral canonical model of 
the quadruple (GSp(W,ip),S,Kp,p). It has the EEP. 

5.6.3. EXAMPLE. Using 4.3.11 we recover (for primes p>3) the well known 
results (cf. [Ko]) concerning the existence of integral canonical models of Shimura 
varieties of PEL type. 

5.6.4. REMARK. Morally N should be a closed subscheme of M. To see why 
this should be so, we can move to VQ. We start with two Vb-valued points of Sf, XQ 

and xi, giving birth to the same F-valued point y of the special fibre of M, and which 
give birth to two different Xo-valued points of K, ZQ and zi. Using a prime 1 different 
from p, and using the \eve\-lN structures for any N G N, we get that the two families 
of tensors of the tensor algebra of Hlt(A^, Qi) 0 Hlt(A^, Qi )* (here Aw is the abelian 
variety over F obtained from AMVQ through the point y) defined by the two families 
of /-components of etale components of the Hodge cycles with which the two abelian 
varieties over KQ (obtained from A^Vo through the points ZQ and zi) are naturally 
endowed, are the same. 

This should imply that the two families of tensors of the tensor algebra of (MQ © 
MQ ) [^] (with MQ := Hlrys(Aw, VQ)) defined by the de Rham components of the above 
two families of Hodge cycles, are the same (this is true if we have only cycles of 
degree 2, as they come from endomorphisms of A). If this is true, then we easily get 
that actually XQ and xi give birth to the same F-valued point of N (cf. 5.4.7-8; see 
also 5.5.1). At least in the case of the PEL situation [Ko, ch. 5], we do regain the 
well-known fact that N is a closed subscheme of M. 

However if p is a rational prime big enough, N is a closed subscheme of M (cf. 
3.4.7). In [Va2] we show how the validity of the Langlands-Rapoport conjecture (men- 
tioned in 1.7) for Jsf implies that X is a closed subscheme of M. 

5.6.5. REMARK. 5.3.4 remains true for any Vb-valued point of H. More generally: 
for any VF(fc)-valued point of N (with k an algebraically closed field of characteristic 
p) we get: 
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a) A principally polarized abelian scheme (A,PA) over W(k) (obtained from (Ays, 3V) 
by pull back) having (compatibly) level-iV symplectic similitude structure for any 
N G N satisfying (iV, p) = 1 (defined by a similitude isomorphism kN:(L 0 
Z/iVZ, tp)-2* (A[N],PA) of principally quasi-polarized finite flat group schemes 
over W(k))] 

b) A family (ta)ae3 of Hodge cycles of AB{k) (with B(k) := W(A;)[i]). 

We have: 

c) Under the identification of H^R(A/W{k)) =M = H^ys(Ak/W(k)) the de-Rham 
component ua of ta belongs to (M O M*)®r(a) [i] if a G 3 \ 3o, and to (M (8) 
M*)0r(a) ifaE30. 

d) ^{ua) = ua, Va G 3, ^ being the Frobenius endomorphism of M. 

e) The polarization PA induces a perfect alternating form ip: M ® M -* W(k)(l) 
(we have ip((p(t),cp(z)) = pa(k)(fip(t,z)), a(k) being the Frobenius automorphism 
ofiy(ife)). 

f) There is a direct sum decomposition M = F10F0, with F1 as the Hodge filtration 
of HlR(A/W(k)) = Af defined by A, such that ua G F0((M ® M*)0r(a) [±]), 
Va G 3. 

g) The subgroup of GSp(M®B{k), ip) fixing 7xa, Va G 3, is (reductive and identified 
with) GB(k)- The subgroup Gvr(A;) of GSp(M,^), obtained by taking the closure 
of GB(k), is a reductive group scheme over W(k), and the decomposition M = 
F1 © F0 is associated to a cocharacter ^w(k): ®m ->• Gw(k) ? with ^o G Gm (W(fe)) 
acting through it as multiplication with P^1 on Fl, i — 0,1. 

h**) There is an isomorphism 

HUA-^ry Zp) ®zp W(k) * HUA/Wm 

taking the p-component of the etale component of ta into (de Rham component) 
Ua (of ta), for any a G 3- 

The part a)-g) is just a reformulation of 5.3.4 for a PF(A:)-valued point of N. A 
proof of h) will be given in [Va2]. Its proof solves positively the following conjecture 
of Milne (slight restatement): 

5.6.6. Conjecture ([Mi5, 0.1]). Let A be an abelian scheme over the ring 
W(k) of Witt vectors of an algebraically closed field k of characteristic p and let 
B(k) := W(k)[^\. Let (ss)sei be a family of Hodge cycles of A, including a polar- 

ization. We assume that the closure in GL(LP), with Lp := Hlt{A^T^,Z^), of the 
subgroup of GL(Lp®Qp) fixing the p-component of the etale component of ss, V5 G /, 
is reductive. We also assume that p is big enough with respect to the dimension of A. 
Then, for some (any) faithfully flat W(k)-algebra R(k), there is an isomorphism of 
R(k) -modules 

Lp ®zp R(k) ^ H$R(A/W(k)) ®wlk) R(k) 

mapping, for any 5 € I, the p-component of the etale component of ss into de Rham 
component of ss. 

5.6.7. REMARK. The well known results for integral canonical models of Siegel 
modular varieties (pertaining to universal principally polarized abelian schemes over 
them) concerning the existence of an ordinary isogeny type in positive characteristic 
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and the existence of canonical lifts of ordinary abelian varieties (over perfect fields), 
remain valid for our model DSf. We get results pertaining to the principally polarized 
abelian scheme (AN, 7j{) over it (cf. 1.6 and [Va2]); we call special any such principally 
polarized abelian scheme over N. 

5.6.8. REMARK. In [Va2] we will see that in the majority of cases the whole of 
5.6.5 remains true without assuming that the (perfect) field k is algebraically closed. 

5.6.9. REMARK. We can work out 5.1 with a family of tensors which is Zp-very 
well positioned instead of a family of tensors which is Z(p)-very well positioned. The 
only thing changed is: we get Qp-linear combination of (components of) of Hodge 
cycles instead of (components of) Hodge cycles. Even better: in 5.1 it is enough 
to assume the existence of a family of tensors (of degrees not bigger than 2{p — 2)) 
enveloped by Lp 0 VQ and which is Vo-well positioned for GK0 • This is a consequence 
of the proof of 5.1: we needed that condition 4.3.5 to be satisfied for rings of the form 
Re1] but they are Vo-algebras. However this often boils down to an enlarged family of 
tensors (of degrees not bigger than 2(p — 2)) of the tensor algebra of W 0 W*, which 
is Z(p)-very well positioned for G with respect to ib. For instance, this is so, if we are 
dealing with strongly Vb-well positioned families of tensors (cf. 4.3.15 and 4.3.15.1): 
this is the case we encounter in 6.5-6 (cf. 4.3.10 and 4.3.13); however we will not 
bother to mention strongly in 6.5-6 (as we think it is irrelevant). 

5.6.10. REMARK. We could have worked out the proof of 5.1 working at some 
finite level: i.e. working with some quotients N/HQ (with HQ as in 5.6.1) and M/KQ 

(with KQ a compact open subgroup of GSp(W,ilj)(APf) properly chosen). This would 
have just slightly complicated the presentation. In [Va2] we refine the things: we 
work in such a finite level context, with points in perfect fields (here we worked with 
algebraically closed fields of characteristic p). 

5.7. A practical form of the basic result. 

5.7.1. THEOREM. Let (G,X) M- (GSp(W,^),S) be an injective map and let 
p>5 be a rational prime. We assume the existance of a IJ^-lattice LofW such that 
ip induces a perfect form ip: L 0 L —>• Z^ and the closure of G in GSp(L,^) is a 
reductive group Gz{p) over Z(p) (so G is unramified over Qp). If the Killing form on 
Lie(G^er ) and the form T on Lie(G^er ) induced (by restriction) by the trace form on 
End(L) are both perfect, then Shp(G,X) exists and has the EEP. 

Proof. This is a direct consequence of 4.3.10 b), 4.3.13, 3.1.6 and 5.1. We present 
the details. 

Let Go := Gder and let So := Lie(Go). We have 

*(Bo,WO = 2. 

This can be easily checked starting from [De2, 1.3.7] (i.e. starting from the fact that 
all the weights given irreducible subrepresentations of W 0 C of a simple Lie algebra 
factor of go 0 C are minimal weights-poides minuscules- cf. [Bou2, ch. VIII, §7.3]). 
The fact that the Killing form and the trace form T on go are both perfect, can be 
restated (with the notations of 4.3.2): the tensors (of degree 4) 7r(go), B and 5* (can 
be viewed -cf. 4.1- as tensors) of the tensor algebra of W © VF* are enveloped by 
the Z(p)-lattice L. So the family of tensors formed by 7r(go), B and JB* is Z(p)-well 
positioned for Go (cf. 4.3.10 b)). Now 4.3.13 guarantees the existence of a family of 
endomorphisms (va)(x^l of L fixed by G, which is Z(p)-well positioned with respect to 
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the connected component of the origin of Z(G). Let {va)ae3o be the family of tensors 
formed by putting 7r(Qo), B, B* and {va)0ie^1 together. So 2i C So- 

The family of G-invariant tensors (va)ae^0 is enveloped by L and Z(p)-well posi- 
tioned with respect to G (cf. 3.1.6). 

For any a E do we have deg(va) e {2,4} and so deg(va) is not bigger than 
2(p - 2) (as p is at least 5). Now everything results from 5.1. This ends the proof of 
the theorem. 

5.7.2. Notations,, Let Go — TliexGi be a product of simple adjoint groups 
over a field. Let 

B(Go) := H B(Gi) 
i€X 

where, for any i G X, B{Gi) is 6(/ + 1) if Gi is of Ai or Ci Lie type, 6(/ — 1) if Gi is 
of Di Lie type, and 6(2/ — 1) if Gi is of Bi Lie type with / > 2. 

Let {Go,Xo) be an adjoint Shimura variety of abelian type with Go a simple 
Q-group. Let f:(G,X) <-> (GSp(W;^),S) be an injective map with (Gad,Xad) = 
(Go,Xo). Let go be the Lie algebra of Go (or of Gder). Let [}o be a non-compact 
simple factor of go ® M. We denote by A(Go,Xo, W) the number of elements of the 
set / defined by an isomorphism W (%> R ^> WQ 0 GBieiWi of ^o-rnodules, with f)o acting 
trivially on WQ and with each Wi as an irreducible non-trivial ()o-module. It depends 
only on the representation of go on W, and not on the choice of G or of f)o (cf. [De2, 
2.3.4]). So the notation A(Go,Xo, W) is justified. 

5.7.2.1. LEMMA. The factor So, that relates the Killing form % on a split simple 
Lie algebra over Z [^^ A (of the same Lie type as Go) and the trace form T on it 
associated (cf [De2, 1.3.6]) to the irreducible representation of it given by a weight 
wi corresponding (cf. [De2, 1.3.7]) to the representation Wi offyo (it does not depend 
on the element i £ I!) (so % = SQI), is an invertible element of Z [^A J. Moreover 
% and T are perfect forms. 

This is an easy computation, using the coroots of the clasical Lie algebras (they 
are described in [Bou2, eh. 8, §13]) starting from the fact that any two g-invariant 
perfect bilinear forms on an absolutely simple Lie algebra g over a field of characteristic 
zero differ one from another just by mutiplication with a non-zero element of the field. 
It should be also compared with the explicit form of the Killing form of the (complex) 
classical Lie algebras [He, formulas (5), (16) and (22) of ch. 3 §8]. The extra thing 
needed besides these formulas is the fact (implied by the mentioned computation) 
that over an algebraically closed field of charactersistic zero the trace forms on a 
so(n) Lie algebra defined by the representations associated to the fundamental weights 
corresponding to the roots ai and a/, with Z = [§], differ one from each other by an 
integral power of two (here ai and oti are having the usual meaning; cf. [Bou2, ch. 8, 
§13] page 193 if n G N is odd and page 208 if n is even). 

5.7.3. REMARK. The conditions (in 5.7.1) that p> 5 and the above two bilinear 
forms on Lie(G2er ) are perfect, are equivalent to: p does not divide the product 

^(p) 

B{G^)J{A{Gt,Xt\W), 
iex 

where (Gad,Xad) = UiexiGfiXf)' with a11 Gf as simPle Q-groups.   Here the 
numbers A(Gfd,Xfd,W) are computed starting from an injective map (Gi,Xi) c-> 
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(GSp(W,il)),S) factoring through the injective map {G,X) ^ (GSp(W^),S), cf. 
2.12 1). 

5.7.4. REMARK. In 5.7.1 we can use instead of the bilinear form on Lie(G|er ) 
induced by the trace form on Ql(L) any other bilinear form induced by a bilinear form 
on Ql(L) which is fixed by Gz(p) (cf. 4.3.10.1)). Even better: it is enough that such a 

bilinear form on QI(L) is defined only over VQ — WiZ/pZ) (cf. 5.6.9). 

5.7.5. Example: Classical Spin modular varieties of odd dimension 
(and rank two). Let I > 3 be an integer. Let G := 50(2,2/ — 1) be the Q-group 
whose points in a Q-algebra R are those matrices g in 51/(2/ + l,iZ) which leave 
invariant the quadratic form -xf — x^ + £3 4-... -f- a,"?^, i.e. tgl2,2i-i9 — h,2i-i, with 
h,2i-i the diagonal matrix of order 2/ + 1 having —1 on the first two lines and +1 on 
the others. 

Let Sh.(G,X) be the adjoint Shimura variety with X a double copy of the Her- 
mitian symmetric domain of type BD 1^=2^=21-1) (cf- the classification of symmetric 
domains [He, p. 518]). G is an absolutely simple adjoint group of type Bi which splits 
over Q(i). We have dim X = 21 - 1 and E(G, X) = Q. 

Let /:(Gi,Xi) <-> (GSp(W,^),S) (with {Gf.Xf) = (G,X)) be the injective 
map defined by the Spin representation of the simply connected cover Gfer of G (this 
representation is defined over Q as Gfer splits over Q(i)). We have dimQ(VF) = 2l 

if I mod 4 is 1 or 2, and dimQ(W) = 2/+1 if I mod 4 is 0 or 3 (cf. [Sa, p. 458]). 
G^er = Spin(2,21 — 1) is a Spin group, and Z(Gi) = Gm acts on W by multiplication 
with scalars (so Gfb = Gm). For any prime p. Gi is unramified over Qp. We have 
A(G,X, W) = 1. We call Sh(Gi,Xi) the classical Spin modular variety of dimension 
21 — 1 (and rank two) (cf. [Va4] for the use of the word classical). 

Let I) := Lie(Gier) and let TTW(*)) be the projection of Ql(W) on () associated to the 
direct sum decomposition QI(W) = f) © i)-1 (I)1- is the subspace of gl(W) perpendicular 
to {} with respect to the trace form on gi{W)). Let B:QI(W) ->- gl(W)* be the linear 
map which is zero on I)-1- and B\ty: f) —>- I)* is the isomorphism induced by the Killing 
form on J), and let B*: gl(W)* -> gi(W) be the linear map which is zero on (I)-1) and 
i?*|l)*: ()* -)> () is (.Bll))""1. If / mod 4 is 1 or 2 , then Lie(Gi) is the Lie subalgebra of 
gi{W) centralizing 7rw(ty) due to the fact that the representation Gier

c -)> GL(Wc) 
is irreducible. So (GI,XL) is saturated in (GSp(VF,ip),S). If / mod 4 is 0 or 3 
then the maximal connected subgroup G2 of GSp(W,'0) fixing nwity contains Gi, 
Gder = Gder5 but gab is a torus of dimension 2 (the representation Gf rc -» GL(Wc) is 
not irreducible, just the representation Gier

M —> GL(WM.) is irreducible). So (Gi,Xi) 
is not saturated in (GSp(PF,^), 5). 

Let now p be a prime not dividing 6(2/ — 1) and let L be a Z ^-lattice of W such 
that ^ induces a perfect form ip: L 0 L -» Z(p) and the closure of Gi in GSp(iy, ^) is 
a reductive group over Z(p) (the existence of such a Z(p)-lattice results from the fact 
that the Spin representation of Gi has a Z(^-version). 

Now the family of tensors formed by 7rw(f)). B and B* is integral with respect to 
L (i.e. it is enveloped by L) (for instance, for Trwfy) this means that it is a projector 
of gl(L)) and is Z(p)-very well positioned for the group Gi (cf. 5.7.1-3). This implies 
that the Killing form on the Lie algebra J)^ := f) Pi gi(L) and the restriction to t)L of 
the trace form on gl(L) are both perfect. Let Kp := {g E GSp(VF, ^)(Qi3)|^(L(8)Zp) = 
L 0 Zp} and let i^i := K n Gi (Qp). i^p is a hyperspecial subgroup of GSp(VF, ^)(Qp) 
and Hi is a hyperspecial subgroup of Gi(Qp). The normalization of the closure of 
Sh^ (Gi, Xi) in the integral canonical model M of (GSp (W, ip), 5, K^, p) is an integral 
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canonical model 3\f of (Gi,Xi,ffi,p) (cf. 5.7.1 and 5.6.2). The universal (principally 
polarized) abelian scheme over M (obtained by choosing a Z-lattice Lz such that 
L = Lz (8) Z(p) and ipiL 0 L —> Z is perfect) gives birth to a principally polarized 
abelian scheme (Aw, JV) over K of dimension | dimQ(l^). N admits plenty of smooth 
toroidal compactifications and the abelian scheme A^ extends to semi-abelian schemes 
over these smooth toroidal compactifications of Jsf (cf. [Va3]). 

If / = 3 then dimQ(Wr) = 16 and we obtain abelian schemes of dimension 8. If 
/ = 4 then diniQ^) = 32 and we obtain abelian schemes of dimension 16. If / = 5 
then dimQ(PF) = 32 and we obtain abelian schemes of dimension 16. If / = 6 then 
dimQ(PF) = 64 and we obtain abelian schemes of dimension 32. 

5.7.6. REMARK. For Z = 10 we get the Shimura variety Sh(Gi,Xi) associated 
to the moduli space of complex KS surfaces. 

For more examples, including the case of classical Spin modular varieties of even 
dimension (and rank 2), see [Va4]. 

5.8. Integral good embeddings in a Siegel modular variety. 

5.8.1. DEFINITION. Let the pair (G, X) define a Shimura variety of Hodge type. 
Let p (resp. p>5) be a rational prime such that G is unramified over Qp. We say 
that (G,X) (or Sh(G, X)) has a good embedding (resp. a very good embedding) (in 
a Siegel modular variety) with respect to p, if there is an injective map /: (G, X) c-^ 
(GSp(W, ip), S) such that the hypotheses of 5.1 (resp. of 5.7.1) are satisfied. Similarly, 
we speak about an injective map (G, X) <->> (GSp(Wr, ^), S) as being a good embedding 
or a very good embedding with respect to p. We use a similar terminology when triples 
or quotients are involved. 

5.8.2. REMARK. If (G,X) defines a Shimura variety of Hodge type, if p is a 
rational prime such that G is unramified over Qp, and if (G, X) has a good embedding 
with respect to p, then Shp(G,X) exists (cf. 5.1) and we can study its points in fields 
of positive characteristic using the machinery of crystalline cohomology (cf. the proof 
of 5.1 and [Val^2]). 

5.8.3. DEFINITION. Let f:(G,X) <-+ (GSp(I/F,'0),5) be an injective map and 
let p be a prime such that G is unramified over Qp. A Z(p)-lattice L of W is called 
good with respect to f if tp induces a perfect form ip: L (8) L —)> Z(p) and if the closure 
of G in GSp(L,^) is a reductive group over Z^py 

5.8.4. PROPOSITION. Let f:(G,X) M- {GSp{W^)^S) be an injective map with 
Gad a simple Q-group. Let I be the rank of a simple factor of G^d (i.e. Gad is of Ai, 
Bi, Ci or Di Lie type) and let yV(Gad) be the number of non-compact simple factors 
o/G|d. Let 

p > max(5,21, T-rr—^—TT) 

be a rational prime. If there is a I* (pylattice ofW good with respect to f, then f is a 
very good embedding with respect to p. 

Proof. This results from 5.7.1 and 5.7.3. We have just to remark that dim(VF) is 
at least 2W(Gad)^(Gad,Xad, W) (with equality only for G = GSp(W^)) (this is an 
easy consequence of [De2, 2.3.7 b)]; for m, n > 2 positive integers we have mn > m + n), 
and that all the prime factors of S(Gad) are smaller than max(5,21) (cf. 5.7.2). 
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5.8.5. REMARK. If in 5.8.4 we concentrate in just one Lie type of rank I 
we can obtain even better estimates than the estimate of 5.8.4 which works for 
all Lie types of rank L    For instance, if (Gad,Xad) is of type Df, with /  >  5, 

then we need p>max(5,Z, 2
1
-^NJG^))- ^ ^ad ls 0^ ^P6 ^ ' — ^' ^en we nee<^ 

p>max(5,2/, ^w^l)), etc. In the mentioned cases, these estimates are a conse- 
quence of the dimension formula of the Spin representation of a split orthogonal Lie 
algebra (over C) (see [Bou2, ch. 8, §13]). 

5.8.6. COROLLARY. Let f:(G,X) M- (GSp(W,ip),S) be an injective map. Let 
p be a prime greater or equal to maa;(5,2 -h dim(T4/)/2) (resp. greater or equal to 
maa;(5,dim(H/)/2)y). // there is a Z(pylattice ofW good with respect to f, then f is a 
very good embedding (resp. is a good embedding) with respect to p. 

Proof. If p — 2 > max(3, dim(W)/2) then this is a consequence of 5.8.4-5. If p > 5 
and 2p e {dim(W), dim(W) + 2}, and if / is not a very good embedding with respect 
to p, then either G = GSp(W/, ip) or 2p = dim(T/F) -I- 2 and Gad is an absolutely simple 
Q-group of Ap+i Lie type. In both these cases we get immediately that we are in the 
context described in 4.3.11; so 5.6.3 applies. 

5.8.7. COROLLARY. Let f: (G,X) <-» (GSp(W^)1S) be an injective map. Then 
there is N(G,X) £ N effectively computable such that f is a (very) good embedding 
with respect to any prime p>N(G,X) with the property that G is unramified over Qp. 

Proof. Let L be a Z-lattice of W such that we get a perfect form T/J: L 0 L -> Z. 
There is a number N(G, L, /) € N such that for any prime p > N(G, L, /) the closure of 
G in G5p(L(g)Z(p), ip) is a reductive group scheme over Z^y It is effectively computable 
(for instance cf. 4.3.10 b)). Now we can take N(G,X) =max(N(G,L,f),dim(W)/2), 
cf. 5.8.6. 

For the following result we assume 5.6.5 h). 

5.8.8. COROLLARY. The Milne's conjecture (see 5.6.6) is true if the prime p is 
bigger than max(5,dim(A)). 

Proof. We use the notations of 5.6.6. Let f:(G,X) <-* (GSp{W,ip),S) be the 
injective map defined by (A,PA) (here PA is the polarization of A defined by some 
55(0)5 ^(O) E /) and the reductive family (ss)sei\{5(o)} (c^ 2.12 3)) with respect to PA> 

From the hypotheses of 5.6.6 we deduce that there is a Z^-lattice L of W good for /. 
If PA is a principal polarization then this is a direct consequence of 5.8.6 and of 5.6.5 
h) (cf. definitions 5.8.1 and 5.8.3). If PA is not a principal polarization, then we have 
to apply the Zarhin's trick [Za]: replacing A by (Ax A1)4" the numbers A(Gi,Xi,W) 
defined in 5.7.1-3 for the injective map /, are replaced by numbers which are 8 times 
bigger. As we are taking p> 5, this does not change anything (cf. the proof of 5.8.4), 
and so we do not have to replace dim(W)/2 by 4dim(VF). It is easy to see that the 
Zarhin's trick does not destroy the Zp-etale reductiveness part. This ends the proof 
of the corollary. 

Actually we do not need to assume that A is polarized (as 5.6.6 speaks about) 
(cf. [Va2]). For better estimates than max(5,dim(,4)) see [Va2]. 

5.8.9. REMARK. If in 5.8.6-8 we concentrate just on one specific type of Shimura 
varieties, we can obtain much better estimates, cf. 5.8.5. 
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6. The existence of integral canonical models. First we complete (cf. 6.1-2 
and 6.8) the steps (introduced in 3.4) needed to construct integral canonical models 
of Shimura varieties of preabelian type. Then we digress very briefly (cf. 6.3) on 
conjugates of such models. The main results are gathered in 6.4, while their proves 
spread till the very end of 6.8. Besides the tools developed in the previous chapters 
we rely heavily on [De2]. In particular, as a main new idea, we build up an integral 
version (6.5.1.1) of [De2, 2.3.10]. 

6.1. The going up between finite maps. 

6.1.1. Let Sh(G, X) be a Shimura variety of Hodge type and let /: (G, X) c-^ 
(GSp(W, '0), S) be an injective map. Let p > 3 be a prime. We assume the existence of 
a Z(p)-lattice L of W which is good for /. Let (G,X,H,v) be a quadruple of (G,X) 
having an integral canonical model M, with v dividing p. 

6.1.2.* THEOREM. We consider a finite map f:(G1,X1,Huvi) ->► (G,X,H,v). 
Then (Gi^Xi^Hi^vi) has an integral canonical model Mi having the EEP, obtained 
by taking the normalization ofMo{v ) in the ring of fractions R of Sh^ (Gi, Xi). Mi 
is a pro-etale cover of an open closed subscheme of Mo(u > • 

If Sh.p(G,X,H) exists, then Sh.p(Gi,Xi,Hi) also exists, has the EEP, and is the 
normalization of Sh.p(G, X, H) in 51. 

A complete proof of 6.1.2 will be presented in [Va3]. For a discussion, and a proof 
in the majority of cases, see 6.8. 

6.1.2.1. WARNING. The results below (as well as 6.1.2) whose numbers have a 
right *, in the case of Shimura pairs (G,X) of preabelian type which are neither of 
abelian type nor of compact type, are fully proved in this paper only in the generic 
situation, i.e. working with a prime (or primes in some cases, like in 6.4.4) p which 
is (or are) big enough, with an upper bound depending only on (G, X) (cf. 6.8.5). 
See 6.8 for an explanation. As 6.8.0-2 explain how we prove (in [Va2] and in [Va3]) 
6.1.2 in the remining cases (see also 6.8.6), we felt it is appropriate to state the main 
results and remarks in the way we did. The labelled results are fully proved here in 
the abelian type case and in the compact type case. 

6.2. The going down between finite maps. 

6.2.1. Let /: (G,X) -» (d,Xi) be a cover such that E(G,X) = £(<?!,Xi) (cf. 
[MS, 3.4]). Let E := E(G,X). We consider a map (G,X,H,v) -> (GuX^H^v) 
defined by /, with v a prime of E(G,X) dividing a rational prime p>2. Let VQ = 
W(k(v)) = W(¥) and let A be the kernel of the homomorphism G -> Gi. We recall (cf. 
2.4) that A is a torus such that Hl (Gdil(k/k),A(k)) = 0 for any field k of characteristic 
zero. Let B := Gab. 

6.2.2. THEOREM. We assume that (G,X,H,v) has an integral canonical model 
M and that MVQ has the EEP. We also assume that either 

a) p is relatively prime to the order Q of the center of the simply connected 
semisimple group cover of Gfer and M is a quasi-projective integral model, or 

b) there is an injective map .fe: (£2,-^2) <-> (GSp(W,ip),S) which is a good em- 
bedding with respect to the prime p > 2 and we have G^ — Gder and (G^.X^) = 
(Gad,Xad). 

Then (Gi,Xi,Hi,v) has an integral canonical model Mi. Moreover the natural 
morphism M —>• Mi is a pro-etale cover. 

Proof. As the proof is quite long we itemize the steps (ideas). 
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A) [Mi4, 4.11 and 4.13] contains all that is needed to see how to construct an 
integral model Mi of (Gi,Xi,Hi,v) over 0(v), as a quotient of M. We just need to 
remark that such a quotient always exists as a scheme: M is a quasi-projective integral 
model (in case b) cf. 5.6.1 and 5.8.1-2), and so we can quote [Mul, p. 112]. We want 
to prove that the morphism M -)• Mi is a pro-etale cover (this implies that Mi is a 
smooth integral model) and that Mi has the EP. 

B) Let Si be an integral healthy regular scheme over 0(v) and let q:SiE -> Mi be 
a morphism. Let So be the normalization of Si in the ring of fractions of Si^ x^i M. 
For proving that Mi has the EP, we need to show that q extends to a morphism 
Si —)■ Mi. For seeing this it is enough to show that So is a pro-etale cover of Si 
(as M has the EP and as a pro-etale cover of a healthy regular O^-scheme is also a 
healthy regular 0(v)-scheme, cf. 3.2.2 4)). From the classical purity theorem we get: 
it is enough to work with Si the spectrum of a discrete valuation ring O faithfully 
flat over Z(p). We can assume that O is complete with an algebraically closed residue 
field, and so that it is a Vb-algebra. 

C) The key fact for checking that Mi has the EP is: 

FACT. A connected component o/Miy0 is the quotient of a connected component 
C0 ofMvo by Q> commutative group Cp which is a Q2-torsion group. 

Proof. Mivb is the quotient of My0 by the group A{hP,)/Ai^L^)^ where A(Z(py) is 
the closure of A(Z^) := A(Q)nH in A(AIi): this is an easy consequence of [Mi4, 4.13]. 
We assume first that Gder is simply connected. So (cf. [Del, 2.4-5]) the set of connected 
components of My0 are in one-to-one correspondence to the set B(AK)/B(Z(py), with 

5(Z(p)) having the analogue meaning of A(Z^). If moreover Gi = Gid we just have 
to add (cf. the sublemma below) that the canonical homomorphism A —> B has finite 
kernel of order a divisor of Q. 

SUBLEMMA. Let t: Ti —> T2 be an isogeny of Q-tori. Let TQ be its kernel. Let p 
be a prime such that T2 is unramified over Qp. Let H(Ti) be the hyperspecial subgroup 
ofTiiQp), i = V2. Let Ti(Z{p)) := H(Ti)nTi(Q); we denote by Ti(Zip)) its closure in 
Ti(AR)j i — 1,2. Let Q(t) be the least common multiple of the orders of elements of the 

group To(C). Then the kernel of the natural homomorphism tp:Ti(AR)/Ti(Z^p)) -> 

T2{Ap
f)/T2(Z(p)) is a Q(t)2-torsion group. 

Proof. Let a E ker(tp). Let a G Ti(A?) representing it. There is a sequence 
(frn)nEN of elements of T2(Z(p)) converging to t(a) G T2(A^): T2(Ap is a topological 
group having a countable basis of neighbourhoods of its identity element. Let cn G 
Ti(Z(p)) such that its image in T2(Z(p)) is b® . As X^A^) is a locally compact 
group, and as To(A^) is a compact group, we deduce the existence of a subsequence 

(cn)nGN(i)5 with N(l) an infinite subset of N, converging to an element ai G Ti(Z^). 

Obviously dQ^2a~Q{p) G Ti(Z(p)) is the identity element. So a^)2 = 1. This proves 
the sublemma. 

For proving the above fact in the general case it is enough to remark that: 

- there is a cover (Go,XQ, #0,^0) -> (G,X,H.v) with GQ
61

" a simply connected 
semisimple group (cf. rm. 10) of 3.2.7) and so we can apply the previous argument 
involving only connected components (we do not need to assume that (Go, XQ, HQ^VQ) 

has an integral canonical model, as the argument on connected components can be 
performed over C) for the induced cover (Go,Xo,i?o^o) -> (Gi,Xi,Hi,v); 
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- the proof of lemma 6.2.3 allows us to shift the situation to the case when 
Gi =Gf (even for p = 2). 

D) 5o is a disjoint union of integral schemes. As Cp is an Q2-torsion group, we 
get that 5o has the property that any abelian scheme A over the generic fibre of a 
connected component 5° 0^ ^o? having \eve\-lN structures for any N £ N (with / a 
rational prime relatively prime top), extends to an abelian scheme over a finite integral 
cover of 5o, and so So is an almost healthy normal scheme over 0(v). For checking 
this, we can assume that A is defined over a finite flat DVR extension Oi of O. The 
Galois-representation on H^AK! , %i) of the Galois-group of the field of fractions Ki 
of Oi, has an image a Q2-torsion group, and so it has a finite image (cf. [Se, 1.3] and 
the structure of /-adic Lie groups). So the Neron-Ogg-Shafarevich criterion applies. 

Due to the EEP enjoyed by Mvb, we get a morphism So -> M. This implies that 
q extends to a morphism Si —> Mi and so So is a pro-etale cover of Si. This implies 
that Mi has the EP. 

E) In case a), Q2 is relatively prime to p. So the smoothness of Mi is a conse- 
quence of 3.4.5.1 and of [Mi4, 4.11 and 4.13]. 

In case b) for checking the smoothness of Mi we have to work harder. Let M2 
be the integral canonical model of a quadruple (6^25X2,#2^2), with V2 a prime of 
E(G2,X2) dividing the same prime of E(Gad,Xad) = E(G|d,X2

ad) as v (cf. 5.8.1-2). 
We choose a Z(p)-lattice Lp of W such that there is a family of tensors of degrees 
not bigger than 2(p - 2) situated in Z(p)-modules of the form (Lp 0 I/*)0™ (m £ N), 
which is Z(p)-very well positioned with respect to ip for G2. We can assume that 
jff2 = G2(L®Zp) (cf. 3.2.7.1). 

We can choose the connected component 6° of My0 such that over an embedding 
of VQ into C, its complex points are defined by equivalence classes of the form [x, 1], 
with x running through the points of a a connected component X0 of X (cf. 3.3). The 
lemma 6.2.3 allows us to identify C0 with the connected component 62 of M2Vb of whose 
complex points (under the same embedding of Vb in C) are defined by equivalence 
classes of the same form [#2,1], with X2 running through the points of a connected 
component of X2, which can be identified with X0. 

F) For the smoothness of Mi we need just to show that Cp acts freely on C0. 
[De2, 2.1.7] allows us to identify (this is achieved by shifting the things to C) Cp with 
the quotient of a subgroup C* of Gad(Q) fl iJad (here i7ad is defined starting from 
H or H2 as in 3.2.7 2)), leaving invariant X0 (and so leaving invariant X, cf. f) of 
3.2.7 2)); so G* is a subgroup of Aut((G2,X2,#2)), cf. def. 9) of 3.2.7. A normal 
subgroup C2 of Gp acts trivially on 6°, and we can view Cp as a subgroup of Cp/C2. 
But Aut((G2,X2,#2)) acts on M2 as p > 2 (cf. rm. 4) of 3.2.7). Now everything 
results from the following proposition (applied to the case when iJf '1S a small enough 
open subgroup of G2(A^)): 

6.2.2.1. PROPOSITION. Let g e Aut({G2,X2,H2)) and let H% be a compact 
subgroup of G2(A?) such that g belongs to the normalizer of iJf x #2 in G2(A/) 
and M2/H2 x H2 is smooth over 0(V2y We assume that the universal principally 
polarized abelian scheme overM2 obtained through the map /2 and lattice L (cf. 5.1.2), 
descends to a principally polarized abelian scheme over 'M2/H2 x H2, having a level-N 
symplectic similitude structure for some N eN, N >3 and relatively prime to p (i.e. 
we assume that H% is small enough). We also assume that a power of g acts trivially 
on M2/H2 x H2. If g fixes an F-valued point y 0/M2vo/#|> x H2, then it fixes aVi- 
valued point of'M2Vo/H2 x ^2 specializing to y, with Vi a DVR finite flat extension 
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ofVo. 

Proof. We need to show that g does not act freely on the generic fibre of the local 
ring of y in 'M2V0/H2 x ^2- From 3.4.5.1 we deduce that we can assume that gp acts 
trivially on M2V0/H% x #2- 

Let (Mo, (fo) and (go, ^0) be the (Shimura) <j-crystal and respectively the Shimura 
adjoint Lie cr-crystal attached to y (and the map /2) (cf. 5.4.6; the assumption that 
the universal abelian scheme over M2 descends to 'M2/H2 x H2 allows us to define 
them as in loc. cit.). Here go is the Lie algebra of an adjoint group G^ whose 
generic fibre is G^Q (cf- 5.4.6). Writing G?2Vb as a Product of simple adjoint groups, 
ipo permutes cyclically the Lie algebras of these factors. This allows us to write (go, <£o) 
as a product of whose factors correspond to the cycles of the permutation (of the set of 
simple factors of Gfl?) we get. We group together the factors of this product whose Lie 
algebras are not included in the F0 -filtration defined by an arbitrarily chosen Vo-lift 
ZQ of y (cf. 5.6.4). We get what we call the non-trivial part (g^, ipo) of the (Shimura) 
adjoint Lie a-crystal (go, ^0) (we still denote by (fo its restriction to g^ [^). Let G^y^ 

be the factor of Gf^ whose Lie algebra is g^. Let G^0 be its factor whose simple 
factors have the property that their Lie algebras are not included in the F0-filtration of 
go defined by the lift ZQ (to M2Vb) of y (cf. 5.4.6). Let P|pnt be the parabolic subgroup 
of G^nt whose Lie algebra is the natural infiltration of gftVrf- Let P2V0 (^fvb*) 
be the parabolic subgroup of G2V0 (resp. of G^y^) leaving invariant the F1-filtration 
of Mo defined by the chosen Vb-lift ZQ of y (resp. defined as the image of P2V0 in G^y^ 
under the canonical quotient homomorphism G2V0 ~^ ^Iv?*)' ■^or a Presentation of 
this in a more general and adequate context cf.  [Va2]. 

The first key fact is: g gives birth to an isomorphism go of (QQ
1
,^), with g^ 

acting trivially. 

For checking this let (G2,X2,#2) -> (G2 x G2,X2 x X2,H2 x H2) be the map 
defined by the inclusion of G2 into G2 x G2 whose projections are the identity and 
respectively the automorphism g of G2. It factors through a Hodge quasi product 
(G3, X3, Hz) of (G2, -X2, H2) with itself (to be compared with Example 3 of 2.5, where 
this is detailed for pairs). Composing this map with the Segre embedding we get a 
map/3:(G2,X2,#2) -► (G5p(W©W,^e^), S2,GSp((Lp®Lp)®rlp)) which is still a 
good embedding with respect to p (cf. 4.3.17). Using the fact that fa factors through 
(GsjXs) we deduce that the (Shimura) adjoint Lie a-crystal (gi,^i) attached to y 
(and the map /s) is a Lie subcrystal of the product of (go,^o) with itself. As above 
we define (g^^i)- Moreover the first projection (of G3 on G2) allows us to identify 
(g^S^i) with (goS^o), while the second projection gives us the desired isomorphism 

<7o can be viewed as an element of G^y^iy^) acting on its Lie algebra by conju- 
gation; to see why #0 it is not an outer automorphism of g^ we just have to remark 
that: 

- it leaves invariant the simple factors of G|ync (this can be seen moving to C: X0 

is a product of simple Hermitian symmetric domains, indexed by the simple factors of 
G^y"0; any element of G^, as an automorphism of X0, is a product of automorphisms 
of such factors of X0); 

- it commutes with <^o (and so it leaves invariant P|pnt). 

Moreover g^ belongs to any parabolic subgroup of G^y^ lifting P%$nt (as glp acts 
trivially on 'M2IH2 x H*)- This implies that the components of g^ corresponding to 
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the non-compact simple factors of Gfvb* ^•e• to s™P^e factors of G^y^) are trivial. 

As #Q commutes with </?o we deduce that g1^ is the identity element of G2ynt(Vb). 
G) The second key fact is the following general fact: 

LEMMA. Let HQ be a semisimple adjoint group over a DVR O of mixed charac- 
teristic. Letp be the characteristic of the residue field of O. We assume that the index 
of ramification of O is 1. Let PQ be a parabolic subgroup of HQ and let go € Ho{0) 
be an element of order p which mod p lies in Po(0/pO). Let Spec(0) be the comple- 
tion of HQ/PQ in the O/pO-valued point defined by the origin of Ho/po- Then go 

does not act freely on 0|-]. In other words: there is a finite flat DVR extension Oi 

of O, and there is a parabolic subgroup PQ of Ho1 such that its special fibre is the 

scalar extension of Po/pO> and 9o, viewed as an Oi-valued point of Ho1, belongs to 

Proof We can assume that O is the Witt ring of an algebraically closed field of 
characteristic p. Let O2 be the DVR extension of O obtained by adjoining the p-th 
roots of unity. Let 9 be the finite flat group scheme over O obtained by taking the 
closure in Ho of the subgroup of its generic fibre generated by go- 

We can assume that S is isomorphic to Z/pZ: if p > 3 this is always so, cf. 3.2.1.1 
2)); if p = 2 and if go mod p is the identity, then the lemma is trivial. 

We have a canonical 02-homomorphism 

Spec(i^i) = Sos -> VP - Spec(i?) 

which over O2 [-] is an isomorphism. The nice thing is: at the level of rings we have 

an inclusion R ^ Ri such that pRi C R. This can be seen using elementary matrix 
operations of the same nature as the ones needed to compute the discriminant of O2 
over O. This (together with the fact that the special fibre of S is a subgroup of the 
special fibre of Po) implies that the natural morphism S02 ~^ Ho/Po factors through 
liv. We get a morphism Sp-. fip —>■ Spec(O). We deduce that we have an action of /j,p 
on Spec(0)02 which inverting p becomes the action of go on it. To check this it is 
enough to show that the ring homomorphism 

r: 0 (8)0 O2 -> Ri ®o 0 

describing the action of S02 on Spec(0)o2 factors through R®o 0. Let Spec(0/I) be 
the smallest flat O-subscheme of Spec(O) through which Sp factors. It is enough to 
show that the ring homomorphism 0 —>• i^i 0 0/1 obtained from r, factors through 
R (g) 0/L But this is obvious. 

Now the same arguments of the proof of 3.4.1.5 used in the case when we were 
dealing with a group of order relatively prime to p apply to get that the action of fip 
on Spec(0 [^), is not a free action. This ends the proof of the lemma. 

H) We come back to the proof of 6.2.2.1. From this lemma we deduce that #0 
belongs to a parabolic subgroup P2V1 of G^y^ whose special fibre is P|jpnt, with Vi a 
DVR finite flat extension of VQ . 

But this implies that #0 does not act freely on the generic fibre of M2/H2 x H2: 

under the identification (cf. 5.5.1) of the completion Oy of the local ring of y with the 

ring 0 of the completion of G2V0/P2V0 = G^^/Piv^ m its VQ-valued point defined 

by the origin of G2V0 5 the action of go on 0^ becomes the natural action of #0 on 0 
(it is enough to check this for Vo-valued points of 0, as they are Zariski dense; but 
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for such points this is obvious, cf. the way the action of #0 on (Qodnt, ipo) was defined, 
and cf. the theory of deformation of a principally polarized abelian variety). 

It is worth making this explicit. The parabolic subgroup P2V1 of Glvb* &Yes birth 
to an F1-filtration of MQ 0 Vi. The identification of 5.5.1 shows that it cooresponds to 
an abelian variety over Vi obtained from the universal abelian scheme over JA2V01^2 x 

H2 through a V\-valued point z lifting y. Now g fixes z. 
This ends the proof of 6.2.2.1 and so of 6.2.2. 

From now on we assume for the sake of simplicity that p > 2. 

6.2.3. LEMMA. Let (Gi,Xi,Hi,Vi), i — 1,2, be two quadruples with Gdev = 
GieT and such that they have the same adjoint quadruple (Go:Xo,Ho,Vo)' Let p be 
the rational prime divided by VQ. Then Shp(Gi.Xi,Hi) exists and has the EP iff 
Shp(G2,X2iH<2) exists and has the EP. Assuming the existence of these integral mod- 
els, the connected components of the extension to O/Jj ^ of the integral canonical model 
of {Gi,XiyHiyvi) are isomorphic to the connected components of the extension to 
O/Jjx = 0?£ N of the integral canonical model of (G2,X2,i?2,^2)- 

Proof We can assume that we have a finite map /: (Gi,Xi,Hi) —> (6^2,^2,^2) 
(cf. rm. 3) of 3.2.7). We first assume that Shp(G2,X2,i?2) exists and has the EP. 
Using the toric part triple of (Gi, Xi, jffi) we can assume (cf. 3.2.8) that / is injec- 
tive. So Shff^GijXi) is an open closed subscheme of ShffaCG^,-^), c^ 3.2.14- 
15. As E(Gi,Xi) = E(G2,X2), we deduce that the closure of Sh^G^Xi) in 
Shp(G2,X2,i?2) is the integral canonical model Shp(Gi,Xi,Hi). Obviously 
Shp(Gi,Xi,Jffi)hastheEP. 

We assume now that Shp(Gi,Xi,ifi) exists and has the EP. Let E(Gi,Xi)^ be 
the normalization of Z(p) in E(Gi,Xi), i = 1,2. From [Mi3, 4.7] we deduce that the 
affine scheme Spec(i£(G;,X;)(p)) is an etale cover of Spec(Z(p)). Let 6 be a connected 
component of the image of the natural morphism miShj^G^Xi) —> Sh^(625X2). 
Let 3i be the subgroup of G2(A?) leaving invariant 6. From 3.3.2 we deduce that it is 
enough to show that C is the generic fibre of a regular formally smooth E(G2,X2)(p)- 
scheme Qp having the EP, and on which Oi acts continuously so that: the resulting 
^K-action on C is the natural one, and there is a compact open subgroup Oio of Ji 
such that Cp is naturally a pro-etale cover of the smooth quasi-compact E(G2,X2)(p)- 
scheme Gp/

<Ko. As Sh.p(Gi,Xi,Hi) exists we deduce the existence of C^, defined as 
6^, but working over E(Gi, -X"i)(p) instead of over E(G2,X2)(P). Let Spec(E(p)) be the 
Galois extension of Spec(E(G2,X2)(p)) generated by Spec(E(Gi,Xi)(p)). Let C be 
the resulting Galois group. Due to the EP enjoyed by the extension Cp of C^ to i£(p), 

we have a natural Galois-descent datum: C acts on Cp. The extension of m, viewed 
as a Z(p)-morphism, to K® identifies each connected component of Shf/^GijXi)^ 
with a connected component of Shij2(62,^2)KQ, cf. 3.2.14-15 and the fact that each 
component of Sh^ (Gi,XI)KQ is geometrically connected over K® (as Shp(Gi, Xi, Hi) 
exists). This together with [Mul, p. 112] implies that the Galois-descent datum is 
effective, and so that &p exists: it has the EP as &'p has it, and as Spec(E(Gi,Xi)(p)) 
is an etale cover of Spec(E(G2,X2)(p)) (so B) of 3.2.2 4) applies). 

The last part of the lemma involving connected components over Of^ ^ is trivial. 
This proves the lemma. 

6.2.3.1. REMARK. From the proof of 6.2.2 and 6.2.3 we deduce that for any 
finite map (G1,^1,^1) -)► (G2,X2,iJ2) a connected component of Sh^^G^X^c is 
a Galois cover of a connected component of Sh^ (G2, X2)c, with a Galois group which 
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is an M-torsion abelian pro-finite group, with M equal to the second power of the 
least common multiple of the order of elements of the center of the simply connected 
group cover of G^er (we can assume that G2 is an adjoint group and that GldeT is 
simply connected; now everything results from the Step C) of the proof of 6.2.2). 

6.2.4. COROLLARY.. Let (G, X, H) be a triple having an integral canonical model 
M. We assume that it has the EP, and that its extension to VQ has the EEP. We also 
assume that either 

a) the prime p (such that H C G(Qp)) is relatively prime to the order of the center 
of the simply connected semisimple group cover of Gder and M is a quasi-projective 
integral model, or 

b) there is a pair (G^,-^) for which condition b) of 6.2.2 is satisfied. 
Then any other triple (GuXuHi) such that (Gad,Xad) = (Gf,X?d) and there 

is an isogeny Gder -)• Gder, has also an integral canonical model Mi having the EP. 

Proof. This is a direct consequence of 6.2.2-3, and of 3.2.7 10). 

6.2.4.1.* COROLLARY. Under the assumptions 6.2.2 b), any integral canonical 
model Ms of a Shimura quadruple (GsyXs^Hs^vs) having the same adjoint quadruple 
as (G)X)H)V) is a strongly smooth integral model (cf. def. 3.4-8). 

Proof. Let Hf C f/f be two open subgroups of G3 (A*) such that the morphism 
M3 —>• Ms/Hf is a pro-etale cover and the generic fibre of the finite morphism 
qiMs/Hf ->• M3/H2 is a Galois cover. We need to show that q itself is a Galois 
cover. This is just a problem of connected components. We use the notations of 6.2.2. 
So we can move over VQ. We can assume that we are dealing with a connected compo- 
nent 63 of M3V0 which over an embedding of T^o into C corresponds to complex points 
defined by equivalence classes of the form [x, 1], with x running through the points of 
a connected component of X3 (cf. 3.3.2 and 2.3). 

We first treat the case when there is an isogeny G^ —> Gder. Using a cover 
(G4lX4,H4,V4) -» (GsiXsiHsiVs), with Gfr = Gfr, the arguments of [Mi4, 4.11 
and 4.13] allow us (cf. 6.2.3 and 5.8.1-2) to assume that Gfer = G^er. But this case 
results from 6.2.2.1 (cf. the proof of 6.2.2). 

To see the general case, the same argument using a cover allows us to assume that 
GdeT is the simply connected group cover of G^61" (cf. 6.1.2 and 6.2.3). We consider (cf. 
3.2. 7 10) a cover /5: (G^X^H^vt) -> (G2,X2,#2,^2) such that Gfer = Gfr. Let 
C5 be a connected component of the extension to Vb of the integral canonical model 
of (G5,X5,if5,t;5) dominating C2 and such that its complex points can be described 
in a similar manner as the complex points of 62 or of C3. We can assume that TJf 
is as small as you want. This together with 6.2.3 allow us to shift our attention to 
quotients of 65. We get everything in the following context: 

a) we have a compact subgroup Hf0 of Gi(A^), i £ {2,5}, acting freely on (^ and 
producing a quotient Gi/Hf0 of finite type; moreover f5(H^0) C Hfo; 

b) the natural morphism Q5/H^0 -* ^/H^Q is an etale cover (cf. also 6.1.2); 

c) we have a finite group G(2) which is the quotient of a subgroup of the group 
Aut((G2d,X2d,i?2d)) leaving invariant C* and normalizing Hf0, i G {2,5}, through a 
subgroup of it acting trivially on Q^/H^0. 

We need to prove: if C(2) acts freely on the generic fibre of G^/H^Q then it acts 
freely on Cs/iJfo- This is easy: We can asume that C(2) is a cyclic group of order p (cf. 
3.4.5.1); as (7(2) also acts on 62/^20 suc^ ^^ the etale morphism G^/H^0 -> 62/^20 
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(cf. c)) is C(2)-eqmvariant, if the statement is not true, then from 6.2.2.1 and from 
b) above, we deduce easily that C(2) does not act freely on the generic fibre Cs/iT^Q. 
Contradiction. So C(2) does act freely on ^/H^0. This ends the proof of the corollary. 

6.2.5. REMARK. There are examples of almost healthy normal schemes which 
are not noetherian. Such examples can be constructed by taking the normalization of 
a DVR in an infinite Galois extension of its field of fractions, having a Galois group 
of finite exponent. 

6.2.6. REMARKS. 1) There are variants for 6.2.2, 6.2.3-4 (which might be useful 
in the case of Shimura varieties of special type). For instance: 

- in 6.2.2 if we do not assume that E{G,X) = E(Gi,Xi) then we have to work 
with triples instead of quadruples (to be compared with 6.2.3); 

- in 6.2.3-4 we can work with quadruples but then we either have to restrict to 
smooth integral models having a weaker extension property (like the WEP or REP) 
or we need to find extra arguments to be able to shift the EP. 

Also there are variants for 6.2.3-4 for p = 2. The limitations for p = 2 come only 
from the fact that we can not prove 6.1.2 for p = 2 and from the the fact that we do 
not now the unicity of an integral canonical with respect to a prime dividing 2 (cf. 
3.2.4). These variants will be stated in [Va5]. 

2)* The integral canonical models of 6.2.4.1 are quasi-projective as M is so (cf. 
its proof; see also the proof of 6.4.1). 

6.2.7. Warning. Any attempt to try to prove 6.1.2 directly (using arguments 
similar to the ones in 3.4.5.1 and 6.2.2) is meaningless (cf. the two examples below). 
So we can not handle 6.1.2 just by using geometrically connected components and 
making use of 3.2.11 (which gives us these Vb-valued points). However see 6.8. 

EXAMPLE 1. Let Y := VbNti^^], and let Yi := y[y}/(y2 + 2pxy+p)' Spec(Fi) 
is a finite cover of Spec(y), which becomes an etale cover by inverting p. Moreover 
the generic fibre of Spec(Fi) is geometrically connected over KQ. Obviously Yi is a 
regular ring which is not an etale F-algebra. 

EXAMPLE 2. Let Y := Vro[a;][|>p-1(1.a;)P-1
1_a;P(|>_1)P-.1] and let Fi := Y[y}/(yP + 

pxy + p(l — x)). The situation is as above. The extra nice thing is that Spec(Yi) has 
plenty of Vb-valued points (which is not the case in the above example), as it can be 
easily checked. 

6.3.  Conjugates of integral canonical models of Shimura varieties. We 
make use of the notations pertaining to conjugates of Shimura varieties used in [Mil, 
p. 335-6]. Let (G,X, if, v) be a quadruple having an integral canonical model M over 
0(v) and let p be the rational prime divided by v. Let r be an automorphism of C 
and let x be a special point of X. We denote by rv the prime of TE(G, X) such that 
0(rv) is TO(V) . Let T,XH be the image of H under the isomorphism G(Qp) -> T'XG(QP) 
defined by spp(r). It is a hyperspecial subgroup of T'xG(Qp). 

6.3.1. LEMMA. TM is an integral canonical model of (T,X
G,

T
>
X
X,

T,X
H,TV) (hav- 

ing EEP ifJA does). 

Proof. Here rM is defined in the same manner as TE(G,X). Obviously rM has 
the EP. It has the EEP if OVC does have it. rM has a r'a;G(A^)-continuous action due 
to the fact that M has a G(A^)-continuous action and due to [Mil, ch. 2, 4.2 b) and 
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5.5 b)]. Using again the loc. cit. and the smoothness of M, we get that rM is also a 
smooth model (over 0(rv)). This ends the proof of the lemma. 

6.4. The main results. 

6.4.1.* THEOREM. Let Sh(G,X) be a Shimura variety of preabelian type. Let 
p>b be a prime such that G is unramified over Qp. Then Sh.p(G,X) exists and has 
the EP. As a scheme it is a pro-etale cover of a quasi-projective smooth scheme over 
(the normalization in E(G,X) of) Z(p). 

Proof Let (G, X, H, v) be a quadruple of preabelian type with v dividing a ra- 
tional prime p > 5. From 6.4.2 below we deduce the existence of an injective map 
/: (Gi, Xi) ^ (GSp(W, ib), S) which is a good embedding with respect to p, and such 
that (Gf ,Xf) = (Gad,Xad). We use the notations of the SQSPT introduced in 
3.2.7 3). From 3.2.7 2) and 5.8.2 (cf. def. 5.8.1), we deduce that (G1,Xl,H1) has 
an integral canonical model having the EEP. From [Mu] and 5.6.2 we deduce that as 
a scheme it is a pro-etale cover of a quasi-projective smooth scheme over Z(p). The 
statement of 6.1.2 implies that (G^X^i^) has an integral canonical model having 
the EEP, which as a scheme is a pro-etale cover of a quasi-projective smooth scheme 
over Z(p). From 6.2.3 we deduce that (G2,X2,iZ2) has an integral canonical model 
which as a scheme is a pro-etale cover of a quasi-projective smooth scheme over Z(p). 
It has the EP and its extension to Vb has the EEP. From 6.2.2 b) we deduce that 
(G, X, H) has an integral canonical model M. As the quotient of a quasi-projective 
scheme smooth through a free action of a finite group is still a quasi-projective smooth 
scheme (cf. [Mu, p. 112]) we deduce that M is a pro-etale cover of a quasi-projective 
smooth scheme over Z^py From 3.2.2 4) we deduce that it also has the EP. This ends 
the proof of the theorem. 

If (G, X, i7, v) is of abelian type then we can make use of a SQSAT with Gier not 
depending on i £ {1,2,3,4} (cf. 3) and 10) of 3.2.7 and 6.4.2). So we can make use 
of 6.2.3 (instead of 6.1.2) for concluding that (G±,X±,H±) has an integral canonical 
model having the EEP and which as a scheme is a pro-etale cover of a quasi-projective 
smooth scheme over Z(p) (as (Gi, Xi, Hi) has an integral canonical model having these 
properties). 

6.4.1.1. REMARKS. 1)* From 6.4.1 we deduce that any integral canonical model 
of a quadruple (G,X,H,v) of preabelian type, with (v, 6) = 1, is a quasi-projective 
integral model. 

2) In the context of 6.4.1, if Sh(G,X) is of compact type, then Shp(G,X) is a 
pro-etale cover of a projective smooth scheme over Z(p). 

From the proof of 6.4.1 (see also 6.8) we deduce that for seeing this, we can assume 
that we do have an embedding (G,X) <-> (GSp(W,ip),S) good with respect to p. As 
different quotients of Sh.p(GSp(W,ip),S) have (plenty of smooth projective) toroidal 
compactifications (cf. [FC]) which are moduli of semi-abelian varieties, we deduce 
that different quotients of Shp(G, X) admit compactifications (obtained by taking the 
normalization of some closures in the previously considered compactifications), which 
are projective schemes and moduli of semi-abelian varieties. We need to show that, 
in our case, these quotients are in fact identical to their compactifications. This is 
equivalent to showing that over this compactifications we have in fact abelian schemes 
(not just semi-abelian schemes). This is an easy consequence of [FC, ii) of 10.1, p. 88] 
(the argument is the same as the one used in the first key fact of the proof of 3.2.3.2 
b)). 
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3) 6.4.1 fulfils the expectation of [Mi4, 2.17]. 

6.4.2. THEOREM. Let Sh(G,X) be an adjoint Shimura variety of abelian type. 
Let p > 5 be a prime such that G is unramified over Qp. Then there is a Shimura 
variety Sh(Gi,Xi) of Hodge type having Sh(G,X) as its adjoint variety and having 
a good embedding in a Siegel modular variety with respect to p, and such that for 
any other Shimura variety Sh(G2,X2) of abelian type having Sh(G, X) as its adjoint 
variety, there is an isogeny Gf61" —>• G^- 

The proof of 6.4.2 is presented in 6.5-6. 

6.4.2.1.* COROLLARY. Any integral canonical model M of a Shimura quadruple 
(G,X)H,v) of preabelian type, with (v,6) = 1, is a strongly smooth integral model 

This is a direct consequence of 6.4.1-2 and 6.2.4.1. We would like to remark that 
if (G, X) is of abelian type then we do not need to make use of 6.1.2 (cf. the proof of 
6.2.4.1 and of 6.4.2). 

This corollary implies that many other smooth integral models are strongly 
smooth, cf. 3.4.8.1. 

6.4.2.2.* COROLLARY. If in 6.4-2.1 above there is a quadruple (Gi.Xi.H^vi) 
having the same adjoint quadruple as (G,X,H,v), admitting an embedding 
(Gi,Xi,fli,vi) M- (GSp(W,ip),S),Kp,p), and such that there is an isogeny Gder ->• 
G?er

; then M0^  has the EEP. 

Proof. This is a consequence of 6.2.2-3 and 6.1.2 (cf. 6.4.1 and the def. of the 
EEP). If the pair (G,X) is of abelian type then we do not need to use 6.1.2. 

6.4.3. Let (G,X) define a Shimura variety of preabelian type. Let § be the set 
of primes whose elements are 2, the primes p for which G is ramified over Qp, and 3 if 
G is unramified over Qs but Sh3(G,X) does not exist (if a quadruple (Gi,Xi,i?i, vi) 
with vi dividing a rational prime p>3, has an integral canonical model, then we 
expect that Shp(Gi,-X"i) does exist; this is motivated by rm. 8) of 3.2.7 and by the 
proof of 5.1, where was irrelevant with which prime of the reflex field dividing p we 
were working). Let A^ be the ring of finite adeles with all the ^-components, q E §, 

omitted. We have A/ = (!!?£§ Q^) x ^■/- Let H§ be a compact open subgroup of 
G(Aj) which is a product of its ^-components (for primes q 0 § ) and such that every 
^-component of it is a hyperspecial subgroup Hq of G(Qq). We call such a subgroup 
of G(A?) hyperspecial. It is defined by the property that it is a compact subgroup 
of G(A§) of maximal volume (with respect to any Haar measure on G(A§)): this is a 
consequence of [Ti, p. 55]. 

6.4.4.* THEOREM. For any open subgroup Hs ofG(Ylqe§ QP) 
SUC

^ that iJ§ x Hs 

is smooth for (G,X), there is a quasi-projective smooth scheme 3v[(H§) over the nor- 
malization O(s) o/Z[n 1    ] in E(G,X), whose generic fibre is Sh.HsxH§(G^X), and 

such that the normalization Sh(G,X) of'M(Hs) in the ring of fractions o/Sh(G,X) 
has the properties: 

a) It admits a G(Yl eSQq) x H§-continuous action; 

b) For every prime q ^ S; the group G(Qq) acts continuously on Sh(G:X) x 

0(s)[y and the quotient of Sh(G,X) x Z^ by Hq gets a G(A?)-continuous action, 
together with which it is the integral canonical model of the triple (G,X,Hq). 
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Proof. It is enough to show that there is a finite set §1 of rational primes con- 
taining § and a quasi-projective smooth scheme Mi over the normalization O(Si) of 
Z[-pp-^—-] in E(G,X), whose generic fibre is ShHsxHs(G,X), and such that for any 

prime p £ §1 the normalization of Miz(p) in Sh.Hp(G,X) is the integral canonical 
model of the triple (G, X, Hp): if q G §1 \ §, and if M9 is the integral canonical model 
of the triple (G, X, Hq), then Mq/Hs x Il^suig} -^ ^s a smooth scheme over the nor- 
malization of Z(q) in E(G,X) (cf. 6.4.2.1); but now Mi and Mq/Hs x Hp^su^} flrp 

(for g G §1 \ §) can be glued together along their generic fibres. 
Part a) is trivial. We denote by P(G, X) the statement of the existence of a set of 

rational primes Si and of a scheme Mi as above for the Shimura pair (G, X). 6.4.2.1 
gives us the right to assume (for proving P(G, X)) that H§ is as small as desired. So 
the fact that P(G, X) is true for (G, X) of Hodge type is a direct consequence of the 
proof of 3.4.7. 

We treat now the case when Sh(G, X) is an arbitrary Shimura variety of pre- 
abelian type. Let Sh(Gi, Xi) be a Shimura variety of Hodge type having Sh(Gad, Xad) 
as its adjoint variety. Let (G2,-X"2) —> (Gad,Xad) be a cover with Gder a simply con- 
nected semisimple group and with E^,^) = £(Gad,Xad) (cf. [MS, 3.4]). Let 
(Gs.Xs) be the fibre product of (Gi,Xi) and (G2,X2) over (Gad,Xad) (cf. 2.4.0). 

From 6.2.4.1 and the statement of 6.1.2 we deduce easily that P{G^^ X^) is true as 
P(Gi,Xi) is true (i.e. the normalization of a scheme Mi as above, but for (Gi,Xi), 
in the ring of fractions of a quotient of Sh(G3, X3) by a subgroup of Gz(kf) which is 
smooth for (Gs,^), is a smooth scheme over the normalization O(Si) of ^[TT^—] 

in E(G3,Xs), for §1 a large enough finite set of rational primes). 
We have Gder = Gder (both are simply connected semisimple groups having 

the same adjoint group). From 3.2.14-15 (applied to the injective map (Gs^Xs) c->- 
(G2,X2) x (G3b,X|b) defined by the natural projection of (Gs,^) on (G^,-^) and 
by the canonical map (G3,X3) -» (Gf13, Xfb)) we deduce easily that P(G2, X2) is true 
as PiGs.Xs) is true. 

The proof of 6.2.2 implies that P(Gad,Xad) is true as P(G2,X2) is true. 
The same argument used in getting that P(G3,X3) is true as P(Gi,Xi) is true, 

we deduce from 6.4.5 below (applied to the canonical finite map (G, X) —>• (Gad, Xad)), 
that P(G,X) is true as P(Gad,Xad) is true. This ends the proof of the theorem. 

As in the proof of 6.4.1, if (G,X) is of abelian type, we do not need to use the 
statement of 6.1.2 (as we can use instead of it 6.2.3 and 3.2.14-15). 

6.4.5. LEMMA. Let f: (G0,X0,iJ0) -> (G1,^1,^1) be a finite map of triples 
having integral canonical models M0 and respectively M1. We assume that the prime 
p such that H1 C G1 (Qp) is greater than 2 and that M0 and M1 have the EP. We 
also assume that either 

a) the order q of the center of the semisimple simply connected group cover of 
QOder ^ reiafoyeiy prime fi0 p an(ji j^p is a quasi-projective integral model, or 

b)*p> 5 and (G0,X0) is of preabelian type, or 
c) M0 and M1 are pro-etale covers of proper smooth Z(pyschemes. 
Then the natural morphism M0 —> M1 makes M0 to be a pro-etale cover of an 

open closed subscheme of M1, and so M0 is the normalization of M1 in the ring of 
fractions 0/M0. 

Proof. Let VQ be the completion of the strict henselization of Zp. We can move 
over Vb (i.e.   we can shift from triples to quadruples).   This is allowed as M0 is a 
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scheme over the normalization of Z(p) in E(G0,X0) and as this normalization is an 
etale cover of the normalization of Z(p) in E(G1,X1) (cf. [Mi3, 4.7]) over which M1 

is defined. Let v0 be a prime of E(G0,X0) dividing p, and let v1 be the prime of 
^(G1,^1) divided by v0. For i = 07T, let M\^o be the extension to VQ of the integral 
canonical model of the quadruple (G^X^ij^^,^'^). 

From 6.2.3 and rm. 10) of 3.2.7 we deduce that we can assume that /0 is a cover. 
So case a) results from 6.2.2. To handle the other two cases we first remark that the 
normalization N of Myo in the ring of fractions of Myo has local rings of points of 
codimension 1 isomorphic to local rings of M^o of codimension 1. To see this it is 
enough (due to the EP enjoyed by N and My) to check that any such ring is a DVR. 
In case c) this is a consequence of 6.4.1.1 2) and of [Mi4, 4.13]. In case b) this is a 
consequence of 6.4.2.2 and of 6.2.2: we can assume that Goder is simply connected; so 
the proof (Steps B), C) and D)) of 6.2.2 applies (it shows the existence of a natural 
morphism from the spectrum of such a ring into JVtyo; using the natural morphism 
MyQ -> N, we get the desired result). 

From this and [Mi4, 4.13] we deduce that N is unramified over Myo in all these 
points. As M0

Ko — NKQ is a pro-etale cover of an open closed subscheme of M^0, 
we deduce from the classical purity theorem that N is a pro-etale cover of an open 
closed subscheme of MyQ. In particular N is a regular formally smooth scheme over 
Vb having the EP (cf. C) of 3.2.2 4)). As Myo also has these two properties we get 
(cf. rm. 7) of 3.2.3.1) N = M%Q. This ends the proof of the lemma. 

The proof of 6.8.1 shows that in fact we can handle the case a) as the other two 
cases, without making reference to the involved 6.2.2, and so without assuming that 
M0 is a quasi-projective integral model. 

6.4.5.1.* COROLLARY. Letf: (Gi,Xi,iJi,vi) ->• (£2,^2, #2,^2) beafinitemap 
between two quadruples of preabelian type. We assume that Vi is relatively prime to 
6. Let m\Mi -» M2 x 0(Vl) be the natural morphism (cf. rm. 4) of 3.2.7) defined by 
f. Then m is the composite of a pro-etale cover with an open closed embedding. A 
similar result is true if we work with triples. 

6.4.6. REMARKS. 1)* If (Y,?7)-is an extensible pair with Y a healthy regular 
scheme over Spec(Z LT 

1    ], then any morphism U —> M(H$) extends uniquely to 

a morphism Y -> M(Hs) (for a proof of this see 6,7). With the terminology to be 
introduced in [Va6] these schemes M(i7s) are integral canonical models of their generic 
fibres. 

2)* These smooth schemes M(H$) are the analogue of the schemes attached to 
Siegel modular varieties parameterizing principally polarized abelian schemes (of a 
given dimension) and having a finite level symplectic similitude structure. Of course 
there are variants of 6.4.4 (and of 1) above) with § replaced by a larger set of primes 
(not necessarily finite). But all these variants are a consequence of 6.4.4 (and resp. of 
1) above). 

3)* We call Sh(G,X) the extended integral canonical model of Sh(G,X) with 
respect to Hs. As schemes Sh(G,X) and M(Hs) do not depend on the hyperspecial 
subgroup Hs of G(A^). 

To check this let Hf be another hyperspecial subgroup of G(A^). It is enough to 
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show the existence of cartesian squares of the form 

ShK*{G,X)     -^->      ShKs(G:X) 

ShHsXHs(G,X) —5—>" ShHgXHs(G,X), 

where Ks (resp. Kf) stands for an arbitrary product of the factors of H§ (resp. of 
iff), where r and ri are the natural quotient morphisms, and where in and iKs are 
isomorphism (cf. rm. 7) of 3.2.3.1). 

If G is a torus then we have nothing to show. If G is an adjoint group this is 
a consequence of 2.3 and of the fact that any two hyperspecial subgroups of G(A§) 
are G(A^)-conjugate (cf. [Ti, p. 47]). The same argument works in the case when 
we have a cover (G,X) ->- (Gad,Xad) (as we have epimorphisms G(Qi) -» Gad(Q), 
for any prime /). A simple argument based on connected components allows us to 
shift this independence property to any Shimura variety of preabelian. In detail: 
we consider the fibre product (cf. 2.4.0) of the natural map (G,X) -> (Gad,Xad) 
with a cover (Gi,Xi) -> (Gad,Xad) such that Gfr = Gder. We get finite maps 
/i:(G2,X2) -v (Gi,Jfi) and /:(G2,X2) -> (G,X), with Gder = Gder. Moreover / 
is a cover. From [Mi4, 4.11] we deduce that we can replace (G,X) by (G2,X2). We 
have an injective map (G2,-X"2) ^ (Gs^Xs) := (Gi,-X"i) x (G|b,X|b) defined by /i 
and the natural map (G2,-X"2) -> (G^jXf13). So we can transfer the things (known 
to be true for (Gs,^)) to (Gi,Xi) (cf. 3.2.14-15). 

This justifies the notation M(i?s) and the following terminology: the scheme 
Sh(G, X) is referred to as the unramified Shimura scheme defined by (G, X). Warning: 
the association Sh(G, X) to (G, X) is not functorial. There are two obstructions to 
this: the first one is derived from 3.1.2.2 2), while the second one is derived from 
the fact that § depends on (G,X). However 6.7.2 below is quite enough for many 
functorial purposes in the context of Sh(G,X). 

4) 6.4.5 has a variant for quadruples: If (G0,X0,H0, v0) -+ {Gl,Xl.H1 ,vl) is 
a finite map between two quadruples, with (v0,2) = 1, having integral canonical 
models M0 and respectively M1, and if either a) or c) of 6.4.5 is true, then the natural 
morphism M0 —> MQ is the composite of a pro-etale cover with an open closed 

embedding. 
5) In 6.2.4 a) it is enough to assume that (v,6) = 1 and that M is a quasi- 

projective integral model: 6.2.3 and 3.2.7 11) allows us to assume that Gad is a simple 
Q-group. Now everything results from 6.2.4 and 6.4.2 once we remark that the centers 
of semisimple simply connected groups of E§, E? or Di Lie type have orders a power 
of 2 or 3. If we exclude the EQ factors than we can replace (v,6) — 1 by (T;,2) = 1. 
The same applies to 6.2.2. 

6)* The philosophy of 6.4.4 is: to generalize Serre' s lemma [Mul, p. 207] to 
the context of Shimura varieties of preabelian type, we just have to check things in 
characteristic zero. 

6.4.7. REMARK. If (G,X) is the pair (Gi,Xi) of 5.7.5 for / = 10, then different 
open subschemes of the schemes M(iJs) x O(s) [^F] 

are moduli schemes of polarized 
(or just pseudo-polarized) if3-surfaces having some finite level-structure (cf. [Va6]). 

6.4.8. REMARK. For the p — 2 and p = 3 theory of Shimura varieties of pre- 
abelian type see [Va5] and [Va2]. In [Va2] we prove that 6.4.1-2 remain true for p = 3. 
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So in 6.4.3 we have 3 E § iff G is ramified over Q3. 

6.4.9.* REMARK. We do not know if all integral canonical models whose exis- 
tence is guaranteed by 6.4.1 do have the EEP (cf. 3.2.2 4)). However they do have 
an extension property broader than the EP. This is with respect to healthy normal 
schemes (over the required localizations of Z) whose local ring in a point of mixed 
characteristic and of codimension 1, is a DVR (this can be easily checked starting 
from 6.1-2 and A) of 3.2.2 4)). In fact it is enough that these local rings are certain 
inductive limits of discrete valuation rings (cf. the proof of 6.2.2; for instace if they are 
inductive limits of discrete valuation rings whose transition homomorphisms, at the 
level of fields of fractions, are of degree dividing a fix number M € N). Similarly for 
the schemes M(fZ"s) constructed in 6.4.4 we have a broader extension property than 
the one mentioned in rm. 1) of 6.4.6. 

From 3.2.12 and 6.4.1 we get directly: 

6.4.10.* Criterion. Let (G^X^H^v) be a quadruple of preabelian type, with 
(v,6i) = 1. Let M be a normal integral model of it over 0(v) having the SEP. Then 
M is the integral canonical model of (G, X, H, v) (in particular M is a smooth integral 
model and has the EP). 

6.4.11. The compact case. We assume now that the pair (G,X) of 6.4.3 is of 
compact type. So Sh#s x#cS (G, X) is a smooth projective scheme over i£(G, X). From 
6.4.1.1 2) and 6.4.4 we get directly: 

A. COROLLARY. Sh.H&xH& (G, X) has good reduction with respect to any prime v 
of E(G,X) not dividing a prime ofS. 

A similar thing can be stated for any connected component £9 of Sh^sX^s(G, X)c: 

B. COROLLARY. E9 is naturally defined over a finite field extension E(Q9) of 
E(G,X) unramified outside §; and its canonical model over E9 has good reduction 
with respect to any prime of E(G9) not dividing a prime of S. 

C Moreover: 'M(Hs) is the unique proper smooth scheme over 0(g) having 
ShH^xHs(G1X) as its generic fibre. To see this let 'N(Hs) be a proper smooth 
scheme over 0(s) having Sh#sX#s(G,X) as its generic fibre. Using the extension 
type property enjoyed by M(i?§) (cf. 6.4.6 1)) we deduce the existence of a morphism 
Z:N(jffs) -* M(Hs) which is the identity on generic fibres. From [Hart, 11.3, p. 279] 
we deduce immediately that / is an isomorphism. The same thing remains true if 
instead of 0(§) we work with any regular flat 0(§)-scheme D of dimension 1 such 
that any smooth D-scheme is healthy (see 3.2.2 1)), and if M(JHS) is replaced by its 
extension to D: the same proof applies. 

D. We can use this fact to give an alternating definition of an integral canonical 
model of a quadruple (G, X, iJ, v) with (v, 6) = 1: 

THEOREM. An integral model of (G, X, H, v) over 0(v) is the integral canonical 
model of (G, X, i?, v) iff it is a smooth proper integral model 

This theorem answers a question of M. Flach. 

6.5. A proof of 6.4.2 in the case when p does not divide B(G). 

6.5.1. First we prove that it is enough to treat the case when G is a Q-simple 
group. To check this let (G, X) be a product of two Shimura pairs (G\ X1) of adjoint 
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type, i = 1,2, for which 6.4.2 is true. As G is unramified over Qp we deduce that the 
group G* is also unramified over Qp, i = 172. Let (G\,Xi) <-+ (GSp{W\il)i),Si) be 
an embedding good with respect to p, with (Giad,X*ad) = (Gl,Xl), and such that 
for any other Shimura pair (G^j-X*!) of preabelian type having (G^X1) as its adjoint 
variety, there is an isogeny Gjder -+ G|der {i = 172). Let (Gf,Xf) be a Hodge quasi 
product of the two Shimura pairs {G\,X{) and (G\,Xl) of Hodge type (cf. Example 
3 of 2.5). Now the Segre embedding (G?,^3) -> (GSpiw1 0 W2^1 0 V2),S0) is a 
good embedding with respect to p (cf. 4.3.17). Moreover G?der = G}der x G?der. So 
for any Shimura variety (G^Xf) of abelian type such that its adjoint variety is the 
adjoint variety of (G?,Xf), there is an isogeny Glder -> Gfder (cf. [De2, 2.3.8]). 

So we can assume that G is a simple Q-group. We deduce the existence of a 
totally real number field F and of an absolutely simple adjoint group Gs over F such 
that G = ResF/QGs [De2, 2.3.4]. As before VQ = W(Z/pZ). For any number field E 
we denote by E^ the normalization of Z(p) in E. Let Gz(p) be an adjoint group over 

Z(p) having G as its fibre over Q (cf. 3.1.3), and let Gz(p) be the semisimple simple 
connected group cover of it. We have: 

a) GVQ is a product of [F : Q] copies of a split adjoint group of the same Lie type 
as G (this is obvious). 

b) As G is unramified over Qp, F is unramified over p and Gs
Fi is unramified over 

Fi, where F®QP = J]i€/ F;, with Fj local fields (we have GQP = YlieI ResFi/qpG
s

F.). 

[De2, 2.3.10] admits a Z(p)-version: 

6.5.1.1. THEOREM. Let K be a quadratic totally imaginary extension of F, 
unramified over p. Then there is a Shimura variety Sh(Gi,Xi) of Hodge type such 
that: 

a) Sh(G, X) is its adjoint variety; 
b) for any Shimura variety Sh(Gi,Xi) of abelian type with (Gfd,Xfd) = {G,X), 

there is an isogeny Gder —> Gder; 
c) its reflex field is the the composite field of E(G, X) and E(ResK/QGm, hr) 

(where (ResK/qGrmhT) is the zero dimensional Shimura pair defined in [De2, 2.3.9]); 
d) it has a good embedding in a Siegel modular variety with respect to p. 

Proof The proof is divided in two parts. First we treat the case when p does not 
divide B(G), then we continue in 6.6.5 with the general case. In this section 6.5 S, 
K, Ks, (G2,X2) and (Gs^Xs) have the same significance as in [De2, 2.3]. So 5 is a 
set of nodes of the Dynkin diagram of Gc, (G2,X2) and (Gs^Xs) are Shimura pairs, 
while Ks is a product of finite field extensions of Q. If (G, X) is of £/, Ci or Df- type 
(rep. of Ai or Df type) then to each simple factor of G|d it corresponds one (resp. 
two) elements of S. We itemize the things we need. 

i) We start with a representation W^ of Gz(p) over Z^ which over Vb is iso- 
morphic to (Bs€sVp(s)n for a convenient number n G N (to be compared with [De2, 
2.3.10]). Here Vp(s) is the VQ-representation of GVQ given by the fundamental weight 
corresponding to s G S (cf. [De2, 2.3]). 

ii) The totally imaginary quadratic extension K of F is assumed to be unramified 
above p (i.e. Spec(K^) is an etale cover of Spec(Z(p)). 

iii) Ks is unramified above p as Gz(p) splits over VQ. 

iv) The closure of G3 in GL(Wzip)), with Wz(p) '— K(p) ®F(P) ^(p)>1S a reductive 
group G3Z(p) over Z(p) (cf.   [De2, 2.3] for the meaning of G3) (moving over VQ this 
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becomes obvious). Let G3+der be the subgroup of G3 generated by Gf61", and by 
the maximal subtorus of Z(Gs) which over M is compact (cf. [De2, 2.3.3 and end of 
2.3.10]). Let G3 be the subgroup of G3 generated by G3+der and by the one dimensional 
split torus acting as scalar multiplication on 

W := Wz(p) (8) Q. 

So any homomorphism § —> G3M defined by some x E X3 factors through G3R (of 
course instead of G3 we can work equally well with the smallest subgroup of G3 
satisfying this property). We get a Shimura pair (GsjXs); here X3 is a disjoint union 
of connected components of X3 defined by a G3(E)-conjugacy class of an arbitrary 
x E X3. This is a slight restatement of [De2, 2.3.3]: we do not always have X3 = X3, 
as it can be seen easily (to be compared with 2.5.1) through examples in which F is 
a totally real quadratic extension of Q. 

Let G3z(p) (resp. G^er) be the closure of G3 (resp. of Gc
3
+der) in G3Z{py 

From loc. cit. we get that G3 is included in the group of symplectic similitude 
isomorphisms defined by a non-degenerate alternating form on W. 

v) There is a perfect alternating form T/T. WZ(P) 0 Wx(p) ->• ^(p) such that we get 

an injective map f:(Gs,Xs) ^> (GSp(VF,ip),S0) (here we write as an exception 5° 
for what we have always denoted by 5, not to create confusion with the meaning of S 
in [De2, 2.3]). 

This is so due to the fact that [De2, 1.1.18 b)] admits a Z(p)-version. To see this 

we first remark that the bilinear forms Wzip)®Wz{p) —>• Z(p) fixed by Gsz(p) form a free 
module M over Z(py Chosing n big enough (see 6.6.5 d) for an explicit presentation) 
we can assume that we have such bilinear forms which are perfect and alternating. 

In fact using the natural embedding SLm(Z(py) «-> Sp2m(%(p)) (as in 6.6.5 dl); 
here Sp2m(%(p)) is the group of symplectic isomorphisms defined by a perfect alter- 
nating form on Z?"?, etc.), m := dimz(p)(Wz(p)), we get the existence of such a perfect 
alternating bilinear form after we replace (if needed) n by 2n. This replacement cor- 
responds to a replacement of W(p) by W(p) 0 W(p) and of Wz(p) by Wz(p) 0 Wzip) 

(cf. the way we defined W^ in 6.6.5.1, and the definition of the connected com- 
ponent of Z(G3+der)). We would like to point out that this fact is convenient for 
notations (and so used in what follows), but is irrelevant for what follows: we can 
work equally well (to be compared with 6.7.2) without having (or knowing) that 
the representation G^^^ -> GL(Wz{p)) we get under the above natural embedding 

5Lm(Z(p)) <-> Sp2m{%(p)) is a sum of two copies of its representation on Wz(p). 
Now we look at M as a group scheme over Z(py The intersection of a non-empty 

open (in the real topology) subset of MR(M) with the set of Z(p)-valued points of the 
dense open subscheme M(pa) of M corresponding to perfect alternating bilinear forms 
is not void: M(pa) has Z(p)-valued points; if \j): Wzip) 0 Wz{p) -> Z(p) corresponds to 

z' E M(pa)(Z(p))J then we can choose ip such that mod p is ^ mod p (standard 
argument involving approximations with respect to non-equivalent valuations). 

vi) Using 5.7.4 and 5.6.9 we get that if p does not divide B(G) (see 5.7.2 for the 
meaning of it), then (Gs,Xs) <-> (GSp(Wr,'0),50) is a good embedding with respect 
to p. 

For checking this we first remark that we have 

Wvo := Wz(p) 0 VQ = ^ii^eixsVpis)1 
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as G3yj-modules, with / = {1,2,..., 2n}, the upper indices i just counting the numbers 
of copies of Vp(s) we get. Moreover G3y0 leaves invariant any summand of this direct 
sum decomposition. Let gl(Wv0) = mo © mi, with mo the free Vb-submodule of 
End(WVo) leaving invariant any subspace Vp(sy of Wv0, and with mi the free VQ- 

submodule of End(Wvb) taking, V(io, SQ) G / x 5, the summand Vp(soyo of Wv0 into 
®(i,s)ei(i0,so)Vp(sY (here I(io,so) := I x S\ {(io,so)})- Let TTQ be the projector of 
0f(WVo) on mo associated to the above direct sum decomposition. Now to get vi) we 
just have to apply 5.7.4 to the bilinear form b on £|l(WVo) defined by 

b(x,y) := ©(i,5)G/x57(z,s)Tr(i5S)(7ro(x),7ro(2/)). 

Here x,y E Ql(Wvo), l(i,s) are invertible elements of VQ having their sum still an invert- 
ible element of VQ, and Tr^s^ is the trace form on End(T^(s)z). Tr($jS)(7ro(a;), 710(2/)) 
makes sense as mo = 0(i?5)e/X5End(T^(5)z). Obviously b is fixed by G3y0 and so by 

Gsvo- 
This ends the proof of 6.4.2 and 6.5.1.1 in the case when p does not divide B(G) 

(cf. [De2, 2.3.10-13] for the requirements on E(G3,X3) = E{G^X3) and on GfT = 
G^ expressed in 6.5.1.1 b) and c)). 

6.6. The proof of 6.4.2 and 6.5.1.1 (the general case). We continue to 
use the same notations as in 6.5. We present two proves of the general case of 6.4.2: 
the first one (6.6.3), based on the (sophisticated) proposition 6.6.2, and a second one 
(6.6.5) which is a simplified, down to earth, explicit version of the first one. 

6.6.1. Notation. For any totally real number field Fi D F, we denote by 
ShFl (G, X) the adjoint Shimura variety defined by the pair (GFl, XFl), where GFl := 
ResF1iQGs

Fi and XFl is the Hermitian symmetric domain obtained as the GFl(E)- 
conjugacy class of homomorphisms § -t G^- generated by the composite of any x G X 
with the natural inclusion GR 

C
->- G^1. So XFl is a disjoint union of [Fi : F] copies 

of X. We get a natural injective map /i?1:Sh(G, X) M> ShFl(G,X). In particular 
ShF(G,X) = Sh(G,X). 

6.6.2. PROPOSITION.   There are injective maps 

(G4, X4) 4(G0, X0) ^(G1, X1) h(GSp(W, il>), S0) 

having the properties: 

a) there is a X ^-lattice LofW such thatip induces a perfect bilinear form I/J: L<g)L —> 
Z(p) and the closures of G/^, G0 and G1 in GSp(L,ip) are reductive groups over 
Z(p) denoted respectively by G4zip)? ^0z(p) and G1z{p); 

b) (G4d,X4d) = (G,X) and there is a totally real number field Fi D F such that 
Sh(G0ad,X0ad) = ShF'(G,X); 

c) the map fo induces the canonical homomorphism /^: G = Gf* —>- G0ad = GFl; 

d) G%     is the centralizer in Gi     of a torus of G\    : /        £{p) £(p)     J J       L{p)> 

e) the homomorphism Goder -> Glder induced by fi is of the form ResF1/QfFl for 

fFl: Gjr -> G^ a group homomorphism between semisimple groups over Fi, with 

G^d a simple Fi -group, and with Gjpi a cover of Gs
Fi; 

f) /2 is an injective map obtained by the Z(p)-version of [De2, 2.3.10] explained in 
6.5.1.1, with L = Wzip) and with the number n (mentioned in i) of 6.5.1.1) a 
power of 2; 
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g) p does not divide B(Gla'd); 

h) Gf = G0ab; 

i) If (G, X) is of Df type, with I G N, I > 4, then the embedding Gfr ^ Glder can 
be lifted to an embedding at the level of semisimple simply connected group covers. 
Moreover if (G,X) is of Ai, Bi or Df type, we can also get E(G1,X1) - Q. 

Proof. The proof of 6.6.2 presents no difficulty. The statement of the proposition 
makes its proof obvious (cf. also [Vao]). If (G,X) is of Bi (resp. Df) type, we can 
take (G1,^1) of Bi+a (resp. ^^_a) type, with a a non-negative integer; if (G,X) is 
of Ci (resp. Df) type, we can take (G1, X1) of Cai (resp. D^) type, with a € N; if G 
is of Ai type we can take G1 of Ca(/+1) type, with a E N (to be compared with 6.6.5 
below). In practice we take the number a to be 0 (when allowed), 1 or 2. We will 
just add that we need Fi to be a totally real number field, containing F, unramified 
above p and big enough so that Gs splits over the completion of F\ with respect to 
any finite prime of the ring of integers of Fi. 

For the last property (concerning the cases when we can take ^(G1,^1) = Q) 
needed for the proof of the Langlands-Rapoport conjecture (of 1.7) see [Va2]. We need 
6.6.2 (presently) only for the p — 2 and p = 3 theory of Shimura varieties of preabelian 
type. 

6.6.3. REMARK. 6.6.2 a) implies that G4 and G1 are unramified over Qp. From 
5.7.1 and 6.6.2 g) we deduce that the injective map (G1,^1) ^ (GSp(Wr,^),50) is a 
(very) good embedding with respect to p. From 4.3.14 and 6.6.2 d) we deduce that 
(G0,X0) M- (GSp(W,ilj,S0) is a good embedding with respect to p. Now 4.3.16 and 
b), c) and h) of 6.6.2 imply that (G^X*) ^ (GSptW^),'?0) is a good embedding 
with respect to p. This ends the first proof of the general case of 6.4.2. 

We present now what 6.6.2 becomes in the case of classical Spin modular varieties 
of odd dimension (and rank 2). 

6.6.4. EXAMPLE. Let I > 3 be an integer. Let Sh(G;, JQ), i = 0,1, be two adjoint 
Shimura varieties showing up in 5.7.5, with Gi = 50(2,2/ — l + 2i). The canonical 
inclusion JO'-GQ 

C
-^ GI (corresponding to the identification of the group of invertible 

matrices of dimension 21 + 1 with the subgroup of invertible matrices of dimension 
21 + 3 having on the last two lines and columns just two diagonal 1's) induces an 
injective map jo'- (GO,XQ) <-> (Gi,Xi) and Go is the centralizer in Gi of a torus of 
Gi of dimension 1. 4.3.14 and 5.7.5 put together imply that for any prime p>5, 
Shp(Go,Xo) exists. 

If (G,X) = (Go,Xo) = (Ggd,X£d) and if p is a prime not dividing B(G) = 
6(2/ — 1), then in 6.6.2 we can take G4 = G0 = G1 and for the map /2 we can take the 
map associated to the Spin representation described in 5.7.5. So Gf3 = Gm. If p>5 
divides 21 — 1 then in 6.6.2 we can take G4 = G0, the adjoint of /1 to be jo, and as /2 
the map associated to the Spin representation of the simply connected group cover of 
Gi. 

6.6.5. An explicit proof of the above Z(p)-version of [De2, 2.3.10]. Here 
we present the second part of the proof of 6.5.1.1. Let T be a maximal torus (cf. 
the argument in 3.1.4 based on [Ha, 5.5.3]) of the simply connected group G^ (cf. 
3.1.3) over F(p) having as its fibre over F, the simply connected group cover of G5, 
and such that for any embedding F c-^ R, TR is compact. Then Tj? splits over a Galois 
extension E of F unramified above p. Choosing the smallest such Galois extension, 
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we get that E is a CM-lield (as T^ is a compact torus for any embedding F <-> 
We need T (and E) just to fix a little bit the notations. 

We consider homomorphisms (between reductive groups over E(p)) 

GS£^G%{v)^GE{v)^GL{WEip)) 

such that: 

a) WE{P) is a free E^-module of finite rank. 

b) GE{P) is semisimple; G^    is a split simple group over E^ such that p does not 

divide B{Gf   ). 

c) ho is an isogeny. Here Gp, x is the extension of Gsp    to E(v\. 

d) hi is an ^(^-version of the map fFl mentioned in 6.6.2 e). Namely: 

dl) If Gs is of Ai Lie type, then we take WE{P) of dimension 2(1 + 1) over E(py ho 
is an isomorphism. Let V7o: WEip) <S) WE{P) —> E^ be a perfect alternating form. 
We choose a basis {ei, e2, ...,621+2} of WE{P) with respect to which ^0 has the 
standard form, i.e. if 1 <i < j <2(l -f 1), then il>o(ei,ej) = 1 if j = i + / -h 1 and 
zero otherwise. We identify G^ with SLi+iE . We take /i2 0 hi such that it 
takes A G SLi+iE (E(p)) into the element of GL(WE{P)) that acts as A on the 
submodule of W#(p) generated by the first / + 1 elements of the chosen basis, and 
as (^L^)

-1
 on the submodule of WE(P) generated by the last / + 1 elements of the 

chosen basis. If p does not divide B(GS) — 6(Z + 1), we take GE{P) — Gd
E (with 

hi as identity). If p divides 6(/ + 1), we take GE{P) = ^(W^^j^o)? and hi and 
h2 as the obvious inclusions (as p does not divide B(G^) = 6(1 + 2); we recall 
that p > 5). 

d2) Let now (G,X) be of type Df. We take G% = G% = Spin(2l)Eipy We take 
/12 o fti to be the composition of the embedding Spin(2l)E{p) 

c-^ Spin(2l + 2).E(P) 

(which results by passage to simply connected group covers of the homomorphism 
SO(21)E{P) -> SO(2l + 2)E{P) described in terms of matrices by the rule: A E 
SO(21)E{V)(E^) goes to the matrix having A on the first 21 lines and columns 
and having on the last two lines and columns just two diagonal 1's), with the 
Spin representation of Spin(2l + 2)£;(p). If p divides B(GS) — 6(2/ — 1), we take 

GE{p) = Spin(2l + 2)E{P) (B(Gf) = 6(21 + 1)) and if p does not divide B(GS) we 

take GE(P) — GE     (and the obvious homomorphisms hi and Z^)- 

d3) If Gs is of Bi Lie type, then the situation is entirely analogous to the situation 
described in d2) (cf. 5.7.5). 

d4) Let now Gs be of Ci Lie type. We take Gg = G% = 5p(W^ ,^1), with 

WE a free module over E^ of dimension 21 and with ipi: WE 0 WE -> E^ 

a perfect alternating bilinear form. We choose a E^-basis {61,62,...,621} of 
PFg; with the property that for 1 < i <j < 21, ipo(ei, ej) = 1 if j = / + i and zero 

otherwise. We take: WE{P) = WE 0 W7^ a direct sum of two copies of WE . 

Let ipo be an alternating form on it such that: ?/>o(#, y) is ipi(x, y) if a:, ?/ belong to 
the same copy WE of WE{P) , and is equal to zero (resp. u(p)) if ^ = e^ belongs 
to the second copy and y = ej belongs to the first one and i is different from 
j (resp.  and i = j).  Here ^(p) is an arbitrary invertible element of E^ which 
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makes I/JQ to be a perfect form. For instance u(p) = 2 works for all primes p> 5, 
as it can be seen easily computing the determinant of the matrix associated to 
I/JQ. We take /12 ° hi to be defined by: A G Sp(Wh    ,ip)(E^) acts on WE{P) as 

A on the first copy Wg     and as (A1)"   on the second copy Wg    . If p does not 

divide B{GS) = 6(Z + 1), then we take GE{P) = G%    , and if jp divides ^(G5), 

then we take GE{P) = 5P(VFB(P),^O) (as p does not divide B(G^) = 6(1 + 2)). 

d5) If (G, X) is of type Df, the situation is entirely analogous to the one described in 
d4) (we just have to replace the alternating forms by symmetric bilinear forms), 
except that ho is not an isomorphism, but an isogeny of degree 2. We have 
G|(p)=O(20B(p). 

e) Gjl     is the centralizer of a torus T of GE(P) (cf. dl) to d5) above). 

The composition /i2 o hi o /IQ is the representation: 

- in the case dl): direct sum of the representations associated to the fundamental 
weights corresponding to the roots ai and ai (see [De2] for the notations and the role 
of the roots; see also [Mi3, 1.21]); 

- in cases d2) and d3): direct sum of two copies of the Spin representation; 

- in cases d4) and d5): direct sum of two copies of the representation associated 
to the fundamental weight corresponding to the root ai. 

6.6.5.1. We now come back to i-vi) of the proof of 6.5.1.1. All the above part of 
6.6.5 had just the role of making 6.5.1.1 i) well-fitted for the general case. 

We take W^ = WEip) • The group Gm (F) acts on W^ [-] by multiplication 
(WE(P) is a module over F^, cf. a)). We get the situation: 

GJlp) ^ ResEM/ZMGd
E{p) ^ & := ResE{v)/Z{p)GB(p) ^ GL(Wz(p)), 

with G0(Z(p)) = GE{P)(E(P)) acting on Wz(p) = K(p) <8)F(P) W^ through its canonical 
action on W(py This is the explicit version of 6.5.1.1 i). 

We keep ii) and iii) of 6.5.1.1. We have n = 2[E : F|. 

CASE 1. We consider first the case when Sh(G,X) is a Shimura variety of 5/, 
G/, Df or Df type, or of At type but with trivial involution (cf. [De2, 2.3.12]). We 
choose G3 as explained in [De2, 2.3.13] (i.e. we choose G2 as small as allowed). So 
the connected component of the center of Gs^     commutes with G0. This takes care 

of 6.5.1.1 iv). We keep 6.5.1.1 v). The injective map f:(Gd,X3) <-± (GSp(W,^),50) 
(we recall that W = Wzip) 0 Q) is a good embedding with respect to p, with Wzip) a 
good Z(p)-lattice for the map /. This is a consequence of the fact that the family of 

tensors fixed by G3 formed by the set of elements of the algebra L of endomorphisms 
of WziP) fixed by G3z(p) and by the family JF of 3 tensors of degree 4 (this is the family 

described in 4.3.10 b) for the embedding GQ ^ GL(W)) is enveloped by Wzip) and 
is Z(p)-very well positioned for G3. To check this we use 4.3.6.2). 4.3.13 takes care of 
the connected component of the origin of Z(G^), while 4.3.16 takes care of Gf**. To 
see this last part we just have to remark that (cf. 6.6.5 d) and e)): 

- we have a relative PEL situation (&,L,ResE, )/2( )T); 

- the family of tensors J is Z(p)-well positioned for the group GQ and is enveloped 
by Wz{pV cf. 4.3.10 b) and 6.6.5 b) and d). 
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This ends the explicit (second) proof of 6.4.2 as well as the proof of 6.5.1.1, in 
these cases. 

CASE 2. We consider now the case when (G, X) is of type Ai, and has a non-trivial 
involution (as def. in [Del, 3.7]). We first remark that ResKs/q^m acts on W^ [-] 
(cf. the proof of [De2, 2.3.10]). We have to take some precautions: keeping the 6.5.1.1 
iv), the connected component S of the origin of the center of Gs^     does not commute 

with G0. However SQ is generated by two subtori: one is ResK/Q^m (it commutes 
with GQ), and another one which is a subtorus T(Ks) of ResKs/^m producing an 
isogeny Resjp/QGm x T{Ks) -> iJes^/Q^m (cf. [De2, 2.3.10]). But T(Ks) lies inside 
GQ (cf. dl) above); in fact T(Ks) is a subtorus of the generic fibre of ResE{p)/zip)T 
(cf. e) and dl) above). So keeping 6.5.1.1 v), we still get (the argument is the same 
as in case 1 above) that the map /: (G3, X3) ^ (GSp(PF, ip), S0) is a good embedding 
with respect to p: again we have a relative PEL situation (G0,.L,i?es# /% T) (cf. 

4.3.16). In other words the family of endomorphism of Wz{p) commuting with G3z(p)5 

together with the family JF of three tensors (defined as in case 1) is Z(p)-very well 
positioned for G3 and is enveloped by Wz(p) (cf. dl) above). 

In fact it is an easy exercise to see that we can choose ip in 6.5.1.1 v) so that, 
replacing if needed (G3, X3) by an enlargement (see def. 4.3.1) of it in {GSp(W, ip), 5°) 
(so we are not anymore interested to have G3 as a subgroup of G3), the injective map 
(GSJXS) M> (GSp(W^),S0) is a PEL type embedding, and that the conditions of 
[Ko, ch. 5] are satisfied for p (i.e. we are in the situation described in 4.3.11). In 
fact, referring to 6.5.1.1 v), we just need to choose z £ M(pa)(Z(p)) such that the 
Z(p)-subalgebra of End(Wz(p)) formed by endomorphisms fixed by G3z(p), is self dual 

with respect to t/S. 
This completes the explicit (second) proof of 6.4.2 as well as the proof of 6.5.1.1. 

6.6.6. REMARK. Except 6.5.1.1 vi), 6.6.3-4, everything in 6.5-6 remains valid 
for p = 3 (but working with —^ instead of B(*); with * substituting a simple adjoint 
group over a field). Even for p = 2 some part of 6.5-6 remains valid. We apply this 
remark in the building of the p = 2 and p = 3 theory of Shimura varieties of preabelian 
type (cf. [Va5]). 

6.7. The proof of rm. 1) of 6.4.6. For any reductive group G over Q we 
denote by U(G) the set of primes / such that G is unramified over Qj. 

6.7.1. REMARK. In 6.5.1.1 we can choose the number field K and the Shimura 
pair (Gi,Xi) such that U(G) \ {2} = U(Gi) \ {2}. This is a consequence of the proof 
of 6.5.1.1: Gfk is unramified over Qi if K and Kg are unramified over Q; if G is 
unramified over Q; then the number fields Ks and F are unramified over / (cf. 6.5.1 
b) and 6.5.1.1 hi)). So we just need K to be unramified over / for all primes / > 2 such 
that G is unramified over Qi. For instance we can take K = F(i). More generally: we 
can take K — F(\f^d), where d G N divides the discriminant of F. 

If there is a prime / such that G is ramified over Qi (for instance if F or E(G1 X) 
is different from Q) then we can choose K and (Gi,Xi) such that VL{G) — U(Gi). 

All these extend to the context of 6.4.2 (i.e. when Sh(G,X) is not a simple 
Shimura variety). 

6.7.2. LEMMA. For any Shimura variety of Hodge type Sh(G,X) there is an 
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injective map f: (G, X) M- (GSp(W, '0), S) such that for any prime I £ U(G) there is a 
hyperspecial subgroup ofG(Qi) contained in a hyperspecial subgroup ofGSp(W,il))(Qi). 

Proof. We start with an arbitrary embedding f:(G,X) ^ (GSp(W^),S). It 
takes care of all primes / G U(G) \ ^(Z), with !B(/) C U(G) a finite set. For any 
/ 6 ^B(/) we choose arbitrarily a hyperspecial subgroup Hi of G(Qi). It is contained 
in a maximal compact open subgroup of GSp(W:ip)(Qi.). But composing the natural 
map from (G, X) to a Hodge quasi product (cf. Example 3 of 2.5) of n copies of 
(GSp(W, ip), 5), with n G N big enough and suitable chosen, with the Segre embedding 
of this product into (Gi,Xi) := (GSp(W®n^®n), Sn) we do get that Hi is contained 
in a hyperspecial subgroup of Gi (Qj) (cf. the structure of maximal compact subgroups 
of GSp(W1 -0) (Qi)). The good values of n depend only on the dimension of W over Q. 
So some n e N works for all / G ®(/). 

In fact we can always take n = 2: Hi is contained in a hyperspecial subgroup of 
GL(W)(Qi) (cf. 3.1.2.2 2)), and so 6.6.5 dl) applies. 

Now the injective map (G,X) <-¥ (Gi,Xi) has the desired property. This ends 
the proof of the lemma. 

6.7.3.* Now we are ready to prove rm. 1) of 6.4.6. We use the notations of 
6.4.3-4. We assume that 6.4.1-2 are true for p = 3 also (cf. 6.4.8) (otherwise we have 
to assume that 3 ^ §). From def. 3.4.8 and 6.4.2.1 we deduce that we can assume 
that the open subgroup Hg of.G(Ylqe§Qq) is as small as desired. This implies (cf. 
6.4.5.1 and 3.2.3.1 5)) that we can assume that (G, X) is of adjoint type. 3.2.16 allows 
us to assume that G is a simple Q-group of adjoint type. From 6.7.1, 6.4.5.1, and 
C) of 3.2.2 4) (and 6.4.2.1) we deduce that we can assume that (G,X) is of Hodge 
type. But this case is an easy consequence of 6.7.2 and 3.2.15: for iJ§ small enough 
we have a (special) (universal) principally polarized abelian scheme over M(H§) (to 
be compared with 3.4.7 and 4.1). This ends the proof of rm. 1) of 6.4.6. 

6.8. About the proof of 6.1.2. Here we present the proof of 6.1.2 as far as 
the tools presented in the present paper allow. For the last part of the non-compact 
case we have to refer either to [Va2] or to [Va3]. We keep the notations of 6.1. 

6.8.0. The part about triples implies and is implied by the part about quadru- 
ples. So we start using triples. For the case p = 3 we refer to [Va2-3]. Here we 
consider p > 3. From rm. 10) of 3.2.7 and 6.2.3 we deduce that we can assume that 
/: (Gi, XL, HI) —> (G, X, H) is a cover. Moreover we can assume that Gf61" is a simply 
connected semisimple group. From rm. 11) of 3.2.7 we deduce that we can assume 
that Gad is a simple Q-group. 

We can assume that (Gi,Xi) is not of abelian type (cf. the proof of 6.4.1). 
So (Gi,#i) is of Df type (cf. 6.4.2 and [De2, 2.3.10]). In particular the order of 
the center of Gf61" is a power of 2. From [Del, 2.4-5] and 3.2.8 we deduce that the 
connected components of Sh/f1(Gi,Xi)c are defined over KQ . As before KQ is the 
field of fractions of VQ = W(F). 

Let Jsf be the normalization of M in the ring of fractions of Sh^ (Gi, Xi). It gets 
naturally a Gi (A? )-continuous action. So N is a quasi-projective integral model of the 
triple (Gi,Xi,Hi) (cf. 6.4.1 for the quasi-projectiveness part). Moreover it has the 
EEP. So we just need to show that it is a smooth integral model. For this it is enough 
to show that it is a pro-etale cover of the open closed subscheme Ml of M defined 
as the image of N in M. We can move over VQ, and so we come back to quadruples. 
From 6.2.3.1 we get: 
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FACT. A connected component of Shn(G, X)K0 is the quotient of a connected 
component of Sh^iGi,XI)KO by a 4-torsion pro-finite group. 

6.3.1. LEMMA. We assume that for any connected component CF of Mp there 
is a VQ-valued point ofyiyQ giving birth to an F-valued point ofNvo which is mapped 
into an W-valued point of Cp. Then Ji is a pro-etale cover ofM'. 

Proof Everything boils down (cf. the above fact) in showing that: if R = 
Vo[[#i,...,£d]] is a ring of formal power series in d variables with coefficients in VQ, 

then there is no etale cover Z of Spec(iZ[-]) of degree 2, such that denoting by Ri the 
normalization of i2 in the field of fractions of Z, we do have a surjection Ri -» VQ, 

but Spec(J?i) is not an etale cover of Spec(R). 
The proof of this is easy: Z corresponds to a field extension of the field of fractions 

of R defined by an equation x2 — z, where z is an invertible element of the unique 
factorization domain R [^]. As Ri is not an etale cover of i?, we deduce that we 
can assume that z — pzi, with zi a unit of R. So we can not have surjections 
Spec(i?i) -» VQ. This ends the proof of the lemma. 

In fact the result of the above proof remains true if we replace "etale cover Z of 
Spec(i?[|]) of degree 2" by: solvable Galois cover Z of Spec(i?[-]) of degree relatively 
prime to p. Everything boils down to Kummer extensions, for which the above proof 
applies (to be compared with Step a) of 3.4.5.1). 

6.8.2. CRITERIA. The hypothesis of the above lemma is satisfied if one of the 
following condition is satisfied: 

a) M admits smooth toroidal compactifications. 
b) The W-valued points of MY obtained by specializing Ko-valued special points of 

MKQ (cf def. 2.10) are dense in Mp. 

Criterion a) is a consequence of 3.2.11 (which guarantees that N has plenty of 
Vb-valued points) and of 3.3.2. Criterion b) can be easily checked starting from [Mi4, 
4.12] and 2.7-8) (see [Va2]). 

In [Va3] we prove a) (see 1.8), while in [Va2] we prove b) (cf. 1.6.1 and the density 
property referred to in 1.6.2). From 6.8.2 a) and 6.4.1.1 2) we get (without a reference 
to [Va3]) directly: 

6.8.3. COROLLARY. //Sh(G,X) is of compact type then 6.1.2 is true. 

6.8.4. REMARK. 6.8.2 a) can be replaced by the condition: the connected com- 
ponents of Mw^r are permuted transitively by G(A^). This condition is satisfied 
(cf. 3.3.2) if there is an open subgroup HQ C G(A/) such that M/HQ has smooth 
compactifications. 

From 6.8.2 a), 6.4.4, and the existence of smooth toroidal campactifications of 
Sh(G, X) (cf. [Har]), we get (without a reference to [Va3]): 

6.8.5. FACT. There is N(Gi,Xi) G N, depending only on the pair (Gi,Xi), 
such that 6.1.2 is true if p > N(Gi,Xi). 

6.8.6. The remaining cases. From the above discussion we deduce that the 
cases of 6.1.2 which are not covered by 6.8.3 or by the abelian situation and are needed 
for the full prove of 6.1.2, can be summarized as follows. Keeping the notations of 
6.1.2, we can assume (cf. also Example 5 of 2.5) that: 

- (Gad,Xad) is a simple adjoint variety of Df type (/ G N, I > 4) such that the 
Q-rank of Gad is positive; (so G|d does not have compact factors). 
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We distinguish two cases: (Gad, Xad) has a trivial or a non-trivial involution. If it 
has a trivial involution then E(Gad, Xad) = Q, and we can assume that the embedding 
/ is a PEL type embedding (cf. case 1 of 6.6.5 and [De2, 2.3.13]; the argument is the 
same as in case 2 of 6.6.5). So we are reduced to the situation described in the case 
D of [Ko, ch. 5] (so E(G,X) = <Q>, cf. [De2, 2.3.13]; see also [Zi, p. 107]). It is an 
easy exercise to check that condition 6.8.2 b) is satisfied (Hint: use 1.6; in this case 
the results of the paragraph before 1.6.1 can be easily checked). But if (Gad, Xad) has 
a non-trivial involution, then .E(Gad,Xad) is a quadratic imaginary extension of Q, 
and the situation can not be reduced to the PEL type situation. Moreover the ideas 
of 6.6.2 do not apply: with the notations of 6.6.2, if (G,X) is of Df type and has 
non-trivial involution, then (G1,^1) is of JDjJ type and has non-trivial involution, cf. 
its proof; here a E N. In particular 6.6.2 i) offers no simplification. So we do need, as 
mentioned above, either [Va2] or [Va3] to handle this second case. 
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