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HAAR-TYPE MULTIWAVELET BASES AND SELF-AFFINE 
MULTI-TILES* 

TIM FLAHERTYt AND YANG WANG* 

Abstract. Grochenig and Madych showed that a Haar-type wavelet basis of L2(Rn) can 
be constructed from the characteristic function xn of a compact set O if and only if fl is an in- 
tegral self-affine tile of Lebesgue measure one. In this paper we generalize their result to the 
multiwavelet settings. We give a complete characterization of Haar-type scaling function vectors 
Xn(x) := [XQi (x)i • • • J XQr (X)]Ti where ft = (fii, ..., ftr) is an r-tuple of compact sets in Rn. We 
call Q a self-affine multi-tile because Q^'s tile Rn by translation and have the property that each 
affine image A(Qi) is the union of translates of some fij's. We also construct associated Haar-type 
multiwavelets , and present examples using various dilation matrices A. 

1. Introduction. Let A be an expanding matrix in Mn(Z), that is, one with in- 
teger entries and all eigenvalues |A;(A)| > 1. A compactly supported nonzero function 
f(x) € L2(Rn) is called a scaling function of a multiresolution analysis with dilation 
factor A if it has the following properties: 

(i) f(x) satisfies a refinement equation 

(i.i) -rn = J2 c°f(Ax -«). 
aezn 

where the coefficients ca are real and Y^aezn ca ~ I det(A)|. 
(ii) The integer translates f(x — a), a € Zn, are orthogonal in L2(Rn). 

It is well known that given any scaling function of a multiresolution analysis, an 
orthonormal wavelet basis can be constructed from that scaling function, see [5]. 

In [13] Grochenig and Madych studied Haar-type scaling functions and wavelet 
bases. A Haar-type scaling function is a scaling function of the form XQ? where 0 is 
a compact set in Rn, and a Haar-type wavelet basis is the wavelet basis constructed 
from a Haar-type scaling function. Grochenig and Madych showed that for a given 
expanding matrix A G Mn(R) the function xn is a scaling function of a multiresolution 
analysis with dilation A if and only if fi satisfies the following conditions: 

(i) 0 is a Zn-tile of Rn, i.e., 

(J (ft + a)=Rn 

aez,n 

and the union is measure disjoint. 
(ii) ft satisfies a set-valued equation (up to a measure zero set) 

(1.2) A(Q) = [j (SI + d) 
deT> 

for some finite digit set V G Zn of cardinality | det(A)|. 
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We call a compact set 0 with positive Lebesgue measure that satisfies the condition 
(ii) a self-affine tile. It is known that such an O must have nonempty interior, and 
must tile Rn by translation by some subset of Zn. If in addition ft is a Zn-tile of Rn, 
then the digit set V must form a complete residue system (mod A), i.e., a complete 
set of coset representatives of the group Zn/A(Zn). Conversely, if the digit set V is a 
complete residue system (mod ^4) then there is a unique compact set 0 satisfying (1.2), 
and ft must be a self-affine tile, namely it must have positive Lebesgue measure. Note 
that there is an obviously equivalent formulation of (1.2) in the form of a refinement 
equation, which is 

(1.3) xn(x) = J2xn(Ax-d). 
dev 

Self-affine tiles have been extensively studied in recent years. More results on them 
can be found in Bandt [1], Grochenig and Haas [11], Kenyon [18], and Lagarias and 
Wang [23], [19], [20]. 

In this paper we study Haar-type scaling function vectors and multiwavelet bases. 
Scaling function vectors are generalizations of scaling functions to vector valued func- 
tions. More precisely, a vector valued function f(x) = [fi(x), ..., /r(^)]T, with each 
compactly supported fi(x) £ L2(Rn), is a scaling function vector if the following two 
conditions are met: 

(a) f(x) satisfies a vector refinement equation 

(1.4) f(x) =  Y, c«f{Ax - a), 
aGZn 

where the coefficients ca are matrices in Mr(R). r is called the vector multiplicity of 

(b) vf := /Rn f(x) dx^O and for all a, (3 <E Zn, 

(1.5) /    f(x-a)fT(x-l3)dx = 5a-0A 

where A is an r x r diagonal matrix with positive diagonal elements and S7 is the 
standard Kronecker symbol with SQ = 1 and 87 = 0 otherwise. 
Note that Vf   /  0 implies that Vf is a | det(A)\-eigenvector of the matrix c. := 

As with the case of a scaling function, an orthonormal basis of L2(Rn) called a 
multiwavelet basis can be constructed from a scaling function vector. Multiwavelets 
have received considerable attention recently, after the construction of multiwavelets 
by Donovan, Geronimo, Hardin, Kessler and Massopust using fractal interpolation 
functions [15], [9], [6], and by Goodman and Lee [10]. One advantage of multiwavelets 
is that they can be made to combine smoothness with small supports. Although these 
properties are achieved at the cost of using more wavelets, their potential importance 
in numerical applications may outweight the cost. 

DEFINITION 1.1. We say a function vector f : Rn -> Rr is of Haar-type if each 
component of f{x) is the characteristic function of some compact set. 

Now, let O = (Qi, ..., Vtr) be an r-tuple of compact sets in Rn, and let Xn(^) := 
[XQi(x)i ■ - ■ i XQr{x)]T- It is then natural to ask whether xn{x) is a scaling function 
vector for some given dilation A. Our main theorems, stated below, classify all Haar- 
type scaling function vectors. 



HAAR-TYPE MULTIWAVELET BASES AND SELF-AFFINE MULTI-TILES 389 

THEOREM 1.1. Let A e Mn(Z) be an expanding matrix and ft = (Oi, ..., Or) 
be an r-tuple of compact sets in Rn. Suppose that Xn(x) is a scaling function vector 
satisfying the vector refinement equation 

(1.6) Xn(x)= ^2 CaXn(Ax-a). 
aezn 

Then 
(i) Each coefficient matrix ca G Mr(R) is a zero-one matrix. 

(ii) For each a € Zn the matrix 

f3ezn 

is a zero-one matrix and contains exactly one entry of 1 in each column. 
(iii)   The nonnegative matrix c = J2aezn c<x Z5 irreducible. 

(iii')   The nonnegative matrix c = X^aeZ" Ca *5 primitive-1 

(iv) {Q,i : 1 < i < r} are measure disjoint, and U^f^ is a Zn-tile o/Rn. 

We use the term self-affine multi-tile for fl because Rn can be tiled by the trans- 
lates of Hi, • • •, f^r? and for all 1 < i < r we have 

r 

(i.7) A(ni) = U(ni + ^)J 

where each Vij is a finite, possibly empty, set in Zn, with all unions in (1.7) measure 
disjoint. 

We will now briefly describe the construction of Haar-type multiwavelet bases 
which correspond to the scaling function vectors of Theorem 1.1 . Let / = xn be 
a scaling function vector satisfying (1.6). Let Si = {(a,j) : (ca)ij = 1} for all 
1 < i < r, and set ji = \Si\. For each i define an arbitrary bijection Ii mapping Si 
onto {1,2,... ,7^}. We now normalize the scaling functions, setting fa = H/iH^ fa. 
Next let Mi be an orthogonal 7$ x 7^ matrix with the first row 7i~1/2[l, 1,..., 1]. 
Define, for each 1 < i < r, and 2 < j < 7^ the following functions 

(1.8) gij(x) = \det(A)\    Y,    Mi(j,Ii(a,k))<l>k(Ax-a). 

We have that gij is supported on the set Hi, using (1.6). Hence, we only need to estab- 
lish orthonormality of g^ to gik, and of g^ to (/>&. This readily follows by computing 
these inner products, applying the refinement equations, and using the orthogonality 
of the Mi. Finally, observe that we have a total of 71 + • • • -I- 7r — r = \ det(A)|r — r 
wavelet functions, precisely the number of wavelets needed. 

THEOREM 1.2. Let A E Mn(Z) be an expanding matrix. Suppose that the coeffi- 
cient matrices ca of the vector refinement equation 

(1.9) f{x) =  ]r caf(Ax - a) 
aezn 

satisfy properties (i)-(iii) of Theorem 1.1. Then up to scalar multiplications the vector 
refinement equation has a unique compactly supported solution, which is of Haar-type 
f(x) — Xn(^)- Furthermore, O = (Oi, ..., fir) satisfies 

1Note that (iii') is stronger than (iii). We include (iii) to simplify the statement of Theorem 1.2. 
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(A) Each fli has nonempty interior, and fli = f^.2 

(B) There exist subsets J\, ..., Jr of Zn such that 

r 

(1.10) U   U («*+70 
i=i-rieJi 

is a tiling o/Rn. 

We remark that the solution xti m Theorem 1.2 is not necessarily a scaling func- 
tion vector, even when n = 1 and r = 1. The simplest counter-example is the 
refinement equation 

/(*) = /(2a;) + /(2a: - 3), 

which admits the Haar-type solution f(x) = X[o,3)(^) that is not a scaling function. 
Checking whether a solution xn '1S a scaling function vector can be done in finitely 
many steps using an appropriate generalization of an algorithm in Lawton [24]. For 
a solution xn that is not a scaling function vector, it is not known whether U^Hi 
still tiles Rn by translation. We state here as a conjecture that it does. 

The rest of this paper are organized as follows: In §2 we state and prove some 
general results concerning scaling function vectors and certain generalization of iter- 
ated function systems. We then use these results to prove our main theorems in §3. 
In §4 we present some examples of self-affine multi-tiles. 

The second author would like to thank Professor Ka-Sing Lau for the invitation 
to visit the Chinese University of Hong Kong, where this research was conducted 
primarily. Both authors thank the mathematics department of CUHK for the generous 
support, and Professor Lau and Dr. Sze-Man Ngai in particular for their hospitality 
and stimulating discussions. After we completed this paper we received a preprint by 
Grochenig, Haas and Raugi [12] that contains some overlapping results. 

2. General Results. Consider the vector refinement equation 

(2.1) f(x)=Y^caf(Ax-a) 
aezn 

where f(x) = [/i(#),..., fr(%)]T, Ca £ Mr(R) and c^ ^ 0 for only finitely many a. 
We define the symbol of the vector refinement equation to be 

(2-2) m® = ja-pji £ C^i{a'0- 

Let B := AT. It verifies easily that the Fourier transform of f(x) satisfies 

(2.3) M) = m(B-107(JB-10. 

Some standard properties for non-vector refinement equations are known to generalize 
to the vector refinement equation (2.1). For example, if f(x) is integrable and Vf := 
/Rn f(x)dx y£ 0 then Vf is a 1-eigenvector of the matrix m(0). But unlike the non- 
vector case, a given vector refinement equation may have more than one independent 

2If we interpret the equality in (1.9) as almost everywhere, then Qi = Q° up to a measure zero 
set. 
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compactly supported L1 solution. In fact, under the assumption that the spectral 
radius p(m(0)) < 1 each 1-eigenvector v of m(0) leads to a compactly supported 
solution f(x) (in the sense of tempered distribution) to the vector refinement equation 
(2.1) via 

(2.4) m=(f[m(B-JOy 

see Cohen, Daubechies and Plonka [4]. 
For a vector valued function /(#) we define 

vf := /    f(x)dx.     Af := /     f(x)fT(x)dx. 

For a scaling function vector f(x) the matrix Af is a diagonal matrix with positive 
diagonal entries. 

LEMMA 2.1. Suppose that f(x) satisfies (2.1) and is a scaling function vector. 
Then 

(2.5) Y. C^fcl+A(3 = h I det(A)| A/. 
aGZn 

Proof.  Let q — \ det(A)|. By definition of a scaling function vector, 

Sp | det(A)| Af = ql    f(x)fT(x + 0) dx 

= ^E   Ec-(/    f(Ax-a)fT(Ax^Af3-1)dxy^ 

=  E   Ec-(/    f(v-<*)fT(v + Al3->y)dy)<% 
aez^ez*     KJKn ) 

= J2 Ca{     f(y-a)fT(y-a)dy)cl+A(3 

=   Y,   C*AfC*+A[3- D 

a£Zn 

DEFINITION 2.1. Let A be a diagonal matrix with positive diagonal entries. The 
vector refinement equation (2.1) is said to satisfy the orthogonal coefficients condition 
(with respect to A) if 

Y ^Ac^^^ldet^lA. 
aGZn 

THEOREM 2.2. Suppose that the vector refinement equation (2.1) satisfies the 
orthogonal coefficients condition. Suppose further that VQ € Rr is a 1-eigenvector of 
ra(0) = | det(^4)|_1 X^aez™ cco and ^a^ P(m(0)) ^ 1- Then there exists a nontrivial 
compactly supported L2 solution f{x) = [/i(x),... ,/r(a:)]T of the vector refinement 
equation (2.1) such that Vf = VQ. 
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Proof. The orthogonal coefficients condition implies the existence of a diagonal 
matrix A = diag(Ai,..., Ar) with A^ > 0 such that 

Y, c^cTa+A(3 = h I det(.4)| A. 
aezn 

We partition the cube [0, l)n into disjoint sets fii,... ,Or of positive Lebesgue mea- 
sures. Let g(x) — [pi(x),... ,gr(x)}T such that: (1) each gi(x) is supported on fi^; 
(2) Vg — VQ, (3) Kg = tA for some t > 0. Without loss of generality we assume that 
t = 1, Ag = A. 

Let T be the operator defined by 

(2.6) Th(x)=  Y cah(Ax-a). 
a€Zn 

Then fh(Q = raCB^OMB"^) where B = AT. Denote gk = Tkg for Jfe > 0. By 
induction on k it is easily verified that 

(2.7) Vgk = VQ    and      /    gk{x)gk{x - a)T dx = Sa A. 

Therefore there exists a constant K > 0 such that 

(2.8) /   \gk(0\2dZ<K, 

where |.| denotes the Euclidean norm on Cr. Now 

k 

gk(0=(i[m(B-i0)g(B-k0- 

So by Theorem 3.2 of Cohen, Daubechies and Plonka [4], #&(£) converges unformly on 
compact sets to the entire function /(£) := (Hjli m>(B~:*0)vo3' The function /(x), 

which is the inverse Fourier transform of /(£), is compactly supported and satisfies 
the vector refinement equation (2.1) because /(£) = ra(i?-1£)/(i?-1£). Moreover, 
f(x) is L2 because /(£) is. Finally, Vf = f(0) = VQ. U 

Our next two theorems concern certain generalization of iterated function systems 
(IFS). Let Cn denote the space of all nonempty compact subsets of Rn. Let ||.|| be a 
norm on Rn. We define the Hausdorff metric on Cn with respect to the norm by 

(2.9) duiD.D') := max   < sup   inf   ||x — x'\\,    sup   inf \\y — y'l 

It is well known that (Cn,dH) is a complete metric space. Now let djj be the metric 
defined on C£, the space of all r-tuples of nonempty compact subsets of Rn, given by 

(2.10) (!&(«,n')- max {dH(fti,ni), ...,dH(nr,n,
r)}. 

l<i<r 

3The result was established in Theorem 3.2 for A = 21. But the proof obviously generalizes to 
an arbitrary expanding matrix A. 
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Then (C^d^) is also a complete metric space. The following result is essentially due 
to Mauldin and Williams [27]. We include a proof for self-containment. 

PROPOSITION 2.3. Let A be an expanding matrix in Mn(R) and let Vij, 1 < 
hj ^ r? be finite subsets ofTLn, with UJ=12\? nonempty. Then there exists a unique 
O = (fix,..., flj.) € C1^ such that 

r 

(2.11) AiSli) = U (Qj + Vij),     1 < i < r. 
3 = 1 

Proof. Since A is expanding, there exists a norm || • || on Rn such that m_1x|| < 
A||a;|| where 0 < A < 1 for all x G Rn. Let the Hausdorff metric dn be defined using 
this norm. We now consider the map $ : C£ —> C^ defined by 

r 

$<(«)= U(A-1(fij)+^"1(^))J    l<i<r. 

We show that $ is contractive in (C^,dj^). Note that 

m m 

dH(U Ej, IJ ^) <  max^ dH(^,^), 
l<j< 

3=1      i=i 

whenever E^Ey are all in Cn, see Barnsley [2]. Set Ti = {j : V^ ^ 0}. Now for any 
12, fl' e Cr

n we have 

dn (*<(«), ^(n1)) <max dH^-^+A,), A-^^.+P^)) 

< A max dn (n^ + X)^-, fi^- + Vij) 

< A max   max  dnf^+T, fl'~ + 7) 

= A max Aftiflj* fl1*) 
jeTi J      J/ 

< A max   dn(flj, fi'-) 
l<j<r •' 

= Ad^cn, n')- 

Hence 

d&(*(«), $(&)) = max  dH^tW, ^(^,)) < Ad&(n, O'). 

So $ is contractive, and it follows that there exists a unique fl E C£ such that 
$(fi) = O, proving the theorem. D 

We remark that the irreduciblity condition on c = J2a£Zn ca implies that \Jrj=1Vij is 
nonempty, where V^ — {a : (ca)ij = 1}. 

THEOREM 2.4. Let A be an expanding matrix in Mn(Z) and let V^, 1 < i,j < r, 
be finite (possibly empty) subsets of Zn. Let fl = (fli,..., flr) G C^ be the solution to 

r 

A(ni)=U({lj+Vij),    l<i<r. 
3=1 
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Suppose that 0 = U^=1fii has positive Lebesgue measure. Then 0 + Zn = Rn and Vt 
has nonempty interior. 

Proof. Let TT : Rn -> Tn := Rn/Zn be the canonical covering map. Denote 
A* := 7v o A o TT

-1
 and 0 = 7r(fi). Then 

^.(fi) = U U 7r(fii+%) ^ U ""("i) = 0- 

Note that we only have A*(Cl) C 0 because some of the V^s may be empty. So 0 
is invariant under the ergodic map A on Tn. This implies that either /i(O) = 0 or 
0 = Tn up to a measure zero subset. But fi(fl) > 0, so fl — Tn. Hence ft contains a 
fundamental domain of the lattice Zn, and O + Zn = Rn up to a measure zero set. 
But each ft + a, a £ Zn, is a compact set. So any xo £ Rn must lie in the closure of 
some ft + a, and hence in Q + a. Thus O + Zn = Rn. 

It remains to be shown that ft has nonempty interior. Let U be the closure of 
the unit ball Bi(0) of Rn. So 

u= U (n + a)im 
aezn 

Clearly (O + a) Pi L7" ^ 0 for only finitely many a G Zn, and each (ft + a) fl U is 
closed. So (7 = Uj=i ^ where t/f = (ft + a^) D [/". Hence at least one of the Ui's has 
nonempty interior, and so ft has nonempty interior. D 

3. Proofs of Main Theorems. We first state some facts concerning nonnega- 
tive matrices, that is, nmtrices with nonnegative entries. We call a nonnegative matrix 
B — [6^] G Mr(R) irreducible if for all 1 < i,^ < r there exist 1 < fci,..., fem < r 
such that 

bik1bk1k2   '  '  ' bkn-lkrnbknj    >   0. 

Otherwise B is called reducible. B is primitive if Bk are irreducible for all k > 1. 
The Perron-Frobenius Theorem states that if a nonnegative B is irreducible then the 
spectral radius p = £>(-£?) is a simple eigenvalue of B, and 5 has a ^-eigenvector v that 
is positive. On the other hand, if B is reducible then B can be block triangularized 
by a permutation matrix F, that is 

PBP-1 = 
^21      ^22 

#11? #22 are nonempty. 

We now go back to the vector refinement equation 

(3.1) f(x)=  J2 Caf(Ax-a). 
aezn 

As before, here A £ Mn(Z) is expanding, ca G Mr(R) and ca ^ 0 for only finitely 
many a. 

LEMMA 3.1. Suppose that all ca in (3.1) are zero-one matrices and p(c) = 
|det(i4)| where c := ^2Q£z

n c^' tf c Z5 reducible then the vector refinement equation 
(3.1) cannot admit a Haar-type scaling function vector solution. 
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Proof.  Since c is reducible we may assume without loss of generality that 

c<EMm(R), ceMr_m(R), 

for some 0 < m < r. The nonnegativity forces every ca to be of the form 

,    Ca € Mm(R), ca e Mr_m(R). 

c = 
c    0 
*    c 

Cry      
Ca      0 
*       Ca 

Now assume that xn IS a Haar-type scaling function vector satisfying (3.1) for some 
n = (fii,...,nr) GC;. Letn = (ni,...,nm) ec™. Then 

(3.2) Xn(x)= £ CaXn(Ax-a). 
aezn 

Define Vij = {a G Zn : (c^)^- = 1} for 1 < i, j < m. Then 11 satisfies 

772 

(3.3) A(fii) = (J (Jlj- + %),    1 < i < m. 
i=i 

It follows from Theorem 2.4 that either //(U^ft;) = 0 or //(Ug^fii) > 1. But all 
^(fi;) > 0 by definition, we must thus have //(U^fii) > 1. However, this forces 
fjb(Ui=1Qi) > 1 and hence the orthogonality of {xQiiz — &) : l^^^r5 a ^ Zn} 
cannot hold, a contradiction. D 

Proof of Theorem 1.1. (i) Let (.,.) denote the standard inner product in L2(Rn). 
The scaling function vector xu gives 

(XQi (a?), XQj 0 - a)) = 0,    i ^ j or a ^ 0. 

This means that fi^ and Vtj + a are measure disjoint for i ^ j or a ^ 0. The vector 
refinement equation (1.6) now yields Ca £ Mr({0,1}) immediately. 

(ii) By Lemma 2.1 there exists a diagonal matrix A = diag(Ai,..., Ar) with all 
A^ > 0 such that 

(3-4) ^ Ca+Ap%AcJ+A/32 = Sfr-fo I det(A)| A. 
aezn 

It follows that for /3i ^ P2 the matrices Ca+Afi! and ca+A/?2 cannot have entries of 
1 in a common column. In addition, no CQ, can have two or more entries of 1 in a 
column, or it would create a positive off-diagonal entry in caAc^ to contradict (3.4). 
Therefore ba = X^ez™ Ca+A(3 is a zero-one matrix with at most one entry of 1 in each 
column. 

We show that ba cannot have a zero column. Let ai,..., aq be a complete residue 
system (mod A), where q = \ det(A)|. Note that 

Q q 

^ Z-/   Z^ caAca+A7 
7GZn a£Zn 

= q\. 
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Now assume that some bai, say bai: has a zero column. Then for v = [1,..., 1]T we 
have 

r 

vTbaiAbllv < J2Xi' 
i=l 

Therefore 
r r 

vTqAv = ^2vTb0iihb^.v < q^ \u 

i=i i=i 

contradicting vTqAv = qJ2ri=i ^i- So bai has no zero column. Now for any a G Zn 

we have ba — bai for some i. This proves (ii). 

(hi)    This is Lemma 3.1. 

(iii')    Iterating (1.6) yields 

Xn(x)=Y2   Yl CaC(3Xn(A2x-Aa-(3). 
aezn i3ezn 

For the new equation, Ylaezn 1C/?<GZ" 
cacf3 — c2- By (iii) c2 is irreducible. By the 

same argument, all ck are irreducible. Hence c is primitive. 

(vi) The measure disjointness of {Oi,..., Clr} is clear. Now by Theorem 2.4 the set 
ft := Ul=1Cli has the property that 0 + Zn = Rn. But the orthogonality condition 
forces fi(fl) < 1. Hence //(£}) = 1 and therefore Rn = 0 + Zn is a tiling. D 

REMARK. In general 0 := U^f^ is not itself a self-affine tile. It is not hard to 
check that Q is a self-affine tile if and only if \Jl=1V.ij = V for all 1 < j < r, where 
V G Zn with \V\ = | det(.A)| and Vij = {a : (c^ = 1}. We omit the proof here. 

LEMMA 3.2. Let Di,... ,Dm &e measure disjoint compact sets in Rn 5^c/i £/m£ 
U^Di = BK{XQ). Then for any Di having positive Lebesgue measure we have D° ^ 0 
and D° = Di up to a measure zero set. 

Proof. Suppose that some D^, say Di, has positive Lebesgue measure but no inte- 
rior point. Then for any y E Di there exists a sequence {yu} such that lim/^oo yt = y 
and yk & Di. Hence y G 0^2^^, and so Di C \J7£=2Di. This contradicts the measure 
disjointness of D^s. Thus Df ^ 0 for all Di with positive Lebesgue measure. Now 
using the same argument we have dDi C Uj^iDj. Hence by measure disjointness 
again n(dDi) — 0 for all i. Thus Di — D? up to a measure zero set. D 

Proof of Theorem 1.2. The assumed condition (ii) implies that the sum of the entries 
in each column of c is q = |det(A)|. So the nonnegative matrix m(0) = q~1c is 
column stochastic. Therefore p(m(0)) = 1. By Theorem 2.2 there exists a compactly 
supported f(x) = [fi(x),..., /r(^)]T, f(x) ^ 0 and each fi(x) G L2(Rn), such that 

f(x) =  XI caf(Ax-a). 
aezn 

Let U = (f/i,..., Ur) where each Ui is the essential support of fi(x). The vector 
refinement equation (1.9) implies that 

r 

(3.5) Ui C (J A^iUj + V^),     l<i<r 
3 = 1 
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where Vij — {a : (ca)ij = 1}. It follows by iterating (3.5) while replacing Ui in the 
equation by its closure that Ui C fi^, where ft = (fli,...,^) 6 C^ is the unique 
solution to 

r 

(3.6) AfQi) = U (0,- + V^),    l<i<r. 
i=i 

Since / / 0 at least one of the U^s has positive Lebesgue measure. It follows from 
Theorem 2.4 that 0 = [J^=1fli has nonempty interior. 

We show that xct satisfies the vector refinement equation (1.9). Note that condi- 
tion (ii) implies that X)i=i l^jl = |det(yl)|. Therefore 

(3-7) EA*(U(ni +^i))< EEl^lM^) = Idet^l^M^)- 

But 
r r r r 

(3.8) |det(A)| X)Mni) = E^(fi'))=EA»(U(fti+^)). 

Thus all inequalities in (3.7) are equalities, and so all unions in U^=i(^j + ^u) are 

measure disjoint. This forces 

Xn (x) =  XI caXn{Ax-a). 
Q;GZn 

Note that the vector v = /RTl Xfi(x) dx is a, \ det (A) \-eigenvector of c. It follows from 
the irreducibility of c that v is a positive vector. So all /i(f^) > 0. 

We now prove property (B). fi0 ^ 0 so fl? / 0 for some i, say fij 7^ 0. Since A 
is expanding, for some sufficiently large N > 0 the set A^fii) contains an interior 
point XQ 6 Zn. So 0 is an interior point of Oi := A^fii) — XQ. This means that for 
each k > 0 there exists an m^ > 0 such that the ball Bk(0) is covered by Amk(£li). 
It follows from the inflation property (3.6) that there exist finite subsets Ji,..., J* 
of Zn such that 

r 

(3.9) 5fc(0)cLM + ^fe), 

where all unions in (3.9) are measure disjoint. Now for any given K > 0 and each 
i there are only finitely many distinct J* fl 5^(0). So we can find a subsequence 
J1

mfc,..., J™** such that J™* ->& in the sense that for each K > 0, J^ n 5^(0) = 
Ji fl JBX(O) for sufficiently large m^. By (3.9) 

r 

(3.10) Rn = U(n* + ^) 
2=1 

with all unions measure disjoint, proving (B). 
To prove (A), take a sufficiently large K > 0 so that BK(0) contains at least one 

translate of each O^ in the tiling (3.10). So BK{0) is the measure disjoint union of 
compact sets that include translates of each (V Since all f^ have positive Lebesgue 
measure, by Lemma 3.2 £7; all have nonempty interior and f^ = O? up to a measure 
zero set. This proves (A). D 
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4. Examples. We now look at some examples of self-affine multi-tiles and Haar- 
type scaling function vectors. We first select an.expanding integer matrix A, and 
then choose coefficient matrices ca satisfying properties (i)-(iii) of Theorem 1.1. In 
Examples 1-3 our expanding matrix A is the quincunx matrix (also refered to as the 
"dragon" matrix), 

A = 
1      1 

-1    1 

EXAMPLE 1. We let A be the quincunx matrix and choose the coefficient matrices 
to be 

c(o,o) = 
1    1 
0   0 -(M) = 

0    0 
0    1 

c(o,i) 
0 0 
1 0 

The self-affine multi-tile ft = (Qi,^) is shown in Figure 1. 

EXAMPLE 2.   We again choose A to be the quincunx matrix and r — 3.  The 
coefficient matrices are 

c(o,o) = 

The self-affine multi-tile fi = (fiijf^j^s) is shown in Figure 2. 

EXAMPLE 3.    We let A be the quincunx matrix and r = 4.   The coefficient 
matrices are chosen as 

0    10 0    0    0 0   0    1 
0 0   0 
1 0   1 

'   c(i,o) = 1    1   0 
0   0   0 

>     c(0,l) = 0   0   0 
0   0   0 

C(0,0) 

110 0 
0 0 10 
0 0 0 1 
0   0   0   0 

C(1,0) 

0 0 10 
0 0 0   0 
0 0 0   0 
0 0 0   1 

C(0,1) = 

0   0   0 0 
0   0   0 0 
10   0 0 
0   10 0 

£1 — (fii, fi2,^3) is shown in Figure 3. 

EXAMPLE 4. In this last example we let 

A = 
2      1 

-1    1 

1   0 0   0 1  1 0    1 
0   1 »  c(0,-l) = 1    0 ' c(l.-l) = 0   0 ) c(i,o) = 0   0 

which has det(^4) — 3. We choose the coefficient matrices to be 

c(o,o) = 

tt — (fii, Q2) is shown in Figure 4. 
We have obtained these examples somewhat by trial and error, by generating 

the plots of the tiles, and choosing ones that looked nice. In some cases the plots of 
the different tiles were very dispersed, and hard to visualize. There are many other 
possibilities for Haar-type scaling function vectors, using other dilation matrices A. 
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-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 

Figure 1: fti(light), ^(dark) Figure 2: Hi, 02, ^(light.. .dark) 

-1.2       -1        -0.8     -0.6      -0.4     -0.2 0 0.2        0.4        0.6        0. 

Figure 3: fii, 02,03,^4, (light... dark)       Figure 4: Ui(light), ^{dark) 
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