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A UNIFORM LIMIT LAW FOR THE BRANCHING MEASURE ON A 
GALTON-WATSON TREE* 

QUANSHENG LIU*  AND NARN-RUEIH SHIEH+ 

Abstract. We prove a uniform asymptotic law for the branching measure on the boundary 
of a Galton-Watson tree, which is consistent with certain well-known uniform laws associated with 
Brownian motions. We also list a certain spectrum formula arising from this uniform law. 

1. Introduction and Main Result. Let (O,^7, P) be a probability space, and 
let {pn : n G N} be a probability distribution on IN = {0,1,...}. For simplicity, we 
assume po = 0. Put N* = {1,2,...} and write U = {0} U U^L^N*)71 for the set of 
all finite sequences u — ui • • • un including the null sequence 0. Let {Nu : u G U} be 
a family of independent random variables defined on fJ, each distributed according 
to the law {pn}- Let T(cc;) be the corresponding Galton-Watson tree with defining 
elements {Nu}: we have 0 G T(a;) and, if u G T(u;) and i G N*, then ui G T((j) 
if and only if 1 < i < NU(UJ). For simplicity, when there is no confusion, we use T 
and T(u;) interchangeably. If u = ui...un (uk G N,n < oo), we write \u\ = n and 
u\k = ui...Uk,k < n. Let dT = {wi^--- • Vn G N,ui...un G T} be the boundary of T 
endowed with the distance 

de(u,v) — e_n, where n = max{/c G IN : u\k = v\k}, u, v G dT. 

For all u G U, let Tn be the shifted tree of T at u: we have 0 G Tu and, if v G Tu and 
i G IN*, then vi G Tu if and only if 1 < i < Nuv, where uv denotes the juxtaposition 
of u and v. Clearly T = Tfl. 

Write N = NQ and assume ENlogN < oo. Set m = EN and put 

Z=  lim 
card {v G T : \v\ = n} 

the limit exists a.s. by the martingale convergence theorem. Then EZ = 1 and Z > 0 
a.s. Similarly, for all u G U, we write 

_        ,.       card {v G Tu : \v\ = n} 
Zu = hm . 

Then Z — Z$ and {Zu : u G U} is a family of identically distributed random variables. 

Since for all u G T,   card {v G Tu : \v\ - n + 1} = Y!i=i card {v € Tm : 1^1 = n}7 it 

Nu 

is easily seen that for all u G T, 

m 
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Therefore for almost all u G ft, there is a unique Borel measure on dT(u), called 
henceforth by fi = //^, such that 

where 

Bu = {vedT:u< v} 

is a ball in dT with diameter \BU\ — e~^. Here for two sequences u,v G U, we 
write u < v if uu' = v for some u' G U. We can also normalize fi by putting 
P> = P<L> = I^U;/Z(UJ). Then ft is a probability measure on dT, such that for all u G T, 

_/7^ x       ,.       card {v G T : u < v. \v\ = nj 
a(Bu) — lim  L—7 ——,  ,       ■—-. 

n-+oo        card {v G T : \v\ = n) 

We call //( or /i) the (uniform) branching measure of the tree T. This measure is well 
studied since the work of Hawkes [2], see for example [9] and [10]. It is known that 
with probability 1, 

lim ^- = — logra, for /i^-almost all u G dT 
n—>oo n 

(see [10]). Recently Liu [8] proved that the conclusion holds for all u G dT under some 
additional conditions. The purpose of this note is to prove the asymptotic behavior 
of maxnGT5|u|=n//(^u) as n —>• oo. Write 

a = logra,   p = 1-logra/log HiVHoo, 

where HiVHoo = ess supiV. By convension, (3 = 1 if HiVHoo = oo. We also put 

r = sup h > 0 :    Eexp^Z1/13) < oo j. 

By [6], 

(1.1) r = limmf r^ ; 

by [5], 0 < r < oo if 

(1.2) either HiVHoo < oo or I£exp(£iV) < oo for some but not all t > 0. 

We shall always assume (1.2) if the contrary is not specified. 

THEOREM 1.1.  With probability 1, 

mnii{Bu\n) 
lim sup sup  -5—!— = C, 

n->oo   uedT n^ 

where C = (a/r)^. 

REMARKS, (i) If (1.2) fails, the statement of Theorem 1.1 also holds with C 
interpreted as 0 or oo according as r = oo or 0 respectively. This can be seen by the 
proof, (ii) It is interesting to observe that we may rewrite the result as 

r V{Bu\n) n hm sup sup  ! -Q — O, 
n->oo    uGdT | R       \OL( \~«.      1      \ 
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and in this form the result is consistent with some well-known uniform asymptotic 
laws associated with Brownian motions or stables processes, see for example [4] 
(Theoreme 52,2, p.172), [1] (Theorem 2) and [13] (Lemma 2.3 and Corollary 5.2). 
(hi) A similar result for liminf of inf uedT M-^u|n) and other associated results are 
established in [7] and [8]; Yimin Xiao has kindly informed us that after reading our 
preprint, he also obtained some results on liminfninfuGaT fJi(Bu\n) and that he is 
working on some related problems, (iv) We may replace limsup by lim under some 
conditional conditions: for example, this is the case when N is of geometric distribu- 
tion, as was shown by Hawkes [2]. 

The proof of Theorem 1.1 is give in §2. In §3, we list a certain spectrum formula 
arising from our uniform law; the formula has the same flavor as those in [12] and [13] 
for Brownian fast points and local times. About general definitions and properties, 
the reader is refereed to [11] on Galton-Watson trees and to [14] on fractals associated 
with stochastic processes. 

2.  Proof of Theorem 1.1. 
Upper bound proof.   For 0 > 0, let 

Eg = {ou e il :    limsup sup  -~—!— > 0(7). 

We prove that P(EQ) = 0 for all 0 > 1. Since EQ C limsup An, where An = Anj is 
the event 

(2.1) An = {ijj G il :       sup     -3—!— >0(7). 
uedT{uj) nP 

Thus, by Borel-Cantelli Lemma, it suffices to prove that ^2P(An) < oo. We have 

P(An)<E   Y,   l{mn^0
Buln) >9C} 

u:\u\=n 

u:\u\=n 

= enaP{Z>n(3eC}, 

in the above, the notation !{•} denotes the indicator of the event {•}. Note that 
we have used the branching property that for all u G U with \u\ — n, the random 
variables Zu are independent and have the same distribution as Z. By the definition 
of C and the assumption 0 > 1, we can find an e > 0 such that 

(r-€)(0C)1//? >a. 

By (1.1), we have, for all n large enough, 

P{Z > N^C] < exp ( - (r - e)(0<7)1//?n}, 

from which it follows that 

P(An) < exp { - [(r - e^C)1^ - a}n}. 

Thus, J2P(An) < oo; this ends the upper bound proof. 
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Lower bound proof. Consider again the event An defined by (2.1). We shall prove 
that, for each 0 : 0 < 9 < 1, P(limsupAn) = 1. From which it follows that, with 
probability 1, 

mnfiu,(Bu\n) 
limsup sup  -5—!— > vC. 

n     uedT nP 

Thus, the lower bound proof is obtained by letting 9 f 1 through rational numbers. 
It suffices to prove that liminf P{Ac

n) = 0. Observe that 

PiK) < P{ "„T,M- C""^ < SC}} 

_s n l{=Wfi)<w}} 
u:\u\=n 

= E      JJ      l{ztt<»^C}} 
ueT,|u|=n 

= E[(P{Z<n^9C})Z{n)], 

where Z^ = cardjw : \u\ = n}. In the above we have again used the branching 
property. Since 9 < 1, we can find a small e > 0 such that 

r 

Since (1.1) also holds with x replaced by n(39C^ there exists a sequence n' t oo such 
the following holds for n = n': 

P(Z > n09C) > e-tr+e){0C)Wn = ^Xan^ 

Thus, using 1 — x < e~x  Vx G (0,1), we see that for n = n', 

P(Ac
n) <£?[(!- e-Xan)z{n)^ < Eexp [ - e-XanZ^ . 

We note that, with probability 1, 

e-Xanz(n) = m-Anz(n) = m(l"A)n . 
mn 

Since Z^ /mn -> Z > 0 a.s. and A < 1, the quantity in the above display tends to 
oo. Applying this result to n = n', we see that liminf P(^) = 0. This completes the 
proof. D 

3. A spectrum formula. Write, for 9 > 0, 

Z7       /    ^xrr      v mnfi(Buln) 
FQ = I u G aT :    hm sup j-J— = 9C j, 

where C is the constant in Theorem 1.1. By Theorem 1.1, Fg — 0 if 9 > 1. It is 
interesting to calculate dimFe, the Hausdorff dimension of i7^, for 0 < 9 < 1. We can 
modify the technique in §2 to obtain an upper bound. 
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PROPOSITION 3.1.  With probability 1, 

(3.1) dimFfl < a(l - 01//3),   0 < 9 < 1. 

Proof. The assertion is evident if 6 = 0, because dimF^ < dim<9T = ce. Assume 
0 < 9 < 1. We search for the smallest b > 0 so that dimi7]? < b. We observe that, for 
e : 0 < e < 9 and positive integer k: 

Fe C U„>fc{U G ST : m"^l") > (g _ e)c}. 

For ^ C aT, write nb(A) = limfc^oo H|(^), where 

nb
k(A)=ini{^2\Bv\b :   Ac\JBv,   \v\>k,   Vw},        k G N. 

Then 

**(*» < E E l^|»l{^^ > (« - e)c}. 
n>k |i;|=n 

Let Ik denote the random variable defined by the right hand side of the above display; 
then, by the same reasoning as the first part of §2, we have 

EIk = Yl e-nbmnP[Z >(9- e)Cn0] 
n>k 

< Y^ e~(6~a)ne~r^"e)1//3cl//3n, 
n>k 

where r = r — e, and k = k(e) is large enough.   The series in the above display is 
convergent, so that Ik tends to 0 a.s., whenever 

b>a-T(e-e)1^C1^. 

Since e is arbitrarily chosen, we conclude that ^{FQ)  =  0, whenever b >  a — 
rei/PCi/f3 = ^ _ Qi/py This impiies the assertion. D 

REMARK. In view of the results in [12] and [13] and the formula (1.1), we could 
expect the equality in (3.1). Clearly, this is the case if 6 — 0 or 1. 
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Note added in proof. Recently, (a) Q.S. Liu has proved that the conclusion 
in Theorem 1.1 remains valid when the limsup is replaced by lim if (1.1) holds with 
liminf replaced by lim, and that a similar result also holds for miu^QT:ix{Bu\n)\ (b) 
N.R. Shieh and S.J.Taylor have shown that we do have the equality in (3.1). 
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