MANIFOLDS CARRYING LARGE SCALAR CURVATURE*

STEFAN BECHTLUFT-SACHS[†]

Abstract. Let $W = S \otimes E$ be a complex spinor bundle with vanishing first Chern class over a simply connected spin manifold M of dimension ≥ 5 . Up to connected sums we prove that W admits a twisted Dirac operator with positive order-0-term in the Weitzenböck decomposition if and only if the characteristic numbers $\hat{A}(TM)[M]$ and $\operatorname{ch}(E)\hat{A}(TM)[M]$ vanish. This is achieved by generalizing [2] to twisted Dirac operators.

1. Introduction. A key point in the Lichnerowicz argument, showing that the \hat{A} genus is an obstruction to the existence of a metric with positive scalar curvature, is the fact that the scalar curvature appears as the order-0-term in the Weitzenböck decomposition of the ordinary Dirac Laplacian \mathcal{D}^2 . It was shown in [2], [8] that positive scalar curvature can be preserved under surgeries in codimension ≥ 3 . Within the class of simply connected spin manifolds of dimension ≥ 5 the cobordism relation is generated by surgeries of this type. Therefore all such manifolds admitting a metric of positive scalar curvature could be determined by computations in the spin cobordism ring (see [2], [8], [6], [7]).

Here we extend this to general Dirac operators (see [1], [4]). The role of scalar curvature is taken by the order-0-term in the Weitzenböck decomposition of a twisted Dirac operator. This term is positive if the scalar curvature is larger than a certain norm of the curvature endomorphism of the coefficient bundle. First we prove a surgery theorem for the order-0-term in the the Weitzenböck decomposition of twisted Dirac Laplacians \mathcal{D}^2_{∇} (Theorem 1). Next we consider complex spinor bundles with trivial first Chern class over simply connected spin manifolds of dimension ≥ 5 . Up to connected sums, we determine all spinor bundles within this class, which admit a Dirac operator with positive order-0-term in its Weitzenböck decomposition (Theorem 2). This is done by a computation in the cobordism ring $\sum_{n,k} \Omega_n^{spin}(BSU(k)) \otimes \mathbb{Q}$.

2. Statement of Results. Let W be a complex spinor bundle over a spin manifold M. Then W is a twisted spinor bundle $W = S \otimes E$, where S is the spinor bundle associated to the irreducible representation of the Clifford algebra and E is a complex vector bundle, see [1], [4]. To a Riemannian metric g on M and a Hermitian connection ∇ on E there is naturally associated the twisted Dirac operator \mathcal{D}_{∇} acting on sections of W. The Weitzenböck decomposition of its Dirac laplacian \mathcal{D}_{∇}^2 reads ([1], [4])

$$\mathcal{D}^2_{\nabla} = D^*D + \frac{1}{4}s + \sum_{i,j} e_i e_j \otimes R_{e_i,e_j},$$

the sum being taken over an orthonormal basis $\{e_i\}$ of the tangent space of M. Here D is the covariant derivative on W induced from the connection ∇ and the Levi-Civita connection on M. By s we denote the scalar curvature of M and by R the curvature tensor of ∇ . We also define $\mathcal{E}(\nabla) := 4 \sum_{i,j} e_i e_j \otimes R_{e_i,e_j}$ and $|\mathcal{E}(\nabla)|(x)$ to be minus the smallest eigenvalue of the bundle endomorphism $\mathcal{E}(\nabla)$ at the point $x \in M$.

^{*}Received November 11, 1998; accepted for publication November 23, 1998.

[†]Fakultät für Mathematik, Universität Regensburg, D-93040 Regensburg, Germany (stefan. bechtluft-sachs@mathematik.uni-regensburg.de).

Assume additionally that M is simply connected, dim $M \ge 5$ and $c_1(E) = 0$. We will show that rationally, i.e. after eventually passing to a suitable connected sum multiple of (M, E), the following are equivalent:

- 1. M admits a Riemannian metric g and E a Hermitian connection ∇ , such that $s(g) > |\mathcal{E}(\nabla)|$ on M. We will then say that (M, E) admits large scalar curvature.
- 2. Both S and W admit an invertible Dirac operator.
- 3. The characteristic numbers $\hat{A}(TM)[M]$ and $ch(E)\hat{A}(TM)[M]$ vanish.

As $\|\mathcal{E}(\nabla)\|$ is always nonnegative, the implication $(1) \Rightarrow (2)$ is immediate from the Weitzenböck decomposition. By the index theorem we have $(2) \Rightarrow (3)$. So we are left with the implication $(3) \Rightarrow (1)$.

Therefore we will first extend the surgery theorem for scalar curvature (cf. [2], [8]) to show that positivity of $s + \mathcal{E}(\nabla)$ can be preserved under surgeries of codimension at least 3.

THEOREM 1. Let $E \to M$ be a vector bundle over the smooth manifold M. Assume that there is a Riemannian metric g on M and a unitary connection ∇ on E with $s(g) > |\mathcal{E}(\nabla)|$. If the manifold M' is produced from M by surgery in codimension more than 2 and such that the vector bundle E extends over the trace of the surgery giving a vector bundle E' over M' then there are a Riemannian metric g' on M' and a unitary connection ∇' on E' with $s(g') > |\mathcal{E}(\nabla')|$.

Now we look at simply connected spin manifolds M of dimension $\dim M \geq 5$ endowed with a complex vectorbundle E with vanishing first Chern class. Then E—and the spinor bundle $W = S \otimes E$ — are trivial over embedded 2-spheres. As in [2] we obtain that any cobordism can be replaced by a sequence of surgeries of codimension ≥ 3 . Hence we can decide from the cobordism class of (M, E) in $\Omega_n^{spin}(BSU(k))$, whether it admits large scalar curvature. We have

Theorem 2. Let $E \to M$ be a SU(r)-vectorbundle over the smooth simply connected spin manifold M of dimension ≥ 5 . Then the following are equivalent:

- 1. For some q the q-fold connected sum (M, E) # ... # (M, E) carries a metric g and a connection ∇ with $s(g) > \|\mathcal{E}(\nabla)\|$.
- 2. $\hat{A}(TM)[M] = 0$ and ch $(E)\hat{A}(TM)[M] = 0$.
- **3. Proof of Theorem 1.** Consider surgery on an embedded sphere $S^k \cong S \subset M^{k+l}$, n=k+l, with trivial normal bundle and such that the restriction to S of the vector bundle E is trivial. M' is then obtained by cutting out a tubular neighbourhood $f: S^k \times D^l \hookrightarrow M$ of S and glueing back $D^{k+1} \times S^{l-1}$ along the boundary $S^k \times S^{l-1}$. In the end M' will be described as a submanifold of $Z:=M\times [0,\delta]\cup_f D^{k+1}\times D^l$.

Let $S^k \times D^l$ carry the metric and the connection induced via f from M. We can extend these data to all of $D^{k+1} \times D^l$, such that in the vicinity of the boundary $S^k \times D^l$ they are compatible to a product structure of a collar neighbourhood. The metric and connection on Z are then obtained by glueing this handle $D^{k+1} \times D^l$ with the product metric and connection on $M \times [0, \delta]$.

Let $\varrho \leq \mathcal{R}$ be sufficiently small constants (e.g. less that the injectivity radius of Z) and denote by $d(\cdot,S)$ the distance from S. Define $N_r := \{x \in M \mid d(x,S) \leq r\}$ and $Y_\rho = \partial N_\rho$. If $\rho \leq \mathcal{R}$ then the exponential map provides diffeomorphisms $D^{n-k} \times S^k \cong \rho D\nu(S,M) \to N_\rho$ and $S^{n-k-1} \times S^k \cong \rho S\nu(S,M) \to Y_\rho$. Pick a decreasing real function $\phi(\rho)$ defined for $\rho \geq \varrho$, vanishing for $\rho \geq \mathcal{R}$ and such that all derivatives of its inverse function $\chi = \phi^{-1}$ vanish at $\phi(\varrho)$. Let $\delta := \phi(\varrho)$ and

 $\psi(x) := \phi(d(x,S)), x \in M$. The result of the surgery is

$$M' = \{(m,t) \mid \phi(d(m,S)) = t\} \cup_f \{x \in D^{k+1} \times D^{n-k} \mid d(x,S^k \times D^{n-k} = \varrho)\}.$$

We will show that one can find ϱ and ϕ such that on M' we have $s - \mathcal{E}$ positive.

The calculations in 3.1 are much the same as in [2] and merely included for the reader's convenience.

3.1. Scalar Curvature of M'**.** M' is glued together from the graph X of ψ on $M \setminus N_{\varrho}$ and a handle. We express the scalar curvature of $X \subset M \times \mathbb{R}$ at (m,t) in terms of the second fundamental form T of the submanifolds $\psi^{-1}(t) \subset M$ at m. This is a straightforward calculation based on the Gauß equation.

Denote the derivation in direction of the \mathbb{R} -factor by ∂_t and the gradient of ψ by $\partial \psi$. Let $r := -\partial \psi/|\partial \psi| = \partial \psi/\phi'$ and $\hat{n} := (-\partial \psi, \partial_t)/\sqrt{1+|\partial \psi|^2}$ $= (-\phi' r, \partial_t)/\sqrt{1+\phi'^2}$ be the normal unit vectors to $\psi^{-1}(t)$ and X respectively. For a vector $v \in T_m M$ define $\overline{v} := (v, v(\psi) \partial_t) \in T_{(m,\psi(m))} X$.

At a point $(m, t) \in X$ choose an orthonormal basis v_1, \ldots, v_{n-1} of the orthogonal complement of the gradient $\partial \psi$ in $T_m M$. We work in the orthonormal basis

$$\left(\overline{v}_1, \dots, \overline{v}_{n-1}, \frac{\overline{\partial \psi}}{|\overline{\partial \psi}|} = -\frac{(r, \phi' \, \partial_t)}{\sqrt{1 + {\phi'}^2}}\right)$$

of $T_{(m,t)}X$.

First we compare the second fundamental form T of the submanifolds $\psi^{-1}(t) \subset M$ at m with the second fundamental form \overline{T} of $X \subset M \times \mathbb{R}$ at (m,t). For v,w perpendicular to $\partial \psi$ we obtain

$$\overline{T}(\overline{v}, \overline{w}) = \langle \nabla_{\overline{v}} \overline{w} \mid \hat{n} \rangle = \langle \nabla_{v} w \mid (-\phi' \, r) \rangle \, / \sqrt{1 + {\phi'}^{2}}$$

$$= T(v, w) \frac{-\phi'}{\sqrt{1 + {\phi'}^{2}}}$$

$$\overline{T}(\overline{v}, \frac{\overline{\partial \psi}}{|\overline{\partial \psi}|}) = -\langle \nabla_{\overline{v}}(r, \phi' \, \partial_{t}) \mid (-\phi' r, \partial_{t}) \rangle \, / (1 + {\phi'}^{2})$$

$$= (\phi' \, \langle \nabla_{v} r \mid r \rangle - v(\phi')) / (1 + {\phi'}^{2})$$

$$= (\phi' v(|r|^{2}) / 2 - v(\phi')) / (1 + {\phi'}^{2}) = 0$$

$$\overline{T}(\frac{\overline{\partial \psi}}{|\overline{\partial \psi}|}, \frac{\overline{\partial \psi}}{|\overline{\partial \psi}|}) = \langle \nabla_{(r, \phi' \, \partial_{t})}(r, \phi' \, \partial_{t}) \mid (-\phi' r, \partial_{t}) \rangle \, / (1 + {\phi'}^{2})^{3/2}$$

$$= (\langle \nabla_{r} r \mid -\phi' r \rangle + r(\phi')) / (1 + {\phi'}^{2})^{3/2}$$

$$= \frac{\phi''}{(1 + {\phi'}^{2})^{3/2}}$$

The Gauss formula then yields for the sectional curvature \overline{K} of the submanifold X:

$$\begin{split} \overline{K}(\overline{v}, \overline{w}) &= K(v, w) + \frac{{\phi'}^2}{1 + {\phi'}^2} (T(v)T(w) - T(v, w)^2) \\ \overline{K}(\overline{v}, \frac{\overline{\partial \psi}}{|\overline{\partial \psi}|}) &= K^{M \times \mathbb{R}}(v, \frac{\overline{\partial \psi}}{|\overline{\partial \psi}|}) - \frac{{\phi'}{\phi''}}{\left(1 + {\phi'}^2\right)^2} T(v) \\ &= \frac{1}{1 + {\phi'}^2} K(v, r) - \frac{{\phi'}{\phi''}}{\left(1 + {\phi'}^2\right)^2} T(v) \end{split}$$

Taking sums over the basis above we end up with

(3.1)
$$\overline{s} = s + \frac{{\phi'}^2}{1 + {\phi'}^2} \sum_{i,j} (T(v_i)T(v_j) - T(v_i, v_j)^2) - \frac{{\phi'}^2}{1 + {\phi'}^2} 2 \sum_i K(v_i, r) - \frac{{\phi'}{\phi''}}{(1 + {\phi'}^2)^2} 2 \sum_i T(v_i).$$

We will need the asymptotic behaviour when approaching S of the functions on $N_{\mathcal{R}} \setminus N_{\varrho}$ defined by the sums in (3.1):

Lemma 3.2. As $\rho = d(x,S) \to 0$ the asymptotic behaviour of the functions $\mathcal{A} := \sum_{i,j} (T(v_i)T(v_j) - T(v_i,v_j)^2) = (\operatorname{Tr} T)^2 - \operatorname{Tr} T^2$, $\mathcal{B} := -2 \sum_i T(v_i) = 2 \operatorname{Tr} T$ and $\mathcal{C} := 2 \sum_i K(v_i,r) = 2 \operatorname{Ric}(r)$ is

$$A(x) = a_2 \rho^{-2} + a_1(x) \rho^{-1} + a_0(x), \quad B(x) = b_1 \rho^{-1} + b_0(x),$$

with bounded functions $a_1(x)$, $a_0(x)$ and $b_0(x)$ and positive constants a_2 and b_1 . C also extends to a bounded function on N_R .

In fact since the codimension l of the submanifold S is ≥ 3 we have $a_2 = (l-1)(l-2)/2 > 0$ and $b_1 = l-1 > 0$.

Proof. Consider the diffeomorphism $S \times \mathbb{R}^l = \nu(S, M) \to N_{\mathcal{R}}$ given by the exponential map i.e. mapping $(p, v) \mapsto \exp_p v$. For unit speed curves p(t) in S and A_t in SO(l) define vectorfields $h = \frac{d}{dt} \exp_{p(t)} v$, $u = \frac{d}{dt} \exp_p A_t v$, $\tilde{r} = \frac{d}{dt} \exp_p t v$. Then for small $\rho = |v|$ expand $|u| = \rho + b_u \rho^2$ and $|\tilde{r}| = \rho + b_r \rho^2$ with smooth functions b_u , b_r . We compute

$$T(\frac{u}{|u|}) = \frac{1}{|u|^2|\tilde{r}|} \langle \nabla_u u \mid \tilde{r} \rangle = -\frac{1}{2|u|^2|\tilde{r}|} \tilde{r}(|u|^2)$$

because u and \tilde{r} commute and are mutually perpendicular. Since $r = \tilde{r}/|\tilde{r}| = \frac{\partial}{\partial \rho}$, we infer from the asymptotics of |u|, that this is

$$\frac{-1}{2|u|^2}\frac{\partial}{\partial\rho}(\rho+b_u\rho^2)^2=-\frac{1}{\rho}+O(1).$$

A similiar computation shows that $T(\frac{h}{|h|})$ and $T(\frac{u}{|u|}, \frac{h}{|h|})$ are bounded. The Lemma then follows from polarisation. \square

The scalar curvature of Y_{ρ} is also obtained from the Gauß formula (substitute $\phi'' = 0$ and $\phi' = \infty$ in (3.1)). Hence for small ρ we get:

$$s^{Y_{\rho}} = s + A - C = a_2 \ \rho^{-2} + a_1 \ \rho^{-1} + a_0 - C$$

3.2. The Curvature Endomorphism. The manifold X can also be viewed as obtained from $M \setminus N_{\varrho}$ by blowing up the metric in direction of r. More precisely X is isometric to $(M \setminus N_{\varrho}, \overline{g})$ with

$$\overline{g}(v,w) := g(v,w) + g(v,\partial\psi)g(\partial\psi,w) = g(v,w) + |\partial\psi|^2 g(v,r)g(r,w).$$

Especially the length of r becomes $\sqrt{1+{\phi'}^2}$. The transition matrix between the metrics g and \overline{g} gives an isomorphism between the spinor bundles of (M,g) and of

 (M, \overline{g}) . The pull back via this isomorphism of the curvature endomorphism of (M, \overline{g}) to the spinor bundle over (M, g) is:

(3.3)
$$\overline{\mathcal{E}} = 4 \sum_{i,j} v_i v_j \otimes R_{v_i,v_j} + \frac{8}{\sqrt{1+\phi'^2}} \sum_i r v_i \otimes R_{r,v_i}$$
$$= \mathcal{E} - 8 \left(1 - \frac{1}{\sqrt{1+\phi'^2}} \right) \sum_i r v_i \otimes R_{r,v_i}$$

and its smallest eigenvalue is estimated by

$$\|\overline{\mathcal{E}}\| \leq \|\mathcal{E}\| + 8 \left(1 - \frac{1}{\sqrt{1 + {\phi'}^2}}\right) \left\| \sum_{i} rv_i \otimes R_{r,v_i} \right\|$$

$$\leq \|\mathcal{E}\| + 8 \frac{{\phi'}^2}{1 + {\phi'}^2} \left\| \sum_{i} rv_i \otimes R_{r,v_i} \right\|$$
(3.4)

Herein $\mathcal{D} := 8 \mid \sum_{i} rv_i \otimes R_{r,v_i} \mid$ extends to a bounded function on $N_{\mathcal{R}}$.

3.3. Solution of The Differential Inequality. Finally we need to solve the differential estimate $\bar{s} - \|\bar{\mathcal{E}}\| > 0$. From (3.1), (3.4) and Lemma 3.2 we infer that

$$\overline{s} - \|\overline{\mathcal{E}}\| \ge s - \|\mathcal{E}\| + \frac{{\phi'}^2}{1 + {\phi'}^2} (\mathcal{A} - \mathcal{D} - \mathcal{C}) + \frac{{\phi'}{\phi''}}{(1 + {\phi'}^2)^2} \mathcal{B}$$

$$= s - \|\mathcal{E}\| + \frac{{\phi'}^2}{1 + {\phi'}^2} (a_2 \rho^{-2} + a_1(x) \rho^{-1} + a_0(x) - \mathcal{D} - \mathcal{C})$$

$$+ \frac{{\phi'}{\phi''}}{(1 + {\phi'}^2)^2} (b_1 \rho^{-1} + b_0(x))$$

So we have solved the problem on X if we can find a decreasing function ϕ on $[\varrho, \mathcal{R}]$ such that this expression is positive. Furthermore we need that ϕ vanishes identically near \mathcal{R} and that all derivatives of its inverse function $\chi = \phi^{-1}$ vanish at $\phi(\varrho)$ so that X will inherit a product metric and connection near its boundary.

Eventually after taking an even smaller value of \mathcal{R} , we pick positive constants a, b such that on $N_{\mathcal{R}}$ the estimates $a\rho^{-2} \leq a_2\rho^{-2} + a_1(x)\rho^{-1} + a_0(x) - \mathcal{D} - \mathcal{C}$ and $b \leq b_1\rho^{-1} + b_0(x)$ hold. Furtermore let $\epsilon := \min(s - \|\mathcal{E}\|) > 0$. Then it suffices to solve

(3.5)
$$\epsilon + {\phi'}^4 a \rho^{-2} + {\phi'} {\phi''} b \rho^{-1} > 0$$

Consider the the differential equation $\phi'^4 \rho^{-2} \ a/2 + \phi' \phi'' \rho^{-1} \ b = 0$ and its solutions

$$\phi_C(\rho) = \int_{\rho}^{\mathcal{R}} \frac{1}{\sqrt{\frac{a}{b} \log x + C}} \ dx$$

defined for $\rho \geq \varrho := e^{-Ca/b}$ for some $C \in \mathbb{R}$. For a sufficiently large value of C we can find a decreasing solution of $\epsilon + \phi' \phi'' b \rho^{-1} > 0$ in the intervall $[\mathcal{R}/2, \mathcal{R}]$ which vanishes identically near \mathcal{R} and extends ϕ_C smoothly from $[\varrho, \mathcal{R}/2]$ to $[\varrho, \mathcal{R}]$ to ensure the proper boundary condition at $\rho = \mathcal{R}$. At the other boundary (3.5) for the inverse function χ reads $\epsilon \chi^2 {\chi'}^4 + a - b \chi \chi'' \geq 0$. Let χ_C be the inverse function of ϕ_C on $[0, \phi(\varrho)]$ extended by the constant ϱ to all of \mathbb{R}^+ . Then we have $a/2 - b \chi_C(y) \chi_C''(y) = 0$ for all $y \neq \phi(\varrho)$. But χ_C can clearly be smoothed keeping $a - b \chi(y) \chi''(y) \geq 0$.

- **3.4.** The result of glueing. In the above we could make ϱ arbitrarily small. By the remark after Lemma 3.2 we thus may assume $s - \|\mathcal{E}\|$ positive on the handle $H_{\varrho} := \{x \in D^{k+1} \times D^l \mid d(x, D^{k+1} \times \varrho S^{l-1}) = \varrho\}$. Since both X and $D^{k+1} \times D^l$ were produced to carry product metric and connection near their boundary, we can glue $M' = X \cup H_{\rho}$ metrically and obtain the desired metric and connection over M'. This proves theorem 1. \square
- **4.** Proof of Theorem 2. We will exhibit representatives (M, E) admitting large scalar curvature in every cobordism class in $\Omega_n^{spin}(BSU(r)) \otimes \mathbb{Q}$ with vanishing characteristic numbers $\hat{A}(TM)[M]$ and ch $(E)\hat{A}(TM)[M]$. In the sequel cobordism classes will always be understood rationally, i.e. tensored with \mathbb{Q} , but this will be supressed in the notation. We will produce suitable generators of $\Omega_n^{spin}(BSU(r))$ first.

This vectorspace is trivial for n odd. The cobordism classes $X = (M, E) \in$ $\Omega_n^{spin}(BSU(r))$ are detected by the characteristic numbers

$$c_J p_I(X) = c_J(E) p_I(TM)[M],$$

where $c_J = c_r^{j_r} \cdots c_2^{j_2}$ and $p_I = p_r^{i_s} \cdots p_1^{i_1}$ for $J = (j_r, \dots, j_2), I = (i_s, \dots, i_1)$ with $2(rj_r + \dots + 2j_2) + 4(si_s + \dots + i_1) = n$. First we will define $X^n(J) \in \Omega_{2n}^{spin}(BSU(r))$ such that the matrix $(c_{J'}(X^n(r,J)))_{J',J}$ has full rank. We will construct appropriate bundles over products of the sphere S^2 and the complex projective spaces $\mathbb{C}P^{2n+1}$:

For $J=(j_r,\ldots,j_2)$ with $\sum_{i=2}^r ij_i=n$ we define $(r\times n)$ -matrices M_J^r . If $r\geq 4$ let

$$M_J^r := \begin{pmatrix} \underbrace{1 \cdots 1}_{j_r} & \underbrace{1 \cdots 1}_{j_r+j_{r-1}} & 0 \\ & \underbrace{1 \cdots 1}_{j_r+j_{r-1}} & \\ & 0 & \underbrace{1 \cdots 1}_{j_r+j_{r-1}+\cdots+j_3} & \underbrace{1 \cdots 1}_{j_r+j_{r-1}+\cdots+j_3+2j_2} \end{pmatrix}$$
 For $r=3$ and $J=(j_3,j_2)$ with $j_3>1$ let

$$M_J^3 = \begin{pmatrix} 1 & \cdots & 1 & 1 & 0 & \cdots & 0 \\ -1 & \cdots & -1 & 0 & 1 & \cdots & 1 \\ 0 & \cdots & 0 & -1 & \underbrace{-1 & \cdots & -1}_{j_2+2j_2-1} \end{pmatrix}$$

Then let

(4.1)
$$X^{n}(r,J) = \underbrace{(S^{2} \times \cdots \times S^{2})}_{n}, E(M_{J}^{r}),$$

with

(4.2)
$$E(M_J^r) = \bigoplus_{i=1}^r \gamma_1^{\epsilon_{1,i}} \otimes \cdots \otimes \gamma_n^{\epsilon_{n,i}}$$

for $M_J^r = (\epsilon_{\mu,\nu})_{\mu=1...n,\nu=1...r}$. Here γ_q is the canonical complex line bundle over the qth factor S^2 in (4.1). Slightly abusing the system of notation above define

(4.3)
$$X^{2n+2}(2,(n+1)) := (\mathbb{C}P^{2n+1} \times S^2, (\eta \otimes \gamma) \oplus (\eta^{-1} \otimes \gamma^{-1}))$$

and

(4.4)
$$X^{2n+1}(3,(a,b,c)) := (\mathbb{C}P^{2n+1}, \eta^a \oplus \eta^b \oplus \eta^b)$$

for $a,b,c\in\mathbb{Z},\,-n\le a,b,c\le n,\,a+b+c=0,$ if $n\ge 2.$ If n=1 we take a=2, b=c=-1. In (4.3) and (4.4) $\eta,\,\gamma$ denote the canonical bundles over $\mathbb{C}\mathrm{P}^{2n+1}$ and $S^2.$

LEMMA 4.5. The $X^n(r, J)$ above admit large positive scalar curvature with exception of $X^2(2, (2))$ and $X^3(3, ((2, -1, -1)))$.

Proof. In [3] Hitchin has proved that $(\mathbb{C}\mathrm{P}^q, \eta^s)$ admits large scalar curvature if $q \geq 2s$ and that $s - \|\mathcal{E}(\eta^s)\| = 0$ if q = |s| = 1. It is immediate from the definition that $\|\mathcal{E}(E \oplus F)\| = \max(\|\mathcal{E}(E)\|, \|\mathcal{E}(F)\|)$ and $\|\mathcal{E}(E \otimes F)\| \leq \|\mathcal{E}(E)\| + \|\mathcal{E}(F)\|$. Thus we can estimate

$$\|\mathcal{E}(E(M_J^r))\| \le \max_i \left(\sum_{q=1}^n \epsilon_{q,i} \|\mathcal{E}(\gamma)\| \right) < n \|\mathcal{E}(\gamma)\|$$

because, with the above exceptions, in every row of the matrices M_J^r at least one entry vanishes. Since the scalar curvature of the round S^2 equals $\|\mathcal{E}(\gamma)\|$, we thus get that the scalar curvature of $S^2 \times \ldots \times S^2$ is larger than $\|\mathcal{E}(E(M_J^r))\|$. The cases involving $\mathbb{C}P^{2n+1}$ are similiar. \square

LEMMA 4.6. The matrix $(c_{J'}(X^n(s,J)))_{J',(s,J)}$, $s \leq r$, has full rank.

Proof. We compute the Chern class of the vector bundle $E(M_J^r)$: Denoting by $x_q = c_1(\gamma_q)$ the generator of the second cohomology group of the qth factor S^2 in (4.1) we obtain from (4.2) that:

$$c_k(E) = \sum_{\mu_1,\dots,\mu_k,\nu_1,\dots,\nu_k} \epsilon_{\mu_1,\nu_1} \cdots \epsilon_{\mu_k,\nu_k} x_{\nu_1} \cdots x_{\nu_k},$$

where the μ_s respectively ν_s in this sum are pairwise distinct. Order the partitions I, J lexicographically. Observing that $x_s^2 = 0$ we get for $r \geq 4$ that

(4.7)
$$c_I(X^n(r,J)) = \begin{cases} 0 & \text{if } I > J \\ \neq 0 & \text{if } I = J \end{cases}$$

Thus this part of the matrix is triangular. If r=3, then a straightforward calculations gives that $c_{j_3,j_2}(X^n(3,(j_3,j_2)))=(-1)^{j_3+j_2-1}(j_3-1)(j_3+j_2)j_3!(2j_3+2j_2-1)!$. If n is even then $j_3\neq 1$ and (4.7) still holds. For the remainder of the matrix we use the manifolds defined in (4.3) and (4.4). For r=2 we clearly have $c_2^{n+1}((\eta\otimes\gamma)\oplus(\eta^{-1}\otimes\gamma^{-1}))=2(-1)^{j_2}j_2\neq 0$. We are left with the case r=3 and n odd. The Chernclasses of $\eta^a\oplus\eta^b\oplus\eta^b$ are given by the elemenary symmetric polynomials σ_3 , σ_2 in a,b,c. Assume that the polynomial

$$P(a,b,c) := \sum_{j_3,j_2} \alpha_{j_3,j_2} c_{j_3,j_2} (X^n(3,(a,b,c))) = \sum_{j_3,j_2} \alpha_{j_3,j_2} \sigma_3^{j_3} \sigma_2^{j_2}$$

of degree 2n+1 vanishes for all a, b, c as after (4.4). Then the polynomial P(a, b, -a-b) vanishes for all $a, b \in \mathbb{Z}$ with $-n \le a, b, a+b \le n$. Since it is homogeneous it must be divisible by all (na+sb) and (sa+nb), $s=0\ldots n$ and if $n\ge 2$ it must also contain (a-b) hence have degree at least 2n+2. Therefore P vanishes on the entire plane a+b+c=0. Since it does not contain σ_1 and since there are no algebraic relations between the elementary symmetric polynomials, the coefficients α_{j_3,j_2} are all 0. \square

Let $\mathcal{K}_{n,r} \subset \Omega_{2n}^{spin}(BSU(r))$ be the kernel of those $c_J p_I$ with nontrivial I. We have shown that the span of the $X^n(r,J)$ as above projects onto $\mathcal{K}_{n,r}$. It is well known that $\bigoplus_n \Omega_n^{spin}$ is polynomially generated by the Kummer surface K and the quaternionic projective spaces \mathbb{HP}^n , $n \geq 2$. In view of the direct sum decomposition

(4.8)
$$\Omega_{2n}^{spin}(BSU(r)) = \bigoplus_{p=0}^{n} \mathcal{K}_{p,r} \times \Omega_{2n-2p}^{spin}$$

we infer from Lemma 4.6 that there is a basis of $\Omega_n^{spin}(BSU(r))$ consisting of monomials in K, quaternionic projective spaces and one of the $X^n(r,J)$. Among these only K, $X^2(2,(2))$ and $X^3(3,((2,-1,-1)))$ do not admit large scalar curvature. Therefore the only monomials not admitting large scalar curvature are of the form $K^{d/4-1} \times X^2(2,(2))$ or $K^{d/4}$ if the dimension d is divisible by 4 and $K^{(d-2)/4-1} \times X^3(3,((2,-1,-1)))$ if the dimension is $d=2 \mod 4$. These monomials are also detected by the characteristic numbers \hat{A} and \hat{A} .

REFERENCES

- [1] N. BERLINE, E. GETZLER, AND M. VERGNE, *Heat Kernels and Dirac Operators*, Grundlehren der Mathematischen Wissenschaften, 298, Springer Verlag, Berlin and New York, 1991.
- [2] M. GROMOV AND JR. H. B. LAWSON, The classification of simply-connected manifolds of positive scalar curvature, Ann. of Math., 111 (1980), pp. 423-434.
- [3] N. HITCHIN, Harmonic spinors, Adv. Math., 14 (1974), pp. 1-55.
- [4] H. B. LAWSON AND M.-L. MICHELSON, Spin Geometry, Princeton University Press, Princeton, 1989.
- [5] A. LICHNEROWICZ, Spineurs harmoniques, C. R. Acad. Sci. Paris, Sér. A-B, 257 (1963), pp. 7-9.
- [6] T. MIYAZAKI, Simply connected spin manifolds with positive scalar curvature, Proc. Amer. Math. Soc., 93:4 (1985), pp. 730-734.
- [7] S. Stolz, Simply connected manifolds of positive scalar curvature, Ann. of Math., 136:3 (1992), pp. 511-540.
- [8] R. Schoen and S. T. Yau, On the structure of manifolds with positive scalar curvature, Manuscripta Math., 28:1-3 (1979), pp. 159-183.