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MANIFOLDS CARRYING LARGE SCALAR CURVATURE* 

STEFAN BECHTLUFT-SACHSt 

Abstract. Let W = S 0 E be a complex spinor bundle with vanishing first Chern class over 
a simply connected spin manifold M of dimension > 5. Up to connected sums we prove that W 
admits a twisted Dirac operator with positive order-O-term in the Weitzenbock decomposition if and 
only if the characteristic numbers A(TM)[M] and ch (E)A(TM)[M] vanish. This is achieved by 
generalizing [2] to twisted Dirac operators. 

1. Introduction. A key point in the Lichnerowicz argument, showing that the 
A genus is an obstruction to the existence of a metric with positive scalar curvature, 
is the fact that the scalar curvature appears as the order-O-term in the Weitzenbock 
decomposition of the ordinary Dirac Laplacian V2. It was shown in [2], [8] that 
positive scalar curvature can be preserved under surgeries in codimension > 3. Within 
the class of simply connected spin manifolds of dimension > 5 the cobordism relation is 
generated by surgeries of this type. Therefore all such manifolds admitting a metric of 
positive scalar curvature could be determined by computations in the spin cobordism 
ring (see [2], [8], [6], [7]). 

Here we extend this to general Dirac operators (see [1], [4]). The role of scalar 
curvature is taken by the order-O-term in the Weitzenbock decomposition of a twisted 
Dirac operator. This term is positive if the scalar curvature is larger than a certain 
norm of the curvature endomorphism of the coefficient bundle. First we prove a 
surgery theorem for the order-O-term in the the Weitzenbock decomposition of twisted 
Dirac Laplacians V^ (Theorem 1). Next we consider complex spinor bundles with 
trivial first Chern class over simply connected spin manifolds of dimension > 5. Up 
to connected sums, we determine all spinor bundles within this class, which admit a 
Dirac operator with positive order-O-term in its Weitzenbock decomposition (Theorem 
2). This is done by a computation in the cobordism ring ^n k ft^

)in(BSU(k)) 0 Q. 

2. Statement of Results. Let W be a complex spinor bundle over a spin man- 
ifold M. Then W is a twisted spinor bundle W = S (8) E, where S is the spinor 
bundle associated to the irreducible representation of the Clifford algebra and E is a 
complex vector bundle, see [1], [4]. To a Riemannian metric g on M and a Hermitian 
connection V on E there is naturally associated the twisted Dirac operator Dy acting 
on sections of W. The Weitzenbock decomposition of its Dirac laplacian V^ reads 

([1], W) 

Vl=D*D+js + J2e <Re •ei,ej i 

the sum being taken over an orthonormal basis {e,-} of the tangent space of M. Here 
D is the covariant derivative on W induced from the connection V and the Levi-Civita 
connection on M. By s we denote the scalar curvature of M and by R the curvature 
tensor of V. We also define £(V) := 4^ j eiCj 0 iJe.-.e; and |£(V)|| (x) to be minus 
the smallest eigenvalue of the bundle endomorphism £(V) at the point x G M. 
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Assume additionally that M is simply connected, dimM > 5 and Ci{E) = 0. We 
will show that rationally, i.e. after eventually passing to a suitable connected sum 
multiple of (M, E), the following are equivalent: 

1. M admits a Riemannian metric g and E a Hermitian connection V, such 
that s(g) > |£(V)|| on M. We will then say that (M,E) admits large scalar 
curvature. 

2. Both S and W admit an invertible Dirac operator. 
3. The characteristic numbers A{TM)[M] and cYi{E)A(TM)[M] vanish. 

As \S(V)|| is always nonnegative, the implication (1) =^ (2) is immediate from the 
Weitzenbock decomposition. By the index theorem we have (2) =^ (3). So we are left 
with the implication (3) ^ (1). 

Therefore we will first extend the surgery theorem for scalar curvature (cf. [2], [8]) 
to show that positivity of s + £ (V) can be preserved under surgeries of codimension 
at least 3. 

THEOREM 1. Let E —>• M be a vectorbundle over the smooth manifold M. Assume 
that there is a Riemannian metric g on M and a unitary connection V on E with 
s{g) > ||£(V)||. // the manifold M' is produced from M by surgery in codimension 
more than 2 and such that the vector bundle E extends over the trace of the surgery 
giving a vector bundle E' over M' then there are a Riemannian metric g' on M' and 
a unitary connection V on E' with s{g') > ^(V)!. 

Now we look at simply connected spin manifolds M of dimension dimM > 5 
endowed with a complex vectorbundle E with vanishing first Chern class. Then E — 
and the spinor bundle W = S®E — are trivial over embedded 2-spheres. As in [2] we 
obtain that any cobordism can be replaced by a sequence of surgeries of codimension 
> 3. Hence we can decide from the cobordism class of (M,E) in ft^in(BSU(k)), 
whether it admits large scalar curvature. We have 

THEOREM 2. Let E -» M be a SU'(r) -vectorbundle over the smooth simply 
connected spin manifold M of dimension > 5.  Then the following are equivalent: 

1. For some q the q-fold connected sum (M, E)# ... #(MyE) carries a metric g 
and a connection V with s(g) > \\£(V)||. 

2. A(TM)[M] = 0 and ch (E)A(TM)[M) - 0. 

3. Proof of Theorem 1. Consider surgery on an embedded sphere Sk = S C 
Mk+\ n = k + /, with trivial normal bundle and such that the restriction to S of the 
vector bundle E is trivial. M' is then obtained by cutting out a tubular neighbourhood 
/ : Sk x Dl c-^ M of S and glueing back Dk+1 x S*-1 along the boundary Sk x S1"1. 
In the end M' will be described as a submanifold of Z := M x [0, S] U/ D^1 x Dl. 

Let Sk x Dl carry the metric and the connection induced via / from M. We 
can extend these data to all of Dk+1 x Dl, such that in the vicinity of the boundary 
Sk x Dl they are compatible to a product structure of a collar neighbourhood. The 
metric and connection on Z are then obtained by glueing this handle Dk+1 x Dl with 
the product metric and connection on M x [0,5]. 

Let g < 1Z be sufficiently small constants (e.g. less that the injectivity radius 
of Z) and denote by d(',S) the distance from S. Define iVr := {x G M \ d(x,S) < 
r} and Yp — dNp. If p < IZ then the exponential map provides diffeomorphisms 
Dn-k x Sk c± pDiy(S,M) -> Np and S71^'1 x Sk s pSv(S,M) -+ Yp. Pick a 
decreasing real function <p(p) defined for p > g, vanishing for p > 1Z and such that 
all derivatives of its inverse function x — (l)~1 vanish at (f)(g).   Let S := (t)(g) and 
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ipix) := 0(d(x, 5)), x G M. The result of the surgery is 

M' = {(m,t) | 0(d(m,S)) - t] U/ {x e Dk+1 x ^"^ | d(x,Sk x JDn-* = Q}. 

We will show that one can find g and (f) such that on M' we have s — £ positive. 
The calculations in 3.1 are much the same as in [2] and merely included for the 

reader's convenience. 

3.1. Scalar Curvature of M'. M' is glued together from the graph X of ^ on 
M \ Ne and a handle. We express the scalar curvature of X C M x K at (m, t) in 
terms of the second fundamental form T of the submanifolds '0~1(£) C M at m. This 
is a straightforward calculation based on the GauB equation. 

Denote the derivation in direction of the E-factor by dt and the gradient 
of ^ by dil>. Let r := -dip/\dip\ = d^/cj)' and ft := (-d^,dt)/^l + |<9</f 

= (—firydtj/y/l + 0/2 be the normal unit vectors to ip~1(t) and X respectively. For 
a vector v e TmM define U := (v.vii/j) dt) E T(m^(m))X. 

At a point (m, ^) G X choose an orthonormal basis vi,..., ?;n_i of the orthogonal 
complement of the gradient dip in TmM. We work in the orthonormal basis 

i;i,...,vn_i, - 

of T^^X. 
First we compare the second fundamental form T of the submanifolds '0_1(£) C 

M at m with the second fundamental form T of X C M x E at (m,t). For i;,u> 
perpendicular to dip we obtain 

T(v,W) = (VyW I n> = <V„u; | (-</>' r)) /\Jl + cf>'2 

-4f 
= T(v, w) 

x/TT^ 

T(ty, Hi) = - (VF(r, ^ dt) | (-^'r, ft)) /(I + cf,'2) 

= (cl>'{Vvr\r)-v(<j>'))/(l + (f>'2) 

_    _    =(<M|r|2)/2-V(</>'Ml + <£,2) = 0 

T(^--^r) = (V^o^r^'dt) | {-fadt)) /(l + 0'2)3/2 

= «Vrr |_^r)+r(0'))/(H-^2)3/2 

(l + 0'2)3/2 

The Gauss formula then yields for the sectional curvature K of the submanifold X: 

K(v,w) = K(v,w) + -iL-^tOTM - T(v, w)2) 

K(v, & = ^MXR(^ 7^7) - -^%T(«) 

-      1     ^.r)--^-^) 
i + r (i + ^'T 
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Taking sums over the basis above we end up with 

hj 

&< 

We will need the asymptotic behaviour when approaching S of the functions on 
N-R. \ Ne defined by the sums in (3.1): 

LEMMA 3.2. As p = d(x,S) -> 0 the asymptotic behaviour of the functions 
A " Eijinvmvj) - Tfavj)*) = (TrT)2 - TrT2, B := -2 E.^i) - 2 TrT 
and C := 2 ^ ^>2,0 = 2 Ric (r) is 

A(x) = a2 /T"2 + ai(^) z?-1 + aoix),   B(x) = 6i/?_1 -f io(#), 

w^A bounded functions ai{x), ao(x) and bo(x) and positive constants 0,2 and bi. C 
also extends to a bounded function on N-JZ . 

In fact since the codimension I of the submanifold 5 is > 3 we have 0,2 = (I — 
i)(l - 2)12 >0andb1=l-l>0. 

Proof Consider the diffeomorphism S x Rl — i/(S, M) -* Nn given by the 
exponential map i.e. mapping (p, v) f-> exp^ v. For unit speed curves p(t) in S and 

^ in SO (I) define vectorfields h — -^ exPp(t) vi u — dt exPp ^tV^ ^ ~ 3* exPio ^- Then 
for small /? = |f | expand |w| = /? -f bup2 and |f| = /? -f brp

2 with smooth functions bu, 
br. We compute 

7/1 1 

because u and f commute and are mutually perpendicular. Since r = f/ \r\ = -^-, we 
infer from the asymptotics of jw|, that this is 

2H2<V  '  tt^ ^       p 

A similiar computation shows that T(-A) and ^(m, rfr) are bounded. The Lemma 
then follows from polarisation. D 

The scalar curvature of Yp is also obtained from the GauB formula (substitute 
</>" — 0 and ft = 00 in (3.1)). Hence for small p we get: 

S
Y

P = s + A-C = 0,2 p~2 + ai p~l +ao-C. 

3.2. The Curvature Endomorphism. The manifold X can also be viewed as 
obtained from M \Ng by blowing up the metric in direction of r. More precisely X 
is isometric to (M \Ne,g) with 

g(v, w) := ^(v, w) -f ^(v, d$)g(dil), w) = g{v, w) + \di/;\2g(v, r)g(r, w). 

Especially the length of r becomes y 1 -f- 0/2.   The transition matrix between the 
metrics g and g gives an isomorphism between the spinor bundles of (M, ^) and of 
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(M,g). The pull back via this isomorphism of the curvature endomorphism of (M,g) 
to the spinor bundle over (M,g) is: 

S = 4 ^ViVj 0 Rviw + 

(3.3) = £-; l- 

and its smallest eigenvalue is estimated by 

||£|| <|5| + 8     1- 
y/1 + ¥' 

E TVi i  JLLf y- 

(3.4) <|£|| + 8 ¥ 
1 + . E rvi iir,vi 

Herein D := 8 ||X)j rvi ® ^r,«j I extends to a bounded function on N-R.. 

3.3. Solution of The Differential Inequality. Finally we need to solve the 
differential estimate s — ||<?|| > 0. From (3.1), (3.4) and Lemma 3.2 we infer that 

A'2 <A'<£" 

a+^r 
vB >a-\£\ + -^—oiA -V-C) + 

= s - |£| + -£—2 (a2/)-
2 + ^(a;)^1 + ao(a;) - X> - C) 

1 + 0- 

r(6ip-1+6o(a;)) 
+ (1 + ^2)2 

So we have solved the problem on X if we can find a decreasing function 0 on [#, 72] 
such that this expression is positive. Furthermore we need that (j) vanishes identically 
near 1Z and that all derivatives of its inverse function x — 0_1 vanish at (^{Q) so that 
X will inherit a product metric and connection near its boundary. 

Eventually after taking an even smaller value of H, we pick positive constants 
a, b such that on iV-ft the estimates ap~2 < a2p~2 + ai(x)p~1 + ao(x) — V — C and 
b < hp"1 + bo(x) hold. Furtermore let e := min(s — ||^||) > 0. Then it suffices to solve 

(3.5) e + 4>,4ap-
2 + fitf'bp-1 > 0 

Consider the the differential equation </>' p 2 a/2 + (j)'4>"p     b = 0 and its solutions 

MP) = /    • 
J p VV0&X + C 

dx 

defined for p > g := e~Ca/b for some C G M. For a sufficiently large value of C we 
can find a decreasing solution of e + (j)l(f)"bp~1 > 0 in the intervall [11/2,11] which 
vanishes identically near TZ and extends (f)c smoothly from [g, 11/2} to [g, TZ) to ensure 
the proper boundary condition at p = 11. At the other boundary (3.5) for the inverse 
function x reads ex2X/ + a ~ bxx" ^ 0- Let xc be the inverse function of (fie on 
[0, <I)(Q)] extended by the constant g to all of R+. Then we have a/2—bxc(y)Xc(y) — 0 
for all y ^ </>(£). But xc can clearly be smoothed keeping a — bx(y)x"(y) ^ 0- 
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3.4. The result of glueing. In the above we could make g arbitrarily small. 
By the remark after Lemma 3.2 we thus may assume s — \£\ positive on the handle 
HQ := {x e Dk+l x Dl | d(x, Dk+l x QS

1
'

1
) = Q}. Since both X and Dk+1 x Dl were 

produced to carry product metric and connection near their boundary, we can glue 
M' = X U HQ metrically and obtain the desired metric and connection over M'. This 
proves theorem 1. D 

4. Proof of Theorem 2. We will exhibit representatives (M, E) admitting large 
scalar curvature in every cobordism class in Ql^

>m(BSU(r)) <S)Q with vanishing char- 
acteristic numbers A(TM)[M] and ch (E)A(TM)[M]. In the sequel cobordism classes 
will always be understood rationally, i.e. tensored with Q, but this will be supressed 
in the notation. We will produce suitable generators of Cl^>in(BSU(r)) first. 

This vectorspace is trivial for n odd. The cobordism classes X = (M,E) G 
Q^)m(BSU(r)) are detected by the characteristic numbers 

cjpI(X) = cj(E)pI(TM)[M], 

where cj =.cjr '"C^2 and pj = p** --p? for J = OV,---,^), / = (^,...,ii) with 
2(rjr + • • • + 2J2) + 4(ai, + • • • ii) = n. First we will define Xn(J) G ns

2
p

n
in(BSU(r)) 

such that the matrix (cj/(Xn(r, J)))J\J has full rank. We will construct appropriate 
bundles over products of the sphere S2 and the complex projective spaces CP2n+1: 

For J — (jri-'-,J2) with YH=2 Wi = n we define (r x n)-matrices MJ. If r > 4 
let 

/      1    ..    1 \ 

Mr
T:= 

1 ••• 1 
_! ... -1 1 •• 

-1 •• 
•    1 

i' -1 

>+>-! 

0 -1 1 1 •••    1 

\ jr+jr-l+ — +33 v~^    * > 

For r = 3 and J = {J3J2) with js > 1 let 
>+jr-l + -..+J3+2J2 

^     1 •• •  1 1 0 •• • 0 
M.3, = -1 •• -1 0 1 •• •  1 

v^o-; • 0 -1 -1 •• -1 

_ , h J3+2J2-1 
Then let 

(4.1) Xn(r, J) = (S2x-..xS2, ^(MJ), 

n 

with 

r 

(4.2) S(M}) = 07lM®---®7^i 
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for Mj — (eAt)I/)/x=i...n)|/=i...r. Here jq is the canonical complex line bundle over the 
qth. factor S2 in (4.1). Slightly abusing the system of notation above define 

(4.3) X2n+2(2, (n + 1)) := (CP2n+1 x 52, (ry 0 7) © (r/"1 0 7-1)) 

and 

(4.4) X2n+1 (3, (a, 6, c)) := (CP2n+1, V
a © ^ © T?

6
) 

for a, 6, c G Z, —n < a, &, c < n, a + 6 + c = 0, if n > 2. If n = 1 we take a = 2, 
6 = c = —1. In (4.3) and (4.4) 77, 7 denote the canonical bundles over CP2n+1 and 
S2. 

LEMMA 4.5. The Xn(r,J) above admit large positive scalar curvature with ex- 
ception o/X2(2,(2)) andX3(3,((2,-l,-l))). 

Proof. In [3] Hitchin has proved that (CPq,r]s) admits large scalar curvature if 
q > 2s and that 5 — \£(77s)|| = 0 if q = \s\ = 1. It is immediate from the definition 
that \\£(E © F)\ = max(|£(J5)|, \£(F)\) and \\S(E ® F)|| < \£(E)\\ + |f (F)\. Thus we 
can estimate 

\£(E(M5))| < max, f ^e,,, |£(7)| j < „ |5(7)| 

because, with the above exceptions, in every row of the matrices Mj at least one entry 
vanishes. Since the scalar curvature of the round S2 equals |£(7)|, we thus get that 
the scalar curvature of S2 x ... x S2 is larger than \£(E(Mj))\. The cases involving 
Cp2n+i are simiiiar. □ 

LEMMA 4.6.  The matrix (cj'(Xn(s, J)))j>y(s,j), s < r, has full rank. 

Proof. We compute the Chern class of the vectorbundle E(Mj): Denoting by 
xq = ci(7g) the generator of the second cohomology group of the qth. factor 52 in 
(4.1) we obtain from (4.2) that: 

Ck(E) =        Yl 
^l,...^fc,I/l, 

where the /J,S respectively z/s in this sum are pairwise distinct. Order the partitions /, 
J lexicographically. Observing that #2 = 0 we get for r > 4 that 

(4.7) cI(X»(r,J)) = {°0    ^>J 

Thus this part of the matrix is triangular. If r = 3, then a straightforward calculations 
gives that cJ3,J2(X

n(3, (js,^))) = (-l^+^-^'s - 1)0'3 +J2)J3K^3+^h - !)!• If n 
is even then js ^ 1 and (4.7) still holds. For the remainder of the matrix we use the 
manifolds defined in (4.3) and (4.4). For r = 2 we clearly have C2+1((^ (8)7) © (T?

-1
 (g) 

7_1)) = 2(—iy2J2 / 0. We are left with the case r = 3 and n odd. The Chernclasses 
of r]a © rjb © r)b are given by the elemenary symmetric polynomials 0-3, 02 in a, 6, c. 
Assume that the polynomial 

P(a,&,c) := Y, ahJ2CjBj2(Xn(3,(a,b,c))) = ^ ^J3j2a
J

3
3aJ

2
2 

33 J2 J3 , J2 
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of degree 2n+l vanishes for all a, 6, c as after (4.4). Then the polynomial P(a, b, —a—b) 
vanishes for all a, b G Z with —n < a,6,a + 6 < n. Since it is homogeneous it must be 
divisible by all (na + sb) and (sa + n&), s = 0... n and if n > 2 it must also contain 
(a — b) hence have degree at least 2n + 2. Therefore P vanishes on the entire plane 
a + b + c = 0. Since it does not contain ai and since there are no algebraic relations 
between the elementary symmetric polynomials, the coefficients aj3j2 are all 0. D 

Let /Cn?r C n2^m(JB5^7(r)) be the kernel of those cjpj with nontrivial /. We have 
shown that the span of the Xn(r, J) as above projects onto lCn,r. It is well known that 
0n ^nPm is polynomially generated by the Kummer surface K and the quaternionic 
projective spaces ]HIPn,n > 2. In view of the direct sum decomposition 

(4.8) Sltn{BSU{r)) = 0 /CPir x Ofn% 

we infer from Lemma 4.6 that there is a basis of Ft8?171 (BSU(r)) consisting of mono- 
mials in if, quaternionic projective spaces and one of the Xn(r, J). Among these 
only if, X2(2, (2)) and X3(3, ((2, —1, —1))) do not admit large scalar curvature. 
Therefore the only monomials not admitting large scalar curvature are of the form 
Kd/A-i x x

2(2,(2)) or Kd/A if the dimension d is divisible by 4 and i^-2)/4-i x 

X3(3, ((2,-1,-1))) if the dimension is d = 2 mod 4. These monomials are also de- 
tected by the characteristic numbers A and ch A. 
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