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A DESCRIPTION OF THE DISCRETE SPECTRUM OF {SL(2),E7{_25)y 

JIAN-SHU Lit 

1. Introduction. Let E^ be the simply connected quarternionic Eg. It is the 
unique simply connected simple Lie group of exceptional type Eg and real rank 4. In 
[GrW] Gross and Wallach constructed the minimal representation 7rmin of £^,4. It is 
an irreducible unitary representation with minimal Gelfand-Kirillov dimension, and 
its annihilator in the (complexified) universal enveloping algebra is the Joseph ideal. 

In this paper we will give a description of the discrete spectrum of the restriction 
of 7Tmin to the symmetric subgroup Ej^ x 517(1.1). Here Er^ is a connected simple 
Lie group of type E7 that gives rise to the hermitian tube domain of Cartan type 
EVIL For an integer k > 2 let TT^ be the holomorphic discrete series representation of 
5?7(1,1) = 5L(2) of lowest weight k. Let TT-^ be the contragredient of TT^. Write the 
unitary decomposition of the restriction of 7rmin as 

(1.1) nmin\E7,3xSU(i,i) = ( 0 #* ® 7Tk) 0 (continuous spectrum) 
|*|>2 

Since 7rm;n is self-contragredient, we see #_& is contragredient to 0&. So it suffices to 
describe 8k for k > 2. It turns out that 

Ok = Vk © crjk 

is the sum of two representations, where Gk is an irreducible highest weight unitary 
representation which belongs to the discrete series when k > 10. The representation 
a'k is admissible (in fact it has multiplicity free if-types) and non-tempered. If k > 4 
the if-type structure of a'k is identical to that of a derived functor module. For 
k > 10, a'k is an irreducible unitary representation with non-zero cohomology at bi- 
degree (10,1) (and so a^k has cohomology at bi-degree (1,10)). Thus when k > 10, 
0^ is the sum of two irreducible representations, one of them belongs to the discrete 
series while the other is very far from being tempered. This is the rough description 
of the discrete spectrum. For details see §5-6. 

The determination of 9k depends heavily on the fact that the groups E?^ and 
5C/(1,1) (essentially) form a reductive dual pair in E^A- As such they fit into the 
following seesaw diagram 
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£7,3 SU(2,1) 

(1.2) 

#6,0 SU(1,1) 

Here EQ^ is the semi-simple part of the maximal compact subgroup of £7,3, a 
compact simple Lie group of type EQ. With this diagram in mind, we first determine 
the decomposition of 7rmm restricted to i^o x SU(2,1) in §3. This is not difficult 
since #6,0 is compact. The decomposition takes the form 

fl"mm|jE6foxSl7(2,l) =   (J)  7r(P^6 + ^l) 0 <Jp,q 
p,q>0 

where ujj denotes the j-th fundamental weight for EQ^ and 7r(A) is the irreducible 
finite dimensional representation with highest weight A. It turns out that each repre- 
sentation (7p,q is irreducible and belongs to the generic discrete series of SU(2,1). 

Next in §4 we study the restriction of aPiq to 5?7(1,1). We consider £7(2,1) and 
U(l, 1) instead, extending <7M to U(2,1). Then there is another seesaw diagram for 
dual pairs in the rank 6 symplectic group 5pi2(M): 

[7(2,1) U(l,l)xU(l,l) 

U{l)xU{l,l) 17(1,1) 

This diagram is analized using our earlier results in [Lib] and results of Repka 
[Rep] on tensor products of holomorphic and anti-holomorphic representations. This 
leads to the explicit determination of the if-type structure of 9 k. Upon inspection of 
this structure we find that Ok contains a highest weight module, namely cr&. Finally, 
we know a priori that 6k is quasi-simple with infinitesimal character given by Rallis 
and Schiffimann [RaS] (see also [Lia]). Together we have enough information to give 
the description of Ok outlined above. 

Wee Teck Gan [Gan] has shown that the minimal representation of #8,4 is auto- 
morphic. It follows that the non-tempered representations af

k decribed here are also 
automorphic representations. 

NOTATIONS. We use En^ to denote a connected simple Lie group of exceptional 
type En and split rank r. This will be made more precise when the group is actually 
introduced.Let tn^r be the corresponding complexified Lie algebra. Up to isomor- 
phisms the later is of course independent of the second subscript r.  But we keep it 
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in our notations to reminder ourselves which real Lie group the complex Lie algebra 
comes from. The root subgroup corresponding to a compact root is denoted SU(2) 
and one corresponding to a non-compact root will be SU(1,1). Their complexified 
Lie algebras will be su(2) and 0u(l, 1) respectively. We will denote by V^ or V(/i) 
the irreducible module with highest weight ^, of whatever Lie group or Lie algebra in 
question. 

2. Subalgebras of C8,4. Consider S = Eg^ (simply connected). The maximal 
compact subgroup of S is 5(7(2) x E7^ which contains a Cartan subgroup H. We 
introduce coordinates so that the complexified Lie algebra of H is I) ~ C8, and that 
the restriction of the Cartan-Killing form is the standard inner product given by 

<x,y >=xiyi H + xsVs 

Let ej denotes evaluation on the j-th. coordinate. We may assume that the roots of () 
in e8,4 are as enumerated in [Hel, Ch. X], namely 

±ei ±ej (l<i<j< 8) 

and 

^(±ei±."±e8) 

with an even number of minus signs. The simple roots are 

«! = ^yei + e8 - ^2 e7), 0,2 = ei + 62 

and 

QLJ = ej_i - ei_2,       (3 < j < 8) 

We assume that SU(2) is the root subgroup corresponding to the root 67 + 68- Con- 
sequently roots in 07,0 are precisely those perpendicular to 67 + 68- Write the Cartan 
decomposition of e8,4 as 

(2.1) e8,4 = su(2) © 07,0 © P 

As a module for SU{2) x #7,0, P has highest weight 6$ + 6$. It can also be written as 

(2.2) p = C2 0 C7(A) 

Here 17(A) is the miniscule module of E7ro of dimension 56, and A is the highest weight 
which is also the 7-th fundamental weight for £7,0. 

Next let e6,o C £7,0 be the (simple) subalgebra generated by all the roots which 
are orthogonal to both CQ + 63 and 67 + 68- The centralizer of e6,o in £7,0 is the 
one-dimensional torus C • h where 

h= (0,0,0,0,0,2,-1,1) €f) 

Let C(k) be the one-dimensional space on which the element h acts via the scalar k. 
As a module for e6,o + Ch one has 

(2.3) U(X) = C(3) + C(-3) + V 0 C(l) + V* <8> C(-l) 
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where V is an irreducible representation of CQ of dimension 27. More precisely we 
take the first six simple roots of eg,4 as simple roots for e6,o and let LOJ be the j-th 
fundamental weight. Then the highest weights of V and V* are LVQ and LOI respectively. 

Let £^6,0 and Th be the compact connected subgroups of #8,4 corresponding to 
the Lie algebras e6,o and Qi respectively. The centralizer of ^,0 in ^8,4 is of type 
A2 (see [Rub]) with maximal compact subgroup SU(2) x T^. Thus the centralizer is 
just 5/7(2,1), which contains the root subgroup SU(1,1) corresponding to the root 
ee + eg- In this way Th is identified with the center of the maximal compact subgroup 
of 517(2,1). We write 

r(5£7(2,l))= Th = E7ton 5/7(2,1) 

Note that the roots in su(2,1) are 

±(e7-hes),    ±(e6 + e8),     ±(e6 - e7) 

We take —67 — eg, e6 + eg as the simple roots. 
On the other hand we can realize su(2,1) as follows. Let I be the 3x3 diagonal 

matrix with 1,1,-1 on the diagonal. Then SU(2,1) can be identified with the group 

of all complex matrices A with determinant 1, such that A IA = I. We take the space 
of diagonal matrices in su(2,1) as a Cartan subalgebra. Let Sj denote evaluation on 
the j-th diagonal element and take £1 — £2, £2 — £3 as the simple roots. Thus on the 
Cartan alegebra of su(2,1) we have 

(2.4) -67-es =£1--£2,      e6 + e8=£2-£3 

The element h is then identified with 

Gsu(2,l) 

Next let 67,3 be the centralizer of su(l,l) in C8.4-  Let E?^ C #8,4 be the corre- 
sponding connected subgroup. The group £7,3 has maximal compact subgroup 

if = £6,oxT(£7,3), 

where T(EY^) is a one dimensional torus which is the same as the centralizer of 
5^(1,1) in 517(2,1). Thus 

1   0 0 
0    1 0 
0    0 -2 

a'2 0 0 
0 a 0 
0 0 a 

(2.5) T(E7t3) = {t(a) = [     0      a    0   \\aeU(l)} 
\    0      0    a / 

For an integer /x let (11)7,3 denote the character of T(E7t3) taking t(a) to a'1. We fix 
an orientation of the circle T(E7^) by choosing the element 

(2.6) t7,3 = (0,0,0,0,0, -1,2,1) G t(e7,3) C f) 

In view of (2.4), we see that £7^ is identified with the matrix 

€011(2,1) 
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The Cartan decomposition of 07,3 is 

e7,3 = (e6,oet(e7,3))ep+©p- 

where as (e6,o © t(e7,3))-modules 

(2.7) p+ = ^(wi) 0 (2)7,3,    p- = V(uje) 0 (-2)7,3 

Thus p± are the ±2 eigenspaces for ad(t7^). The highest weights for p+ and p~ are 
—CQ + eg and 65 — 67 respectively. 

3. Restriction to JE^O 
x SU(2,1). Let 7rm^n be the minimal representation of 

128,4 constructed by Gross and Wallach [GrW]. A great deal of information about 
TTmin is available from that paper. But here all we need is its (SU(2) x EV^-type 
structure given by 

00 

(3.1) Kmin\sU(2)xE7,o = 05"+8(C2) ® U(nX) 
n=0 

Here Sk(C) denotes the A:-th symmetric power of the standard action of 5/7(2) on C2. 
The weight A is as in §2, and U(nX) is the irreducible module with highest weight 
nA. The reader will realize that the following lemma is contained in Proposition 3.1 
of [HPS]. 

LEMMA 3.1. When restricted to e6,o © Cft the irreducible 07,0 module [/(nA) de- 
composes as 

(3.2) U(nX) = 0 V(puj6 + qcjx) 0 C(p - q + 3r - 3s) 

where the sum is over all non-negative integers p, q, r, s with 

p-\- q + r + s — n 

Proof. See [HPS], section 3. 
The spectrum decomposition of TTmin restricted to £^,0 x SU(2,1) can now be 

described as 

PROPOSITION 3.2. We have 

(3.3) ^min\E6xSU(2,l) = 0 7r(pUJ6 + ^l) 0 ^^ 

where <TM ZS a generic discrete series representation. More precisely, take 

€l — €3, €3 — 62, ei — 62 

^0 6e f/ie positive roots, with simple roots ai = ei — €3, a2 = 63 — 62. Le£ cj^a;^ 
6e ^Ae corresponding fundamental weights. Then Gv^q has Harish-Chandra parameter 
A=(p + 4)cji + (g + 4)c4. 

Proo/. From (3.1) and (3.2) we immediately conclude 

TTmm 1^x56/(2,1)  = 0 ^(^6 + g^i) (g) ap,g 

with 

(3.4) <7M|.„(2)+ch = ® 5P+?+'-+S+8(C2) 0 c(p _ g + 3,, _ 3S) 

r,s>0 
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Let a' be the discrete series representation of SU(2,1) with Harish-Chandra param- 
eter (p + 4)<x4 + (q + 4)a;2. Up to equivalence there is only one representation with 
the same (su(2) x C/i)-type structure as cr^. But the (5u(2) x C/i)-types of cr^^ are 
given by the Blattner formula [HeS] and those of apyq are given by (3.4). One checks 
that aPiq and a^ have exactly the same (su(2) x Cft)-types. Therefore ap^q ~ a^ as 
claimed. 

4. Restriction from SU(2,1) to 5(t/(l) x [/(1,1)) . We need to understand 
the restriction of <7M to the subgroup ££7(1,1). This is more or less the same as 
understanding restriction from 17(2,1) to the symmetric subgroup [7(l)x£7(l,l), and 
will be done using suitable seesaw dual pairs in the symplectic group 5pi2(M). 

Let [7(1,1) be the two-fold cover of [7(1,1) determined by det(')1/2. Local theta 
correspondence gives rise to a bijection between certain discrete series of [7(1,1) and 
of [7(2,1). We shall describe the correspondence for the cases we need here. The 
relevant Harish-Chandra parameters of [7(1,1) will be of the form A = (a, 6), where 
a, 6 are integers, and either a > b > 0, or 0 > a > b. Let 7r(A) be the corresponding 
discrete series representation of [7(1,1). To each such A we associate a Harish-Chandra 
parameter A = 0(A) by the formula 

dW-\  (0,6; a)    if    0 
>b>0 
> a> b 

Let r(A) be the corresponding discrete series representation of [7(2,1). The following 
can be read off from [Lib, §6 ]. 

LEMMA 4.1.   Under the local theta correspondence we have 7r(A) 4-)- r(A), where 
A = 6(X) is as given above. 

Henceforward we shall only consider the first case:   a > b > 0.   This will be 
sufficient for our purposes here. It is straight forward to verify 

LEMMA 4.2. We have T(a,0]b)\su(2,i) — (Jp,q tf and on^y tf 

a = p + q + 8,   b = q + 4 

Fix a, b as above. A representation of 5[7(1,1) occurs in the restriction of ap,q if and 
only if it occurs in the restriction of r(a,0;6). Let TT/. be the holomorphic discrete 
series representation of SU(1,1) with lowest weight k > 2. Suppose TT^ occurs in the 
restriction of r(a, 0; b). Then some extension of TT^ to [7(1) x [7(1,1) must also occur in 
the restriction of r(a, 0; b). We write such an extension as a 0 7r(Ai, As)- Here a is an 
integer, identified with the character t \-> ta of [7(1), and (Ai, A2) is a Harish-Chandra 
parameter. We must have 

(4.1) a + \1+\2=a + b 

(4.2) Ai - A2 = k - 1 

We shall make use of the seesaw diagram 
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C7(2,l) ^(1,1) x £7(1,1) 

(4.3) 

U(l)xU(l,l) U(l,l) 

There is a corresponding diagram for representations: 

r(a,0;6) 8(a) ®7r(Ai, A^) 

(4.4) 

a (8) 7r(Ai, A2) 7r(a, 6) 

Here 

;      [ 7r(0,a), a < 0 

When a = 0 we understand 0(0) to be the limit of holomorphic discrete series rep- 
resentation with infinitesimal character (0,0). In any case, the restriction of 0(a) to 
SU(1,1) is holomorphic of lowest weight |a| +1. The parameters Ai, A2 are in Z +1/2 
(since they parameterize discrete series of the linear group J7(l,l)). For 7r(Ai,A2) 
to occur in the correspondence with £7(1,1), Ai,A2 must be both positive or both 
negative (see [Pau]). In the first case, (A^A^) = (Ai,A2); while in the second case 
(A^, A2) = (A2, Ai). The follwoing lemma can be easily deduced from results of Repka 
[Rep]. 

LEMMA 4.3. The representation 7r(a, b) occurs in 0(a) 0 ^(A^, A2) if and only if 

(4.5) a = p + k    (mod 2) 

and either Ai, A2 < 0; or Ai, A2 > 0 and \a\ + k < p + 4. 

Now assume that the restriction of a 0 7r(Ai, A2) to T{E^^) contains (/i)7,3 (see 
§2). This is just the condition 

Ai + A2 - 2a = n 

which together with (4.1)-(4.2) determines Ai, Ao and a completely, namely 

(  a = ^p + 2q + l2-ii) 
(4.6) I   A1 = |(2p + 4g + 24 + /i) + i(A:-l) 

{ A2 = i(2p + 4(? + 24 + /x)-^-l) 
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The condition (4.5) now translates to 

li = 3k - 2p + 2q    (mod 6) 

Accordingly we write 

(4.7) iJJ = 3k-2p + 2q + 6r 

Then r G Z and we have 

{Q; = _fc+p + 4_2r 
Ai^fc + g + 4 + r-l 
A2=g + 4 + r + | 

In terms of the parameters fc,p, g, r we can formulate 

PROPOSITION 4.4. The restriction of GPA to T(E7^) x 5C/(1,1) contains 

(3k - 2p + 2q + 6r)7,3 ® 7rk 

if and only if either 

0 <r<p + 4-k 

or 

r < — k — q — 4 

5. Description of 9k' We write the decomposition of the restriction of 7rmjn to 
£7,3 xSU(l,l) as 

(5.1) ^min\E7>3xSU(i,i) = (^ Ok07rk) 0 (continuous spectrum) 
\k\>2 

Here for fc > 2, 7r_^ is the anti-holomorphic discrete series representation of 517(1,1) 
of highest weight —k. Since 7rm^n is self-contragreclient, we see that 9-k is the con- 
tragredient of Ok- Therefore it suffices to describe Ok for k > 2. 

We have shown 

LEMMA 5.1. The t-type structure of 9k is given by 

(5.2) Ok\E6xT(E7,3) = @7r(^6 + qUl) «> (M)7,3 

(5.3) // = 3A; - 2p + 2g + 6r 

and either 

(5.4) 0<r<p + 4-A: 

or 

(5.5) r<-&-g-4 
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REMARK. With respect to the action of t (and not just e6,o) the highest weights 
of p:t are eg — CQ and es — ey respectively. If U(X) denotes a representation of t with 
highest weight A then the typical £-type described in the above lemma can also be 
written as 

U(p{e5 - e7) 4- q(es - e6)) <8> (3* + 6r)7,3 

It follows from the lemma that 9k is admissible. By Rallis and Schiffman [RaS] 
(see also [Lia]). we know that it is also quasi-simple. Its infinitesimal character is 
given as follows. Choose any positive root system. Let p be the half-sum of positive 
roots. Suppose a is the simple root such that one obtains a Dynkin diagram of type 
EQ by taking out a from the Dynkin diagram of type E7. Let UJ be the fundamental 
weight dual to a. Then the infinitesimal character of 9k is 

(5.6) (jfe - 10)a; + p 

If (5.4) (resp. (5.5)) is satisfied we shall say that the corresponding K-type is of 
type (5.4) (resp. (5.5)). 

PROPOSITION 5.2. (a) The representation 9k contains the irreducible highest 
weight module dk with highest weight 

k 
(-+4:)(eG-2e7-es) 

Note that this corresponds to the one-dimensional K-type V(0) 0 (—3fc — 24)7,3 with 
p = q = 0,r = —k --4. If k > 10 then Gk is an anti-holomorphic discrete series 
representations. 

(b) The representation ak contains all K-types of type (5.5), but none of type 
(5.4). 

Proof. Consider the if-type with p — q — 0 and r = —k — 4. Let VQ be any 
non-zero vector belonging to this one dimensional space. Since e6,o annihilates VQ, we 
see that the map 

X^X-vQ (X € p+) 

is an e6,o-homomorphism from p+ into Ok- Thus if p+vo is non-zero it must be of 
type V((jj\) 0 (—3& — 22). But clearly this is not any one of the if-types described in 
Proposition 4.4. Thus p+ must annihilate VQ. This proves (a). 

Since <Jk is a highest weight representation, any of its if-types must have highest 
weight of the form 

(2+4)(e6-2e7-e8) + ^n^ 

where the /?j's are roots in p~, and the n/s are non-negative integers. Suppose this 
is a if-type V(p(jjQ + qu\) (g) (£1)7,3 of type (5.4). Then 

ix = 3fc - 2p + 2q + 6r = -3fc - 24 - 2 ^ nj 

so 

p = 3fc + q -f 3r + 12 + ^ nj > 3fc + Q + 12 + ^2 nj 
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On the other hand by taking inner product with CXQ we see 

p < coefficient of 65 — 67 < V^ rij 

Thus we have a contradiction which shows cr^ can not contain any if-type of type 
(5.4). 

Now write 

Ok = <7k © v'k 

To finish the proof of (b) we need to show that a'k does not contain any K-type 
satifying (5.5). Suppose it does. We choose such a if-type satisfying 

W - V(pue + ^1)0 0)7,3 

with fi maximal, where // = 3k — 2p + 2q + 6r with r < —k — q — A. Consider the map 

p+®W—>9k,      X®v^X'V 

This is a K-homomorphism. Suppose that the image of this map is non-zero (i.e. p+ 

does not annihilate W). Then p+ (g) W must contain an irreducible constituent of the 
form described by Lemma 5.1. But the higest weights in p+ ® W are all of the form 

(highest weight of W) + (a weight in p+) 

From this we conclude that the only irreducible representation contained in p+ 0 W 
and of the kind described in Lemma 5.1 is 

V(PUG + (q + IVI) 0 (// + 2)7,3. 

Since fi was assumed to be maximal, this if-type must be of the form (5.4). But 

fi + 2 = 3fc - 2p + 2(q + 1) + 6r. 

So we must have r > 0 which is a contradiction. The contradiction shows that p+ 

annihilates W. But then W generates an irreducible highest weight module contained 
in 9k' The infinitesimal character of a highest weight module is easily obtained from 
the highest weight. Since W is different from V(0) 0 (—3k — 24), one can easily check 
that the infinitesimal character can not be that given by (5.6). So we conclude that 
in fact W does not exist. This proves the proposition. 

6. Description of <J^. 

LEMMA 6.1. The representation a'k has a unique lowest K-type 

(6.1) V(puje) 0 (3fc - 2^)7,3 

where p = max(& — 4,0). 
Proof. Recall that f) ~ f)* ~ C8 with standard inner product 

< x, y >= x1y1 H h xsys 

The roots and weights for various subalgebras of e8,4 are all embedded in I)*, and the 
restriction of <, > can be used as the norm that comes into the definition of the lowest 
if-type [Vog, Chapter 5]. With this understanding we have 

<J = a* = (0,0,0,0,1,-^,-",-) 
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a;* = ^ = (0,0,0,0,0,-1-^) 
and (/i)7,3 corresponds to the weight 

(0,0,0,0,0,-|,|,|) 

Furthermore the half-sum of positive roots of e6,o is 

pc = (0,1,2,3,4,-4,-4,4) 

Therefore if A denote the highest weight of V(P(JL)Q + qoui) 0 (/x)7,3 a simple calculation 
shows 

< A + 2pc, A + 2pc >= (p + 8)2 + -(p + 2g + 24)2 + -p2 + 56 

This is a quadratic form and it is elementary to verify that, subject to the conditions 
(5.3)-(5.4), the minimum is reached precisely when 

p = max(& — 4,0),    # = 0,    r = 0 

This is what the lemma says. 
Note that when k > 4 the lowest If-type specified in the above lemma is 

V((k - 4)(j6) 0 (k + 8)7,3 

with highest weight 

(6.2) (0,0,0,0^-4,-^,4,^) 

Let 

(6.3) zo = (0,0,0,0,2, -1,0,1) € f> n c7;3 

Let q = q(a;o) be the parabolic subalgebra of £7,3 defined as the sum of eigenspaces 
for ad(xo) with non-negative eigenvalues. Set 

(6.4) 7 = (o,o,o,o,i,-i,o,i)er 

For A = (k — 10)7 define the representations 7£q(A) = 7£q((A; — 10)7) as in [Vog]. It 
turns out that the parameter (fc—10)7 is always in the fair range. So 7Zq((k—10) j) = 0 
unless j = S = dim(u D 6), where u is the nilpotent radical of q. We will see that 
S = 16 here. If k > 10 then 7?^((fc —10)7) = Aq((k —10)7) is a unitary representation 
with non-zero cohomology [VoZ]. 

LEMMA 6.2. For k > 4 the representations crjj. and TZq((k — 10)7) have exactly 
the same infinitesimal character and K-type structure. 

Proof. Let { be the centralizer of XQ. Let u be the sum of eigenspaces for ad(xQ) 
with positive eigenvalues. We have the Levi decomposition q = [ + u. It is easy to 
see that [/, /] is of type EQ, and in fact it comes from a real form of Cartan type EIII. 
This is the real form that gives rise to the exceptional hermitian domain of type EQ . 
Thus we may write [/,/] = c6(_i4). 



370 . J. s. LI 

We construct a set of simple roots for c^^ such that all roots in u are positive for 
the system determined by the simple roots. Take the first 5 simple roots ai, • • •,0:5 of 
e8,4 listed in §2. Then we add ajj = 67 — 64. These form a system of simple roots for 
e6(-i4)- Next we add a? = 65 — 67. These together form a system of simple roots for 
£7,3- With respect to this system, we see that 7 is nothing but the 7-th fundamental 
weight. Let p be the half sum of positive roots with respect to the positive system we 
just defined. The representation R^((k—10)7) has infinitesimal character (k—10)7+/o, 
which agrees with the infinitesimal charcater of #& (and hence of crjj.) given by (5.6). 

It is easy to check that 

(Jfc = (fc-10)7 + 2p(unp) = (0,0,0,0,fe-4,-|,4,^) 

which is the highest weight of the lowest K-type specified in Lemma 6.1. 
Let r be an irreducible representation of K which acts on the space Z. The weight 

5k defines a one dimensional representation of L fl K. Let 

S(unp) = £sm(unp) 

be the symmetric algebra of u Pi p. The proof of the generalized Blattner formula in 
[Vog] shows that the multiplicity of r in JR?((ife — 4)u;) is equal to the dimension of 
the space 

lIomLnK(H0(u H *, Z), 5(u H p) 0 5k) 

(Combine (6.3.15) and (6.3.20) of [Vog]). Since iJ0(u Pi 8, Z) is just the space of u n £ 
invariants in Z, the highest weight vectors of the L fl K module il0(u fl £, Z) are 
precisely the highest weight vectors of the K module Z. Thus it suffice to decompose 
5m(u H p), m = 0,1,2, • • • as L fl K modules. 

It is easy to check that the semi-simple part of I fl Ms 50 (10) generated by the 
first 5 simple root ai, • • •, 0:5 list in §2. Let t be the center of I fl 6. It acts on u fl p+ 

by (es — 6e)\t and on the one dimensional space u fl p~ by (es — 67)|t. Since 65 — 67 
is orthogonal to all roots in so (10) it defines a one-dimensional representation of all 
oi int. With respect to the action of 50 (10), u fl p+ is isomorphic to the standard 
module C10. Thus as a module for I n 6 = so (10) + t we have 

u H p - (C10 ® (eg - e6)|t) 0(e5 - e7)\t 

Therefore 
m 

Sm{unp) = J2Sl{C10) 0 [1(6* - ee) + (m - l)(e6 - eyfllt 
1=0 

The restriction of es — ee to so (10) fl J) defines the first fundamental weight for 
so(10) which we denote by co,1. Now 

5l(C10) = weW-2"- 

where Hj is the irreducible representation of so(10) with highest weight JUJ[. We 
obtain 

(6.5) 5(unp)®4 = 5I(5J'(Clo)®[/(e8-e6) + (m-0(e5-e7)]|t)®4 
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where the sum is over all integers m,l,j with 

0 < j < I < m,        j = 1 (mod 2) 

Set 

/ _ j 
r = ,      q = j,     p = r + (m — /) 4- k — 4 

Then 0<r<p + 4 — k and one checks easily that the highest weight of the typical 
summand in (6.5) is precisely the highest weight of the representation V(pujQ-\-qoji) <g> 
(//)7,3 with p. = 3k — 2p + 2q-\-6r, that appears in (5.2) and satisfies (5.4). This proves 
the lemma. 

With respect to the positive root system for t7^ introduced during the proof of 
the above lemma, we have 

17      17 
P=(0,lJ2,3,5,-y,4,y) 

The restriction of p to the center of I is equal to 97. It is then easy to see that (k —10)7 
is always in the fair range. For k > 9 it is in the weakly good range, so TZ^{(k — 10)7) 
is irreducible. Finally if k > 10 then TZ^{(k - 10)7) = ^4q((& - 10)7) is a unitary 
representation with non-zero cohomology. In this case the infinitesimal character and 
full if-type structure is more than enough to determine the isomorphism class of the 
representation in question [VoZ, Proposition 6.1.]. So Lemma 6.2 implies 

THEOREM 6.3. For k > 10 we have a'k ~ Aq((k - 10)7). 
Note that 

(6.6) dim(u n p+) = 10,    dim(u n p") = 1 

So the representation Aq((k - 10)7) has non-zero cohomology in bi-degree (10,1). In 
this regard we observe that up to conjugation by K, there are exactly two ^-stable 
parabolics satisfying (6.6). If X'Q is the parameter (cf. (6.3)) that defines the parabolic 
q' different from q and satisfies (6.6) then XQ and X'Q are conjugate to each other via 
an outer automophism of £$$. Also q, q' and their complex conjugates together 
constitute all parabolics satisfying ufl p = 11. Thus there are exactly 4 families of 
unitary representations with non-zero cohomology at the minimal degree ro = 11 (cf. 
[VoZ, p. 38]), and that they have cohomology only at bi-degrees (10,1) and (1,10). 
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