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ON PRINCIPAL G2 BUNDLES* 

S. SUBRAMANIANt 

1. Introduction. Let G2 be the exceptional group defined as the group of alge- 
bra automorphisms of the eight dimensional Cay ley algebra C over an algebraically 
closed field k of characteristic p. Let Co denote the seven dimensional space of ele- 
ments of trace 0 in C. Then G2 acts irreducibly on Co if p 7^ 2,3. (See [3].) Let 
E -> X be a principal G2 bundle over a smooth projective variety X and V —> X 
the rank seven vector bundle associated to E by the representation Co of G2 • In this 
article, we show that E -»- X is a semistable principal G2 bundle if and only if V ->■ X 
is a semistable vector bundle. In particular, this shows that the family of semistable 
G2 bundles on X is a bounded family when char, k > 17. When G is a classical group 
and V the standard representation of G, a principal G bundle E ->• X is semistable 
iff the associated vector bundle V -^ X is semistable. That this is known to experts 
was pointed out by Usha Bhosle. (See [8], Proposition 4.2). 

ACKNOWLEDGEMENTS. The author wishes to thank Vikram Mehta for useful 
discussions and Ilangovan for bringing McNinch's paper to my attention. 

2. Some representation theory and geometry. In this section, we denote 
by V the seven dimensional irreducible representation Co of the group G2. There is a 
natural quadratic form on V induced by the quadratic form n(a) — aa, a G C on the 
Cayley algebra C, where a is the usual involution on the Cayley algebra. Let SO(V) 
denote the orthogonal group of this quadratic form on V. Let P1,P2,^3 denote the 
maximal parabolic subgroups of 50(V) defined as the stablisers of rank one, rank 
two and rank three isotropic subspaces of V, respectively. Let Pi and P2 denote the 
two maximal parabolic subgroups of G2, where Pi is the intersection of Pi with G2 
for the natural inclusion of G2 in SO(V). Then we have 

LEMMA 2.1. G2/P1 = SO(V)/Pi C P(V) where P(V) is the projective space of 
lines in V. 

Proof. By dimension count, dim G2/P1 = 5 and dim SO(V)/Pi = 5 and obvi- 
ously G2/Pi cSO(V)/Pi. U 

Let A2V denote the second exterior power of V. In characteristic zero, A2V 
decomposes as a G2 module as 

A2y = v 0 r, 01 

where FQI is the adjoint representation of G2 (see [1], § 22.3). The same decomposition 
into irreducible G2 module is also valid in characteristic p provided 2p > dimk2V = 
21, i.e., p > 11, by [5], Corollary 1.1.1 and Lemma 4.10.1. 

We have P(roi) C P(A2V).  Also, G2/P2 C P(roi) and SO(V)/P2 C P(A2V) 
(in all characteristics). We have 

LEMMA 2.2. Under the inclusion P(roi) C P(A2V),SO(V)/P2nP(Toi) = G2/P2 
if p > 11 or char. 0. 
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Proof. By a dimension count, we see that dim 30(7)/P2 — 7. Let Y — PfToi) fl 
SO(7)/P2. Since the embedding SO(7)/P2 C P(A2V) is nondegenerate, SO(7)/P2 
is not contained in PfToi) and hence Y is a proper closed subvariety of SO(7)/P2' 
Hence dim Y < 6. Suppose dim Y = 6. Then Y is a divisor in SO(7)/P2 and if H is a 
hyperplane in P(k2y) with PfToi) C H, then Y = SO(7)/P2nH. But a hyperplane 
section of SO{7)/P2 in P(A2V) is a divisor linearly equivalent to the positive line 
bundle on SO(7)/P2 defined by the fundamental weight A2 corresponding to iV 
Thus Y defines a section a G H0(SO(7)/P2, X2) = A2V. On the otherJiand, G2 acts 
on y, so a is a section left invariant under G2 action on H0(SO(7)/P2: X2) = A2V, 
hence we obtain a one dimensional subspace (viz. generated by a) of A2V invariant 
under G^. However, according to the decomposition A2V = V 0 FQI into irreducible 
G<2 modules (for p > 11, or char. 0) there is no trivial G2 submodule of A2V, so dim 
Y cannot be 6, and so dim Y < 5. 

Also, Y being a complete variety on which Go acts algebraically, Y contains 
a closed G2 orbit. The only G2 homogeneous spaces are ^2/^1,^2/^2, both of 
dimension 5, and G2/B (where B = Pi nP2 is the Borel subgroup) of dimension 6, so 
dim Y > 5. From these considerations, we obtain dim Y = 5, and since G2/P2 is the 
unique closed G2 homogeneous subvariety of P(roi) of dimension 5 (if char p > 11 
by [5]), we obtain that Y = G2/P2. □ 

We now consider ASV. We have the decomposition in char 0 

A3V = V © r2o © 1 

into irreducible G2 modules, where I^o is the module with highest weight 271, with 71 
the fundamental weight corresponding to the parabolic Pi, and 1 denotes the trivial 
one dimensional module.   The same decomposition also holds in characteristic p, if 
2p > dim A3^ = 35, i.e. p > 17, by [5], Corollary 1.1.1 and Lemma 4.10.1. 

We have SO(V)/P3 C P(A3V) and we have 

LEMMA 2.3. SO(V)/P3 n P(r2o) = G2/P1 if char = p > 17 or char. 0. 
Proof. By a dimension count, we see that dim SO(V)/P3 = 6. Also the embed- 

ding SO(V)/P3 C ^(A3^) is nondegenerate, and so SO(V)/P3 is not contained in 
P(r2o). Therefore, dim SO(V)/P3 fl P(r2o) < 5, and by an argument similar to the 
one in Lemma 2.2, we conclude that dim (SO(V)/Ps) Pi PQ^o) = 5. Since G2/P1 is 
the unique closed G2-homogenous subvariety of P(r2o) of dimension 5 (if p > 17 or 
char. 0 again by [5]), we obtain the conclusion of the lemma. □ 

3. The vector bundle. Let E -> X be a principal bundle with structure group 
G2, where X is either a complete nonsingular curve, or a nonsingular projective variety 
with a given polarisation, over an algebraically closed field of characteristic p. Let Co 
be the seven dimensional space of Cayley numbers of trace zero over the given field. 
Then if p / 2,G2 acts irreducibly on Co, and let V —> X be the associated vector 
bundle of rank seven. We have 

THEOREM 3.1. If E -> X is a semistable G2 bundle, then V -> X is a semistable 
vector bundle if the characteristic p > 17 (or char. =0). 

Proof. Suppose V --> X is not semistable (For the notion of semistability of 
principal bundles and vector bundles, see [4], [2] and [6]). Let B C V be the (3- 
subbundle of V (see [4]). B is a semistable bundle of positive degree. Since G2 C 
50(Co) = 50(7) for the natural quadratic form on Co (see [3], Proposition 2, page 
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11), the vector bundle V carries a nondegenerate quadratic form and hence we obtain 
an isomorphism V ~ V*. The composite map B -¥ V -> V* -» B* is zero since 
fjL(B) > tJL(B*), where /z(B) is the slope |^§y and hence B C Ker(V -> B*) = BA-, 

where B^- denotes the perpendicular of B with respect to the quadratic form on V. 
This shows that B is isotropic, and hence rank B = 1,2 or 3. 

Case 1. Rank 5 = 1. 
In this case, the line bundle 5 C V defines a section X -> PiV) where PiV) 

denotes the projective bundle of lines in V and since B is isotropic this section actually 
factors as X -+ E(SO(7)/Pi) C P(V) where J5(50(7)/Pi) is the bundle associated 
to E for the action of G2 on 30(7)/?!. But 50(7)/Pi = G2/P1 (by Lemma 2.1), 
so the line bundle P C V actually defines a section a : X -> ^(G^/Pi) C P(Vr). 
Let T denote the tangent bundle along the fibres of E(G2/Pi) -» X- Then <ie£T = 
Op(v)(l)<8)m for a positive m (which can be explicitly computed but not necessary for 
us). It follows that 

dega^T = mdegG*Op(y)(l) - mdegB* < 0. 

This section a : X -> E{G2/Pi) defines a reduction of P to the parabolic Pi contra- 
dicting the semistability of E. Hence rank B cannot be 1. 

Case 2: Rank B — 2. In this case, det B C A2y and this defines a section 
a : X -> P(A2V). Consider the decomposition 

A2T/ = yeP(roi) 

where P(roi) is associated to the adjoint representation of G2. Then n(detB) = 
2/ji(B) > 11(B) = //max(1^)5 so the map <ie£P -> V is zero. Hence detB C P(roi). 
Also, B is isotropic, so the section a : X —> P(A2V) defined by B actually lies in 
E(SO(7)/P2) n P(P(roi)). Now applying Lemma 2.2, we obtain 

E(SO(7)/P2) H P(P(roi)) - P(G2/P2) 

and the section a factors 

(7:X^P(G2/P2)cP(A2y). 

Again letting T denote the tangent bundle along the fibres of E(G2/P2) —>• X, we 
obtain detT = Op^y^l)^771 for a positive constant m. Hence 

deg<j*T    =    mdega^Op^y^l) 
=    mdegB* < 0 

Once more, a : X ->> E(G2/P2) defines a reduction of structure group of E to P2 
contradicting the semistability of E. 

Case 3. Rank B = 3. 
In this case, 

A3P = detB c A3V = V 0 P(r2o) © O 

and the map det B -> V is zero because ^(detB) = 3/i(P) > /x(P) = /Wx(^). So 
is the map detB -t O.  Hence detB C E(T2o)'  Since P is isotropic, we deduce as 
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before, applying Lemma 2.3, that detB C A3"^ defines a section a : X -> P(A3y) 
which factors as 

a : X -» E(G2/Pi) C P(E(r2o)) C P(A3V). 

If we again denote by T the tangent bundle algong the fibres of E(G2/Pi) ->* X, then 
detT = Op(JE;(r20))(l)<8)m for a positive constant m and 

dega*T    =    mde^(7*Op(£;(r2o))(l) = mdega*Op{A3V)(l) 
=    mdegB* < 0 

and again a : X -> ^(G^/Pi) defines a reduction of structure group of i£ to Pi 
contradicting semistability of E. □ 

REMARK 5.i?. Suppose V is a semistable vector bundle in the notation of the 
above theorem. Let Ei C E be a reduction of structure group of E to the maximal 
parabolic subgroup Pi of G2. Then this reduction defines an isotropic line sub-bundle 
L C V, and conversely, cin isotropic line subbundle L C V defines a reduction of 
structure group of E to Pi (by Lemma 2.1). If T denots the tangent bundle along the 
fibres of E(G2/Pi) -* X and a : X -» E(G2/Pi) defines the reduction to Pi, then 
det T = Op(v)(i)®m for a positive integer m, and 

deg cr*T = m degcr*0p(y)(l) = -ra degL. 

Since V is semistable, deg L < 0, and hence deg cr*T > 0, verifying the semist ability 
criterion for a. 

Now let E2 C E be a reduction of structure group to P2, defined by a section 
a ; X -* E(G2/P2)' Since E(G2/P2) C E(SO(7)/p2) C P(A2Vr), the section cr 
defines a rank two istropic subbundle 5 C V. Letting T denote the tangent bundle 
along the fibres of ^(G^/ft) -» -X", we obtain cr*det T = m cr*0p(A2v)(l) for a 
positive integer m, and we get 

degtrT    -    mdega*Op(A2V)(l) 
=    — m deg det 5 

Since V is semistable, deg 5 < 0, and so deg cr*T > 0. 
Thus V is semistable implies that E is a semistable G2 bundle. 

COROLLARY (3.3). The family of semistable G2 bundles on X is bounded in 
characteristic p > 17 if dimX < 2. 

Proof. Ti E -± X x S is & family of semistable G2 bundles, an C0 is the seven 
dimensional representation of G2 considered above, then the associated vector bundle 
E(Co) -> X x S is a family of semistable vector bundles on X parametrised by S. 
The corollary follows from the Main Theorem in [9]. □ 

REMARK 3.4- The proof that a bundle associated to a semistable bundle is also 
semistable in char. 0 given in [7] uses Kempf's theorem on the rationality of the 
instability flag. 

REMARK 3.5. In Theorem (3.1) above, I believe that the condition char k = p > 
17 can be improved. 
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